JP4375766B2 - Deaeration device and deaeration method - Google Patents

Deaeration device and deaeration method Download PDF

Info

Publication number
JP4375766B2
JP4375766B2 JP2000079387A JP2000079387A JP4375766B2 JP 4375766 B2 JP4375766 B2 JP 4375766B2 JP 2000079387 A JP2000079387 A JP 2000079387A JP 2000079387 A JP2000079387 A JP 2000079387A JP 4375766 B2 JP4375766 B2 JP 4375766B2
Authority
JP
Japan
Prior art keywords
liquid
deaeration
tubular
tubular body
tubular membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000079387A
Other languages
Japanese (ja)
Other versions
JP2001259306A (en
Inventor
直之 中本
利幸 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Japan GK
Original Assignee
Air Liquide Japan GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Japan GK filed Critical Air Liquide Japan GK
Priority to JP2000079387A priority Critical patent/JP4375766B2/en
Priority to PCT/JP2001/002295 priority patent/WO2001070366A1/en
Priority to AU2001242757A priority patent/AU2001242757A1/en
Publication of JP2001259306A publication Critical patent/JP2001259306A/en
Application granted granted Critical
Publication of JP4375766B2 publication Critical patent/JP4375766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration

Description

【0001】
【発明の属する技術分野】
本発明は、被処理液中の溶存ガスを透過させる管状膜を利用して脱気を行う脱気装置及び脱気方法に関し、特に半導体製造工程に使用する液体状の化学薬品から脱気を行う脱気工程に有用である。
【0002】
【従来の技術】
従来より、大規模集積回路等の半導体の製造において、薄膜形成工程としてプラズマ気相成長法(PECVD)が用いられている。この方法では、ガス状または液体状の化学薬品(前駆物質)が反応炉内の堆積ステーションのガス分散ヘッドに供給されてシリコン基層と反応するが、化学薬品が液体の状態で供給される場合、反応炉に入る前に気化器を通過してガス化させる。
【0003】
最近のPECVDシステムでは、液体状の化学薬品の供給システムは、2つの重要な規準を満たす必要がある。1つは、均一な安定した圧力で、所定のフローレートで液体状の化学薬品を供給すること、他方は、液体状の化学薬品が正確に液体計量できるように、粒子及びガスを含まないこと、である。そしてポンプを供給源に用いたシステムでは、不純物の問題点や圧力や流量が均一に制御しにくい等の問題があるため、ガス加圧により容器に貯留した液体状の化学薬品を供給する方法が、主として採用されている。
【0004】
しかし、上記方法では液体内に溶存ガスが存在することによって、溶存ガスが気泡となって液体内に発生し易く、気泡が存在することによって、液体の熱伝導率が変化する。このため、液体マスフローコントローラが誤動作し、正確かつ安定した液体の供給ができなくなる。その結果、PECVD法によって堆積される薄膜の厚さ及び質が不均一になる等の問題が有った。
【0005】
そこで、このような溶存ガスを除去する装置として、特開平6−220640号公報には、溶存ガスが分離可能な管状膜(チューブ)内に被処理液(供給用液体)を流通させつつ、管状膜の外側空間を減圧することによって、溶存ガスを除去する脱気装置が提案されている。
【0006】
また、図4に示すように、横置き型のハウジング23内に多数本の中空糸膜22を並設して膜モジュールを構成し、そのハウジング23内の内部空間21に被処理液を供給口24から供給して排出口25から排出しつつ、中空糸膜22に連通する減圧口27から中空糸膜22の内側空間を減圧することによって、溶存ガスを除去する脱気装置が知られている。なお、必要によりスウィープ用ガスが導入口26より供給される。
【0007】
【発明が解決しようとする課題】
しかしながら、上記前者の脱気装置では、圧力や温度等の環境の変化により一旦気泡が発生すると、気泡を透過させるのに十分なだけの管状膜壁面との接触時間(機会)が与えられなかった場合には、気泡が外部に放出されるという欠点がある。
【0008】
また、後者の脱気装置では、一旦気泡が発生するとハウジング内の上部壁面付近(図4の21aの部分)に気泡が滞留するが、それを有効に除去することはできず、何かの拍子で処理液と共に気泡が排出される可能性がある。
【0009】
そして、上記のような脱気工程における気泡の排出の問題は、半導体製造工程の薬液供給時の脱気に限らず、その他の脱気工程に共通する課題である。
【0010】
そこで、本発明の目的は、発生する気泡が処理液と共に排出されにくい脱気装置及び脱気方法を提供することにある。
【0011】
【課題を解決するための手段】
上記目的は、下記の如き本発明により達成できる。
即ち、本発明の脱気装置は、被処理液中の溶存ガスを透過させる管状膜を管状体に内挿して、その管状膜の外側に被処理液の流路を形成しつつ、前記管状膜の内側空間を減圧状態にすると共に、前記管状体の少なくとも一部を下流側が上流側より下方に位置するように配置して、発生した気泡が下流側へ流動するのを防止する気泡阻止部を設けてある脱気装置である。ここで、管状体とは円管状のものに限られず、環状断面を有する比較的長尺なものを指す。
【0012】
上記において、前記気泡阻止部の上端部にガス溜め部を設けると共に、そのガス溜め部の内部に前記管状膜を配置してあることが好ましい。
【0013】
また、前記管状体の少なくとも一部の外周部に、加温手段を設けてあることが好ましい。
【0014】
一方、本発明の脱気方法は、上記いずれかに記載の脱気装置を用いて、半導体製造工程に使用する液体状の化学薬品から脱気を行う脱気方法である。
【0015】
[作用効果]
本発明の脱気装置によると、被処理液中の溶存ガスを透過させる管状膜を管状体に内挿して、その管状膜の外側に被処理液の流路を形成しつつ、前記管状膜の内側空間を減圧状態にするため、膜内外の圧力差により溶存ガスが管状膜を透過することで、被処理液から溶存ガスを除去することができる。その際、前記管状体の少なくとも一部を下流側が上流側より下方に位置するように配置して、発生した気泡が下流側へ流動するのを防止する気泡阻止部を設けてあるため、発生した気泡の浮力により、気泡が下流側へ流動するのを防止することができる。しかも、管状膜の内側に被処理液の流路を形成する場合では、ある程度気泡が大きくなると、気泡の浮力によっても被処理液中を気泡が上昇しにくくなるが、本発明では管状膜の外側に被処理液の流路を形成するため、気泡の浮力による上昇が行い易く、気泡が下流側へ流動するのを有効に防止することができる。その結果、発生する気泡が処理液と共に排出されにくい脱気装置を提供することができる。
【0016】
前記気泡阻止部の上端部にガス溜め部を設けると共に、そのガス溜め部の内部に前記管状膜を配置してある場合、発生した気泡が上端側へ移動してガス溜め部に滞留しやすくなり、しかもガス溜め部の内部に前記管状膜を配置してあるため、滞留する気体を膜内外の圧力差により透過させて除去することができる。
【0017】
前記管状体の少なくとも一部の外周部に、加温手段を設けてある場合、管状体であるため、外周部に加温手段を設けるだけで効率良く管状体の内部を加温することができ、管状膜の気体透過性を高めて、効率よく脱気を行うことができる。また、被処理液と溶存ガスの関係が、高温ほど溶解度が低い関係にある場合には、加温により積極的に気泡を発生させることにより、被処理液から溶存ガスをより効率よく除去することができる。
【0018】
一方、本発明の脱気方法によると、上記いずれかに記載の脱気装置を用いるため、上記の如き作用効果により、発生する気泡が処理液と共に排出されにくい脱気方法となる。このため、溶存ガスの存在が特に問題となり易い半導体製造工程に使用する液体状の化学薬品から、脱気を行う方法として本発明の脱気方法は特に有用な技術となる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。図1は本発明の脱気装置の一例の要部を示す断面図である。本実施形態では、直管状の管状体2を垂直方向に配置して気泡阻止部FPを構成し、その上端部にガス溜め部10を設けて内部に管状膜1を配置してある例を示す。
【0020】
本発明の脱気装置は、図1に示すように、被処理液中の溶存ガスを透過させる管状膜1を管状体2に内挿して、その管状膜1の外側に被処理液の流路3を形成してある。
【0021】
管状膜1としては、被処理液中の溶存ガスを透過させるものであれば何れでもよく、従来より脱気用の分離膜して利用されてきた、無孔質膜や多孔質膜で作成されたチューブ状や中空糸状の膜が使用できる。具体的にはPTFE、FEP、PFA等のフッ素樹脂や、ポリエチレン、ポリプロピレンまたはポリアミド系の分離膜が好適に使用できる。なお、管状膜1外側の流路3での流動を乱流化して、被処理液と管状膜1との接触効率を高める上で、ジャバラ管のように外面形状が凹凸を有することが好ましい。
【0022】
被処理液としては、例えば半導体製造工程に使用する液体状の化学薬品の場合、テトラエチルオルソケイ酸塩、トリメチル亜リン酸塩、トリメチルホウ酸塩、トリエチル亜リン酸塩、トリエチルホウ酸塩、テトラキス(ジエチル)アミノチタン等が挙げられる。また、溶存ガスとしては、ヘリウム、窒素、ネオン、アルゴン、二酸化炭素、酸素等が挙げられる。
【0023】
管状体2としては、被処理液によって腐食される等の不都合がなければ何れの材質でもよいが、耐蝕性等を考慮するとフッ素樹脂やSUS等が好ましい。また、図示した例では円管状のものを使用しているが、その断面形状も何れでも良い。なお、管状体2内部の流路3での流動を乱流化して、被処理液と管状膜1との接触効率を高める上で、ジャバラ管のように内面形状が凹凸を有することが好ましい。
【0024】
管状膜1は管状体2に内挿されており、管状膜1の外側に被処理液の流路3を形成してあるが、流路断面の面積は、管状体2の内径と管状膜1の外径で決定される。図示した例では、管状体2の内径が3〜30mm程度、管状膜1の外径が1〜10mm程度、両者の比率(前者/後者)が4〜1.2程度が好ましい。
【0025】
管状体2は下流側が上流側より下方に位置するように略垂直方向に配置して、管状体2の略全体が気泡阻止部FPを構成しているが、管状体2の少なくとも一部を下流側が上流側より下方に位置するように配置してあればよい。このような気泡阻止部FPにより、発生した気泡が下流側へ流動するのを防止することができる。
【0026】
気泡阻止部FPの上端部には、管状体2と連続する管状体10aによりガス溜め部10を形成し、その内部に管状膜1と連続する管状膜1aを配置してある。管状体10aの上端は、樹脂管用継手5の雄側に接合され、その雄側に管状膜1aが挿通されて、雌側の締め付けによりシールされている。ガス溜め部10の内部空間10bには、発生した気泡が上昇して集合されるが、管状膜1aの内部が減圧されることにより、溜まった気体が管状膜1aを透過して除去される。
【0027】
管状膜1aの上端は、管用継手6(各種のフィッティング)を介して減圧配管7と接続されており、減圧配管7は、真空ポンプ等の減圧装置(図示省略)に接続されている。減圧配管7には気体透過しにくい金属等が使用される。この減圧装置の作動により、減圧配管7を介して管状膜1の内側空間4が減圧状態になる。
【0028】
管状体2と管状体10aとの境界部は、T型に分岐しており、供給管8が一体的に分岐接続されている。一方、管状体2の下端も、T型に分岐しており、排出管9が一体的に分岐接続されている。上記の供給管8を介して被処理液が供給され、管状膜1の外側に形成された流路3を下方に流動した後、排出管9を介して外部に排出され、その間に管状膜1を溶存ガスが透過することで脱気が行われる。また、その間に発生した気泡は、上方に移動してガス溜め部10で脱気することができるが、供給管8から流入する気泡も、同様にガス溜め部10で脱気することができる。
【0029】
排出管9の分岐部分の下側にも管状膜1と管状体2は連続しており、上端部と同様なシール構造になっている。管状膜1の下端は封止してもよいが、弁を設けられて必要によりスウィープガスを供給可能にしてもよい。スウィープガスとしては、管状膜1を透過しにくい窒素ガス等が好適に使用できる。
【0030】
本発明では、図1に示すように、管状体2の少なくとも一部の外周部に、加温手段を設けてもよい。加温手段としては、例えば電熱線11を管状体2の外周に巻き付けたり、電熱ヒータ等を配置したりすればよい。なお、FEPよりなる管状膜1を使用する場合、50℃と25℃では、気体透過係数がヘリウムで1.8倍、酸素で2.7倍、窒素で2.1倍となる。
【0031】
以下、本発明の脱気装置を用いて、半導体製造工程に使用する液体状の化学薬品から脱気を行う脱気方法について説明する。かかる脱気方法は、図2に示すような液体供給システムに使用される。
【0032】
液体供給システムは、供給源12、脱気装置DG、及び液体マスフローコントローラ17を有する。液体13は、加圧されたガス14を用いて液体13を移動させることによって、供給源12から供給される。供給源12は、加圧されたガスを供給する供給源(図示省略)に接続されたガスの入口15aと、脱気装置DGに供給管8を介して接続された液体の出口15bとを備えた容器15とを有する。この例では、ガス14はヘリウムであり、液体13はテトラエチルオルソケイ酸塩(TEOS)である。互いに化学的に反応しない他のガス及び他の液体を、ヘリウム及びTEOSの代わりに用いることもできる。例えば、TEOSの代わりに、PECVD反応炉内で用いられるトリメチル亜リン酸塩(TMP)及びトリメチルホウ酸塩(TMB)が、本発明によって供給される。
【0033】
供給源12内では、圧力及び温度によって、ある程度の量のヘリウムがTEOS内に溶解する。下流側の低圧領域で、ヘリウムの泡が発生することによって、TEOSの流れが中断し、液体マスフローコントローラでの液体計量が誤ったものになる。脱気装置DGは、前述のような装置構成によって、液体のTEOS内に溶解したヘリウムガスを除去する。脱気装置DGの減圧配管7は排気ポンプ16に接続される。脱気装置DGの排出管9は、液体マスフローコントローラ17に接続されている。
【0034】
液体マスフローコントローラ17は、利用者の所望のフローレートで、かつ均一な圧力で、正確に液体計量を行うように、液体13を分配するために用いられる。液体マスフローコントローラ17は、当業者には公知の任意のコントローラであって良い。液体マスフローコントローラ17の出口は、PECVD反応炉18に接続され、PECVD反応炉18内に設けられた気化器19に接続されている。液体13が気化された後、その気化された液体はガス分散ヘッド(図示省略)に送られる。液体マスフローコントローラ17とPECVD反応炉18とは、必要により複数設けられる。
【0035】
上記において、脱気を行う部分の管状膜1の長さは、例えば次のようにして決定すればよい。PECVD反応炉18の規模と数から、液体13の供給流量の最大流量を計算し、液体13に対するガス14の溶解度から最大流量に対応する最大溶解量を求め、それを単位時間あたりに除去すべきガス量とする。試験的に単位長さの管状膜1を備えた脱気装置で脱気を行い、得られる単位時間あたりの脱気流量によって、上記除去すべきガス量を除して、管状膜1の長さの目安とする。
【0036】
例えば、約3台のチャンバーに脱気装置DGを介してTEOSを供給する場合、500ml/minの最大流量が見込まれ、ヘリウムガスの溶解度を考慮すると、管状体2の内径が10mm、管状膜1の外径が6mmの場合で、それらの長さが1〜3m程度で十分な脱気が行えるようになる。
【0037】
[他の実施形態]
以下、本発明の他の実施の形態について説明する。
【0038】
(1)前述の実施形態では、直管状の管状体を垂直方向に配置して気泡阻止部を構成し、その上端部にガス溜め部を設けて内部に管状膜を配置する例を示したが、脱気のための有効長さを大きくし易いように、図3(a)に示すように管状体を配置してもよい。
【0039】
この例では、管状体を逆N字型に配置して、2箇所の垂直方向に配置した管状体2で気泡阻止部FPを構成し、その間に配置した管状体2の部分でも脱気が行えるようにしてある。減圧配管7、供給管8、ガス溜め部10、排出管9などの構成は前述と同様であるが、この実施形態では、下流側の気泡阻止部FPの上端の曲がり部10’がガス溜め部10と同様の機能を有する。
【0040】
(2)前述の実施形態では、主として直管状の管状体を用いて脱気装置を構成する例を示したが、有効膜面積(有効長さ)を大きくするために、図3(b)に示すように、らせん状に配置した管状体2を用いて脱気装置を構成してもよい。その場合、らせんの軸心を水平方向に配置することで、管状体2の下流側が上流側より下方に位置する気泡阻止部FPを有効に形成することができる。また、らせん状に配置した管状体2の上端部近傍をガス溜め部10とすることができる。その他の構成は、前述と同様である。
【0041】
(3)前述の実施形態では、管状体に1本の管状膜が内挿される例を示したが、比較的小径の管状膜(中空糸膜など)を複数本内挿してもよい。その場合、管状膜の端部は樹脂等で封止した構造にすればよい。かかる構成によると、管状膜の有効膜面積がより大きくなるため、脱気効率をより高めることができる。
【0042】
(4)本発明の脱気装置及び脱気方法は、PECVDシステムのみに使用されるものではなく、気泡や溶存ガスを含まない液体の供給を必要とする任意の脱気工程に用いることができる。例えば各種の反応原料液の供給、高純度液体の製造、超純水の製造などに利用できる。
【図面の簡単な説明】
【図1】本発明の脱気装置の一例の要部を示す断面図
【図2】本発明の脱気装置の使用例を示す概略構成図
【図3】別実施形態の脱気装置の要部を示す断面図
【図4】従来の脱気装置の一例の要部を示す断面図
【符号の説明】
1 管状膜
2 管状体
3 流路
4 内側空間
10 ガス溜め部
11 電熱線(加温手段)
FP 気泡阻止部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a degassing apparatus and a degassing method for performing degassing using a tubular membrane that allows a dissolved gas in a liquid to be treated to permeate, and in particular, degassing from a liquid chemical used in a semiconductor manufacturing process. Useful for deaeration process.
[0002]
[Prior art]
Conventionally, in the manufacture of semiconductors such as large-scale integrated circuits, plasma vapor deposition (PECVD) has been used as a thin film formation process. In this method, a gaseous or liquid chemical (precursor) is supplied to the gas dispersion head of the deposition station in the reactor to react with the silicon base layer, but when the chemical is supplied in a liquid state, Before entering the reactor, it is gasified through a vaporizer.
[0003]
In modern PECVD systems, the liquid chemical delivery system needs to meet two important criteria. One is to supply liquid chemicals at a given flow rate at a uniform and stable pressure, and the other is free of particles and gases so that liquid chemicals can be accurately metered into liquids. . In a system using a pump as a supply source, there is a problem of impurities and a problem that it is difficult to control the pressure and flow rate uniformly, so there is a method of supplying liquid chemicals stored in a container by gas pressurization. , Mainly adopted.
[0004]
However, in the above method, the dissolved gas exists in the liquid, so that the dissolved gas is easily generated in the liquid as bubbles, and the presence of the bubbles changes the thermal conductivity of the liquid. For this reason, the liquid mass flow controller malfunctions, and the liquid cannot be supplied accurately and stably. As a result, there are problems such as non-uniform thickness and quality of the thin film deposited by PECVD.
[0005]
In view of this, as an apparatus for removing such dissolved gas, Japanese Patent Application Laid-Open No. 6-220640 discloses that a liquid to be treated (supply liquid) is circulated in a tubular membrane (tube) from which dissolved gas can be separated. There has been proposed a deaeration device that removes dissolved gas by depressurizing the outer space of the membrane.
[0006]
As shown in FIG. 4, a membrane module is configured by arranging a large number of hollow fiber membranes 22 in a horizontally installed housing 23, and a liquid to be treated is supplied to an internal space 21 in the housing 23. There is known a deaeration device that removes dissolved gas by reducing the inner space of the hollow fiber membrane 22 from the decompression port 27 communicating with the hollow fiber membrane 22 while supplying from the discharge port 25 and discharging from the discharge port 25. . If necessary, a sweep gas is supplied from the inlet 26.
[0007]
[Problems to be solved by the invention]
However, in the former degassing apparatus, once bubbles are generated due to changes in the environment such as pressure and temperature, there is no sufficient contact time (opportunity) with the tubular membrane wall surface to allow bubbles to permeate. In some cases, there is a disadvantage that bubbles are discharged to the outside.
[0008]
In the latter deaeration device, once air bubbles are generated, the air bubbles stay in the vicinity of the upper wall surface in the housing (portion 21a in FIG. 4). There is a possibility that bubbles may be discharged together with the treatment liquid.
[0009]
And the problem of the bubble discharge | emission in the above deaeration processes is a subject common not only to the deaeration at the time of chemical | medical solution supply of a semiconductor manufacturing process but other deaeration processes.
[0010]
Accordingly, an object of the present invention is to provide a deaeration device and a deaeration method in which generated bubbles are difficult to be discharged together with the processing liquid.
[0011]
[Means for Solving the Problems]
The above object can be achieved by the present invention as described below.
That is, in the degassing apparatus of the present invention, the tubular membrane that allows the dissolved gas in the liquid to be treated to pass through is inserted into the tubular body, and the flow path of the liquid to be treated is formed outside the tubular membrane, while the tubular membrane A bubble blocking portion that prevents the generated bubbles from flowing downstream by disposing the inner space of the tube in a reduced pressure state and disposing at least a part of the tubular body so that the downstream side is positioned below the upstream side. This is a deaeration device provided. Here, the tubular body is not limited to a circular tubular body, but refers to a relatively long one having an annular cross section.
[0012]
In the above, it is preferable that a gas reservoir is provided at the upper end of the bubble blocking portion, and that the tubular membrane is disposed inside the gas reservoir.
[0013]
Moreover, it is preferable that a heating means is provided on at least a part of the outer periphery of the tubular body.
[0014]
On the other hand, the degassing method of the present invention is a degassing method in which degassing is performed from a liquid chemical used in a semiconductor manufacturing process using any of the above-described degassing apparatuses.
[0015]
[Function and effect]
According to the degassing apparatus of the present invention, a tubular membrane that allows the dissolved gas in the liquid to be treated to pass through is inserted into the tubular body, and a flow path for the liquid to be treated is formed outside the tubular membrane, while the tubular membrane In order to make the inner space in a reduced pressure state, the dissolved gas can be removed from the liquid to be treated by allowing the dissolved gas to permeate the tubular membrane due to the pressure difference between the inside and outside of the membrane. At that time, at least a part of the tubular body is disposed so that the downstream side is located below the upstream side, and a bubble blocking portion that prevents the generated bubbles from flowing downstream is provided. Due to the buoyancy of the bubbles, the bubbles can be prevented from flowing downstream. Moreover, in the case where the flow path of the liquid to be processed is formed inside the tubular membrane, if the bubbles are increased to some extent, the bubbles are less likely to rise in the liquid to be processed due to the buoyancy of the bubbles. Since the flow path of the liquid to be treated is formed at the same time, the bubbles can be easily lifted by buoyancy, and the bubbles can be effectively prevented from flowing downstream. As a result, it is possible to provide a deaeration device in which generated bubbles are difficult to be discharged together with the processing liquid.
[0016]
When a gas reservoir is provided at the upper end of the bubble blocking portion and the tubular membrane is disposed inside the gas reservoir, the generated bubbles are likely to move to the upper end side and stay in the gas reservoir. In addition, since the tubular membrane is disposed inside the gas reservoir, the staying gas can be permeated and removed by the pressure difference inside and outside the membrane.
[0017]
When the heating means is provided on at least a part of the outer peripheral portion of the tubular body, the inside of the tubular body can be efficiently heated only by providing the heating means on the outer peripheral portion. The gas permeability of the tubular membrane can be increased and deaeration can be performed efficiently. In addition, when the relationship between the liquid to be treated and dissolved gas is such that the solubility is lower as the temperature is higher, the dissolved gas can be more efficiently removed from the liquid to be treated by positively generating bubbles by heating. Can do.
[0018]
On the other hand, according to the degassing method of the present invention, since any one of the degassing devices described above is used, a degassing method in which generated bubbles are difficult to be discharged together with the processing liquid due to the above-described effects. For this reason, the degassing method of the present invention is a particularly useful technique as a method of degassing liquid chemicals used in semiconductor manufacturing processes, where the presence of dissolved gas is particularly problematic.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a main part of an example of the deaeration device of the present invention. In the present embodiment, an example is shown in which a straight tubular body 2 is arranged in the vertical direction to form a bubble blocking portion FP, a gas reservoir portion 10 is provided at the upper end portion thereof, and the tubular membrane 1 is arranged inside. .
[0020]
As shown in FIG. 1, the degassing apparatus of the present invention inserts a tubular membrane 1 through which a dissolved gas in a liquid to be treated permeates into a tubular body 2, and a flow path of the liquid to be treated outside the tubular membrane 1. 3 is formed.
[0021]
The tubular membrane 1 may be any one that allows permeation of dissolved gas in the liquid to be treated, and is made of a nonporous membrane or a porous membrane that has been used as a separation membrane for deaeration. Tubular or hollow fiber membranes can be used. Specifically, fluororesins such as PTFE, FEP, and PFA, and polyethylene, polypropylene, or polyamide-based separation membranes can be suitably used. In order to improve the contact efficiency between the liquid to be treated and the tubular membrane 1 by turbulent flow in the flow path 3 outside the tubular membrane 1, it is preferable that the outer surface shape has irregularities like a bellows tube.
[0022]
For example, in the case of liquid chemicals used in semiconductor manufacturing processes, the liquid to be treated includes tetraethyl orthosilicate, trimethyl phosphite, trimethyl borate, triethyl phosphite, triethyl borate, tetrakis (Diethyl) amino titanium and the like. Examples of the dissolved gas include helium, nitrogen, neon, argon, carbon dioxide, and oxygen.
[0023]
The tubular body 2 may be made of any material as long as there is no inconvenience such as corrosion by the liquid to be treated. However, in consideration of corrosion resistance and the like, fluororesin and SUS are preferable. In the illustrated example, a circular tube is used, but any cross-sectional shape may be used. In order to improve the contact efficiency between the liquid to be treated and the tubular membrane 1 by turbulent flow in the flow path 3 inside the tubular body 2, it is preferable that the inner surface shape has irregularities like a bellows tube.
[0024]
The tubular membrane 1 is inserted into the tubular body 2, and the flow channel 3 for the liquid to be treated is formed outside the tubular membrane 1, but the area of the cross section of the flow channel is the inner diameter of the tubular body 2 and the tubular membrane 1. It is determined by the outer diameter. In the illustrated example, the inner diameter of the tubular body 2 is preferably about 3 to 30 mm, the outer diameter of the tubular membrane 1 is about 1 to 10 mm, and the ratio (the former / the latter) is preferably about 4 to 1.2.
[0025]
The tubular body 2 is arranged in a substantially vertical direction so that the downstream side is positioned below the upstream side, and substantially the whole of the tubular body 2 constitutes the bubble blocking portion FP, but at least a part of the tubular body 2 is downstream. What is necessary is just to arrange | position so that the side may be located below from the upstream. Such a bubble blocking unit FP can prevent the generated bubbles from flowing downstream.
[0026]
A gas reservoir portion 10 is formed by a tubular body 10a continuous with the tubular body 2 at the upper end portion of the bubble blocking portion FP, and a tubular membrane 1a continuous with the tubular membrane 1 is disposed therein. The upper end of the tubular body 10a is joined to the male side of the resin pipe joint 5, and the tubular membrane 1a is inserted through the male side and sealed by tightening on the female side. The generated bubbles rise and gather in the internal space 10b of the gas reservoir 10, but when the pressure inside the tubular membrane 1a is reduced, the accumulated gas passes through the tubular membrane 1a and is removed.
[0027]
The upper end of the tubular membrane 1a is connected to a decompression pipe 7 via a pipe joint 6 (various fittings), and the decompression pipe 7 is connected to a decompression device (not shown) such as a vacuum pump. The decompression pipe 7 is made of a metal that does not easily pass through gas. By the operation of the decompression device, the inner space 4 of the tubular membrane 1 is decompressed via the decompression pipe 7.
[0028]
The boundary between the tubular body 2 and the tubular body 10a is branched into a T shape, and the supply pipe 8 is integrally branched and connected. On the other hand, the lower end of the tubular body 2 is also branched into a T shape, and the discharge pipe 9 is integrally branched and connected. The liquid to be treated is supplied through the supply pipe 8 and flows downward through the flow path 3 formed outside the tubular membrane 1. Then, the liquid is discharged to the outside through the discharge pipe 9. Degassing is performed by the permeation of dissolved gas. In addition, the bubbles generated in the meantime can move upward and be degassed by the gas reservoir 10, but the bubbles flowing in from the supply pipe 8 can also be degassed by the gas reservoir 10.
[0029]
The tubular membrane 1 and the tubular body 2 are continuous below the branch portion of the discharge pipe 9 and have a seal structure similar to the upper end portion. The lower end of the tubular membrane 1 may be sealed, but a valve may be provided so that a sweep gas can be supplied if necessary. As the sweep gas, nitrogen gas or the like that is difficult to permeate the tubular membrane 1 can be suitably used.
[0030]
In this invention, as shown in FIG. 1, you may provide a heating means in the outer peripheral part of at least one part of the tubular body 2. As shown in FIG. As the heating means, for example, the heating wire 11 may be wound around the outer periphery of the tubular body 2 or an electric heater may be disposed. When the tubular membrane 1 made of FEP is used, at 50 ° C. and 25 ° C., the gas permeability coefficient is 1.8 times helium, 2.7 times oxygen, and 2.1 times nitrogen.
[0031]
Hereinafter, a degassing method for performing degassing from a liquid chemical used in a semiconductor manufacturing process using the degassing apparatus of the present invention will be described. Such a degassing method is used in a liquid supply system as shown in FIG.
[0032]
The liquid supply system includes a supply source 12, a deaeration device DG, and a liquid mass flow controller 17. The liquid 13 is supplied from the supply source 12 by moving the liquid 13 using the pressurized gas 14. The supply source 12 includes a gas inlet 15a connected to a supply source (not shown) for supplying pressurized gas, and a liquid outlet 15b connected to the deaerator DG via a supply pipe 8. Container 15. In this example, the gas 14 is helium and the liquid 13 is tetraethylorthosilicate (TEOS). Other gases and other liquids that do not chemically react with each other can be used in place of helium and TEOS. For example, instead of TEOS, trimethyl phosphite (TMP) and trimethyl borate (TMB) used in the PECVD reactor are supplied by the present invention.
[0033]
Within source 12, a certain amount of helium dissolves in TEOS depending on pressure and temperature. The generation of helium bubbles in the low pressure region on the downstream side interrupts the TEOS flow and causes incorrect liquid metering in the liquid mass flow controller. The degassing device DG removes helium gas dissolved in the liquid TEOS by the above-described device configuration. The decompression pipe 7 of the deaeration device DG is connected to an exhaust pump 16. The discharge pipe 9 of the deaeration device DG is connected to the liquid mass flow controller 17.
[0034]
The liquid mass flow controller 17 is used to distribute the liquid 13 so as to accurately measure the liquid at a flow rate desired by the user and at a uniform pressure. The liquid mass flow controller 17 may be any controller known to those skilled in the art. The outlet of the liquid mass flow controller 17 is connected to a PECVD reactor 18 and is connected to a vaporizer 19 provided in the PECVD reactor 18. After the liquid 13 is vaporized, the vaporized liquid is sent to a gas dispersion head (not shown). A plurality of liquid mass flow controllers 17 and PECVD reactors 18 are provided as necessary.
[0035]
In the above description, the length of the tubular membrane 1 where deaeration is performed may be determined as follows, for example. The maximum flow rate of the supply flow rate of the liquid 13 is calculated from the scale and number of the PECVD reactors 18, the maximum dissolution amount corresponding to the maximum flow rate is obtained from the solubility of the gas 14 in the liquid 13, and it should be removed per unit time The amount of gas. The length of the tubular membrane 1 is obtained by deaeration with a deaeration apparatus equipped with the tubular membrane 1 having a unit length as a test, and by removing the amount of gas to be removed by the obtained deaeration flow rate per unit time. As a guideline.
[0036]
For example, when TEOS is supplied to about three chambers via the degassing device DG, a maximum flow rate of 500 ml / min is expected, and considering the solubility of helium gas, the inner diameter of the tubular body 2 is 10 mm, the tubular membrane 1 When the outer diameter is 6 mm, sufficient deaeration can be performed with a length of about 1 to 3 m.
[0037]
[Other Embodiments]
Hereinafter, other embodiments of the present invention will be described.
[0038]
(1) In the above-described embodiment, an example has been shown in which a straight tubular body is arranged in the vertical direction to form a bubble blocking portion, a gas reservoir is provided at the upper end portion thereof, and a tubular membrane is arranged inside. In order to easily increase the effective length for deaeration, a tubular body may be arranged as shown in FIG.
[0039]
In this example, the tubular body is arranged in an inverted N shape, and the bubble blocking portion FP is configured by the two tubular bodies 2 arranged in the vertical direction, and degassing can be performed also in the portion of the tubular body 2 arranged therebetween. It is like that. The configuration of the decompression pipe 7, the supply pipe 8, the gas reservoir 10, the discharge pipe 9, and the like is the same as that described above. 10 has the same function.
[0040]
(2) In the above-described embodiment, an example in which the deaeration device is configured mainly using a straight tubular body has been shown. However, in order to increase the effective membrane area (effective length), FIG. As shown, the deaerator may be configured using a tubular body 2 arranged in a spiral. In that case, by disposing the axial center of the helix in the horizontal direction, the bubble blocking portion FP in which the downstream side of the tubular body 2 is positioned below the upstream side can be effectively formed. Further, the vicinity of the upper end of the tubular body 2 arranged in a spiral shape can be used as the gas reservoir 10. Other configurations are the same as described above.
[0041]
(3) In the above-described embodiment, an example in which one tubular membrane is inserted into the tubular body has been described. However, a plurality of relatively small-diameter tubular membranes (such as hollow fiber membranes) may be inserted. In that case, the end of the tubular film may be sealed with a resin or the like. According to such a configuration, the effective membrane area of the tubular membrane is increased, so that the deaeration efficiency can be further increased.
[0042]
(4) The degassing apparatus and degassing method of the present invention are not used only in the PECVD system, but can be used in any degassing process that requires the supply of a liquid that does not contain bubbles or dissolved gas. . For example, it can be used for supplying various reaction raw material liquids, producing high-purity liquids, and producing ultrapure water.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a main part of an example of a deaeration device of the present invention. FIG. 2 is a schematic configuration diagram showing an example of use of the deaeration device of the present invention. FIG. 4 is a cross-sectional view showing a main part of an example of a conventional degassing apparatus.
DESCRIPTION OF SYMBOLS 1 Tubular membrane 2 Tubular body 3 Flow path 4 Inner space 10 Gas reservoir part 11 Heating wire (heating means)
FP bubble block

Claims (4)

被処理液中の溶存ガスを透過させる管状膜を管状体に内挿して、その管状膜の外側に被処理液の流路を形成しつつ、前記管状膜の内側空間を減圧状態にすると共に、前記管状体の少なくとも一部を下流側が上流側より下方に位置するように配置して、発生した気泡が下流側へ流動するのを防止する気泡阻止部を設けてある脱気装置。While inserting a tubular membrane that allows the dissolved gas in the liquid to be treated to pass through the tubular body and forming a flow path for the liquid to be treated outside the tubular membrane, the inner space of the tubular membrane is in a reduced pressure state, A deaeration device in which at least a part of the tubular body is disposed such that the downstream side is positioned below the upstream side, and a bubble blocking unit is provided to prevent the generated bubbles from flowing downstream. 前記気泡阻止部の上端部にガス溜め部を設けると共に、そのガス溜め部の内部に前記管状膜を配置してある請求項1記載の脱気装置。The deaeration apparatus according to claim 1, wherein a gas reservoir is provided at an upper end portion of the bubble blocking portion, and the tubular membrane is disposed inside the gas reservoir. 前記管状体の少なくとも一部の外周部に、加温手段を設けてある請求項1又は2に記載の脱気装置。The deaeration device according to claim 1 or 2, wherein a heating means is provided on an outer peripheral portion of at least a part of the tubular body. 請求項1〜3いずれかに記載の脱気装置を用いて、半導体製造工程に使用する液体状の化学薬品から脱気を行う脱気方法。The deaeration method which deaerates from the liquid chemical used for a semiconductor manufacturing process using the deaeration apparatus in any one of Claims 1-3.
JP2000079387A 2000-03-22 2000-03-22 Deaeration device and deaeration method Expired - Fee Related JP4375766B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000079387A JP4375766B2 (en) 2000-03-22 2000-03-22 Deaeration device and deaeration method
PCT/JP2001/002295 WO2001070366A1 (en) 2000-03-22 2001-03-22 Deaerator and deaerating method
AU2001242757A AU2001242757A1 (en) 2000-03-22 2001-03-22 Deaerator and deaerating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000079387A JP4375766B2 (en) 2000-03-22 2000-03-22 Deaeration device and deaeration method

Publications (2)

Publication Number Publication Date
JP2001259306A JP2001259306A (en) 2001-09-25
JP4375766B2 true JP4375766B2 (en) 2009-12-02

Family

ID=18596640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000079387A Expired - Fee Related JP4375766B2 (en) 2000-03-22 2000-03-22 Deaeration device and deaeration method

Country Status (3)

Country Link
JP (1) JP4375766B2 (en)
AU (1) AU2001242757A1 (en)
WO (1) WO2001070366A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268552A (en) * 2002-03-18 2003-09-25 Watanabe Shoko:Kk Vaporizer and various kinds of apparatus using the same, and vaporization method
US7427312B2 (en) * 2005-07-13 2008-09-23 Rheodyne, Llc Integrated degassing and debubbling apparatus
US7682421B2 (en) * 2006-10-12 2010-03-23 Celgard Llc Degassing a liquid using a gravity fed apparatus
JP2008205506A (en) * 2008-05-12 2008-09-04 Watanabe Shoko:Kk Vaporizer, and various apparatus and vaporizing method using the same
JP6829649B2 (en) * 2017-04-27 2021-02-10 大陽日酸株式会社 Sediment removal method and sediment removal equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252989A (en) * 1988-08-15 1990-02-22 Japan Menburen Syst Kk Heat exchanger
JPH06254304A (en) * 1993-02-26 1994-09-13 Fuji Photo Film Co Ltd Method and device for deaerating photosensitive coating liquid
JP4020492B2 (en) * 1998-05-14 2007-12-12 株式会社スター・クラスター Vacuum deaerator

Also Published As

Publication number Publication date
WO2001070366A1 (en) 2001-09-27
JP2001259306A (en) 2001-09-25
AU2001242757A1 (en) 2001-10-03

Similar Documents

Publication Publication Date Title
US5645625A (en) Device for removing dissolved gas from a liquid
US7717405B2 (en) Hollow fiber membrane contact apparatus and process
JP5326572B2 (en) Ultrapure water purification method and ultrapure water production system
KR100985087B1 (en) Ozonated water flow and concentration control apparatus and method
JP6806680B2 (en) A fluid distributor for a gas-liquid contact device, a gas-liquid contact device, and a method of adding gas to a liquid.
JP4375766B2 (en) Deaeration device and deaeration method
TW200810833A (en) Liquid vaporizing apparatus
KR20130090380A (en) Method and apparatus for vapor and gas filtration
JP2000051606A (en) Gas permeation membrane apparatus
US20020063345A1 (en) Apparatus and method for controlling resistivity of ultra pure water
JP3951385B2 (en) Apparatus and method for adjusting dissolved gas concentration in liquid
JP5412135B2 (en) Ozone water supply device
JP2007046084A (en) Vaporizer, and liquid vaporizing-feeding device using the same
JP5663410B2 (en) Ultrapure water production method and apparatus
JP3676403B2 (en) Liquid vaporizer
KR100519391B1 (en) Apparatus and method for adding carbon dioxide gas to ultrapure water
JP6615662B2 (en) Apparatus for producing bubble-containing liquid and method of using the same
JP2001330969A (en) Apparatus for removing photoresist
JP2019048257A (en) Membrane module for membrane distillation and membrane distillation device provided with the same
CN113613803B (en) System and method for supplying cleaning liquid
JP4636659B2 (en) Substrate cleaning device
CN114648908B (en) Simulation method for natural gas desulfurization equipment
JP2024005005A (en) Ion exchange resin column
JP2004296614A (en) Liquid material vaporization/supply device
KR20160090572A (en) Apparatus for adjusting specific resistance of ultra pure water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071012

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140918

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees