JP4360057B2 - Immersion membrane filtration apparatus and immersion membrane filtration method - Google Patents

Immersion membrane filtration apparatus and immersion membrane filtration method Download PDF

Info

Publication number
JP4360057B2
JP4360057B2 JP2001238480A JP2001238480A JP4360057B2 JP 4360057 B2 JP4360057 B2 JP 4360057B2 JP 2001238480 A JP2001238480 A JP 2001238480A JP 2001238480 A JP2001238480 A JP 2001238480A JP 4360057 B2 JP4360057 B2 JP 4360057B2
Authority
JP
Japan
Prior art keywords
filtration
membrane
tubular
liquid
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001238480A
Other languages
Japanese (ja)
Other versions
JP2003047830A (en
Inventor
尚樹 村上
紫朗 丹宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2001238480A priority Critical patent/JP4360057B2/en
Publication of JP2003047830A publication Critical patent/JP2003047830A/en
Application granted granted Critical
Publication of JP4360057B2 publication Critical patent/JP4360057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、貯留槽内に貯留された被処理液を浸漬型膜濾過方式により濾過処理し、濾液を得るための浸漬型膜濾過装置および浸漬型膜濾過方法に関するもので、さらに詳しく言えば、浸漬型膜濾過装置および浸漬型膜濾過方法に用いる管状濾過膜モジュールによる濾過効率が、管状濾過膜の内面に付着するケーク層によって低下する前に、被処理液の流れが阻害されることによって低下するのを防止するようにしたことに関するものである。
【0002】
【従来の技術とその課題】
近年、被処理液中に膜モジュールを浸漬し、空気泡の浮力を利用しながら濾過するクロスフロー濾過方法が、高汚濁液の省エネルギー精密ろ過方式として多方面で利用されるようになった。このような濾過方法は、例えば、特開昭61−129094号公報に記載されており、この濾過方法は浸漬型膜濾過方法とも言われ、これに使用する膜モジュールは浸漬型膜モジュールとも言われ、中空糸膜モジュールや平膜モジュールを被処理液中に浸漬したものが使用されてきた。同様に、被処理液中に膜モジュールを浸漬し、水頭差で濾過する濾過方法にも、中空糸膜モジュールや平膜モジュールが使用され、従来の砂濾過方法に代わる省エネルギー、低コストの濾過方法として注目されているが、このような濾過方法も浸漬型膜濾過方法と言われ、これに使用する膜モジュールも浸漬型膜モジュールと言われる。
【0003】
このクロスフロー濾過方法や水頭差で濾過する濾過方法と限外濾過方法とは、前者が空気泡の浮力や水頭差を利用して被処理液を膜モジュールに供給しているのに対し、後者がポンプなどの機械的循環手段を用いて膜モジュールに被処理液を供給している点で相違し、それぞれは明確に区別されるものである。
【0004】
上記した浸漬型膜濾過方法の対象となる被処理液中には、多様な夾雑物が混在しており、これに使用する膜モジュールを長期間、良好な濾過効率で運転するためには、被処理液の流路が閉塞されないように、あらかじめ大きな夾雑物を除去しておいたり、逆洗によって膜面に付着したケーク層を除去する必要がある。この膜モジュールに、平膜モジュールを使用した場合は、それと同じ幅の被処理液の流路が確保できて、あらかじめ大きな夾雑物を除去しなくても被処理液の流路が閉塞されることはないが、逆洗に耐える強度を持たせることが難しく、中空糸膜モジュールを使用した場合は、中空糸膜の耐圧を利用して逆洗を行うことができるが、中空糸膜と中空糸膜との間隙が被処理液の流路になるため、あらかじめ大きな夾雑物を除去しておかないと被処理液の流路が閉塞されて、早期に濾過効率が低下してしまうため、平膜モジュールや中空糸膜モジュールを使用して浸漬型膜濾過方法を長期間安定に行うことは実質的に困難であった。
【0005】
これに対し、推測ではあるが、管状濾過膜モジュールは平膜モジュールや中空糸膜モジュールに対して多くの利点がある。すなわち、▲1▼すべての空気の流れがクロスフローの平行流れを大きくするために利用できること、▲2▼気泡と被処理液の通路が円筒形であるために物質移動係数が他の形式のモジュールに比べて大きく、原理的にフラックス(単位膜面積当たりのろ過流量)が大きくできること、▲3▼膜自身が気泡と被処理液の通路を構成するためにモジュール構造をコンパクトにできること、▲4▼内径が中空糸膜よりもはるかに大きいので、圧力損失が小さく逆洗による効果が大きくできること、などである。ところが、管状濾過膜モジュールを浸漬型膜濾過方式に適用することについては、浸漬型膜濾過方法が適用される被処理液中には多様な夾雑物が含まれるために管状濾過膜自体がこれらによって閉塞すると予想されたため、特別な関心が払われなかった。
【0006】
本発明の目的は、上記した事情に鑑み、浸漬型膜濾過方法を、管状濾過膜モジュールを用いて実現するに当たり、管状濾過膜自体が夾雑物によって閉塞されないようにする簡易な方法を提供することにより、管状濾過膜モジュールを用いた浸漬型膜濾過方法を、長期間にわたって効率的に実施できるようにすることにある。
【0007】
【課題を解決するための手段】
すなわち、請求項1記載の浸漬型膜濾過装置は、貯留槽内に貯留された被処理液を浸漬型膜濾過方式によって濾過処理し、濾液を得るためのものであり、管状濾過膜モジュールと空気泡供給装置とを少なくとも有し、前記管状濾過膜モジュールは、内面に被処理液の濾過機能を有する管状濾過膜の複数本が、筒状の収納容器内に収容されて両端部が保持されるとともに該両端部を上下方向に開口させるように貯留槽内に配置され、前記空気泡供給装置は、空気泡を発生させる空気泡発生装置と前記空気泡を管状濾過膜モジュールに向けて案内する案内筒とを有し、前記空気泡によって被処理液が管状濾過膜モジュールの下方から上方に流れて濾過されるように管状濾過膜モジュールの下方に配置され、かつ前記管状濾過膜モジュールは、開くことによって空気泡を通過させ、閉じることによって空気泡を遮断させる蓋体が上方に配置されたことを特徴とするものであり、これにより、蓋体を閉じて空気泡を一旦管状濾過膜の内側と案内筒内に閉じ込めておいてから、蓋体を開いて閉じ込めた空気泡を一気に流出させるようにすることができるので、管状濾過膜の下方に滞留している夾雑物、特に長繊維状のものを一気に押し出すことができる。
【0008】
また、本発明の浸漬型膜濾過装置において、空気泡発生装置は、大きさと形状が案内筒の軸方向に垂直な断面における内周と実質的に同じであって、空気泡の圧力によって開閉する噴出孔を全面に有している、ゴム弾性体からなる面状ノズルを備えていることが好ましく、これにより、すべての管状濾過膜に均等に空気泡を供給することができる。
【0009】
また、本発明の浸漬型膜濾過装置において、案内筒は、被処理液を内部に導入する網状フィルターを有していることが好ましく、これにより、案内筒内に夾雑物が流入するのを阻止することができるとともに、蓋体を閉じて空気泡を一旦管状濾過膜の内側と案内筒内に閉じ込めると、網状フィルターを介して被処理液が逆流し、網状フィルターに堆積した夾雑物を除去することができる。
【0010】
また、本発明の浸漬型膜濾過装置において、管状濾過膜モジュールは、収納容器が濾液を排出する排出口を有し、この排出口から延びる濾液排出経路を有していることが好ましく、管状濾過膜モジュールは、収納容器が、内側に間隔を設けて、濾液を導入する導入口と濾液を排出する排出口を有する筒状の集水管を有し、この間に管状濾過膜の複数本を収容し、前記排出口から延びる濾液排出経路を有していることが好ましく、これにより、収納容器または集水管を通じて濾液を円滑に排出することができる。
【0011】
さらに、本発明の浸漬型膜濾過方法は、本発明の浸漬型膜濾過装置を用い、貯留槽内に貯留された被処理液を浸漬型膜濾過方式によって濾過処理し、濾液を得るための浸漬型膜濾過方法であって、内面に被処理液の濾過機能を有する管状濾過膜の複数本が筒状の収納容器内に収容されて両端部が保持された管状濾過膜モジュールを、該両端部を上下方向に開口するように前記貯留槽内に配置し、この管状濾過膜モジュールの下方から空気泡を供給して被処理液を管状濾過膜の下方から上方に流して濾過する通常濾過工程と、前記空気泡の流れを遮断して被処理液の濾過を休止させる濾過休止工程と、遮断した空気泡の流れを再開して管状濾過膜モジュールに蓄積した濾別成分を除去する濾別成分除去工程とを含むことを特徴とし、これにより、濾過休止工程で、空気泡を一旦管状濾過膜の内側と案内筒内に閉じ込めておき、濾別成分除去工程で、閉じ込めた空気泡を一気に流出させるようにすることができるので、管状濾過膜の下方に滞留している夾雑物、特に長繊維状のものを一気に押し出すことができる。
【0012】
また、本発明の浸漬型膜濾過方法は、収納容器は濾液を排出する排出口を有し、この排出口から排出される濾液を加圧しながら前記排出口を通じて収納容器内に逆流させる逆洗工程を、さらに含んでいることが好ましく本発明の浸漬型膜濾過方法は、収納容器は濾液を導入する導入口と濾液を排出する排出口を有する集水管が間隔を設けて内側に配置され、この排出口から排出される濾液を加圧しながら前記排出口を通じて収納容器内に逆流させる逆洗工程を、さらに含んでいることが好ましく、これにより、濾過休止工程で、空気泡を一旦管状濾過膜の内側と案内筒内に閉じ込めておき、濾別成分除去工程で、閉じ込めた空気泡を一気に流出させても、管状濾過膜の下方に滞留している夾雑物が押し出せないときに、それを除去することができるとともに、濾過膜の内面に付着したケーク層も除去することができる。
【0013】
また、本発明の浸漬型膜濾過方法は、通常濾過工程の過程で、濾過休止工程と濾別成分除去工程とを導入することが好ましく、これにより、簡易な方法で管状濾過膜の下方に滞留している夾雑物を押し出すことができる。
【0014】
【発明の実施の形態】
図1は、本発明の実施の形態に係る浸漬型膜濾過装置が採用される浸漬型膜濾過システムの概略構成を示したものである。
【0015】
図1において、浸漬型膜濾過システム46は、被処理液31が貯留された貯留槽30内に、管状濾過膜モジュール5と空気泡供給装置9とを主に備えた浸漬型膜濾過装置2が浸漬されている。
【0016】
前記貯留槽30は、上部に開口を有する容器状に形成されており、内部に被処理液31が貯留されている。
【0017】
前記管状濾過膜モジュール5は、図2の一部切欠き縦断面図に示したように、例えば樹脂製の部材からなる円筒状の収納容器4と、この収納容器4内に充填された複数本の管状濾過膜3とを備え、この管状濾過膜3は内面に被処理液31の濾過機能を有していて、被処理液31は、空気泡14とともに下方の入口12から管状濾過膜3の内側の被処理液流路20を通って上方の出口13に流れて濾過処理され、濾過処理後の被処理液(濾液)は、管状濾過膜3の外側の処理液流路21を通って、収納容器4側面の排出口6から排出されるように構成されている。
【0018】
前記複数本の管状濾過膜3は、細長な円筒状に形成されたものであり、各管状濾過膜3は、図示していない外周の突起によって互いに密着しないように、すなわち互いに間隔を設けて、収納容器4の上下の開口方向に沿って互いに平行に密に集合させ、その上端部および下端部は、それぞれウレタン樹脂などの樹脂材料を用いて形成された保持部によって各管状濾過膜の開放状態を維持しつつ収納容器4に対して一体的に保持されて固定されている。この結果、収納容器4の両端部は当該保持部によって液密に閉鎖されることになる。
【0019】
上述の管状濾過膜3は、内面に被処理液31の濾過機能を持たせ、全体の強度を確保するために、内周面側から外周面側に向けて順に濾過膜層および支持膜層を備えた二層構造を有し、濾過膜層の種類は、特に限定されるものではないが、被処理液から除去すべき濾別成分の種類に応じて適宜選択することができる。たとえば、微生物などの微粒子を除去する必要がある場合は精密濾過膜が用いられる。精密濾過膜は、例えばJIS K 3802によれば、0.01〜数μm程度の微粒子および微生物を濾過によって分離するために用いる膜と定義されているが、ここでは、20kPa以下の圧力で実用的な濾過が可能な、孔径が0.04μmよりも大きい微孔を多数有する、セルロース膜やポリオレフィン系樹脂膜などの有機高分子多孔膜を用いるのが好ましい。また、支持膜層は、上述の濾過膜層に対して形状保持性を付与し、濾過膜層を円筒状に設定するためのものである。このような支持膜層は、通液性を有する多孔質材料であれば各種のものを用いることができるが、通常は、腰の強さ、優れた強度、優れた耐薬品性、高い耐熱性および経済性を備えたポリプロピレン樹脂製あるいはポリエステル樹脂製の不織布を用いるのが好ましく、特にポリエステル樹脂製の不織布を用いるのが好ましい。
【0020】
上述のような管状濾過膜3は、内径が3〜15mmであるのが好ましく、5〜10mmに設定されているのがより好ましい。内径が3mm未満の場合は、被処理液、特に、高汚濁の被処理液を濾過する際において、被処理液中に含まれる各種の濾別成分や夾雑物により管状濾過膜3が閉塞しやすくなり、濾過処理を長期間安定に継続するのが困難になるおそれがある。逆に、内径が15mmを超える場合は、容積の限られた収納容器4内に充填可能な管状濾過膜3の本数が減少することになるため、管状濾過膜モジュール5の単位容積当りの濾過面積(有効膜面積)が小さくなる。その結果、濾過流量が低下することになるので、管状濾過膜モジュール5のコンパクト化を図りながら被処理液の効率的な濾過処理を実施するのが困難になるおそれがある。
【0021】
また、管状濾過膜3は、支持膜層と濾過膜層の和で表される肉厚(A)と外径(B)との比(A/B)が0.025〜0.1であるのが好ましく、0.03〜0.1に設定されているのがより好ましい。この比が0.025未満の場合は、管状濾過膜3に対して外側から圧力を加えた場合、管状濾過膜3が潰れやすくなる。この結果、管状濾過膜3の内周面に堆積する濾別成分などからなるケーク層を排除するために、管状濾過膜3に対して外側から圧力を加えて逆洗操作を実施した場合、管状濾過膜が潰れてしまい、管状濾過膜3を逆洗するのが実質的に困難になる。なお、20kPa以上の耐圧性を達成するためには、この比を0.03以上に設定するのが好ましい。一方、この比が0.1を超える場合は、管状濾過膜モジュール5の単位容積当りの濾過面積(有効膜面積)が小さくなる。その結果、濾過流量が低下することになるため、管状濾過膜モジュール5のコンパクト化を図りながら被処理液の効率的な濾過処理を実施するのが困難になるおそれがある。
【0022】
また、前述した突起の高さ、すなわち支持膜層の表面からの突出量は、0.02〜0.2mmであるのが好ましい。突起の高さが0.02mm未満の場合は、管状濾過膜3同士が密着し易くなり、結果的に濾過液の流動性を高めるのが困難になるおそれがある。一方、0.2mmを超える場合は、管状濾過膜3の本数、すなわち、管状濾過膜モジュール5の収納容器4内に充填可能な管状濾過膜3の本数が減少することになるため、管状濾過膜モジュール5の単位容積当りの濾過面積が小さくなる。その結果、濾過流量が低下することになるため、管状濾過膜モジュール5のコンパクト化を図りながら被処理液の効率的な濾過処理を実施するのが困難になるおそれがある。なお、突起の高さは、被処理液の種類に応じて適宜選択することもできる。たとえば、被処理液が活性汚泥液のように濾過流量が比較的小さいものである場合は、濾過面積を確保する観点から突起は低めに設定するのが好ましい。一方、被処理液が河川の水のように濾過流量が比較的大きいものである場合は、濾液の流動性を高める観点から、突起は高めに設定するのが好ましい。
【0023】
このような管状濾過膜3は、支持膜層上に濾過膜層が一体に積層された、幅が2cmのテープ状複合膜を準備し、これを直径が7mmの心棒に対し、支持膜層が表面になるように幅方向の両端部を重ね合わせながら螺旋状に巻き付け、重なり部分を超音波溶着することによって作製する。こうして、内径が7mm、肉厚が0.15mmの管状濾過膜3を得ることができ、重なり部分によって前述した突起を形成することができる。
【0024】
上記した管状濾過膜3を用いて管状濾過膜モジュール5を作製する方法は、複数本の管状濾過膜3の両端をヒートシ−ルし、これを収納容器4に充填し、未硬化のウレタン樹脂を入れたシリコン製のモールド内に一端を浸漬し、ウレタン樹脂が硬化するまで放置する。そして、他端もこれと同様のことを行う。そうすると、それぞれ収納容器4と管状濾過膜3との間隙が閉鎖されるので、閉鎖された後の管状濾過膜3の両端を収納容器4に合わせて切り揃える。こうして、長さが375mm、管状濾過膜3の本数が7本の管状濾過膜モジュール5を作製する。
【0025】
一方、空気泡供給装置9は、管状濾過膜モジュール5に対して空気泡14を供給するためのものであり、図1に示すように、貯留槽30内において、管状濾過膜モジュール5の下方に配置されている。この空気泡供給装置9は、空気を送出するブロワー41、この空気を貯留槽30内の被処理液31中に導入する空気供給パイプ42および導入された空気によって発生した空気泡14の圧力で開閉する噴出口を全面に有しているゴム弾性体からなる面状ノズル7からなる空気泡発生装置43と前記空気泡14を管状濾過膜モジュール5に向けて案内する案内筒8とを有し、空気泡14によって被処理液31が管状濾過膜モジュール5の下方から上方に流れて濾過されるように構成されている。なお、前記面状ノズル7は、大きさと形状を案内筒8の軸方向に垂直な断面における内周と実質的に同じにし、発生した空気泡14を均等に管状濾過膜モジュール5に送出できるようにしている。
【0026】
また、濾過によって得られた濾液は排出口6から濾液排出経路44を通って外部に排出される。なお、図1のものでは、濾液排出経路44に設けたポンプ40による吸引によって排出しているが、このようなポンプを用いずに水頭差によって排出することもできる。
【0027】
前記排出口6は、図1のものでは収納容器4に設けられているが、管状濾過膜モジュール5を、収納容器4が内側に間隔を設けて集水管を有したもので、この間に管状濾過膜3の複数本を収納したものとすると、該集水管に濾液を導入する導入口と濾液を排出する排出口を設け、この排出口から濾液排出経路を通って外部に排出されるようにしてもよい。
【0028】
さらに、管状濾過膜モジュール5には、開くことによって空気泡14を通過させ、閉じることによって空気泡14を遮断させる蓋体11が、上方の出口13が開閉可能なように設けられている。
【0029】
また、前記案内筒8には、側面に、被処理液31から長繊維状の夾雑物の流入を阻止しながら被処理液31を内部に導入する目開きが7mmの網状フィルター10が設けられている。
【0030】
上記した網状フィルター10によって長繊維状の夾雑物の流入を阻止することができるので、入口12にこのような夾雑物が蓄積するの防止することができるとともに、面状ノズル7によって発生した空気泡14を確実に管状濾過膜3の内側に送り込むことができるので、長期間にわたってすぐれた濾過効率で濾過を行うことができる。なお、図1のものでは、面状ノズル7から入口12までの距離は250mmにしている。
【0031】
そして、長期間の運転で入口12に夾雑物が滞留して濾過効率が低下したときは、前記蓋体11で出口13を閉じて、管状濾過膜3の内側と案内筒8内に空気泡14を閉じ込めておいてから、蓋体11を開いて閉じ込めた空気泡14を一気に流出させるようにすると、入口12に滞留している夾雑物を一気に押し出すことができ、濾過効率を回復させることができる。
【0032】
また、蓋体11で出口13を閉じて、管状濾過膜3の内側と案内筒8内に空気泡14を閉じ込めると、網状フィルター10を通って空気泡14が貯留槽30内に流出し、その流れによって網状フィルター10に付着した長繊維状の夾雑物を除去することもできる。
【0033】
次に、図1、図2を参照して、上述の浸漬型膜濾過装置2を用いた被処理液31の濾過処理操作、すなわち浸漬型膜濾過方法について説明する。
【0034】
先ず、貯留槽30内に、例えば微小ゲル、コロイド成分、微生物などの濾別成分を含む被処理液31を供給して貯留する。この状態で、ブロワー41から空気供給パイプ42を介して空気を供給すると、この空気は面状ノズル7から空気泡14となって噴出する。この空気泡14は案内筒8により案内されながら被処理液31中を上昇し、管状濾過膜モジュール5に含まれる各管状ろ過膜3の入口12から内部の被処理液流路20に対してほぼ均等に供給される。
【0035】
このようにして管状濾過膜モジュール5に対して供給される空気泡14の浮力により、貯留槽30内に貯留された被処理液31は、図1、図2に矢印で示すように、各管状濾過膜3内の被処理液流路20を下側から上側に向けて通過し、出口13から管状濾過膜モジュール5の外部に出て被処理液31中に戻るが、各管状濾過膜3内の被処理液流路20を通過する際、被処理液31を濾過し、得られた濾液を排出口6から濾液排出経路44を通って外部に排出するため、濾液排出経路44に設けたポンプ40による吸引を行っている。なお、図1のものでは、ポンプ40による吸引によって排出しているが、このようなポンプ40を用いずに水頭差によって排出することもできる。こうして、被処理液31中に含まれる濾別成分は管状濾過膜3の濾過膜層20によって採取され、被処理液31から取り除かれる。このような濾過処理により、貯留槽30内の被処理液31は、図1に矢印で示すように、管状濾過膜モジュール5を下側から上側方向に通過して自然に循環することになる。
【0036】
上述のような通常濾過工程において、被処理液31中に含まれる濾別成分のうち、長繊維状の夾雑物は、案内筒8の側面に設けた網状フィルター10によって流入が阻止されるが、長期間、運転を継続すると、管状濾過膜モジュール5の入口12に上記した長繊維状の夾雑物が少しずつ滞留し始め、濾過効率も少しずつ低下し始める。また、管状濾過膜3の内周面、すなわち濾過膜層の表面には濾別成分が徐々に堆積してケーク層を形成し、管状濾過膜3の濾過性能を低下させる。このような状況下になった場合、蓋体11で出口13を閉じて、管状濾過膜3の内側と案内筒8内に空気泡14を閉じ込めて濾過を休止させる濾過休止工程にしておいてから、蓋体11を開いて閉じ込めた空気泡14を一気に流出させる濾別成分除去工程にすると、入口12に滞留している夾雑物を一気に押し出すことができるとともに、管状濾過膜3の内周面に形成されたケーク層の一部も剥離させることができ、濾過効率を回復させることができる。また、前述した濾過休止工程では、網状フィルター10を通って被処理液31が貯留槽30内に逆流するので、その流れによって網状フィルター10に付着した長繊維状の夾雑物を除去することもできる。
【0037】
そして、上記した各工程を行っても濾過性能が回復しない場合は、管状濾過膜モジュールに対して逆洗工程を実施し、これによってケーク層を取り除き、濾過性能の回復を図ることができる。この逆洗工程を実施するために、排出される濾液を加圧しながら排出口6を通じて収納容器4内に逆流させるようにする。
【0038】
なお、管状濾過膜3は、上述した如く潰れ圧が大きいため(例えば、少なくとも潰れ圧が20kPaに設定されているため)、このような逆洗工程の加圧力により押し潰されてしまうことがなく、逆洗工程を実施した後も形状を維持し、引き続き上述のような通常濾過工程に適用することができる。
【0039】
従って、上述の浸漬型膜濾過システム46は、浸漬型膜濾過装置2において、通常濾過工程の過程で濾過休止工程と濾別成分除去工程とを定期的に繰返すことにより、管状濾過膜モジュール5を、長期間交換しなくても、濾過性能を回復させることができ、被処理液31の濾過処理を長期間に渡って効率的に継続することができる。
【0040】
なお、上述の浸漬型膜濾過装置2を用いた浸漬型膜濾過方法において、通常濾過工程の過程で濾過休止工程と濾別成分除去工程とを定期的に繰返す方法は、手動で行ってもよいし、タイマーを用いて自動的に行ってもよい。
【0041】
【実施例】
次に、上述の実施の形態に係る管状濾過膜モジュール5を用いた浸漬型膜濾過装置2の実施例について説明する。
【0042】
貯留槽30内の被処理液31中に長さが5〜15cmの長繊維状夾雑物を約50本入れ、ブロワー41から空気供給パイプ42を介して空気を供給し、面状ノズル7から10リットル/m2/分程度の空気泡14を噴出させると、この空気泡14のエアーリフト作用により、被処理液流路20内の被処理液に上昇流が発生するので、排出口6からポンプ40で吸引すると、処理液流路21内が負圧になって被処理液流路20内の被処理液が管状濾過膜3で濾過され、濾過されない成分は管状濾過膜モジュール5の出口13から貯留槽30内の被処理液31中に戻される。
【0043】
上記した濾過処理を数分間継続し、網状フィルター10に長繊維状夾雑物が多数堆積し始めた頃に、管状濾過膜モジュール5の出口13を蓋体11で閉じると、網状フィルター10から被処理液31が逆流し、数秒で堆積した長繊維状夾雑物が貯留槽30内の被処理液31中に戻って浮遊することがわかった。
【0044】
次に、前記網状フィルター10を浸漬型膜濾過装置2から取り外した状態で同様の濾過処理を継続すると、数分間で長繊維状夾雑物が管状濾過膜モジュール5の入口12に堆積し始めたので、管状濾過膜モジュール5の出口13を蓋体11で閉じ、網状フィルター10を取り外した箇所から被処理液31が逆流し始める直前に蓋体11を開いて空気泡14を一気に流出させると、入口12に堆積していた長繊維状夾雑物が管状濾過膜3の被処理液流路20を通って出口13から押し出され、貯留槽30内の被処理液31中に戻って浮遊することがわかった。
【0045】
上述の実施例では、濾液の排出口6が収納容器4の側面に設けられている管状濾過膜モジュール5を用いた場合について説明したが、他の形式の管状濾過膜モジュール5であってもよい。すなわち、濾液を導入する導入口と濾液を排出する排出口を有する集水管と管状濾過膜3とを収納容器4の内側に配置したものであってもよい。
【0046】
【発明の効果】
本発明の浸漬型膜濾過装置は、上述のように、管状濾過膜モジュールに、開くことによって空気泡を通過させ、閉じることによって空気泡を遮断させる蓋体を出口側に配置しているので、被処理液の濾過処理を、長期間、効率的に実施するのに寄与することができる。
【0047】
また、本発明の浸漬型膜濾過方法は、上述のような管状濾過膜モジュールを用いて被処理液を濾過する通常濾過工程に、濾過休止工程と濾別成分除去工程を含ませているため、被処理液の濾過処理を、長期間、効率的に実施することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る浸漬型膜濾過装置の概略図である。
【図2】前記浸漬型膜ろ過装置に採用された管状濾過膜モジュールの一部切り欠き縦断面図である。
【符号の説明】
2 浸漬型膜濾過装置
3 管状濾過膜
4 収納容器
5 管状濾過膜モジュール
6 排出口
7 面状ノズル
8 案内筒
9 空気泡供給装置
10 面状フィルター
11 蓋体
12 入口
13 出口
14 空気泡
20 被処理液流路
21 処理液流路
30 貯留槽
31 被処理液
40 ポンプ
41 ブロワー
42 空気供給パイプ
43 空気泡発生装置
44 濾液排出経路
46 浸漬型膜濾過システム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a submerged membrane filtration apparatus and a submerged membrane filtration method for obtaining a filtrate by subjecting a liquid to be treated stored in a storage tank to filtration treatment by a submerged membrane filtration method. The filtration efficiency of the tubular membrane module used in the submerged membrane filtration device and the submerged membrane filtration method is reduced by the flow of the liquid to be treated being inhibited before it is reduced by the cake layer adhering to the inner surface of the tubular filtration membrane. It is related to the fact that it is prevented from doing.
[0002]
[Prior art and its problems]
In recent years, a cross-flow filtration method in which a membrane module is immersed in a liquid to be treated and filtered while utilizing the buoyancy of air bubbles has come to be used in various fields as an energy-saving precision filtration method for highly polluted liquids. Such a filtration method is described in, for example, Japanese Patent Application Laid-Open No. 61-129094. This filtration method is also referred to as a submerged membrane filtration method, and a membrane module used for this is also referred to as a submerged membrane module. A hollow fiber membrane module or a flat membrane module immersed in a liquid to be treated has been used. Similarly, a hollow fiber membrane module or a flat membrane module is also used in a filtration method in which a membrane module is immersed in a liquid to be treated and filtered by a head differential, and an energy saving and low cost filtration method that replaces the conventional sand filtration method. However, such a filtration method is also referred to as a submerged membrane filtration method, and a membrane module used for this method is also referred to as a submerged membrane module.
[0003]
The cross-flow filtration method and the filtration method and the ultrafiltration method for filtering by the water head difference are that the former supplies the liquid to be processed to the membrane module by utilizing the buoyancy of the air bubbles and the water head difference, while the latter. Are different from each other in that the liquid to be treated is supplied to the membrane module using a mechanical circulation means such as a pump, and each is clearly distinguished.
[0004]
In the liquid to be treated, which is the object of the above-described immersion type membrane filtration method, various contaminants are mixed, and in order to operate the membrane module used for this for a long period of time with good filtration efficiency, It is necessary to remove large contaminants in advance or remove the cake layer adhering to the membrane surface by backwashing so that the flow path of the treatment liquid is not blocked. When a flat membrane module is used for this membrane module, the flow path of the liquid to be processed having the same width can be secured, and the flow path of the liquid to be processed is blocked without removing large impurities in advance. However, it is difficult to give strength enough to withstand backwashing, and when a hollow fiber membrane module is used, backwashing can be performed using the pressure resistance of the hollow fiber membrane. Since the gap with the membrane becomes the flow path of the liquid to be treated, the flow path of the liquid to be treated is blocked if the large impurities are not removed in advance, and the filtration efficiency is lowered at an early stage. It has been substantially difficult to perform a submerged membrane filtration method stably for a long period of time using a module or a hollow fiber membrane module.
[0005]
On the other hand, although it is speculated, the tubular filtration membrane module has many advantages over the flat membrane module and the hollow fiber membrane module. That is, (1) all air flows can be used to increase the parallel flow of the cross flow, and (2) the mass transfer coefficient is another type of module because the passage of bubbles and liquid to be treated is cylindrical. In principle, the flux (filtering flow rate per unit membrane area) can be increased, and (3) the module itself can be made compact because the membrane itself forms the passage of bubbles and liquid to be processed, (4) Since the inner diameter is much larger than that of the hollow fiber membrane, the pressure loss is small and the effect of backwashing can be increased. However, regarding the application of the tubular filtration membrane module to the submerged membrane filtration method, the liquid to be treated to which the submerged membrane filtration method is applied contains various contaminants. Special attention was not paid because it was expected to block.
[0006]
In view of the circumstances described above, the object of the present invention is to provide a simple method for preventing the tubular filtration membrane itself from being clogged with impurities when the immersion membrane filtration method is realized using a tubular filtration membrane module. Therefore, the submerged membrane filtration method using the tubular filtration membrane module can be efficiently performed over a long period of time.
[0007]
[Means for Solving the Problems]
That is, the submerged membrane filtration device according to claim 1 is for obtaining a filtrate by subjecting a liquid to be treated stored in a storage tank to a filtration treatment by a submerged membrane filtration method. The tubular filtration membrane module includes at least a plurality of tubular filtration membranes having a function of filtering a liquid to be treated on the inner surface thereof, and the both ends are held in the tubular storage container. The air bubble supply device is arranged in the storage tank so as to open both ends in the vertical direction, and the air bubble supply device guides the air bubble toward the tubular filtration membrane module. And the tube is disposed below the tubular filtration membrane module so that the liquid to be treated flows and is filtered upward from below the tubular filtration membrane module by the air bubbles, and the tubular filtration membrane module is opened. A lid body that allows air bubbles to pass therethrough and closes the air bubbles by closing is disposed above, so that the lid body is closed and the air bubbles are once inside the tubular filtration membrane. Since the air bubbles trapped in the guide tube can be made to flow out at once by opening the lid, it is possible to let the trapped air bubbles flow out all at once. You can push things out at once.
[0008]
Also, The present invention Submerged membrane filtration equipment In place The air bubble generating device has substantially the same size and shape as the inner periphery in the cross section perpendicular to the axial direction of the guide cylinder, and has an ejection hole that opens and closes by the pressure of the air bubbles over the entire surface. And having a surface nozzle made of rubber elastic body Is preferred Thereby, air bubbles can be supplied evenly to all the tubular filtration membranes.
[0009]
Also, The present invention Submerged membrane filtration equipment In place The guide tube has a mesh filter for introducing the liquid to be treated into the inside. Is preferred As a result, it is possible to prevent foreign matters from flowing into the guide tube, and once the lid is closed and air bubbles are once trapped inside the tubular filtration membrane and inside the guide tube, the cover is passed through the mesh filter. The treatment liquid flows backward, and impurities accumulated on the mesh filter can be removed.
[0010]
Also, The present invention Submerged membrane filtration equipment In place The tubular membrane filter module has a discharge port through which the container discharges the filtrate, and has a filtrate discharge path extending from the discharge port. Is preferred, In the tubular filtration membrane module, the storage container has a cylindrical water collection pipe having an inlet for introducing the filtrate and a discharge outlet for discharging the filtrate with a space inside, and a plurality of the tubular filtration membranes are interposed therebetween. Has a filtrate discharge path that contains and extends from the outlet Is preferred Thus, the filtrate can be smoothly discharged through the storage container or the water collecting pipe.
[0011]
further, The present invention The immersion membrane filtration method of Using the immersion membrane filtration device of the present invention, A submerged membrane filtration method for obtaining a filtrate by subjecting a liquid to be treated stored in a storage tank to a filtration process by a submerged membrane filtration method. A tubular filtration membrane module in which a book is housed in a cylindrical storage container and both end portions are held is disposed in the storage tank so that both end portions are opened in the vertical direction. A normal filtration step of supplying air bubbles from the bottom and filtering the liquid to be processed from below the tubular filtration membrane, and a filtration suspension step of stopping the filtration of the liquid to be processed by blocking the flow of the air bubbles, And a filtered component removing step of removing the filtered component accumulated in the tubular filtration membrane module by resuming the flow of the blocked air bubbles, thereby temporarily filtering the air bubbles in the filtration pause step. Confined inside the membrane and in the guide tube In addition, since the trapped air bubbles can be made to flow out at a stroke in the filtration separation component removing step, it is possible to extrude foreign matters staying below the tubular filtration membrane, particularly those in the form of long fibers. .
[0012]
Also, The present invention The submerged membrane filtration method is , Yield The storage container has a discharge port for discharging the filtrate, and further includes a backwashing step of backflowing the filtrate discharged from the discharge port into the storage container through the discharge port while pressurizing the filtrate. Is preferred , The present invention The submerged membrane filtration method is , Yield The storage container has a water collection pipe having an inlet for introducing filtrate and a discharge outlet for discharging the filtrate, and is arranged on the inner side with a space between them, and pressurizing the filtrate discharged from this outlet into the storage container through the outlet. It further includes a backwashing process for backflow. Is preferred Thus, even if the air bubbles are once confined in the inside of the tubular filtration membrane and the guide tube in the filtration suspension step, and the trapped air bubbles are discharged at a stroke in the filtration component removal step, the bottom of the tubular filtration membrane When the foreign matter staying in the filter cannot be pushed out, it can be removed and the cake layer adhering to the inner surface of the filtration membrane can also be removed.
[0013]
Also, The present invention The submerged membrane filtration method is , Through Introducing a filtration pause process and a filtration component removal process in the normal filtration process Is preferred As a result, it is possible to push out foreign substances staying below the tubular filtration membrane by a simple method.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a schematic configuration of an immersion membrane filtration system in which an immersion membrane filtration apparatus according to an embodiment of the present invention is employed.
[0015]
In FIG. 1, the submerged membrane filtration system 46 includes a submerged membrane filtration device 2 mainly including a tubular filtration membrane module 5 and an air bubble supply device 9 in a storage tank 30 in which a liquid to be treated 31 is stored. Soaked.
[0016]
The storage tank 30 is formed in a container shape having an opening in the upper part, and a liquid to be treated 31 is stored therein.
[0017]
As shown in the partially cutaway longitudinal sectional view of FIG. 2, the tubular filtration membrane module 5 includes, for example, a cylindrical storage container 4 made of a resin member and a plurality of the containers filled in the storage container 4. The tubular filtration membrane 3 has a filtration function of the liquid 31 to be treated on the inner surface, and the liquid 31 to be treated is introduced into the tubular filtration membrane 3 from the lower inlet 12 together with the air bubbles 14. The liquid to be treated (filtered) after flowing through the inner liquid flow path 20 to the upper outlet 13 is filtered, and the liquid to be treated (filtrate) passes through the liquid treatment channel 21 outside the tubular filtration membrane 3. It is comprised so that it may discharge | emit from the discharge port 6 of the storage container 4 side surface.
[0018]
The plurality of tubular filtration membranes 3 are formed in an elongated cylindrical shape, and the respective tubular filtration membranes 3 are not in close contact with each other by projections on the outer periphery (not shown), that is, spaced from each other, The upper and lower ends of the container 4 are densely gathered in parallel along the upper and lower opening directions of the storage container 4, and the upper and lower ends thereof are opened by the holding portions formed using a resin material such as urethane resin. Is maintained and fixed integrally with the storage container 4. As a result, both end portions of the storage container 4 are liquid-tightly closed by the holding portion.
[0019]
The tubular filtration membrane 3 described above has a filtration function of the liquid 31 to be treated on the inner surface, and in order to ensure the overall strength, the filtration membrane layer and the support membrane layer are sequentially formed from the inner peripheral surface side to the outer peripheral surface side. Although it has the two-layer structure provided and the kind of filtration membrane layer is not specifically limited, It can select suitably according to the kind of filtration separation component which should be removed from a to-be-processed liquid. For example, when it is necessary to remove fine particles such as microorganisms, a microfiltration membrane is used. For example, according to JIS K 3802, a microfiltration membrane is defined as a membrane used for separating fine particles of about 0.01 to several μm and microorganisms by filtration, but here, it is practical at a pressure of 20 kPa or less. It is preferable to use a porous organic polymer membrane such as a cellulose membrane or a polyolefin resin membrane having a large number of micropores having a pore size larger than 0.04 μm that can be filtered smoothly. Moreover, a support membrane layer provides shape retention property with respect to the above-mentioned filtration membrane layer, and is for setting a filtration membrane layer to cylindrical shape. Various materials can be used as the supporting membrane layer as long as the porous material has liquid permeability, but usually the waist strength, excellent strength, excellent chemical resistance, and high heat resistance. In addition, it is preferable to use a nonwoven fabric made of polypropylene resin or polyester resin that is economical and particularly preferably a nonwoven fabric made of polyester resin.
[0020]
The tubular filtration membrane 3 as described above preferably has an inner diameter of 3 to 15 mm, more preferably 5 to 10 mm. When the inner diameter is less than 3 mm, the tubular filtration membrane 3 is likely to be clogged with various separation components and contaminants contained in the liquid to be processed, particularly when a liquid to be processed is filtered. Therefore, it may be difficult to continue the filtration process stably for a long period of time. On the contrary, when the inner diameter exceeds 15 mm, the number of tubular filtration membranes 3 that can be filled in the storage container 4 with a limited volume is reduced. Therefore, the filtration area per unit volume of the tubular filtration membrane module 5 is reduced. (Effective membrane area) is reduced. As a result, the filtration flow rate decreases, and it may be difficult to efficiently perform the filtration process of the liquid to be treated while downsizing the tubular filtration membrane module 5.
[0021]
Moreover, as for the tubular filtration membrane 3, ratio (A / B) of the thickness (A) represented by the sum of a support membrane layer and a filtration membrane layer and an outer diameter (B) is 0.025-0.1. Is preferable, and is more preferably set to 0.03 to 0.1. When this ratio is less than 0.025, the tubular filtration membrane 3 is easily crushed when pressure is applied to the tubular filtration membrane 3 from the outside. As a result, when a backwashing operation is performed by applying pressure to the tubular filtration membrane 3 from the outside in order to eliminate a cake layer made of a filtered component or the like deposited on the inner peripheral surface of the tubular filtration membrane 3, The filtration membrane is crushed and it becomes substantially difficult to backwash the tubular filtration membrane 3. In order to achieve a pressure resistance of 20 kPa or higher, this ratio is preferably set to 0.03 or higher. On the other hand, when this ratio exceeds 0.1, the filtration area (effective membrane area) per unit volume of the tubular filtration membrane module 5 becomes small. As a result, the filtration flow rate decreases, so that it is difficult to efficiently perform the filtration process of the liquid to be treated while downsizing the tubular filtration membrane module 5.
[0022]
Moreover, it is preferable that the height of the projections described above, that is, the protruding amount from the surface of the support film layer is 0.02 to 0.2 mm. When the height of the protrusion is less than 0.02 mm, the tubular filtration membranes 3 are likely to be in close contact with each other, and as a result, it may be difficult to increase the fluidity of the filtrate. On the other hand, when the thickness exceeds 0.2 mm, the number of tubular filtration membranes 3, that is, the number of tubular filtration membranes 3 that can be filled in the storage container 4 of the tubular filtration membrane module 5 is decreased. The filtration area per unit volume of the module 5 is reduced. As a result, the filtration flow rate decreases, so that it is difficult to efficiently perform the filtration process of the liquid to be treated while downsizing the tubular filtration membrane module 5. Note that the height of the protrusion can be appropriately selected according to the type of the liquid to be treated. For example, when the liquid to be treated has a relatively low filtration flow rate such as activated sludge liquid, it is preferable to set the protrusions low from the viewpoint of securing the filtration area. On the other hand, when the liquid to be treated has a relatively high filtration flow rate such as river water, it is preferable to set the protrusions higher from the viewpoint of improving the fluidity of the filtrate.
[0023]
For such a tubular filtration membrane 3, a tape-like composite membrane having a width of 2 cm, in which the filtration membrane layer is integrally laminated on the support membrane layer, is prepared, and the support membrane layer is formed on a mandrel having a diameter of 7 mm. It is produced by wrapping both ends in the width direction in a spiral manner so as to be on the surface, and ultrasonically welding the overlapping portion. Thus, the tubular filtration membrane 3 having an inner diameter of 7 mm and a wall thickness of 0.15 mm can be obtained, and the above-described protrusion can be formed by the overlapping portion.
[0024]
The method of producing the tubular filtration membrane module 5 using the tubular filtration membrane 3 described above is to heat seal both ends of the plurality of tubular filtration membranes 3 and fill the storage container 4 with uncured urethane resin. One end is immersed in the silicon mold, and left until the urethane resin is cured. And the other end also performs the same thing. Then, since the gap between the storage container 4 and the tubular filtration membrane 3 is closed, both ends of the closed tubular filtration membrane 3 are trimmed and aligned with the storage container 4. Thus, the tubular filtration membrane module 5 having a length of 375 mm and the number of the tubular filtration membranes 3 is produced.
[0025]
On the other hand, the air bubble supply device 9 is for supplying the air bubbles 14 to the tubular filtration membrane module 5 and, as shown in FIG. 1, below the tubular filtration membrane module 5 in the storage tank 30. Has been placed. The air bubble supply device 9 is opened and closed by a blower 41 that sends out air, an air supply pipe 42 that introduces the air into the liquid 31 to be treated in the storage tank 30, and the pressure of the air bubbles 14 generated by the introduced air. An air bubble generating device 43 comprising a sheet-like nozzle 7 made of a rubber elastic body having a jet port for carrying out the entire surface, and a guide tube 8 for guiding the air bubbles 14 toward the tubular filtration membrane module 5; The liquid to be treated 31 flows from below to above the tubular filtration membrane module 5 and is filtered by the air bubbles 14. The planar nozzle 7 has substantially the same size and shape as the inner periphery in a cross section perpendicular to the axial direction of the guide tube 8 so that the generated air bubbles 14 can be uniformly delivered to the tubular filtration membrane module 5. I have to.
[0026]
Further, the filtrate obtained by filtration is discharged to the outside from the discharge port 6 through the filtrate discharge path 44. In addition, in the thing of FIG. 1, it discharges | emits by the suction by the pump 40 provided in the filtrate discharge | emission path | route 44, However, It is also possible to discharge | emit by a head difference without using such a pump.
[0027]
The discharge port 6 is provided in the storage container 4 in FIG. 1, but the tubular filtration membrane module 5 is provided with the water collection pipe with the storage container 4 spaced inside, and the tubular filtration is provided therebetween. Assuming that a plurality of membranes 3 are accommodated, an inlet for introducing the filtrate and an outlet for discharging the filtrate are provided in the water collecting pipe, and the outlet is discharged from the outlet through the filtrate discharge path. Also good.
[0028]
Further, the tubular filtration membrane module 5 is provided with a lid 11 that allows the air bubbles 14 to pass therethrough and closes the air bubbles 14 so that the upper outlet 13 can be opened and closed.
[0029]
Further, the guide tube 8 is provided with a mesh filter 10 having a mesh opening of 7 mm for introducing the liquid 31 to be treated into the inside while preventing the inflow of long fiber-like impurities from the liquid 31 to be treated. Yes.
[0030]
Since the net-like filter 10 described above can prevent the inflow of long-filamentous impurities, it is possible to prevent such impurities from accumulating at the inlet 12 and to generate air bubbles generated by the planar nozzle 7. Since 14 can be reliably fed into the inside of the tubular filtration membrane 3, filtration can be performed with excellent filtration efficiency over a long period of time. In FIG. 1, the distance from the planar nozzle 7 to the inlet 12 is 250 mm.
[0031]
When impurities are accumulated at the inlet 12 and the filtration efficiency is lowered due to a long-term operation, the outlet 13 is closed by the lid 11, and the air bubbles 14 are formed inside the tubular filtration membrane 3 and in the guide tube 8. When the lid 11 is opened and the trapped air bubbles 14 are allowed to flow out at once, the foreign matter staying at the inlet 12 can be pushed out at once, and the filtration efficiency can be recovered. .
[0032]
Further, when the outlet 13 is closed with the lid 11 and the air bubbles 14 are trapped inside the tubular filtration membrane 3 and in the guide tube 8, the air bubbles 14 flow out into the storage tank 30 through the mesh filter 10, It is also possible to remove the long-fiber contaminants attached to the mesh filter 10 by the flow.
[0033]
Next, with reference to FIG. 1 and FIG. 2, the filtration operation of the to-be-processed liquid 31 using the above-mentioned immersion type membrane filtration apparatus 2, ie, the immersion type membrane filtration method, is demonstrated.
[0034]
First, the liquid 31 to be treated containing a filtered component such as a microgel, a colloid component, or a microorganism is supplied and stored in the storage tank 30. In this state, when air is supplied from the blower 41 via the air supply pipe 42, the air is ejected as air bubbles 14 from the planar nozzle 7. The air bubbles 14 rise in the liquid to be treated 31 while being guided by the guide cylinder 8, and are substantially from the inlet 12 of each tubular filtration membrane 3 included in the tubular filtration membrane module 5 to the liquid flow path 20 to be treated. Evenly supplied.
[0035]
The liquid 31 to be treated stored in the storage tank 30 by the buoyancy of the air bubbles 14 supplied to the tubular filtration membrane module 5 in this manner is shown in FIG. 1 and FIG. It passes through the liquid passage 20 to be treated in the filtration membrane 3 from the lower side to the upper side, exits from the outlet filtration module 5 to the outside of the tubular filtration membrane module 5, and returns to the treatment liquid 31. The liquid to be treated 31 is filtered when passing through the liquid flow path 20 to be treated, and the obtained filtrate is discharged from the outlet 6 through the filtrate discharge path 44 to the outside. Suction by 40 is performed. In addition, in FIG. 1, it discharges | emits by the suction | inhalation by the pump 40, However, It is also possible to discharge | emit by a head difference without using such a pump 40. FIG. In this way, the filtered component contained in the liquid to be treated 31 is collected by the filtration membrane layer 20 of the tubular filtration membrane 3 and removed from the liquid to be treated 31. By such a filtration treatment, the liquid 31 to be treated in the storage tank 30 naturally circulates through the tubular filtration membrane module 5 from the lower side to the upper side as indicated by arrows in FIG.
[0036]
In the normal filtration process as described above, among the filtered components contained in the liquid 31 to be treated, the long fiber-like contaminants are prevented from flowing by the mesh filter 10 provided on the side surface of the guide tube 8, If the operation is continued for a long period of time, the above-mentioned long-fiber-like impurities start to stay little by little at the inlet 12 of the tubular filtration membrane module 5, and the filtration efficiency also starts to gradually drop. In addition, a filtered component is gradually deposited on the inner peripheral surface of the tubular filtration membrane 3, that is, the surface of the filtration membrane layer to form a cake layer, and the filtration performance of the tubular filtration membrane 3 is lowered. In such a situation, after the outlet 13 is closed with the lid 11 and the air bubbles 14 are trapped inside the tubular filtration membrane 3 and in the guide tube 8, the filtration is suspended. When the filtration component removal step is performed to allow the air bubbles 14 confined by opening the lid 11 to flow out at once, the foreign matter staying at the inlet 12 can be pushed out at once, and the inner peripheral surface of the tubular filtration membrane 3 can be pushed out. Part of the formed cake layer can also be peeled off, and the filtration efficiency can be recovered. Further, in the filtration suspension step described above, the liquid 31 to be treated flows back into the storage tank 30 through the mesh filter 10, so that the long fiber-like contaminants attached to the mesh filter 10 can be removed by the flow. .
[0037]
And when filtration performance does not recover even if it performs each above-mentioned process, a backwashing process is implemented with respect to a tubular filtration membrane module, and thereby a cake layer can be removed and recovery of filtration performance can be aimed at. In order to carry out this backwashing process, the filtrate to be discharged is caused to flow back into the storage container 4 through the discharge port 6 while being pressurized.
[0038]
In addition, since the crushing pressure is large as described above (for example, at least the crushing pressure is set to 20 kPa), the tubular filtration membrane 3 is not crushed by the pressure applied in such a backwashing process. The shape can be maintained even after the backwashing process, and can be applied to the normal filtration process as described above.
[0039]
Therefore, the above-described submerged membrane filtration system 46 is configured so that the submerged membrane filtration device 2 periodically repeats the filtration pause step and the filtered component removal step in the normal filtration step, thereby allowing the tubular membrane membrane module 5 to be removed. Even without replacement for a long period of time, the filtration performance can be recovered, and the filtration treatment of the liquid to be treated 31 can be efficiently continued over a long period of time.
[0040]
In the submerged membrane filtration method using the submerged membrane filtration apparatus 2 described above, the method of periodically repeating the filtration pause step and the filtered component removal step in the normal filtration step may be performed manually. However, this may be done automatically using a timer.
[0041]
【Example】
Next, an example of the submerged membrane filtration device 2 using the tubular filtration membrane module 5 according to the above-described embodiment will be described.
[0042]
About 50 long fibrous contaminants having a length of 5 to 15 cm are placed in the liquid to be treated 31 in the storage tank 30, air is supplied from the blower 41 through the air supply pipe 42, and the planar nozzles 7 to 10 are supplied. Liter / m 2 When air bubbles 14 of about / min are ejected, an upward flow is generated in the liquid to be processed in the liquid flow path 20 due to the air lift action of the air bubbles 14. The liquid to be treated in the liquid passage 20 to be treated is filtered through the tubular filtration membrane 3 due to the negative pressure in the treatment liquid passage 21, and components that are not filtered from the outlet 13 of the tubular filtration membrane module 5 into the storage tank 30. Is returned to the liquid 31 to be processed.
[0043]
The filtration process described above is continued for several minutes, and when the outlet 13 of the tubular filtration membrane module 5 is closed with the lid 11 when a large number of long fibrous impurities start to accumulate on the mesh filter 10, the mesh filter 10 is treated. It was found that the liquid 31 flowed back, and the long fibrous impurities accumulated in several seconds returned and floated in the liquid 31 to be treated in the storage tank 30.
[0044]
Next, when the same filtration process was continued with the mesh filter 10 removed from the submerged membrane filtration device 2, long fibrous contaminants began to accumulate at the inlet 12 of the tubular filtration membrane module 5 within a few minutes. When the outlet 13 of the tubular filtration membrane module 5 is closed with the lid 11 and the lid 11 is opened just before the liquid to be treated 31 starts to flow backward from the position where the mesh filter 10 is removed, the air bubbles 14 are allowed to flow out at once. It is understood that the long fibrous impurities accumulated in 12 are pushed out from the outlet 13 through the treatment liquid flow path 20 of the tubular filtration membrane 3 and return to the treatment liquid 31 in the storage tank 30 and float. It was.
[0045]
In the above-described embodiment, the case where the tubular filtration membrane module 5 in which the filtrate discharge port 6 is provided on the side surface of the storage container 4 has been described. However, other types of tubular filtration membrane modules 5 may be used. . That is, the water collecting pipe having the inlet for introducing the filtrate and the outlet for discharging the filtrate and the tubular filtration membrane 3 may be disposed inside the storage container 4.
[0046]
【The invention's effect】
Since the immersion type membrane filtration device of the present invention has a lid on the outlet side that allows air bubbles to pass through by opening and shuts off air bubbles by closing, as described above, in the tubular membrane filter module, It can contribute to performing the filtration process of a to-be-processed liquid efficiently for a long period of time.
[0047]
Moreover, since the submerged membrane filtration method of the present invention includes a filtration suspension step and a separate component removal step in the normal filtration step of filtering the liquid to be treated using the tubular filtration membrane module as described above, The filtration treatment of the liquid to be treated can be carried out efficiently for a long period.
[Brief description of the drawings]
FIG. 1 is a schematic view of a submerged membrane filtration apparatus according to an embodiment of the present invention.
FIG. 2 is a partially cutaway longitudinal sectional view of a tubular filtration membrane module employed in the submerged membrane filtration device.
[Explanation of symbols]
2 Submerged membrane filtration device
3 Tubular filtration membrane
4 storage containers
5 Tubular filtration membrane module
6 outlet
7 Surface nozzle
8 guide tube
9 Air bubble supply device
10 Planar filter
11 Lid
12 entrance
13 Exit
14 Air bubbles
20 Liquid flow path
21 Treatment liquid flow path
30 Reservoir
31 Liquid to be treated
40 pumps
41 Blower
42 Air supply pipe
43 Air bubble generator
44 Filtrate discharge route
46 Immersion membrane filtration system

Claims (2)

貯留槽内に貯留された被処理液を浸漬型膜濾過方式によって濾過処理し、濾液を得るための浸漬型膜濾過装置であって、前記浸漬型膜濾過装置は管状濾過膜モジュールと空気泡供給装置とを少なくとも有し、前記管状濾過膜モジュールは、内面に被処理液の濾過機能を有する管状濾過膜の複数本が、筒状の収納容器内に収容されて両端部が保持されるとともに該両端部を上下方向に開口させるように前記貯留槽内に配置され、前記空気泡供給装置は、空気泡を発生させる空気泡発生装置と前記空気泡を管状濾過膜モジュールに向けて案内する案内筒とを有し、前記空気泡によって被処理液が管状濾過膜モジュールの下方から上方に流れて濾過されるように管状濾過膜モジュールの下方に配置され、かつ前記管状濾過膜モジュールは、開くことによって空気泡を通過させ、閉じることによって空気泡を遮断させる蓋体が上方に配置されたことを特徴とする浸漬型膜濾過装置。  A submerged membrane filtration device for filtering a liquid to be treated stored in a storage tank by a submerged membrane filtration method to obtain a filtrate, the submerged membrane filtration device comprising a tubular membrane membrane module and an air bubble supply The tubular filtration membrane module includes a plurality of tubular filtration membranes having a function of filtering the liquid to be treated on the inner surface thereof, and the both ends are held while being accommodated in a cylindrical storage container. The air bubble supply device is arranged in the storage tank so as to open both ends in the vertical direction, and the air bubble supply device guides the air bubble toward the tubular filtration membrane module. And is disposed below the tubular filtration membrane module so that the liquid to be treated flows and is filtered upward from below the tubular filtration membrane module by the air bubbles, and the tubular filtration membrane module is opened. Accordingly passes the air bubbles, closed submerged membrane filtration apparatus characterized by lid for blocking the air bubbles is arranged above by. 請求項1に記載された浸漬型膜濾過装置を用い、貯留槽内に貯留された被処理液を浸漬型膜濾過方式によって濾過処理し、濾液を得るための浸漬型膜濾過方法であって、内面に被処理液の濾過機能を有する管状濾過膜の複数本が筒状の収納容器内に収容されて両端部が保持された管状濾過膜モジュールを、該両端部を上下方向に開口するように前記貯留槽内に配置し、この管状濾過膜モジュールの下方から空気泡を供給して被処理液を管状濾過膜モジュールの下方から上方に流して濾過する通常濾過工程と、前記空気泡の流れを遮断して被処理液の濾過を休止させる濾過休止工程と、遮断した空気泡の流れを再開して管状濾過膜モジュールに蓄積した濾別成分を除去する濾別成分除去工程とを含むことを特徴とする浸漬型膜濾過方法。 A submerged membrane filtration method for obtaining a filtrate by subjecting a liquid to be treated stored in a storage tank to a filtration treatment by a submerged membrane filtration method using the submerged membrane filtration device according to claim 1 , A tubular filtration membrane module in which a plurality of tubular filtration membranes having a function of filtering the liquid to be treated on the inner surface are accommodated in a cylindrical storage container and both ends thereof are held so that both ends thereof are opened vertically. A normal filtration step that is arranged in the storage tank, supplies air bubbles from the lower side of the tubular filtration membrane module to flow the liquid to be treated from the lower side to the upper side of the tubular filtration membrane module, and filters the flow of the air bubbles. It includes a filtration suspension step for shutting off the filtration of the liquid to be treated and a filtration component removal step for resuming the flow of the blocked air bubbles to remove the filtration component accumulated in the tubular filtration membrane module. A submerged membrane filtration method.
JP2001238480A 2001-08-06 2001-08-06 Immersion membrane filtration apparatus and immersion membrane filtration method Expired - Fee Related JP4360057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001238480A JP4360057B2 (en) 2001-08-06 2001-08-06 Immersion membrane filtration apparatus and immersion membrane filtration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238480A JP4360057B2 (en) 2001-08-06 2001-08-06 Immersion membrane filtration apparatus and immersion membrane filtration method

Publications (2)

Publication Number Publication Date
JP2003047830A JP2003047830A (en) 2003-02-18
JP4360057B2 true JP4360057B2 (en) 2009-11-11

Family

ID=19069378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238480A Expired - Fee Related JP4360057B2 (en) 2001-08-06 2001-08-06 Immersion membrane filtration apparatus and immersion membrane filtration method

Country Status (1)

Country Link
JP (1) JP4360057B2 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2639642C (en) 1996-12-20 2013-01-15 Siemens Water Technologies Corp. Scouring method
AUPR421501A0 (en) 2001-04-04 2001-05-03 U.S. Filter Wastewater Group, Inc. Potting method
AUPR692401A0 (en) 2001-08-09 2001-08-30 U.S. Filter Wastewater Group, Inc. Method of cleaning membrane modules
AUPS300602A0 (en) 2002-06-18 2002-07-11 U.S. Filter Wastewater Group, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
KR101002466B1 (en) * 2002-10-10 2010-12-17 지멘스 워터 테크놀로지스 코포레이션 Backwash method
AU2002953111A0 (en) 2002-12-05 2002-12-19 U. S. Filter Wastewater Group, Inc. Mixing chamber
JP4611982B2 (en) 2003-08-29 2011-01-12 シーメンス・ウォーター・テクノロジーズ・コーポレーション Backwash method
EP1687078B1 (en) * 2003-11-14 2012-03-14 Siemens Industry, Inc. Improved module cleaning method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
WO2005107929A2 (en) 2004-04-22 2005-11-17 Siemens Water Technologies Corp. Filtration apparatus comprising a membrane bioreactor and a treatment vessel for digesting organic materials
CN101052457B (en) 2004-08-20 2012-07-04 西门子工业公司 Square mbr manifold system
JP4838248B2 (en) 2004-09-07 2011-12-14 シーメンス・ウォーター・テクノロジーズ・コーポレーション Reduction of backwash liquid waste
AU2005284677B2 (en) 2004-09-14 2010-12-23 Evoqua Water Technologies Llc Methods and apparatus for removing solids from a membrane module
WO2006029465A1 (en) 2004-09-15 2006-03-23 Siemens Water Technologies Corp. Continuously variable aeration
JP2008525167A (en) 2004-12-24 2008-07-17 シーメンス・ウォーター・テクノロジーズ・コーポレーション Simple gas cleaning method and apparatus in the technical field
ATE549076T1 (en) 2004-12-24 2012-03-15 Siemens Industry Inc CLEANING IN MEMBRANE FILTRATION SYSTEMS
CA2605757A1 (en) 2005-04-29 2006-11-09 Siemens Water Technologies Corp. Chemical clean for membrane filter
CA2618107A1 (en) 2005-08-22 2007-03-01 Siemens Water Technologies Corp. An assembly for water filtration using a tube manifold to minimise backwash
WO2007044415A2 (en) 2005-10-05 2007-04-19 Siemens Water Technologies Corp. Method and apparatus for treating wastewater
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
EP2129629A1 (en) 2007-04-02 2009-12-09 Siemens Water Technologies Corp. Improved infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
KR20170092708A (en) 2007-05-29 2017-08-11 에보쿠아 워터 테크놀로지스 엘엘씨 Water treatment system
CA2731774A1 (en) 2008-07-24 2010-01-28 Siemens Water Technologies Corp. Frame system for membrane filtration modules
WO2010142673A1 (en) 2009-06-11 2010-12-16 Siemens Water Technologies Corp. Methods for cleaning a porous polymeric membrane and a kit for cleaning a porous polymeric membrane
JP5423184B2 (en) 2009-07-03 2014-02-19 株式会社明電舎 Filtration membrane module cleaning method and cleaning apparatus
HUE045642T2 (en) 2010-04-30 2020-01-28 Evoqua Water Tech Llc Fluid flow distribution device
EP2618916A4 (en) 2010-09-24 2016-08-17 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
JP2014528352A (en) 2011-09-30 2014-10-27 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologiesllc Improved manifold structure
WO2013049109A1 (en) 2011-09-30 2013-04-04 Siemens Industry, Inc. Isolation valve
KR102108593B1 (en) 2012-06-28 2020-05-29 에보쿠아 워터 테크놀로지스 엘엘씨 A potting method
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
AU2013231145B2 (en) 2012-09-26 2017-08-17 Evoqua Water Technologies Llc Membrane potting methods
WO2014052139A1 (en) 2012-09-27 2014-04-03 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
EP3052221B1 (en) 2013-10-02 2022-12-14 Rohm & Haas Electronic Materials Singapore Pte. Ltd Device for repairing a membrane filtration module
AU2016294153B2 (en) 2015-07-14 2022-01-20 Evoqua Water Technologies Llc Aeration device for filtration system
CN107626180B (en) * 2017-11-09 2023-06-23 刘毓海 Primary filter device for air purifier
CN113501859A (en) * 2021-07-01 2021-10-15 宁夏杞奕农业发展有限公司 Lycium barbarum glycopeptide purification and standing equipment and use method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181772A (en) * 1986-02-05 1987-08-10 Kurita Water Ind Ltd Bioreactor
JP2599767Y2 (en) * 1993-03-17 1999-09-20 株式会社石垣 Filtration device for undiluted solution by internal pressure type filtration membrane
JPH10165782A (en) * 1996-12-05 1998-06-23 Matsushita Electric Ind Co Ltd Membrane module and operation thereof
JP3617378B2 (en) * 1999-06-25 2005-02-02 日立プラント建設株式会社 Immersion flat membrane filtration device
JP2001104760A (en) * 1999-10-05 2001-04-17 Mitsubishi Heavy Ind Ltd Immersion type membrane filtration apparatus and method for washing filtration membrane

Also Published As

Publication number Publication date
JP2003047830A (en) 2003-02-18

Similar Documents

Publication Publication Date Title
JP4360057B2 (en) Immersion membrane filtration apparatus and immersion membrane filtration method
JP5561354B2 (en) Filtration device
US7491329B2 (en) Hollow fiber membrane module, hollow fiber membrane module unit, membrane filtration device using the same and method of operating the same
EP1043276B1 (en) Apparatus and method for treating water
JPH05184885A (en) Method for cleaning meso-porous tubular membrane of ultrafiltration
JP2006116495A (en) Filter device
JPWO2017086313A1 (en) Hollow fiber membrane module and cleaning method thereof
JP2001205055A (en) Method for operating membrane separation apparatus and apparatus therefor
WO1999043767A1 (en) Device and method for processing crude oil
JP5326571B2 (en) Filtration method
JPH11244671A (en) Hollow-fiber membrane module for treating crude oil, treatment of crude oil using the module and crude oil treating device
KR20080087899A (en) Membrane filtration apparatus and its operating method
WO2015156118A1 (en) Oil-water separation treatment system and oil-water separation treatment method
KR101392755B1 (en) Wastewater disposal plant using tubular membrane
JP2000312815A (en) Immersible membrane separation device
JPH06170178A (en) Hollow fiber membrane module filtration equipment
JPH09131517A (en) Hollow fiber membrane module and method for using the same
JP3801046B2 (en) Immersion membrane filtration apparatus and immersion membrane filtration method
JP6937175B2 (en) Hollow fiber membrane filtration device and its cleaning method
JP2003225541A (en) Hollow fiber membrane module
JP3572267B2 (en) Tubular membrane separator
JP2003093849A (en) Immersion type membrane filter device
JPH11138163A (en) Treatment of water in oil emulsion and device for treating water in oil emulsion
JP2664877B2 (en) Oil-water separator
JP2005161178A (en) Membrane filtering apparatus and its operating method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees