JP4020492B2 - Vacuum deaerator - Google Patents

Vacuum deaerator Download PDF

Info

Publication number
JP4020492B2
JP4020492B2 JP15065098A JP15065098A JP4020492B2 JP 4020492 B2 JP4020492 B2 JP 4020492B2 JP 15065098 A JP15065098 A JP 15065098A JP 15065098 A JP15065098 A JP 15065098A JP 4020492 B2 JP4020492 B2 JP 4020492B2
Authority
JP
Japan
Prior art keywords
vacuum
filter
filtration
liquid
degassing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15065098A
Other languages
Japanese (ja)
Other versions
JPH11319407A (en
Inventor
百合子 斎藤
Original Assignee
株式会社スター・クラスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社スター・クラスター filed Critical 株式会社スター・クラスター
Priority to JP15065098A priority Critical patent/JP4020492B2/en
Publication of JPH11319407A publication Critical patent/JPH11319407A/en
Application granted granted Critical
Publication of JP4020492B2 publication Critical patent/JP4020492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Filtration Of Liquid (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波洗浄液等に含まれる気体を脱気する真空脱気装置に関する。
【0002】
【従来の技術】
従来、超音波洗浄、超音波ばり取り洗浄、超音波研磨処理、超音波エッチング処理等においては、洗浄液等の液中に超音波を放射し、その時に発生するキャビテーションの衝撃力で洗浄や微小ばり取りや研磨やエッチング等を行うようにしているが、この際、洗浄液等に含まれる気体を除去すると、キャビテーションの衝撃力が強化されると同時に、液体中の音波の伝搬特性が向上することが知られており、このため、例えば中空糸膜等を使用して脱気する技術とか、または図6に示すような脱気装置51を使用して、洗浄液等の中に含まれる気体を脱気するような技術が知られている。
【0003】
そして上記脱気装置51は、洗浄槽52中の洗浄液Sから溶存酸素等の気体を脱気するようにされ、真空ポンプ54によって洗浄液Sを脱気筒55内に吸引するとともに、吸引した洗浄液Sを散布部56からシャワー噴射し、孔径が数ミリ程度の複数の孔が設けられたプラスチック板またはSUS板または網等の複数の濾材57を順次通して、真空雰囲気下における液体の接触面積を増加させて脱気した後、脱気済みの液体を循環ポンプ58を通して洗浄槽52に戻すようにしている。
尚、脱気筒55の側壁には、筒内の液面の高さを検知する液柱管59を設けており、この液柱管59の所定箇所に設けたレベルスイッチ60a、60b、60cで液面を検知するとともに、この検知信号によって電磁弁61や、前記循環ポンプ58の作動を自動制御するようにしている。
また、図番62は超音波発生器である。
【0004】
【発明が解決しようとする課題】
ところが、中空糸膜等を使用する場合は、設備費が高価になるとともに目詰りを起こしやすく、また、液体の表面張力を利用しているため、アルコールや界面活性剤等が入ると減圧装置側に液体が洩れ出すという不具合があり、超音波洗浄液等の脱気には不向きである。
このため、現実には、市水、純水等、水の脱気に限って使用されているのが実情である。
【0005】
一方、前記脱気装置51の場合は、洗浄液が水以外の炭化水素系溶剤やアルコール、その他代替フロン等の洗浄剤の場合でも適用出来るため、超音波洗浄液等の脱気装置として広く利用されているが、脱気能力を高めようとして細かい目の瀘材57を使用した場合は、洗浄、交換作業が大掛かりとなり、大変な作業になるという問題がある。
また、瀘材57として目の詰りにくい孔径が数ミリ程度のものが使用されているものの、有機物等が液体に多く含まれている場合には、長期間使用すると腐敗や細菌等が発生する原因になりやすい。
更に、目の粗い瀘材57を使用しているため、真空雰囲気下における液体の接触面積を増やして脱気効率を高めようとすると、瀘材57を幾層にも積層する必要が生じて、装置の大型化や設備費の高価格化を招きやすくなるという問題もある。
【0006】
そこで本発明は、脱気装置を安価に構成すると同時に小型化して取り扱いやすくし、また脱気効率の良い装置の提供を目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため本発明は、超音波洗浄液等の処理液を真空容器内に導入して処理液の中に含まれる気体を脱気するようにした真空脱気装置において、前記真空容器内に孔径が100μm以下の微細孔を有する濾過用フィルタを設け、前記真空容器と、この真空容器内に収容される濾過用フィルタを共に筒型形状とするとともに、前記濾過用フィルタの筒内に真空引きパイプを設け、かつ該真空容器の内壁と濾過用フィルタの外面との間には、螺旋状のシール部材を介装して、真空容器内に導入した処理液をこの濾過用フィルタを通過させるとともに、上記真空引きパイプによって通過した処理液から気体を脱気する、濾過と脱気を同時に行うようにした。
【0008】
すなわち、従来の真空脱気装置では、瀘材の目を詰らせないことを前提に設計されているが、逆に目の詰りやすい瀘材を使用すれば脱気性能を向上させることが出来ることに着目し、孔径が100μm以下、特に好ましくは1〜5μmの微細孔を有する濾過用フィルタによって濾過と脱気を同時に行う。
この際、濾過用フィルタは、多孔質素材、穴明き素材、繊維状素材等の市販されているものを使用すれば、より安価に且つ簡単に構成出来る。
【0009】
また、このような目の細かい濾過用フィルタを使用すれば、真空雰囲気下における液体の接触面積を増やすことが出来るため、従来のように装置を大型化しなくても所望の脱気効果を得ることが出来る。
更に、濾過と脱気を同時に行えるため、別に濾過器等を設ける必要がなく、装置の一層の小型化、低コスト化が図れる。
【0010】
ここで、超音波洗浄液等の処理液としては、超音波洗浄液の他、超音波ばり取り洗浄の処理液、超音波研磨処理の処理液、超音波エッチング処理の処理液等も含まれ、また、液体としては、水の他、各種溶剤、アルコール、処理剤等も含まれる。
【0011】
また、螺旋状のシール部材を介して筒型形状の真空容器内に濾過用フィルタを内装し、容器内に導入される処理液をシール部材に沿って螺旋状に流動させつつ、濾過用フィルタの外側から内側に通過させて濾過するようにすれば、濾過用フィルタの一部に詰まりが発生しても、処理液は他の箇所を通過して濾過され、濾過用フィルタの全域を効率的に使用しながら濾過、脱気することができる。
【0012】
また請求項2では、前記濾過用フィルタを、簡易に取換え可能なカートリッジ式に構成した。
すなわち、この濾過用フィルタは目詰まりを起こすことを前提にしているため、使用中の濾過用フィルタの目が詰まると、新しい濾過用フィルタに簡単に取換え出来ることが望まれる。そこで、カートリッジ式にして簡易に取換え出来るようにし、常に所望の脱気性能を維持し得るようにする。
【0013】
【発明の実施の形態】
本発明の実施の形態について添付した図面に基づき説明する。
ここで図1は真空脱気装置を組み込んだ超音波洗浄装置の全体斜視図、図2は同正面図、図3は超音波洗浄装置の装置構成の模式図、図4は真空脱気装置の基本的構成例図、図5は本発明に係る真空脱気装置の構成例図である。
【0014】
本発明に係る真空脱気装置2は、図1及び図2に示すような超音波洗浄装置1に組み込まれており、この超音波洗浄装置1には、真空脱気装置2の他、洗浄液を貯溜する洗浄槽3や、洗浄槽3の底部で洗浄液に超音波を放射する超音波発生器4や、真空ポンプ、循環ポンプ等が内蔵されてコンパクトに構成され、また、各種スイッチ等が設けられた操作部5を備えている。
【0015】
そして、この超音波洗浄装置1の基本的構成では、図3の模式図に示すように、洗浄槽3内の洗浄液Sを真空ポンプ6で吸引して真空脱気装置2内に導入し、この真空脱気装置2によって洗浄液Sを濾過、脱気した後、処理済の洗浄液Swo循環ポンプ7で洗浄槽3に戻すようにしている。
【0016】
基本的構成の真空脱気装置2は、図4にも示すように、筒型形状の真空容器8と、この真空容器8内にパッキン9(シール部材)や真空シール10を介して内装される筒型形状の濾過用フィルタ11と、この濾過用フィルタ11の筒内を挿通する孔明きの真空引きパイプ12を備えており、この濾過用フィルタ11や真空引きパイプ12は、カートリッジ式に構成されて真空容器8に対して容易に着脱出来るようにされている。
【0017】
すなわち、真空容器8の一端側には、Vバンド13の締付、解放によって着脱自在なカバー14が設けられており、このカバー14の外側には把手14aが設けられるとともに、内側には通気性のあるホルダ15が取付けられ、このホルダ15に、通気性、液体透過性のある補強材16で支持される前記濾過用フィルタ11と、真空引きパイプ12が取付けられている。
このため、Vバンド13を弛めて把手14aを持ってカバー14を取外せば、ホルダ15を介して濾過用フィルタ11と真空引きパイプ12を一体に取外すことが出来る。
【0018】
そしてカバー14は真空容器8に対してシールリング17によって気密状態で取付可能とされ、またカバー14の一部には真空ポンプ6に接続するための真空引き接続部18が設けられている。
【0019】
前記真空容器8は、洗浄液Sが流入する導入口20と、濾過用フィルタ11を通過した処理済みの洗浄液Sが流出する導出口21を備えている。
そして前記濾過用フィルタ11の外面と真空容器8の内壁との間には、前記真空シール10やパッキン9によって隙間が形成され、前記導入口20は、洗浄液Sを真空シール10とパッキン9の間の隙間に導入せしめることが出来る位置に設けられている。
因みに、実施形態の濾過用フィルタ11は市販されているものであり、孔径は1〜5μm程度である。勿論、市販タイプのものに限定されるものではない。
【0020】
以上のような真空脱気装置2において、真空ポンプ6によって真空引き接続部18から真空引きすると、真空引きパイプ12から空気が吸引され、真空容器8内が真空状態となる。
このため、導入口20から吸引された洗浄液Sは、濾過用フィルタ11の外側から筒内に向けて通過し、所定径以上の異物等が除去されるとともに、濾過用フィルタ1の目を通過する時に溶存酸素等の気体が真空引きとともに脱気される。この際、濾過用フィルタ11の目が従来より細かいため、真空雰囲気下における液体の接触面積が増えてより効率的に脱気される。
【0021】
因みに、70リットルの市水(溶存酸素5.65mg/l)を循環させながら30分脱気した場合、中空糸膜を使用した脱気装置では、溶存酸素が0.7〜1.2mg/lであり、図6に示す従来の脱気装置では、溶存酸素が1.2〜1.8mg/lであったが、本発明の脱気装置では、溶存酸素が0.9〜1.5mg/lであり、従来より効率の良い脱気効果が得られることが確認されている。
【0022】
また、中空糸膜を使用した脱気装置の場合、水に限定されるのに対して、本発明の場合は、水以外の各種溶剤等の脱気にも使用することが出来、価格も中空糸膜に較べて約1/5以下、従来の脱気装置に較べても約1/3以下で構成することが出来る。
また中空糸膜の脱気装置も従来の脱気装置も共に、別途濾過器等の濾過手段を必要とするのに対して、本発明の場合は不要であり、その分のコスト削減も図られる。
【0023】
更に装置の大きさも、中空糸膜の脱気装置や従来の脱気装置の大きさ(いずれも幅400mm、長さ800mm、高さ1500mm程度)に較べて大幅に小型化することが出来、実施形態では、幅250mm、長さ600mm、高さ600mm程度である。
【0024】
ところで、図5は濾過用フィルタ11の全域を効率的に使用して濾過、脱気するようにした本発明に係る真空脱気装置2の構成例図である。
すなわち、図4のようなパッキン9の形態であると、導入口20から吸引された洗浄液Sは、吸引力の作用によって、当初、大部分が導入口20付近の濾過用フィルタ11を通過して濾過、脱気が行われるため、導入口20付近の目が局所的に詰ってくる。すると今度は、洗浄液Sは下方のパッキン9の位置まで流下するようになり、パッキン9付近の濾過用フィルタ11の目が局所的に詰るようになる。すなわち濾過用フィルタ11の中間部が効率的に使用されない虞れがある。
【0025】
そこで、この構成例では、図4の真空脱気装置2のパッキン9の形態を螺旋状パッキン9rに変更し、導入口20から導入した洗浄液Sを螺旋状パッキン9rに沿って螺旋状に導くようにすることで、最初に導入口20附近の濾過用フィルタ11の目が詰ってくると、洗浄液Sは詰った箇所からやヽ螺旋状に下った箇所から濾過用フィルタ11を通過して濾過、脱気されるようになり、濾過用フィルタ11の全域を上方から下方にかけて順次効率的に使用しながら濾過、脱気することが出来る。
尚、図5において、図4と同じ部品等に対しては同一の番号を付している。
【0026】
そして濾過用フィルタ11の目が全域に亘って詰ってくると、カバー14を取外してカートリッジごと交換するが、交換作業は極めて簡単である。
【0027】
尚、本発明は以上のような実施形態に限定されるものではない。本発明の特許請求の範囲に記載した事項と実質的に同一の構成を有し、同一の作用効果を奏するものは本発明の技術的範囲に属する。
例えば本発明に係る真空脱気装置2は、超音波洗浄装置1以外の超音波研磨装置、エッチング装置等にも適用することが出来、洗浄液Sは超音波研磨、エッチング等の処理液でも良い。
また濾過用フィルタ11の孔径は1〜5μmに限定されるものではない。
【0028】
【発明の効果】
以上のように本発明に係る真空脱気装置は、筒型形状の真空容器内に孔径が所定径以下の微細孔を有する筒型形状の濾過用フィルタを設け、濾過用フィルタの筒内に真空パイプを設ける一方、真空容器の内壁と濾過用フィルタの外面との間に螺旋状のシール部材を介装して、真空容器内に導入した洗浄液等の処理液を、この濾過用フィルタを通過させて濾過と脱気を同時に行うようにしたため、真空雰囲気下における液体の接触面積を増やすことが出来、所望の脱気効果を得ながら装置を小型で且つ安価に構成出来る。
また、濾過と脱気を同時に行えるため、濾過器等を設ける必要がなく、一層の小型化、低コスト化が図れる。
また、螺旋状のシール部材により、濾過用フィルタの全域を効率的に使用しながら濾過、脱気することが出来る。
更に、水以外の液体、例えば各種溶剤、アルコール、処理剤等も脱気出来るため便利である。
【0029】
この際、請求項2のように、濾過用フィルタを簡易に取換え可能なカートリッジ式に構成すれば、常に所望の脱気性能を維持することが出来る。
【図面の簡単な説明】
【図1】 空脱気装置を組み込んだ超音波洗浄装置の全体斜視図
【図2】 同正面図
【図3】 超音波洗浄装置の装置構成の模式図
【図4】 真空脱気装置の基本的構成例図
【図5】 本発明に係る真空脱気装置の構成例図
【図6】 従来の真空脱気装置を組み込んだ超音波洗浄装置の説明図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum degassing apparatus for degassing a gas contained in an ultrasonic cleaning liquid or the like.
[0002]
[Prior art]
Conventionally, in ultrasonic cleaning, ultrasonic deburring cleaning, ultrasonic polishing processing, ultrasonic etching processing, etc., ultrasonic waves are radiated into the liquid such as cleaning liquid, and cleaning and micro flash are performed by the impact force of cavitation generated at that time. However, if the gas contained in the cleaning solution is removed, the impact force of cavitation is enhanced and the propagation characteristics of sound waves in the liquid are improved. For this reason, the gas contained in the cleaning liquid or the like is degassed by using, for example, a technique of deaeration using a hollow fiber membrane or the like or a deaeration device 51 as shown in FIG. Such a technique is known.
[0003]
The degassing device 51 is adapted to degas a gas such as dissolved oxygen from the cleaning liquid S in the cleaning tank 52. The vacuum pump 54 sucks the cleaning liquid S into the de-cylinder 55 and the sucked cleaning liquid S. By spraying from the spraying unit 56, a plurality of filter media 57 such as a plastic plate, a SUS plate or a net provided with a plurality of holes having a hole diameter of about several millimeters are sequentially passed to increase the contact area of the liquid in a vacuum atmosphere. After the deaeration, the degassed liquid is returned to the cleaning tank 52 through the circulation pump 58.
A liquid column pipe 59 for detecting the height of the liquid level in the cylinder is provided on the side wall of the decylinder 55, and the liquid is supplied by level switches 60a, 60b, 60c provided at predetermined positions of the liquid column pipe 59. While detecting the surface, the operation of the solenoid valve 61 and the circulation pump 58 is automatically controlled by this detection signal.
Reference numeral 62 denotes an ultrasonic generator.
[0004]
[Problems to be solved by the invention]
However, when a hollow fiber membrane or the like is used, the equipment cost is expensive and clogging is likely to occur, and since the surface tension of the liquid is used, if alcohol or a surfactant enters, the decompressor side There is a problem that liquid leaks out, and it is not suitable for deaeration of ultrasonic cleaning liquid or the like.
For this reason, in reality, it is used only for deaeration of water such as city water and pure water.
[0005]
On the other hand, in the case of the degassing device 51, since the cleaning liquid can be applied even when the cleaning liquid is a hydrocarbon solvent other than water, alcohol, or other cleaning agents such as chlorofluorocarbon alternatives, the degassing apparatus 51 is widely used as a degassing apparatus for ultrasonic cleaning liquids. However, in the case of using a fine mesh member 57 in order to increase the deaeration capability, there is a problem that the cleaning and replacement work becomes large and it becomes a serious work.
In addition, although a material with a hole diameter of about several millimeters that is difficult to clog is used as the brazing material 57, when a large amount of organic matter is contained in the liquid, it may cause spoilage or bacteria when used for a long period of time. It is easy to become.
Furthermore, since the coarse brazing material 57 is used, if it is attempted to increase the deaeration efficiency by increasing the contact area of the liquid in a vacuum atmosphere, it is necessary to laminate the brazing material 57 in several layers, There is also a problem that it is easy to invite an increase in the size of the apparatus and an increase in the equipment cost.
[0006]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a device having a low deaeration device at a low cost and at the same time being miniaturized to be easy to handle and having a high deaeration efficiency.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a vacuum degassing apparatus in which a processing liquid such as an ultrasonic cleaning liquid is introduced into a vacuum container to degas the gas contained in the processing liquid . The filter for filtration which has a micropore with a hole diameter of 100 micrometers or less is provided in this, and while making the said vacuum vessel and the filter for filtration accommodated in this vacuum vessel into a cylindrical shape, it is vacuum in the cylinder of the filter for filtration. A pulling pipe is provided, and a spiral seal member is interposed between the inner wall of the vacuum vessel and the outer surface of the filter for filtering, so that the processing liquid introduced into the vacuum vessel passes through the filter for filtration. At the same time , the gas was degassed from the processing liquid passed by the vacuum pipe, and filtration and deaeration were performed simultaneously.
[0008]
In other words, the conventional vacuum degassing apparatus is designed on the assumption that the eye of the dredged material will not be clogged, but conversely, if the dredged material that is easily clogged is used, the deaeration performance can be improved. In particular, filtration and deaeration are simultaneously performed by a filter for filtration having fine pores having a pore diameter of 100 μm or less, particularly preferably 1 to 5 μm.
At this time, the filtration filter can be constructed more inexpensively and easily if a commercially available material such as a porous material, a perforated material, or a fibrous material is used.
[0009]
Moreover, if such a fine filter is used, the contact area of the liquid in a vacuum atmosphere can be increased, so that a desired deaeration effect can be obtained without increasing the size of the apparatus as in the prior art. I can do it.
Furthermore, since filtration and deaeration can be performed simultaneously, there is no need to provide a separate filter or the like, and the apparatus can be further reduced in size and cost.
[0010]
Here, the treatment liquid such as the ultrasonic cleaning liquid includes the ultrasonic cleaning liquid, the ultrasonic deburring cleaning liquid, the ultrasonic polishing liquid, the ultrasonic etching liquid, and the like. Examples of the liquid include water, various solvents, alcohols, treatment agents, and the like.
[0011]
In addition, a filter for filtration is provided in a cylindrical vacuum vessel via a spiral seal member, and the treatment liquid introduced into the vessel is spirally flowed along the seal member while By filtering from the outside to the inside, even if clogging occurs in a part of the filter for filtration, the treatment liquid is filtered through another part, and the entire area of the filter for filtration is efficiently It can be filtered and degassed while in use.
[0012]
According to a second aspect of the present invention, the filter for filtration is configured as a cartridge type that can be easily replaced.
That is, since this filter for filtration is premised on causing clogging, it is desirable that the filter for filtration in use can be easily replaced with a new filter for filtration when clogged. Therefore, it is possible to easily replace the cartridge type so that the desired deaeration performance can always be maintained.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the accompanying drawings.
Here, FIG. 1 is an overall perspective view of an ultrasonic cleaning device incorporating a vacuum deaerator, Figure 2 is a front view thereof, FIG. 3 is a schematic diagram of a device configuration of an ultrasonic cleaning device, FIG 4 is a vacuum degasser the basic configuration example diagram of FIG. 5 is a usage scenario view of the vacuum degassing apparatus according to the present invention.
[0014]
A vacuum degassing apparatus 2 according to the present invention is incorporated in an ultrasonic cleaning apparatus 1 as shown in FIGS. 1 and 2, and in addition to the vacuum degassing apparatus 2, a cleaning liquid is contained in the ultrasonic cleaning apparatus 1. The cleaning tank 3 to be stored, the ultrasonic generator 4 that emits ultrasonic waves to the cleaning liquid at the bottom of the cleaning tank 3, a vacuum pump, a circulation pump, and the like are built in and compactly configured, and various switches are provided. The operation unit 5 is provided.
[0015]
In the basic configuration of the ultrasonic cleaning apparatus 1, as shown in the schematic diagram of FIG. 3, the cleaning liquid S in the cleaning tank 3 is sucked by the vacuum pump 6 and introduced into the vacuum degassing apparatus 2. After the cleaning liquid S is filtered and degassed by the vacuum degassing device 2, it is returned to the cleaning tank 3 by the processed cleaning liquid Swo circulation pump 7.
[0016]
As shown in FIG. 4, the vacuum degassing device 2 having a basic configuration is internally provided with a cylindrical vacuum vessel 8 and a packing 9 (seal member) and a vacuum seal 10 in the vacuum vessel 8. A filtration filter 11 having a cylindrical shape and a perforated evacuation pipe 12 that passes through the inside of the filtration filter 11 are provided. The filtration filter 11 and the evacuation pipe 12 are configured in a cartridge type. Thus, it can be easily attached to and detached from the vacuum vessel 8.
[0017]
That is, a cover 14 that is detachable by tightening and releasing the V band 13 is provided on one end side of the vacuum vessel 8, and a handle 14a is provided on the outer side of the cover 14, and air permeability is provided on the inner side. The filter 15 for filtration supported by the reinforcing material 16 having air permeability and liquid permeability, and the vacuum pulling pipe 12 are attached to the holder 15.
For this reason, if the cover 14 is removed by loosening the V band 13 and holding the handle 14 a, the filter 11 for filtration and the vacuum pipe 12 can be removed integrally through the holder 15.
[0018]
The cover 14 can be attached to the vacuum vessel 8 in an airtight state by a seal ring 17, and a vacuum pulling connection portion 18 for connecting to the vacuum pump 6 is provided in a part of the cover 14.
[0019]
The vacuum vessel 8 includes an introduction port 20 through which the cleaning liquid S flows and a discharge port 21 through which the processed cleaning liquid S that has passed through the filter 11 for filtration flows out.
A gap is formed between the outer surface of the filter 11 for filtration and the inner wall of the vacuum vessel 8 by the vacuum seal 10 and the packing 9, and the introduction port 20 allows the cleaning liquid S to pass between the vacuum seal 10 and the packing 9. It is provided at a position where it can be introduced into the gap.
Incidentally, the filter 11 for filtration of embodiment is marketed, and a hole diameter is about 1-5 micrometers. Of course, it is not limited to a commercially available type.
[0020]
In the vacuum deaeration device 2 as described above, when the vacuum pump 6 evacuates the vacuum connection 18, air is sucked from the vacuum pipe 12 and the vacuum container 8 is in a vacuum state.
For this reason, the cleaning liquid S sucked from the introduction port 20 passes from the outside of the filtration filter 11 toward the inside of the cylinder, removes foreign matters having a predetermined diameter or more, and passes through the eyes of the filtration filter 1. At times, gases such as dissolved oxygen are degassed with vacuuming. At this time, since the filter 11 has a finer mesh than the conventional one, the contact area of the liquid in a vacuum atmosphere is increased, and degassing is performed more efficiently.
[0021]
Incidentally, when 70 liters of city water (dissolved oxygen 5.65 mg / l) is circulated for 30 minutes, the degassing apparatus using the hollow fiber membrane has a dissolved oxygen content of 0.7 to 1.2 mg / l. In the conventional degassing apparatus shown in FIG. 6, the dissolved oxygen was 1.2 to 1.8 mg / l. However, in the degassing apparatus of the present invention, the dissolved oxygen was 0.9 to 1.5 mg / l. It is confirmed that a degassing effect that is more efficient than the conventional one can be obtained.
[0022]
In addition, in the case of a degassing device using a hollow fiber membrane, it is limited to water, but in the case of the present invention, it can be used for degassing various solvents other than water, and the price is also hollow. It can be configured with about 1/5 or less compared to a yarn membrane, and about 1/3 or less compared with a conventional deaeration device.
In addition, both the hollow fiber membrane degassing device and the conventional degassing device require a filtering means such as a filter separately, but in the case of the present invention, they are unnecessary and the cost can be reduced accordingly. .
[0023]
In addition, the size of the device can be significantly reduced compared to the size of hollow fiber membrane degassing devices and conventional degassing devices (both width 400mm, length 800mm, height 1500mm). In the form, the width is about 250 mm, the length is about 600 mm, and the height is about 600 mm.
[0024]
Incidentally, FIG. 5 is a usage scenario view of the vacuum degassing apparatus 2 according to the entire area of the filtration filter 11 efficiently used and filtered, the present invention which is adapted to degassing.
That is, in the form of the packing 9 as shown in FIG. 4, most of the cleaning liquid S sucked from the introduction port 20 initially passes through the filtration filter 11 near the introduction port 20 due to the action of the suction force. Since filtration and deaeration are performed, the eyes near the inlet 20 are locally clogged. Then, the cleaning liquid S now flows down to the position of the packing 9 below, and the eyes of the filter 11 for filtration near the packing 9 are locally clogged. That is, there is a possibility that the middle part of the filter 11 for filtration may not be used efficiently.
[0025]
Therefore, in this configuration example, the form of the packing 9 of the vacuum degassing apparatus 2 in FIG. 4 is changed to the spiral packing 9r, and the cleaning liquid S introduced from the introduction port 20 is guided spirally along the spiral packing 9r. Thus, when the filter 11 near the inlet 20 is first clogged, the cleaning liquid S passes through the filter 11 from the clogged portion or the spirally descended portion, and is filtered. It becomes deaerated, and it can filter and deaerate, using the whole area | region of the filter 11 for filtration from upper direction to the downward | lower direction sequentially and using efficiently.
In FIG. 5, the same parts as those in FIG.
[0026]
When the eyes of the filter 11 for filtration are clogged over the entire area, the cover 14 is removed and the cartridge is replaced, but the replacement operation is very simple.
[0027]
The present invention is not limited to the above embodiment. What has substantially the same configuration as the matters described in the claims of the present invention and exhibits the same operational effects belongs to the technical scope of the present invention.
For example, the vacuum degassing apparatus 2 according to the present invention can be applied to an ultrasonic polishing apparatus and an etching apparatus other than the ultrasonic cleaning apparatus 1, and the cleaning liquid S may be a processing liquid such as ultrasonic polishing and etching.
Moreover, the hole diameter of the filter 11 for filtration is not limited to 1-5 micrometers.
[0028]
【The invention's effect】
As described above, the vacuum degassing apparatus according to the present invention is provided with a cylindrical filter for filtration having fine holes having a predetermined diameter or less in a cylindrical vacuum container, and a vacuum is formed in the cylinder of the filter for filtration. While providing a pipe, a spiral sealing member is interposed between the inner wall of the vacuum vessel and the outer surface of the filter for filtering, so that the processing solution such as the cleaning solution introduced into the vacuum vessel is passed through the filter for filtration. Since the filtration and the deaeration are performed at the same time, the contact area of the liquid in a vacuum atmosphere can be increased, and the apparatus can be made small and inexpensive while obtaining a desired deaeration effect.
Further, since filtration and deaeration can be performed at the same time, there is no need to provide a filter or the like, and further miniaturization and cost reduction can be achieved.
Further, the spiral seal member allows filtration and deaeration while efficiently using the entire area of the filter for filtration.
Furthermore, it is convenient because liquids other than water, such as various solvents, alcohols, treatment agents, etc., can be degassed.
[0029]
In this case, as according to claim 2, if constituting the filtration filter in replaceable cartridge type in a simple, always Ru can maintain the desired degassing performance.
[Brief description of the drawings]
[1] vacuum degassing incorporating an apparatus overall perspective view schematic diagram of an apparatus configuration of FIG. 2 the front view [FIG 3] Ultrasonic cleaning device [4] vacuum degassing apparatus of the ultrasonic cleaning device illustration of a basic configuration example FIG 5 shows usage scenario view of the vacuum degassing apparatus according to the present invention Figure 6 incorporating a conventional vacuum degassing apparatus ultrasonic cleaning device

Claims (2)

超音波洗浄液等の処理液を真空容器内に導入して処理液の中に含まれる気体を脱気するようにした真空脱気装置であって、前記真空容器内に孔径が100μm以下の微細孔を有する濾過用フィルタを設け、前記真空容器と、この真空容器内に収容される濾過用フィルタを共に筒型形状とするとともに、前記濾過用フィルタの筒内に真空引きパイプを設け、かつ該真空容器の内壁と濾過用フィルタの外面との間には、螺旋状のシール部材を介装して、真空容器内に導入した処理液をこの濾過用フィルタを通過させるとともに、上記真空引きパイプによって通過した処理液から気体を脱気する、濾過と脱気を同時に行うようにしたことを特徴とする真空脱気装置。A vacuum deaeration apparatus in which a treatment liquid such as an ultrasonic cleaning liquid is introduced into a vacuum container to degas the gas contained in the treatment liquid , and a micropore having a pore diameter of 100 μm or less in the vacuum container The filter for filtration having a vacuum filter and a filter for filtration accommodated in the vacuum container are both cylindrical, and a vacuum pulling pipe is provided in the cylinder of the filter for filtration. between the inner wall of the container and the outer surface of the filtration filter, and interposed helical sealing member, Rutotomoni passed through the filtration filter of the treatment liquid introduced into the vacuum chamber, by the evacuation pipe A vacuum degassing apparatus characterized in that gas is degassed from the processing solution that has passed, and filtration and degassing are performed simultaneously. 請求項1に記載の真空脱気装置において、前記濾過用フィルタは、簡易に取換え可能なカートリッジ式に構成されることを特徴とする真空脱気装置。  2. The vacuum degassing apparatus according to claim 1, wherein the filter for filtration is configured in a cartridge type that can be easily replaced.
JP15065098A 1998-05-14 1998-05-14 Vacuum deaerator Expired - Fee Related JP4020492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15065098A JP4020492B2 (en) 1998-05-14 1998-05-14 Vacuum deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15065098A JP4020492B2 (en) 1998-05-14 1998-05-14 Vacuum deaerator

Publications (2)

Publication Number Publication Date
JPH11319407A JPH11319407A (en) 1999-11-24
JP4020492B2 true JP4020492B2 (en) 2007-12-12

Family

ID=15501489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15065098A Expired - Fee Related JP4020492B2 (en) 1998-05-14 1998-05-14 Vacuum deaerator

Country Status (1)

Country Link
JP (1) JP4020492B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191500A (en) * 2000-01-16 2001-07-17 Tani Denki Kogyo Kk Method and apparatus for cleaning based on ultrasonic cavitation
JP4375766B2 (en) * 2000-03-22 2009-12-02 日本エア・リキード株式会社 Deaeration device and deaeration method
WO2015079571A1 (en) 2013-11-29 2015-06-04 株式会社ダルトン Degassing device and degassing method
CN110251996A (en) * 2018-03-12 2019-09-20 洛阳奇泓生物科技有限公司 A kind of liquid fermentation medium on-line degassing device
CN110642291A (en) * 2019-09-29 2020-01-03 湖南辰州矿业有限责任公司 Antimony white powder degassing device
KR200492927Y1 (en) * 2020-06-30 2021-01-05 이에스피 주식회사 Degassing chamber for metering pump

Also Published As

Publication number Publication date
JPH11319407A (en) 1999-11-24

Similar Documents

Publication Publication Date Title
US3954621A (en) Filtration system having prefilter and main filter
JP4954707B2 (en) Improved module cleaning method
JP4360057B2 (en) Immersion membrane filtration apparatus and immersion membrane filtration method
JP2008525167A (en) Simple gas cleaning method and apparatus in the technical field
EP1264626A1 (en) Variable pore micro filter having simple and compact structure capable of side stream filtration and cross flow filtration
JP2002536161A (en) Filter for vacuum filtration
JPH07204419A (en) Method and device for filtrating and backwashing solid particulate from liquid
JP4020492B2 (en) Vacuum deaerator
JP4092048B2 (en) Blood collection device
JPWO2004096410A1 (en) Filter unit with deaeration mechanism
JP2008094097A (en) Portable liquid transportation device for tool apparatus
JP4322464B2 (en) Grinding water tank apparatus and spectacle lens processing apparatus including the same.
JP6054350B2 (en) Pneumatic circuit
JP2008114192A (en) Filtration apparatus
KR101526330B1 (en) A water circulation apparatus of filtration type
JP3373250B2 (en) Blood reservoir
JP2022013214A (en) Filtration device, filtration system, method for cleaning mesh filter, and method for cleaning strainer filter
JP2012096209A (en) Cleaning water tank, water cleaning unit and method for cleaning water cleaning unit
JP2004098047A (en) Apparatus for purifying/regenerating oil-containing waste treating liquid
JP2003117827A (en) Coolant tank device for grinding spectacle lens, spectacle lens grinding device with the tank device, and grinding waste separating device
US3442387A (en) Filtering apparatus
JP2005007378A (en) Charcoal type water purification device
JP2006007179A (en) Membrane filtering arrangement and membrane filtration method
JPH05212254A (en) Hollow-fiber membrane module filter
CN214570829U (en) Ultrasonic oil-removing fiber filtering all-in-one machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees