WO2015079571A1 - Degassing device and degassing method - Google Patents

Degassing device and degassing method Download PDF

Info

Publication number
WO2015079571A1
WO2015079571A1 PCT/JP2013/082235 JP2013082235W WO2015079571A1 WO 2015079571 A1 WO2015079571 A1 WO 2015079571A1 JP 2013082235 W JP2013082235 W JP 2013082235W WO 2015079571 A1 WO2015079571 A1 WO 2015079571A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
liquid
flow rate
injected
opening
Prior art date
Application number
PCT/JP2013/082235
Other languages
French (fr)
Japanese (ja)
Inventor
貴広 星子
正広 斉藤
義雄 向井
Original Assignee
株式会社ダルトン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダルトン filed Critical 株式会社ダルトン
Priority to PCT/JP2013/082235 priority Critical patent/WO2015079571A1/en
Priority to JP2015550298A priority patent/JP6227005B2/en
Priority to KR1020167011303A priority patent/KR102182891B1/en
Priority to CN201380081167.9A priority patent/CN105764584B/en
Publication of WO2015079571A1 publication Critical patent/WO2015079571A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0063Regulation, control including valves and floats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0036Flash degasification

Definitions

  • the present invention relates to a deaeration device and a deaeration method, and more particularly to a deaeration device and a deaeration method for removing a gas dissolved in a liquid from the liquid.
  • the gas dissolved in the liquid may cause inconveniences such as deteriorating the liquid or damaging the electronic component or the like when cleaning the electronic component or the like using the liquid as a cleaning liquid.
  • the deaeration device prevents such inconvenience from occurring by removing the gas dissolved in the liquid from the liquid.
  • Such deaerators use various principles. Among the deaerators, a deaerator using a vacuum pump is generally known.
  • the degassing devices proposed in Patent Documents 1 to 3 are all degassing devices for removing the gas dissolved in the cleaning liquid from the cleaning liquid for cleaning electronic components and the like. These deaeration devices remove gas dissolved in the cleaning liquid by decompressing the inside of the container into which the cleaning liquid is injected.
  • the depressurization method of such a deaeration device is a method of depressurizing the inside of the container by sucking the gas present inside the container with a vacuum pump.
  • the deaeration devices proposed in Patent Documents 1 to 3 need to be provided with a vacuum pump for depressurizing the inside of the container in addition to the cleaning liquid circulation path. Therefore, these deaerators have a complicated configuration of the deaerator. In addition, it is necessary to appropriately select a vacuum pump in accordance with the cleaning device to which the degassing device is applied and the type of cleaning liquid to be degassed.
  • the present invention has been made to solve the above-mentioned problems, and its purpose is to remove gas from a liquid with high accuracy irrespective of a system having a simple structure and a system incorporating a deaeration device and the type of liquid to be deaerated.
  • An object of the present invention is to provide a deaeration device and a deaeration method that can be noticed.
  • a degassing apparatus for solving the above problems has a sealable structure, a chamber in which liquid to be degassed is stored, and a sealed state inside the chamber, An injecting portion for injecting the liquid into the chamber from above, and an exhausting means for exhausting the liquid stored in the chamber from the lower part of the chamber, the exhausting means passing through the interior of the chamber In a sealed state, the liquid having a flow rate larger than the flow rate of the liquid injected into the chamber is discharged from the chamber, and the pressure in the chamber is reduced.
  • the apparatus includes the injection portion for injecting the liquid into the chamber from the upper portion of the chamber, and the discharge means for discharging the liquid stored in the chamber from the lower portion of the chamber, and the chamber is sealed.
  • the inside of the chamber is decompressed by discharging a liquid having a flow rate larger than that of the liquid to be injected into the chamber. Therefore, gas dissolved in the liquid can be generated as bubbles, and the gas can be degassed from the liquid.
  • a liquid having a flow rate higher than that of the liquid to be injected into the chamber is discharged from the chamber and the pressure in the chamber is reduced, it is not necessary to provide a separate vacuum pump. As a result, the structure of the deaeration device can be simplified. Further, since the deaeration is performed without providing the vacuum pump, the gas dissolved in the liquid can be degassed from the liquid without being influenced by the performance of the vacuum pump.
  • an exhaust part for exhausting the gas degassed from the liquid stored in the chamber, an opening / closing means for opening and closing the exhaust part, and a flow rate of the liquid injected into the chamber.
  • a controller for controlling the operation of the opening / closing means and the operation of the injection amount adjusting means.
  • the controller controls the injection amount adjusting means and is discharged from the chamber. While the liquid having a flow rate smaller than the flow rate of the liquid is injected into the chamber, the opening / closing means closes the exhaust part to seal the chamber, and controls the injection amount adjusting means to control the injection amount. While injecting more liquid into the chamber than the flow rate of the liquid discharged from the chamber, the exhaust means is opened by the opening and closing means to open the chamber. Characterized in that it is controlled to release the sealed state of the over.
  • the controller closes the exhaust portion by the opening / closing means while injecting a liquid having a flow rate smaller than the flow rate of the liquid discharged from the chamber into the chamber, and the flow rate of the liquid discharged from the chamber Since the exhaust unit is controlled to be opened by the opening / closing means while injecting a large amount of liquid into the chamber, the gas dissolved in the liquid can be degassed from the liquid by reliably depressurizing the inside of the chamber. The gas that has been vented can be reliably exhausted from the chamber.
  • the exhaust unit is connected to the exhaust unit, and sucks a gas exhausted from the chamber when the opening / closing unit is opened.
  • the discharging means sucks the gas exhausted from the chamber when the opening / closing means is opened, the gas degassed from the liquid can be forcibly exhausted from the chamber. .
  • a lower limit sensor that detects that the liquid level of the liquid stored in the chamber has reached a preset lower limit position of the chamber, and a signal from the lower limit sensor.
  • a timer that operates based on the controller, and when the lower limit sensor detects that the liquid level of the liquid has reached the lower limit position, the controller controls the operation of the injection amount adjusting means.
  • the liquid level of the liquid is controlled so as to be injected into the chamber at a flow rate larger than the flow rate of the liquid to be discharged from the chamber, and the liquid level of the liquid is set to a preset upper limit position of the chamber after the timer is activated.
  • the controller controls the operation of the injection amount adjusting means when a predetermined time required to reach Characterized in that it is controlled to inject low flow rate the liquid than the flow rate of the liquid discharged from the chamber into the chamber.
  • the controller includes the lower limit sensor, and the controller controls the operation of the injection amount adjusting means when the lower limit sensor detects that the liquid level has reached the lower limit position in the chamber. Since the liquid is controlled to be injected into the chamber at a flow rate higher than the flow rate of the liquid discharged from the chamber, an appropriate amount of liquid can be stored in the chamber for degassing. .
  • a timer that operates based on the signal from the lower limit sensor is provided, and the predetermined time required for the liquid level to reach a preset upper limit position in the chamber after the timer starts to operate based on the signal from the lower limit sensor. Since the controller controls the operation of the injection amount adjusting means to inject a liquid with a flow rate smaller than the flow rate of the liquid discharged from the chamber into the chamber. Can be depressurized.
  • the deaeration apparatus is characterized by comprising a cooling device that cools the upper side of a predetermined position in the chamber.
  • the cooling device since the cooling device for cooling the upper side of the predetermined position in the chamber is provided, the cooling device cools the upper side of the predetermined position in the chamber, thereby reducing the pressure in the chamber. Can be made easier. Moreover, even if the liquid evaporates, deaeration can be effectively performed by liquefying again.
  • the cooling device may include a pipe disposed above a predetermined position set in the chamber and a chiller that circulates the refrigerant through the pipe.
  • a degassing method for solving the above-described problems is that a liquid is injected from the upper part of the chamber into the sealed chamber by an injection unit, and satisfies a predetermined condition.
  • the liquid is injected into the chamber, the liquid having a flow rate larger than the flow rate of the liquid injected into the chamber is discharged from the lower portion of the chamber, and the inside of the chamber is decompressed.
  • a liquid having a flow rate larger than the flow rate of the liquid injected into the chamber is discharged from the chamber and the pressure in the chamber is reduced. Can be generated as bubbles and the gas can be degassed from the liquid. Further, since the inside of the chamber is decompressed by discharging a liquid having a flow rate larger than the flow rate of the liquid to be injected into the chamber, it is not necessary to provide a separate vacuum pump.
  • the liquid having a flow rate higher than the flow rate of the liquid discharged from the chamber is removed.
  • the liquid is controlled to be injected into the chamber, and when the liquid level of the liquid reaches a preset upper limit position in the chamber, the flow rate is lower than the flow rate of the liquid discharged from the chamber.
  • the liquid is controlled to be injected into the chamber.
  • the liquid level reaches the lower limit position in the chamber set in advance
  • control is performed so that a liquid having a flow rate larger than the flow rate of the liquid discharged from the chamber is injected into the chamber.
  • an amount of liquid necessary for deaeration can be secured in the chamber.
  • the liquid level reaches the preset upper limit position in the chamber
  • the liquid is controlled to be injected into the chamber at a flow rate smaller than the liquid flow rate discharged from the chamber. The pressure inside the chamber can be reliably reduced.
  • the deaeration method according to the present invention is characterized in that the upper side of a predetermined position in the chamber is cooled.
  • the structure of the deaeration device can be simplified.
  • gas can be degassed from the liquid with high accuracy regardless of the device to which the deaeration device is applied and the type of liquid to be deaerated.
  • FIG. 1 It is a distribution diagram showing an outline of a system of a deaeration device concerning one embodiment of the present invention. It is a fragmentary sectional view which shows the outline
  • the degassing device 1 includes a chamber 10 in which a liquid 100 to be degassed is stored, and an injection for injecting the liquid 100 into the chamber 10 from above the chamber 10. And a discharge means 30 for discharging the liquid 100 stored in the chamber 10 from the lower portion of the chamber 10.
  • the deaeration device 1 reduces the pressure inside the chamber 10 by discharging the liquid 100 having a flow rate larger than the flow rate of the liquid 100 to be injected into the chamber 10 in a state where the inside of the chamber 10 is sealed.
  • the liquid 100 is degassed.
  • the upper portion of the chamber 10 is not limited to the position of the lid 15 that constitutes the upper surface of the chamber 10, and is relatively above the main body 11 that constitutes the side surface of the chamber 10. It means a part including a region.
  • the upper portion of the chamber 10 means a region above the predetermined position 201 of the lid 15 and the main body 11.
  • the lower part of the chamber 10 is not limited to the lowest part of the chamber 10, but means a part including a relatively lower region of the chamber 10.
  • the lower portion of the chamber 10 means a region below the bottom surface 12 from the lower limit position 202.
  • This deaeration device 1 has a specific effect that the structure of the deaeration device 1 can be simplified.
  • the gas can be degassed from the liquid 100 with high accuracy regardless of the device to which the degassing device 1 is applied and the type of liquid to be degassed.
  • the deaeration device 1 and the deaeration method according to the present invention improve its effect by being incorporated in a cleaning system that cleans electronic components and wafers using an ultrasonic wave, or removes impurities on the surface. Therefore, it is called “Surface / Ultrasonic / Flat / Fix / System”, or “Suffix System” for short.
  • the degassing apparatus 1 and the degassing method of the present invention are incorporated in a cleaning apparatus other than a cleaning system using ultrasonic waves and used for degassing a cleaning liquid for cleaning electronic parts, wafers, and the like. Can be used in some cases.
  • the degassing apparatus 1 and the degassing method of the present invention can be used to prevent the liquid 100 from being deteriorated under the influence of the dissolved gas.
  • the dissolved gas is oxygen, it can be used to prevent the liquid from being oxidized.
  • the degassing apparatus 1 includes a chamber 10 in which a liquid 100 to be degassed is stored, an injection unit 20 for injecting the liquid 100 into the chamber 10 from above the chamber 10, and the liquid 100 stored in the chamber 10. And a pump 30 (hereinafter simply referred to as “pump 30”) as discharge means for discharging the gas from the lower portion of the chamber 10.
  • the pump 30 is not a vacuum pump provided only for exhausting the gas in the chamber 10 provided in a conventional deaeration device.
  • the deaeration device 1 includes an exhaust unit 40 that exhausts the gas in the chamber 10, a liquid level sensor 80 that detects the position of the liquid level 101 of the liquid 100 in the chamber 10, and a pressure that measures the internal pressure of the chamber 10. And a sensor 90.
  • the injection unit 20 has a configuration for injecting the liquid 100 into the chamber 10 from the upper part of the chamber 10, and includes a main pipe 21 and a sub pipe 25, and the liquid 100 to be injected into the chamber 10.
  • the flow rate can be changed.
  • the pump 30 is connected to the lower part of the chamber 10 by a pipe 31, and sucks the liquid 100 stored in the chamber 10 and discharges it from the chamber 10.
  • the exhaust part 40 includes a pipe 41 and an opening / closing valve 42. One end of the pipe 41 is connected to the chamber 10, and the other end is connected to the pipe 31.
  • the open / close valve 42 is provided in the middle of the pipe 41.
  • the deaeration device 1 includes a bypass path constituted by a pipe 35 that connects a liquid reservoir (not shown) that stores the liquid 100 supplied into the chamber 10 and the pipe 31.
  • the bypass path including the pipe 35 allows the pump 30 to suck the liquid 100 even while the liquid 100 is not sucked from the chamber 10.
  • the deaeration device 1 further includes a controller 60 that controls the operation of the deaeration device 1 and a pilot line 70 through which compressed air flows.
  • the controller 60 controls the operation of the deaeration device 1 and performs control based on the timer 65, a signal from the liquid level sensor 80, and a signal from the pressure sensor 90.
  • the timer 65 is built in the controller 60.
  • the pilot line 70 includes a line connected to the injection unit 20, a line connected to the exhaust unit 40, a line connected to the pump 30, and the like.
  • the pilot line 70 receives a command from the controller 60 and supplies compressed air to a line necessary for control.
  • the deaeration device 1 is provided with a cooling device 50 as necessary.
  • the cooling device 50 is a device whose main purpose is to cool the inside of the chamber 10 and lower the temperature of the gas.
  • the cooling device 50 is a device provided according to the type of liquid to be deaerated, and is not an essential configuration.
  • the chamber is configured as shown in FIG.
  • the chamber 10 is a part for storing the liquid 100 therein, and is composed of a main body 11 and a lid 15.
  • the main body 11 is open at the top and closed at the bottom by the bottom surface 12.
  • the lid 15 is configured to be detachable from the main body 11, and can be attached to the upper portion of the main body 11 of the opened chamber 10 to close the upper portion of the main body 11 or be removed to open the upper portion of the main body 11. It is configured.
  • the main body 11 and the lid 15 are sealed by a sealing material or the like provided between the lid 15 and the upper portion of the main body 11 when the lid 15 is closed.
  • the bottom surface 12 of the main body 11 includes a discharge port 13 for discharging the liquid 100 stored in the chamber 10. In the illustrated example, the discharge port 13 is provided at the lowest position of the bottom surface 12.
  • the chamber 10 is configured such that the liquid 100 is injected from the injection unit 20 and discharged from the discharge port 13, and the liquid 100 is temporarily retained.
  • the capacity of the chamber 10 is appropriately set according to the flow rate of the injected liquid 100 and the flow rate of the liquid 100 discharged from the chamber 10. Further, the flow rate of the liquid 100 injected into the chamber 10 and the flow rate of the liquid 100 discharged from the chamber 10 are appropriately set depending on the type of the liquid 100 to be degassed and the target to which the degassing device 1 is applied. Is done.
  • the injection unit 20 is means for injecting the liquid 100 to be degassed into the chamber 10.
  • the injection part 20 is constituted by two pipes 21 and 25.
  • the two pipes 21 and 25 pass through the lid 15 of the chamber 10, respectively, and their distal ends are inserted into the chamber 10.
  • One of the two pipes 21 and 25 is the main pipe 21, and the other pipe is the sub pipe 25.
  • the main pipe 21 is provided at an arbitrary position of the lid 15. For example, it is provided so as to penetrate through the lid 15 at a substantially central position of the chamber 10.
  • the main pipe 21 is provided with a nozzle 22 at its tip, and the liquid 100 is sprayed into the chamber 10.
  • the main pipe 21 constantly injects the liquid 100 into the chamber 10 while the deaeration device 1 is operating.
  • the nozzle 22 may include a filter that prevents impurities from entering the chamber 10.
  • the sub pipe 25 is also provided at an arbitrary position of the lid 15.
  • the sub pipe 25 is provided so as to penetrate the lid 15 at a position outside the main pipe 21 in the radial direction of the chamber 10.
  • the sub pipe 25 is a pipe used when the amount of the liquid 100 stored in the chamber 10 is reduced and the liquid 100 is supplied to the chamber 10.
  • the sub pipe 25 includes an opening / closing valve 27 whose opening / closing is controlled by a pilot line 70 described later.
  • the liquid 100 is injected into the chamber 10 from the sub pipe 25 by opening the opening / closing valve 27, and the injection of the liquid 100 into the chamber 10 is stopped by closing the opening / closing valve 27.
  • the sub pipe 25 is also provided with a nozzle 26 at its tip, and the liquid 100 is sprayed into the chamber 10.
  • the sub pipe 25 may also include a filter for preventing impurities from entering the chamber 10.
  • the sub pipe 25 provided with the opening / closing valve 27 opens the opening / closing valve 27 to inject more liquid 100 into the chamber 10 when the opening / closing valve 27 is closed, and closes the opening / closing valve 27 to close the opening / closing valve 27. Less liquid 100 is injected into the chamber 10 than when it is open, and functions as an injection amount adjusting means.
  • the pump 30 is connected to the chamber 10 via a pipe 31.
  • the pump 30 discharges the liquid 100 stored in the chamber 10 from the chamber 10.
  • the liquid 100 is forcibly discharged by the pump 30.
  • the pump 30 discharges more liquid 100 from the chamber 10 than the flow rate of the liquid 100 injected into the chamber 10 only by the main pipe 21 of the injection unit 20.
  • the pump 30 discharges the liquid 100 from the chamber 10 that is smaller than the flow rate of the liquid 100 injected into the chamber 10 by both the main pipe 21 and the sub pipe 25.
  • the pump 30 is controlled to start and stop by a pilot line 70.
  • the exhaust part 40 is a part that exhausts the gas degassed from the liquid 100 stored in the chamber 10.
  • the exhaust part 40 extends from the lid 15 toward the outside of the chamber 10, and is connected to a pipe 41 and an open / close valve 42 (hereinafter simply referred to as an open / close valve) as an open / close means that is opened and closed by a pilot line 70. 42). While the pump 30 discharges the liquid 100 having a flow rate higher than that of the liquid 100 to be injected, the opening / closing valve 42 is closed to seal the inside of the chamber 10.
  • the open / close valve 42 is opened while the liquid 100 is replenished to the chamber 10 so that the liquid level 101 of the liquid 100 in the chamber 10 reaches the preset upper limit position 203 of the chamber 10. While the opening / closing valve 42 is open, the pump 30 exhausts the gas degassed from the liquid 100 to the outside of the chamber 10 by sucking the gas in the chamber 10 through the pipes 40 and 41. Note that the gas exhausted from the chamber 10 is discharged to the outside through a pipe 43 provided on the downstream side of the pump 30.
  • the liquid level sensor 80 is composed of a mandrel 81 arranged so as to extend in the vertical direction, and floats 82 and 83 provided at two positions on the upper and lower sides of the mandrel 81, respectively.
  • the floats 82 and 83 provided at two locations are configured to be movable in a vertical direction within a certain range of the mandrel 81, and move upward due to the buoyancy of the liquid 100.
  • the lower float 83 constituting the liquid level sensor 80 detects that the liquid level 101 of the liquid 100 stored in the chamber 10 has reached a preset position in the chamber 10.
  • the lower float 83 also detects that the liquid level 101 rises and passes the lower limit position 202, as will be described in the section of the action of the deaeration device 1 described later.
  • the upper float 82 constituting the liquid level sensor 80 detects that the liquid level 101 of the liquid 100 stored in the chamber 10 passes through a preset position of the chamber 10. .
  • the float 83 provided on the lower side is a lower limit sensor that detects whether the liquid surface 101 of the liquid 100 has reached a preset lower limit position 202 in the chamber.
  • the float 83 pushed up by the buoyancy of the liquid 100 is lowered.
  • the float 83 descends to detect that the liquid level 101 of the liquid 100 has reached the lower limit position 202. Further, when the float 83 is pushed up as the liquid level 101 rises, the operation of the timer 65 is started.
  • the float 82 provided on the upper side is a sensor provided when a cooling device 50 described later is provided.
  • the float 82 is a sensor that detects that the liquid level 101 of the liquid 100 has passed a predetermined position 201 in the chamber 10 and functions as a switch for starting and stopping the operation of the cooling device 50. Yes.
  • the float 82 is pushed up by the buoyancy of the liquid 100.
  • the float 82 is pushed up, it is detected that the liquid level 101 of the liquid 100 has risen to the predetermined position 201.
  • the liquid level sensor has been described above by taking the case where the liquid level sensor is composed of the floats 82 and 83 as an example. However, the liquid level sensor is not limited to using the floats 82 and 83.
  • the liquid level sensor is an optical sensor that optically detects the position of the liquid level 101, an ultrasonic sensor that detects the position of the liquid level 101 using ultrasonic waves, and a liquid level 101 that reflects changes in capacitance.
  • Various sensors such as a capacitance type level sensor that detects the position of the sensor can be used.
  • the timer 65 is provided in the controller 60 and is set to start counting based on a signal from the float 83 which is a lower limit sensor.
  • the timer 65 has a preset time until the liquid level 101 of the liquid 100 reaches the preset upper limit position 203 in the chamber 10 from the lower limit position 202.
  • the volume between the lower limit position 202 where the float 83 is provided and the upper limit position 203 of the chamber 10 is set in advance.
  • the flow rate at which the injection unit 20 injects the liquid 100 into the chamber 10 is also set in advance. Therefore, the position of the liquid level 101 can be controlled by setting the time with the timer 65 and controlling the timing for closing the open / close valve 27.
  • the preset upper limit position 203 in the chamber 10 may be set at the upper end of the chamber 10 where the lid 15 of the chamber 10 exists.
  • the upper limit position 203 is not limited to being set at the upper end of the chamber 10, and may be set at an arbitrary position between the predetermined position 201 and the upper end of the chamber 10.
  • the pressure sensor 90 measures the internal pressure of the chamber 10 and sends a signal corresponding to the pressure to the controller 60.
  • the pressure sensor 90 is used to determine whether the internal pressure of the chamber 10 is reduced to a pressure suitable for degassing the gas from the liquid 100 by measuring the internal pressure of the chamber 10. .
  • the pilot line 70 is a line through which compressed air flows.
  • the pilot line 70 opens and closes the opening / closing valve 27 provided in the injection unit 20, starts and stops the operation of the pump 30, and opens and closes the opening / closing valve 42 provided in the exhaust unit 40. ing.
  • the pilot line 70 also opens and closes the opening / closing valve 54 provided in the cooling device 50.
  • the pilot line 70 flows or stops compressed air through the line connected to the opening / closing valve 27, the line connected to the opening / closing valve 42, and the line connected to the opening / closing valve 54 based on a command from the controller 60. And the flow of compressed air to the line connected to the pump 30 and the stop of the flow of compressed air are controlled.
  • pilot line 70 shown in FIG. 1 simultaneously flows or stops compressed air through the line connected to the on-off valve 27, the line connected to the on-off valve 42, and the line connected to the on-off valve 54. Or the flow of compressed air to a line arbitrarily selected from the line connected to the on-off valve 27, the line connected to the on-off valve 42, and the line connected to the on-off valve 54 is stopped or stopped. You may comprise so that it may.
  • the controller 60 selects which line in the pilot line 70 the compressed air is to flow, so that (1) opening / closing of the opening / closing valve 27 provided in the injection unit 20, (2) start of operation of the pump 30, and Control of stopping, (3) opening / closing of the opening / closing valve 42 provided in the exhaust unit 40, and (4) opening / closing of the opening / closing valve 54 of the cooling device 50 is performed.
  • the controller 60 selects the pilot line 70 for flowing the compressed air based on the signals from the float 83 and the timer 65 of the liquid level sensor 80 and stops the compressed air flowing through the pilot line 70. .
  • the main control contents of the controller 60 are as follows. That is, when the float 83 which is the lower limit sensor detects that the liquid level 101 of the liquid 100 has reached the lower limit position 202, the controller 60 issues a command to open the opening / closing valve 27 of the injection unit 20, and the chamber The liquid 100 having a flow rate larger than the flow rate of the liquid 100 discharged from the inside 10 is injected into the chamber 10. At that time, the signal sent by the float 83 activates the timer 65. As described above, the timer 65 is set with a time until the liquid 100 reaches the preset upper limit position 203 in the chamber 10.
  • the controller 60 closes the open / close valve 27 when a predetermined time elapses from when the timer 65 is activated until the liquid level 101 of the liquid 100 reaches the preset upper limit position 203 in the chamber 10. A command is issued, and control is performed so that the liquid 100 having a flow rate smaller than the flow rate of the liquid 100 discharged from the chamber 10 is injected into the chamber 10.
  • the controller 60 also controls the operation of the deaeration device 1 so as to reset the operation of the deaeration device 1 based on a signal from the pressure sensor 90.
  • the liquid level 101 of the liquid 100 is affected by the gas even after the time set in the timer 65 has elapsed, and the liquid level 101 is preset in the chamber 10.
  • the upper limit position 203 is not reached.
  • the controller 60 controls the operation of the deaeration device 1 so as to reset the operation of the deaeration device 1 based on a signal from the pressure sensor 90.
  • the controller 65 includes a storage unit (not shown), and this storage unit stores the maximum internal pressure that can be effectively deaerated.
  • the controller 65 compares the pressure signal transmitted from the pressure sensor 90 with the maximum internal pressure stored in the storage unit, and when a pressure signal higher than the maximum internal pressure continues to be transmitted from the pressure sensor 90 for a certain period of time. Then, the operation of the deaeration device 1 described above is reset. That is, the inside of the chamber 10 is emptied, and then the liquid 100 is put into the chamber 10 to raise the liquid level 101 to operate the float 83 and the timer 65 is operated based on a signal from the float 83. Resetting the operation of the degassing device 1 allows the liquid level 101 of the liquid 100 to reach a preset upper limit position 203 in the chamber 10.
  • the cooling device 50 is provided as necessary.
  • the cooling device 50 includes a pipe 52 disposed above the liquid 100 inside the chamber 10 and a chiller 51 that circulates a refrigerant through the pipe 52.
  • the pipe 52 is formed in a spiral shape inside the chamber 10 and efficiently cools the upper part of the chamber 10.
  • the pipe 52 and the chiller 51 are connected by a pipe 53.
  • the spiral pipe 52 is arranged at a position above the predetermined position 201 where the float 82 is provided and away from the side wall surface of the chamber 10 by a certain distance.
  • the pipe 53 includes an open / close valve 54.
  • the on-off valve 54 supplies the refrigerant supplied from the chiller 51 to the spiral pipe 52 or stops the supply.
  • the float 82 is pushed up by the buoyancy of the liquid 100 when the liquid level 101 of the liquid 100 rises and passes through a predetermined position.
  • the controller 60 issues a command to the pilot line 70 to stop the compressed air supplied to the opening / closing valve 54.
  • the spool (not shown) moves and the open / close valve 54 is closed.
  • the cooling device 50 stops supplying the refrigerant to the spiral pipe 52.
  • the float 82 descends from a state where it has been pushed up by buoyancy.
  • the controller 60 issues a command to the pilot line 70 to supply compressed air to the on-off valve 54 when the signal sent from the float 82 is stopped.
  • the spool (not shown) is moved by the compressed air supplied by the pilot line 70, and the open / close valve 54 is opened.
  • the cooling device 50 supplies the refrigerant to the spiral pipe 52.
  • the cooling device 50 cools the upper side in the chamber 10 from the predetermined position 201 where the float 82 is provided, thereby contracting the volume of the gas staying in the upper side in the chamber 10 and reducing the pressure in the chamber 10. It also has a function to make it easier. When the pressure inside the chamber 10 is reduced, the gas dissolved in the liquid 100 tends to appear as bubbles. The cooling device 50 makes it easy to remove the gas dissolved in the liquid 100 from the liquid 100 by using such a principle.
  • the upper side in the chamber 10 is cooled by operating the cooling device 50 as described above.
  • cooling the upper side in the chamber 10 can return the liquid state from the vaporized state again. Since the inside of the chamber 10 is decompressed by returning to the liquid 100, the cooling device 50 can effectively degas the liquid from the liquid 100.
  • Such a cooling device 50 is particularly effective when degassing a liquid having a low boiling point.
  • the deaeration device 1 includes the pilot line 70 and controls the operation of the on-off valves 27 and 47 and the pump 30 using the pilot pressure has been described above.
  • the deaeration device 1 may be configured to electromagnetically control the open / close valves 27 and 42 and the pump 30.
  • the deaeration apparatus 1 having the above configuration can be incorporated into an existing cleaning apparatus by simply connecting the deaeration apparatus 1 to a pipe of an existing cleaning apparatus or the like.
  • the deaeration device 1 having the above-described configuration injects the liquid 100 into the sealed chamber 10 from above, and supplies the liquid 100 at a flow rate higher than the flow rate of the liquid 100 injected into the chamber 10.
  • the inside of the chamber 10 is depressurized by discharging from the lower part of the chamber.
  • the specific action of the deaeration device 1 and the content of the control performed according to the operation of the liquid level sensor 80 will be described with reference to FIGS.
  • the upper limit position 203 where the liquid level 101 reaches is set to the upper end of the chamber 10 (the position where the lid 11 exists. However, the lid 11 is not shown in FIG. 3). explain.
  • the degassing device 1 degass the gas dissolved in the liquid 100 from the liquid 100 while the liquid 100 stored in the chamber 10 repeats increasing and decreasing. That is, the amount of the liquid 100 stored in the chamber 10 increases, the liquid surface 101 of the liquid 100 reaches the upper end of the chamber 10, and the amount of the liquid 100 stored in the chamber 10 decreases. The process of the liquid surface 101 of the liquid 100 reaching the lower limit position 202 is repeated. The gas dissolved in the liquid 100 is degassed from the liquid 100 while these steps are repeated.
  • the controller 60 causes the compressed air to flow through the pilot line 70 connected to the injection unit 20 and the pilot line 70 connected to the exhaust unit 40. Issue a command. Thereby, the opening / closing valve 27 of the injection part 20 is opened. As shown in FIG. 3A, the liquid 100 is injected into the chamber 10 from both the main pipe 21 and the sub pipe 25 of the injection unit 20 (S2 in FIG. 4). Moreover, the operation of the pump 30 starts when the power is turned on. At that time, the liquid 100 flows through the bypass path composed of the pipe 35, and the liquid 100 flowing through the bypass path composed of the pipe 35 is supplied to the pump 30.
  • the open / close valve 42 of the exhaust unit 40 is opened (S3 in FIG. 4).
  • the pump 30 sucks the gas staying in the chamber 10 through the pipe 41 and the pipe 31, and the gas staying in the chamber 10 is exhausted outside the chamber 10.
  • the gas exhausted out of the chamber 10 is exhausted through the pipe 41 and the exhaust pipe 43.
  • the float 83 When the liquid 100 is injected into the chamber 10 and the liquid level 101 rises and passes through the lower limit position 202 (S5 in FIG. 4), the float 83 is pushed up by the buoyancy of the liquid 100. When the float 83 is pushed up, the float 83 sends a signal to the controller 60. When this signal is received by the timer 65 built in the controller 60, the timer 65 is activated (S6 in FIG. 4). The timer 65 is set to a time until the liquid level 101 passes the lower limit position 202 and reaches the upper end of the chamber 10. The controller 60 controls the opening / closing valve 27 until the liquid level 101 reaches the upper end of the chamber 10. Controls to keep open.
  • the cooling device 50 is a device provided as necessary as described above.
  • the chiller 51 included in the cooling device 50 causes the refrigerant to flow through the spiral pipe 52 or stops the refrigerant based on a command from the float 82. .
  • the chiller 51 circulates the refrigerant through the spiral pipe 52 (S4 in FIG. 4).
  • the float 82 is pushed up by the buoyancy of the liquid 100.
  • the controller 60 Upon receiving a signal from the float 82, the controller 60 issues a command to the chiller 51 to stop the flow of the refrigerant through the spiral pipe 52, and the cooling is stopped (S8 in FIG. 4).
  • the gas dissolved in the liquid 100 appears as bubbles from the inside of the liquid 100 and is removed from the liquid 100 when the inside of the chamber 10 is depressurized.
  • the gas that appears as bubbles stays in the upper part of the chamber 10 in the process of lowering the liquid level.
  • the start of the operation of the cooling device 50 is controlled as follows. That is, when the liquid level descends and passes through the predetermined position 201 (S12 in FIG. 4), the float 82 pushed up by the buoyancy descends. As the float 82 descends, the float 82 stops the signal. When the float 82 stops sending a signal, the controller 60 instructs the chiller 51 to circulate the refrigerant through the spiral pipe 52 and controls it to cool (S13 in FIG. 4). When the cooling device 50 starts operating in this way, the area inside the chamber 10 above the predetermined position 201 is cooled. As a result, even if the liquid evaporates and stays in the upper part of the chamber 10, the evaporated liquid is liquefied again by cooling. The cooling device 50 improves the effect of degassing the liquid 100 by liquefying the evaporated material again.
  • the controller 60 and the timer 65 are controlled to maintain the open / close valve 27 until the set time elapses, the liquid 100 stored in the chamber 10 is maintained as shown in FIG. Surface 101 rises.
  • the pump 30 sucks the gas staying in the chamber 10 through the pipe 31 and the pipe 41 and exhausts it outside the chamber 10.
  • the controller 60 opens and closes the open / close valve 42 of the exhaust unit 40. Is closed (S21 in FIG. 4). Further, the opening / closing valve 27 of the injection unit 20 is closed, and the flow rate of the liquid 100 injected into the chamber 10 is made smaller than the flow rate of the liquid 100 discharged from the chamber 10 (S22 in FIG. 4).
  • the controller 60 sets the cooling device 50 based on the signal from the float 82. The operation is controlled in the same manner as described above to stop cooling (S19 in FIG. 4).
  • the flow rate discharged is larger than the flow rate injected into the chamber 10, so that the liquid level 101 of the liquid 100 stored in the chamber 10 falls.
  • the liquid level 101 descends and passes the predetermined position 201 (S23 in FIG. 4), cooling is started again (S24 in FIG. 4).
  • the liquid level 101 further descends and reaches the lower limit position 202 in the chamber.
  • the degassing device 1 removes the gas dissolved in the liquid 100 from the liquid 100 by repeatedly performing these steps (S15 to S25 in FIG. 4). While the deaeration device 1 repeatedly performs these steps, the pressure sensor 90 constantly measures the internal pressure of the chamber 10. Note that the time for one cycle in which the deaeration device 1 performs these steps is the capacity of the chamber 10, the flow rate of the liquid 100 injected into the chamber 10 by the injection unit 20, and the liquid 100 discharged from the chamber 10 by the pump 30. It is set appropriately according to the flow rate.
  • the controller 60 controls the operation of the deaeration device 1 to reset the operation of the deaeration device 1 based on the pressure signal from the pressure sensor 90.
  • the controller 65 compares the pressure signal transmitted from the pressure sensor 90 with the maximum internal pressure stored in the storage unit, and a pressure signal higher than the maximum internal pressure is output from the pressure sensor 90 for a predetermined time. If the transmission continues, the operation of the deaeration device 1 is reset. That is, the chamber 10 is emptied, then the liquid 100 is put into the chamber 10 to raise the liquid level 101, the float 83 is activated, and the timer 65 is activated based on the signal from the float 83.
  • the liquid surface 101 of the liquid 100 may be controlled to reach an arbitrary position between the predetermined position 201 where the float 82 is provided and the upper end of the chamber 100.
  • the operation of the on-off valve 27 is controlled by setting a timer time so that the liquid level 101 reaches a desired position.
  • Such deaeration device 1 and deaeration method have various effects as listed below.
  • the degassing apparatus 1 and the degassing method can improve the effect by incorporating them into a cleaning system that cleans electronic components and wafers using ultrasonic waves, or removes impurities on the surface. However, it can also be used for degassing a cleaning liquid for cleaning electronic components, wafers, and the like by incorporating it into a generally used cleaning apparatus other than a cleaning system using ultrasonic waves.
  • the degassing device 1 and the degassing method can remove ultrasonic obstacles from the liquid and improve the cavitation effect.
  • the degassing apparatus 1 and the degassing method can use a volatile solvent.
  • a volatile solvent for example, NMP (N-methyl-2-pyrrolidone), a photoresist stripping solution, or the like can be used as the stripping solution.
  • the degassing device 1 and the degassing method can prevent the liquid 100 from being deteriorated by the influence of the gas in which the liquid 100 is dissolved.
  • the degassing apparatus 1 and the degassing method can prevent the liquid from being oxidized.
  • the degassing device 1 and the degassing method can shorten the time for cleaning and peeling.
  • the deaeration device 1 has an effect that it can be easily incorporated into a cleaning device only by connecting to a pipe provided in an existing cleaning device, and that there is no need for regular maintenance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

[Problem] To provide a degassing device, and a degassing method, the structure of which is simple and, irrespective of the device or plant to which the degassing device and method are applied, a liquid can be degassed with high accuracy. [Solution] The problem is solved by a degassing device provided with a chamber (10) in the interior of which a liquid to be degassed is held, an injection section (20) for injecting liquid into the chamber (10) from an upper section of the chamber (10), and a discharging means (30) for discharging the liquid being held in the chamber (10) from a lower side of the chamber (10). The inside of the chamber (10) is depressurized by sealing the interior of the chamber (10) and, in this state, discharging the liquid from inside the chamber (10) at a greater flow rate than the flow rate of the liquid being injected into the chamber (10). The problem is also solved by a degassing method using this degassing device.

Description

脱気装置及び脱気方法Deaeration device and deaeration method
 本発明は、脱気装置及び脱気方法に関し、さらに詳しくは、液体に溶存する気体を液体から除去する脱気装置及び脱気方法に関する。 The present invention relates to a deaeration device and a deaeration method, and more particularly to a deaeration device and a deaeration method for removing a gas dissolved in a liquid from the liquid.
 液体中に溶存する気体は、液体を劣化させたり、液体を洗浄液として用いて電子部品等を洗浄する場合に電子部品等を損傷したりする等の不都合を発生させることがある。脱気装置は、液体に溶存する気体を液体から除去することによって、そうした不都合が発生することを防止している。こうした脱気装置は、様々な原理を利用している。脱気装置の中でも、真空ポンプを利用した脱気装置が一般に知られている。 The gas dissolved in the liquid may cause inconveniences such as deteriorating the liquid or damaging the electronic component or the like when cleaning the electronic component or the like using the liquid as a cleaning liquid. The deaeration device prevents such inconvenience from occurring by removing the gas dissolved in the liquid from the liquid. Such deaerators use various principles. Among the deaerators, a deaerator using a vacuum pump is generally known.
 特許文献1~3に提案されている脱気装置は、いずれも電子部品等を洗浄する洗浄液から洗浄液に溶存する気体を除去するための脱気装置である。これらの脱気装置は、洗浄液が注入された容器内部を減圧することによって洗浄液に溶存する気体を除去している。こうした脱気装置の減圧手法は、真空ポンプで容器の内部に存在する気体を吸引することによって、容器の内部を減圧する手法である。 The degassing devices proposed in Patent Documents 1 to 3 are all degassing devices for removing the gas dissolved in the cleaning liquid from the cleaning liquid for cleaning electronic components and the like. These deaeration devices remove gas dissolved in the cleaning liquid by decompressing the inside of the container into which the cleaning liquid is injected. The depressurization method of such a deaeration device is a method of depressurizing the inside of the container by sucking the gas present inside the container with a vacuum pump.
特開平9-187603号公報JP-A-9-187603 特開平11-319407号公報JP 11-319407 A 特開2000-288307号公報JP 2000-288307 A
 しかしながら、特許文献1~3に提案されている脱気装置は、洗浄液の循環経路の他に容器の内部を減圧するための真空ポンプを設けることが必要である。そのため、これらの脱気装置は、脱気装置の構成が複雑になる。また、脱気装置を適用する洗浄装置や脱気する洗浄液の種類に応じて真空ポンプを適宜に選定することが必要になる。 However, the deaeration devices proposed in Patent Documents 1 to 3 need to be provided with a vacuum pump for depressurizing the inside of the container in addition to the cleaning liquid circulation path. Therefore, these deaerators have a complicated configuration of the deaerator. In addition, it is necessary to appropriately select a vacuum pump in accordance with the cleaning device to which the degassing device is applied and the type of cleaning liquid to be degassed.
 本発明は上記課題を解決するためになされたものであり、その目的は、構造が簡素で且つ、脱気装置を組み込むシステムや脱気する液体の種類に関わらず高い精度で液体から気体を脱気することができる脱気装置及び脱気方法を提供することにある。 The present invention has been made to solve the above-mentioned problems, and its purpose is to remove gas from a liquid with high accuracy irrespective of a system having a simple structure and a system incorporating a deaeration device and the type of liquid to be deaerated. An object of the present invention is to provide a deaeration device and a deaeration method that can be noticed.
 上記課題を解決するための本発明に係る脱気装置は、密閉可能な構造を有し、脱気される液体が溜められるチャンバーと、前記チャンバーの内部の密閉状態を保持しつつ、前記チャンバーの上部から前記チャンバー内に前記液体を注入する注入部と、前記チャンバー内に溜められている前記液体を前記チャンバーの下部から排出させる排出手段と、を備え、前記排出手段が、前記チャンバーの内部を密閉した状態で、前記チャンバー内に注入する前記液体の流量よりも多くの流量の前記液体を前記チャンバー内から排出し、前記チャンバー内を減圧させることを特徴とする。 A degassing apparatus according to the present invention for solving the above problems has a sealable structure, a chamber in which liquid to be degassed is stored, and a sealed state inside the chamber, An injecting portion for injecting the liquid into the chamber from above, and an exhausting means for exhausting the liquid stored in the chamber from the lower part of the chamber, the exhausting means passing through the interior of the chamber In a sealed state, the liquid having a flow rate larger than the flow rate of the liquid injected into the chamber is discharged from the chamber, and the pressure in the chamber is reduced.
 この発明によれば、チャンバー内に当該チャンバーの上部から液体を注入する注入部と、チャンバー内に溜められている液体をチャンバーの下部から排出させる排出手段とを備え、チャンバー内を密閉した状態で、チャンバー内に注入する液体の流量よりも多くの流量の液体をチャンバー内から排出することによって、チャンバー内を減圧している。そのため、液体に溶存する気体を気泡として発生させることができ、気体を液体から脱気することができる。また、チャンバー内に注入する液体の流量よりも多くの流量の液体をチャンバーから排出してチャンバー内を減圧するので、別途に真空ポンプを設ける必要がない。その結果、脱気装置の構造を簡素にすることができる。また、真空ポンプを設けずに脱気を行うので、真空ポンプの性能に左右されないで液体に溶存する気体を液体から脱気することができる。 According to the present invention, the apparatus includes the injection portion for injecting the liquid into the chamber from the upper portion of the chamber, and the discharge means for discharging the liquid stored in the chamber from the lower portion of the chamber, and the chamber is sealed. The inside of the chamber is decompressed by discharging a liquid having a flow rate larger than that of the liquid to be injected into the chamber. Therefore, gas dissolved in the liquid can be generated as bubbles, and the gas can be degassed from the liquid. In addition, since a liquid having a flow rate higher than that of the liquid to be injected into the chamber is discharged from the chamber and the pressure in the chamber is reduced, it is not necessary to provide a separate vacuum pump. As a result, the structure of the deaeration device can be simplified. Further, since the deaeration is performed without providing the vacuum pump, the gas dissolved in the liquid can be degassed from the liquid without being influenced by the performance of the vacuum pump.
 本発明に係る脱気装置において、前記チャンバー内に溜めた液体から脱気された気体を排気する排気部と、前記排気部を開閉する開閉手段と、前記チャンバー内に注入する前記液体の流量を調整する注入量調整手段と、前記開閉手段の動作及び前記注入量調整手段の動作を制御するコントローラと、をさらに備え、前記コントローラは、前記注入量調整手段を制御して前記チャンバー内から排出される前記液体の流量よりも少ない流量の前記液体を前記チャンバー内に注入する間に、前記開閉手段で前記排気部を閉じて前記チャンバー内を密閉状態とし、前記注入量調整手段を制御して前記チャンバー内から排出する前記液体の流量よりも多くの前記液体を前記チャンバー内に注入する間に、前記開閉手段で前記排気部を開いて前記チャンバー内の密閉状態を解除する制御していることを特徴とする。 In the deaeration device according to the present invention, an exhaust part for exhausting the gas degassed from the liquid stored in the chamber, an opening / closing means for opening and closing the exhaust part, and a flow rate of the liquid injected into the chamber. And a controller for controlling the operation of the opening / closing means and the operation of the injection amount adjusting means. The controller controls the injection amount adjusting means and is discharged from the chamber. While the liquid having a flow rate smaller than the flow rate of the liquid is injected into the chamber, the opening / closing means closes the exhaust part to seal the chamber, and controls the injection amount adjusting means to control the injection amount. While injecting more liquid into the chamber than the flow rate of the liquid discharged from the chamber, the exhaust means is opened by the opening and closing means to open the chamber. Characterized in that it is controlled to release the sealed state of the over.
 この発明によれば、コントローラが、チャンバー内から排出される液体の流量よりも少ない流量の液体をチャンバー内に注入する間に開閉手段で排気部を閉じ、チャンバー内から排出する液体の流量よりも多くの液体をチャンバーに注入する間に開閉手段で排気部を開くように制御しているので、チャンバー内を確実に減圧して液体に溶存する気体を液体から脱気することができると共に、脱気された気体をチャンバーから確実に排気することができる。 According to this invention, the controller closes the exhaust portion by the opening / closing means while injecting a liquid having a flow rate smaller than the flow rate of the liquid discharged from the chamber into the chamber, and the flow rate of the liquid discharged from the chamber Since the exhaust unit is controlled to be opened by the opening / closing means while injecting a large amount of liquid into the chamber, the gas dissolved in the liquid can be degassed from the liquid by reliably depressurizing the inside of the chamber. The gas that has been vented can be reliably exhausted from the chamber.
 本発明に係る脱気装置において、前記排出手段は、前記排気部に接続されており、前記開閉手段が開いたときに前記チャンバー内から排気される気体を吸引していることを特徴とする。 In the deaeration device according to the present invention, the exhaust unit is connected to the exhaust unit, and sucks a gas exhausted from the chamber when the opening / closing unit is opened.
 この発明によれば、排出手段は、開閉手段が開いたときにチャンバー内から排気される気体を吸引しているので、液体から脱気された気体をチャンバー内から強制的に排気させることができる。 According to the present invention, since the discharging means sucks the gas exhausted from the chamber when the opening / closing means is opened, the gas degassed from the liquid can be forcibly exhausted from the chamber. .
 本発明に係る脱気装置において、前記チャンバー内に溜められている前記液体の液面があらかじめ設定された前記チャンバーの下限位置に到達したことを検出する下限センサーと、前記下限センサーからの信号に基づいて作動するタイマーと、をさらに備え、前記下限センサーが、前記液体の液面が前記下限位置に到達したことを検出したときに、前記コントローラは、前記注入量調整手段の動作を制御して前記チャンバーから排出させる前記液体の流量よりも多くの流量の前記液体を前記チャンバーに注入するように制御し、前記タイマーが作動してから前記液体の液面が前記チャンバーのあらかじめ設定された上限位置に到達するまでに要する所定時間を経過したときに、前記コントローラは、前記注入量調整手段の動作を制御して前記チャンバーから排出される前記液体の流量よりも少ない流量の前記液体を前記チャンバーに注入するように制御していることを特徴とする。 In the deaeration device according to the present invention, a lower limit sensor that detects that the liquid level of the liquid stored in the chamber has reached a preset lower limit position of the chamber, and a signal from the lower limit sensor. And a timer that operates based on the controller, and when the lower limit sensor detects that the liquid level of the liquid has reached the lower limit position, the controller controls the operation of the injection amount adjusting means. The liquid level of the liquid is controlled so as to be injected into the chamber at a flow rate larger than the flow rate of the liquid to be discharged from the chamber, and the liquid level of the liquid is set to a preset upper limit position of the chamber after the timer is activated. The controller controls the operation of the injection amount adjusting means when a predetermined time required to reach Characterized in that it is controlled to inject low flow rate the liquid than the flow rate of the liquid discharged from the chamber into the chamber.
 この発明によれば、上記の下限センサーを備え、液体の液面がチャンバー内の下限位置に到達したことを下限センサーが検出したときに、上記のコントローラは、注入量調整手段の動作を制御してチャンバー内から排出させる液体の流量よりも多くの流量の液体をチャンバー内に注入するように制御しているので、チャンバー内に脱気するのに適切な量の液体を溜めておくことができる。また、下限センサーからの信号に基づいて作動するタイマーを備え、タイマーが下限センサーからの信号に基づいて作動しはじめて、液面がチャンバー内のあらかじめ設定された上限位置に到達するまでに要する所定時間を経過したときに、コントローラは、注入量調整手段の動作を制御してチャンバーから排出される液体の流量よりも少ない流量の液体をチャンバーに注入するように制御しているので、チャンバー内を確実に減圧させることができる。 According to the present invention, the controller includes the lower limit sensor, and the controller controls the operation of the injection amount adjusting means when the lower limit sensor detects that the liquid level has reached the lower limit position in the chamber. Since the liquid is controlled to be injected into the chamber at a flow rate higher than the flow rate of the liquid discharged from the chamber, an appropriate amount of liquid can be stored in the chamber for degassing. . In addition, a timer that operates based on the signal from the lower limit sensor is provided, and the predetermined time required for the liquid level to reach a preset upper limit position in the chamber after the timer starts to operate based on the signal from the lower limit sensor. Since the controller controls the operation of the injection amount adjusting means to inject a liquid with a flow rate smaller than the flow rate of the liquid discharged from the chamber into the chamber. Can be depressurized.
 本発明に係る脱気装置において、前記チャンバー内のあらかじめ設定された所定位置よりも上側を冷却する冷却装置を備えていることを特徴とする。 The deaeration apparatus according to the present invention is characterized by comprising a cooling device that cools the upper side of a predetermined position in the chamber.
 この発明によれば、チャンバー内のあらかじめ設定された所定位置よりも上側を冷却する冷却装置を備えているので、冷却装置がチャンバー内の所定位置よりも上側を冷却することによって、チャンバー内の減圧を行い易くすることができる。また、液体が蒸発しても、再び液化することによって脱気を効果的に行うことができる。なお、冷却装置は、チャンバー内のあらかじめ設定された所定位置よりも上側に配置された配管と、冷媒を配管に循環させるチラーとを備えて構成するとよい。 According to the present invention, since the cooling device for cooling the upper side of the predetermined position in the chamber is provided, the cooling device cools the upper side of the predetermined position in the chamber, thereby reducing the pressure in the chamber. Can be made easier. Moreover, even if the liquid evaporates, deaeration can be effectively performed by liquefying again. The cooling device may include a pipe disposed above a predetermined position set in the chamber and a chiller that circulates the refrigerant through the pipe.
 上記課題を解決するための本発明に係る脱気方法は、密閉されたチャンバーの内部に注入部によって当該チャンバーの上部から液体を注入し、所定の条件を満たしており、前記密閉されたチャンバー内に液体を注入する際に、前記チャンバー内に注入する液体の流量よりも多くの流量の前記液体を前記チャンバーの下部から排出し、前記チャンバー内を減圧させることを特徴とする。 A degassing method according to the present invention for solving the above-described problems is that a liquid is injected from the upper part of the chamber into the sealed chamber by an injection unit, and satisfies a predetermined condition. When the liquid is injected into the chamber, the liquid having a flow rate larger than the flow rate of the liquid injected into the chamber is discharged from the lower portion of the chamber, and the inside of the chamber is decompressed.
 この発明によれば、チャンバーの内部を密閉した状態で、チャンバー内に注入する液体の流量よりも多くの流量の液体をチャンバー内から排出して、チャンバー内を減圧するので、液体に溶存する気体を気泡として発生させ、気体を液体から脱気することができる。また、チャンバー内に注入する液体の流量よりも多くの流量の液体をチャンバー内から排出することによってチャンバー内を減圧するので、別途に真空ポンプを設ける必要がない。 According to the present invention, in a state where the inside of the chamber is sealed, a liquid having a flow rate larger than the flow rate of the liquid injected into the chamber is discharged from the chamber and the pressure in the chamber is reduced. Can be generated as bubbles and the gas can be degassed from the liquid. Further, since the inside of the chamber is decompressed by discharging a liquid having a flow rate larger than the flow rate of the liquid to be injected into the chamber, it is not necessary to provide a separate vacuum pump.
 本発明に係る脱気方法において、前記液体の液面があらかじめ設定された前記チャンバー内の下限位置に到達したときに、前記チャンバー内から排出される前記液体の流量よりも多い流量の前記液体を前記チャンバー内に注入するように制御し、前記液体の液面が前記チャンバー内のあらかじめ設定された上限位置に到達したときに、前記チャンバー内から排出される前記液体の流量よりも少ない流量の前記液体を前記チャンバー内に注入するように制御していることを特徴とする。 In the deaeration method according to the present invention, when the liquid level of the liquid reaches a preset lower limit position in the chamber, the liquid having a flow rate higher than the flow rate of the liquid discharged from the chamber is removed. The liquid is controlled to be injected into the chamber, and when the liquid level of the liquid reaches a preset upper limit position in the chamber, the flow rate is lower than the flow rate of the liquid discharged from the chamber. The liquid is controlled to be injected into the chamber.
 この発明によれば、液体の液面があらかじめ設定されたチャンバー内の下限位置に到達したときに、チャンバー内から排出される液体の流量よりも多い流量の液体をチャンバー内に注入するように制御しているので、チャンバー内に脱気に必要な量の液体を確保することができる。一方、液体の液面がチャンバー内のあらかじめ設定された上限位置に到達したときに、チャンバー内から排出される液体の流量よりも少ない流量の液体をチャンバー内に注入するように制御しているので、チャンバー内を確実に減圧させることができる。 According to this invention, when the liquid level reaches the lower limit position in the chamber set in advance, control is performed so that a liquid having a flow rate larger than the flow rate of the liquid discharged from the chamber is injected into the chamber. As a result, an amount of liquid necessary for deaeration can be secured in the chamber. On the other hand, when the liquid level reaches the preset upper limit position in the chamber, the liquid is controlled to be injected into the chamber at a flow rate smaller than the liquid flow rate discharged from the chamber. The pressure inside the chamber can be reliably reduced.
 本発明に係る脱気方法において、チャンバー内のあらかじめ設定された所定位置よりも上側を冷却することを特徴とする。 The deaeration method according to the present invention is characterized in that the upper side of a predetermined position in the chamber is cooled.
 この発明によれば、チャンバー内のあらかじめ設定された所定位置よりも上側を冷却しているので、チャンバー内の減圧を行い易くすることができる。また、液体が蒸発しても、再び液化することによって脱気を効果的に行うことができる。 According to this invention, since the upper side of the predetermined position in the chamber is cooled, it is possible to facilitate the decompression in the chamber. Moreover, even if the liquid evaporates, deaeration can be effectively performed by liquefying again.
 本発明によれば、脱気装置の構造を簡素にすることができる。また、脱気装置が適用される装置や脱気する液体の種類に関わらず高い精度で液体から気体を脱気することができる。 According to the present invention, the structure of the deaeration device can be simplified. In addition, gas can be degassed from the liquid with high accuracy regardless of the device to which the deaeration device is applied and the type of liquid to be deaerated.
本発明の一実施形態に係る脱気装置のシステムの概要を示す系統図である。It is a distribution diagram showing an outline of a system of a deaeration device concerning one embodiment of the present invention. 図1に示す脱気装置が備えるチャンバーの内部構造の概要を示す部分断面図である。It is a fragmentary sectional view which shows the outline | summary of the internal structure of the chamber with which the deaeration apparatus shown in FIG. 1 is provided. 脱気装置の作用を模式的に示す説明図であり、(A)は液体の液面が上昇している状態を示し、(B)は液体の液面がチャンバーの上端に到達した状態を示し、(C)は液体の液面が下降している状態を示し、(D)は液体の液面がチャンバー内の下限位置に到達した状態を示し、(E)は液体の液面が上昇している状態を示し、(F)は液体の液面がチャンバーの上端に到達した状態を示している。It is explanatory drawing which shows the effect | action of a deaeration apparatus typically, (A) shows the state where the liquid level of the liquid is rising, (B) shows the state where the liquid level of the liquid reached the upper end of the chamber , (C) shows a state in which the liquid level is lowered, (D) shows a state in which the liquid level has reached the lower limit position in the chamber, and (E) shows that the liquid level has risen. (F) shows a state in which the liquid level reaches the upper end of the chamber. 脱気装置の作用の概要を示す流れ図である。It is a flowchart which shows the outline | summary of an effect | action of a deaeration apparatus.
 以下、本発明の実施形態について図面を参照しながら説明する。なお、本発明の技術的範囲は、以下の記載や図面にのみ限定されるものではなく、本発明の要旨の範囲で種々の変形が可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The technical scope of the present invention is not limited to the following description and drawings, and various modifications can be made within the scope of the gist of the present invention.
 [基本構成]
 本発明に係る脱気装置1は、図1及び図2に示すように、脱気される液体100が内部に溜められるチャンバー10と、チャンバー10の上部からチャンバー10内に液体100を注入する注入部20と、チャンバー10内に溜められている液体100をチャンバー10の下部から排出させる排出手段30とを備えている。この脱気装置1は、チャンバー10の内部を密閉した状態で、チャンバー10に注入させる液体100の流量よりも多くの流量の液体100をチャンバー10内から排出することによってチャンバー10内を減圧して液体100から脱気している。
[Basic configuration]
As shown in FIGS. 1 and 2, the degassing device 1 according to the present invention includes a chamber 10 in which a liquid 100 to be degassed is stored, and an injection for injecting the liquid 100 into the chamber 10 from above the chamber 10. And a discharge means 30 for discharging the liquid 100 stored in the chamber 10 from the lower portion of the chamber 10. The deaeration device 1 reduces the pressure inside the chamber 10 by discharging the liquid 100 having a flow rate larger than the flow rate of the liquid 100 to be injected into the chamber 10 in a state where the inside of the chamber 10 is sealed. The liquid 100 is degassed.
 なお、本明細書において、チャンバー10の上部とは、チャンバー10の上面を構成している蓋15の位置には限定されず、チャンバー10の側面を構成している本体11の相対的に上側の領域を含む部位を意味する。例えば、図2に示したチャンバー10の場合、チャンバー10の上部とは、蓋15や本体11の所定位置201よりも上側の領域を意味する。また、チャンバー10の下部とは、チャンバー10の最も低い部位には限定されず、チャンバー10の相対的に下側の領域を含む部位を意味する。例えば、図2に示したチャンバー10の場合、チャンバー10の下部とは、下限位置202よりも底面12の下側の領域を意味する。 In the present specification, the upper portion of the chamber 10 is not limited to the position of the lid 15 that constitutes the upper surface of the chamber 10, and is relatively above the main body 11 that constitutes the side surface of the chamber 10. It means a part including a region. For example, in the case of the chamber 10 shown in FIG. 2, the upper portion of the chamber 10 means a region above the predetermined position 201 of the lid 15 and the main body 11. Moreover, the lower part of the chamber 10 is not limited to the lowest part of the chamber 10, but means a part including a relatively lower region of the chamber 10. For example, in the case of the chamber 10 shown in FIG. 2, the lower portion of the chamber 10 means a region below the bottom surface 12 from the lower limit position 202.
 この脱気装置1は、脱気装置1の構造を簡素にすることができるという特有の効果を奏する。また、脱気装置1が適用される装置や脱気する液体の種類に関わらず高い精度で液体100から気体を脱気することができるという効果も奏する。 This deaeration device 1 has a specific effect that the structure of the deaeration device 1 can be simplified. In addition, the gas can be degassed from the liquid 100 with high accuracy regardless of the device to which the degassing device 1 is applied and the type of liquid to be degassed.
 なお、本発明に係る脱気装置1及び脱気方法は、超音波を利用して電子部品やウエハー等を洗浄したり、表面の不純物を剥離したりする洗浄システムに組み込むことによってその効果を向上させることができるので、「Surface・Ultrasonic・Flat・Fix・System」、略して「Suffix・System」と呼ばれている。ただし、本発明の脱気装置1及び脱気方法は、超音波を利用した洗浄システム以外の洗浄装置に組み込んで電子部品やウエハー等を洗浄する洗浄液から気体を脱気するために利用したりする場合に用いることができる。また、本発明の脱気装置1及び脱気方法は、その他に、液体100が溶存する気体の影響を受けて劣化することを防止するために利用することができる。特に溶存する気体が酸素の場合、液体が酸化することを防止するために利用することができる。 The deaeration device 1 and the deaeration method according to the present invention improve its effect by being incorporated in a cleaning system that cleans electronic components and wafers using an ultrasonic wave, or removes impurities on the surface. Therefore, it is called “Surface / Ultrasonic / Flat / Fix / System”, or “Suffix System” for short. However, the degassing apparatus 1 and the degassing method of the present invention are incorporated in a cleaning apparatus other than a cleaning system using ultrasonic waves and used for degassing a cleaning liquid for cleaning electronic parts, wafers, and the like. Can be used in some cases. In addition, the degassing apparatus 1 and the degassing method of the present invention can be used to prevent the liquid 100 from being deteriorated under the influence of the dissolved gas. In particular, when the dissolved gas is oxygen, it can be used to prevent the liquid from being oxidized.
 [全体構成の概要]
 脱気装置1は、脱気される液体100が内部に溜められるチャンバー10と、チャンバー10の上部からチャンバー10内に液体100を注入する注入部20と、チャンバー10内に溜められている液体100をチャンバー10の下部から排出させる排出手段としてのポンプ30(以下、単にポンプ30という。)と、を備えている。なお、ポンプ30は、従来の脱気装置が備えている、チャンバー10内の気体を排気するだけのために設けた真空ポンプではない。また、脱気装置1は、チャンバー10内の気体を排出する排気部40と、チャンバー10内の液体100の液面101の位置を検出する液面センサー80と、チャンバー10の内圧を計測する圧力センサー90とを備えている。
[Overview of overall configuration]
The degassing apparatus 1 includes a chamber 10 in which a liquid 100 to be degassed is stored, an injection unit 20 for injecting the liquid 100 into the chamber 10 from above the chamber 10, and the liquid 100 stored in the chamber 10. And a pump 30 (hereinafter simply referred to as “pump 30”) as discharge means for discharging the gas from the lower portion of the chamber 10. The pump 30 is not a vacuum pump provided only for exhausting the gas in the chamber 10 provided in a conventional deaeration device. In addition, the deaeration device 1 includes an exhaust unit 40 that exhausts the gas in the chamber 10, a liquid level sensor 80 that detects the position of the liquid level 101 of the liquid 100 in the chamber 10, and a pressure that measures the internal pressure of the chamber 10. And a sensor 90.
 注入部20は、チャンバー10の上部から液体100をチャンバー10内に注入するための構成を有し、メインの配管21とサブの配管25とから構成されており、チャンバー10内に注入する液体100の流量を変化させることができるようになっている。ポンプ30は、チャンバー10の下部と配管31で接続されており、チャンバー10内に溜められた液体100を吸引してチャンバー10内から排出させている。排気部40は、配管41及び開閉バルブ42を備えて構成されている。配管41は、その一端がチャンバー10に接続され、その他端が配管31に接続されている。また、開閉バルブ42は、配管41の途中に設けられている。 The injection unit 20 has a configuration for injecting the liquid 100 into the chamber 10 from the upper part of the chamber 10, and includes a main pipe 21 and a sub pipe 25, and the liquid 100 to be injected into the chamber 10. The flow rate can be changed. The pump 30 is connected to the lower part of the chamber 10 by a pipe 31, and sucks the liquid 100 stored in the chamber 10 and discharges it from the chamber 10. The exhaust part 40 includes a pipe 41 and an opening / closing valve 42. One end of the pipe 41 is connected to the chamber 10, and the other end is connected to the pipe 31. The open / close valve 42 is provided in the middle of the pipe 41.
 脱気装置1は、その他に、チャンバー10内に供給される液体100を溜めておく図示しない液溜部と配管31とを連絡している配管35により構成されたバイパス経路を備えている。配管35からなるバイパス経路は、チャンバー10内から液体100を吸引しない間も、ポンプ30が液体100を吸引できるようにしている。 In addition, the deaeration device 1 includes a bypass path constituted by a pipe 35 that connects a liquid reservoir (not shown) that stores the liquid 100 supplied into the chamber 10 and the pipe 31. The bypass path including the pipe 35 allows the pump 30 to suck the liquid 100 even while the liquid 100 is not sucked from the chamber 10.
 脱気装置1は、さらに、脱気装置1の動作を制御するコントローラ60と、圧縮空気が流れるパイロットライン70とを備えている。コントローラ60は、脱気装置1の動作を制御しており、タイマー65と、液面センサー80からの信号と、圧力センサー90からの信号とに基づいて制御を行っている。なお、タイマー65はコントローラ60に内蔵されている。パイロットライン70は、注入部20に接続されたライン、排気部40に接続されたライン、及びポンプ30に接続されたライン等から構成されている。このパイロットライン70は、コントローラ60からの指令を受け、制御に必要なラインに圧縮空気を供給している。 The deaeration device 1 further includes a controller 60 that controls the operation of the deaeration device 1 and a pilot line 70 through which compressed air flows. The controller 60 controls the operation of the deaeration device 1 and performs control based on the timer 65, a signal from the liquid level sensor 80, and a signal from the pressure sensor 90. The timer 65 is built in the controller 60. The pilot line 70 includes a line connected to the injection unit 20, a line connected to the exhaust unit 40, a line connected to the pump 30, and the like. The pilot line 70 receives a command from the controller 60 and supplies compressed air to a line necessary for control.
 なお、脱気装置1は、必要に応じて冷却装置50が設けられる。冷却装置50は、チャンバー10の内部を冷却し、気体の温度を下げることを主目的にしている装置である。なお、冷却装置50は、脱気する液体の種類に応じて設けられる装置であり、必須の構成ではない。 In addition, the deaeration device 1 is provided with a cooling device 50 as necessary. The cooling device 50 is a device whose main purpose is to cool the inside of the chamber 10 and lower the temperature of the gas. The cooling device 50 is a device provided according to the type of liquid to be deaerated, and is not an essential configuration.
 以下、脱気装置1が備えている各構成について適宜に図面を参照しながら説明する。 Hereinafter, each component provided in the deaeration device 1 will be described with reference to the drawings as appropriate.
 (チャンバー)
 チャンバーは、図2に示すように構成されている。このチャンバー10は、その内部に液体100を溜める部位であり、本体11と蓋15とから構成されている。本体11は、上部が開放されており、下部は底面12によって閉じられている。蓋15は、本体11に対して着脱可能に構成されており、開放されたチャンバー10の本体11の上部に装着して本体11の上部を閉じたり、取り外して本体11の上部を開いたりできるように構成されている。本体11と蓋15とは、蓋15が本体11の上部を閉じたときに両者の間に設けられたシール材等によって密閉される。本体11の底面12は、当該チャンバー10内に溜められた液体100を排出させる排出口13を備えており、図示の例では、この排出口13は底面12の最も低い位置に設けられている。チャンバー10は、液体100が注入部20から注入され、排出口13から排出されるように構成されており、液体100を一時的に滞留させている。
(Chamber)
The chamber is configured as shown in FIG. The chamber 10 is a part for storing the liquid 100 therein, and is composed of a main body 11 and a lid 15. The main body 11 is open at the top and closed at the bottom by the bottom surface 12. The lid 15 is configured to be detachable from the main body 11, and can be attached to the upper portion of the main body 11 of the opened chamber 10 to close the upper portion of the main body 11 or be removed to open the upper portion of the main body 11. It is configured. The main body 11 and the lid 15 are sealed by a sealing material or the like provided between the lid 15 and the upper portion of the main body 11 when the lid 15 is closed. The bottom surface 12 of the main body 11 includes a discharge port 13 for discharging the liquid 100 stored in the chamber 10. In the illustrated example, the discharge port 13 is provided at the lowest position of the bottom surface 12. The chamber 10 is configured such that the liquid 100 is injected from the injection unit 20 and discharged from the discharge port 13, and the liquid 100 is temporarily retained.
 なお、チャンバー10の容量は、注入する液体100の流量とチャンバー10内から排出する液体100の流量とに応じて適宜に設定される。また、チャンバー10内に注入する液体100の流量と、チャンバー10内から排出する液体100の流量とは、脱気される液体100の種類や当該脱気装置1が適用される対象によって適切に設定される。 The capacity of the chamber 10 is appropriately set according to the flow rate of the injected liquid 100 and the flow rate of the liquid 100 discharged from the chamber 10. Further, the flow rate of the liquid 100 injected into the chamber 10 and the flow rate of the liquid 100 discharged from the chamber 10 are appropriately set depending on the type of the liquid 100 to be degassed and the target to which the degassing device 1 is applied. Is done.
 (注入部)
 注入部20は、脱気される液体100をチャンバー10内に注入するための手段である。図1及び図2に示す実施形態の脱気装置1では、注入部20は2本の配管21,25によって構成されている。2本の配管21,25は、チャンバー10の蓋15をそれぞれ貫通し、それらの先端側がチャンバー10の内部に挿入されている。2本の配管21,25のうち一本の配管はメインの配管21であり、もう1本の配管はサブの配管25である。
(Injection part)
The injection unit 20 is means for injecting the liquid 100 to be degassed into the chamber 10. In the deaeration device 1 according to the embodiment shown in FIGS. 1 and 2, the injection part 20 is constituted by two pipes 21 and 25. The two pipes 21 and 25 pass through the lid 15 of the chamber 10, respectively, and their distal ends are inserted into the chamber 10. One of the two pipes 21 and 25 is the main pipe 21, and the other pipe is the sub pipe 25.
 メインの配管21は、蓋15の任意の位置に設けられている。例えば、チャンバー10のほぼ中央の位置で蓋15を貫通するようにして設けられている。メインの配管21はその先端にノズル22を備えており、液体100を霧状にしてチャンバー10に注入している。このメインの配管21は、脱気装置1が作動している間、チャンバー10の内部に液体100を常に注入させている。なお、ノズル22は、チャンバー10の内部に不純物が浸入することを防止するフィルタをその内部に備えていてもよい。 The main pipe 21 is provided at an arbitrary position of the lid 15. For example, it is provided so as to penetrate through the lid 15 at a substantially central position of the chamber 10. The main pipe 21 is provided with a nozzle 22 at its tip, and the liquid 100 is sprayed into the chamber 10. The main pipe 21 constantly injects the liquid 100 into the chamber 10 while the deaeration device 1 is operating. The nozzle 22 may include a filter that prevents impurities from entering the chamber 10.
 サブの配管25も、蓋15の任意の位置に設けられている。例えば、サブの配管25は、メインの配管21よりも、チャンバー10の半径方向の外側の位置で蓋15を貫通するようにして設けられている。サブの配管25は、チャンバー10の内部に溜められている液体100の量が少なくなり、チャンバー10の内部に液体100を補給する際に用いられる配管である。サブの配管25は、後述するパイロットライン70により開閉が制御される開閉バルブ27を備えている。液体100は、開閉バルブ27を開くことによりサブの配管25からチャンバー10内に注入され、開閉バルブ27を閉じることによりチャンバー10内への液体100の注入が停止される。サブの配管25も、その先端にノズル26を備えており、液体100を霧状にしてチャンバー10に注入している。なお、このサブの配管25も、チャンバー10の内部に不純物が浸入することを防止するフィルタをその内部に備えていてもよい。 The sub pipe 25 is also provided at an arbitrary position of the lid 15. For example, the sub pipe 25 is provided so as to penetrate the lid 15 at a position outside the main pipe 21 in the radial direction of the chamber 10. The sub pipe 25 is a pipe used when the amount of the liquid 100 stored in the chamber 10 is reduced and the liquid 100 is supplied to the chamber 10. The sub pipe 25 includes an opening / closing valve 27 whose opening / closing is controlled by a pilot line 70 described later. The liquid 100 is injected into the chamber 10 from the sub pipe 25 by opening the opening / closing valve 27, and the injection of the liquid 100 into the chamber 10 is stopped by closing the opening / closing valve 27. The sub pipe 25 is also provided with a nozzle 26 at its tip, and the liquid 100 is sprayed into the chamber 10. The sub pipe 25 may also include a filter for preventing impurities from entering the chamber 10.
 開閉バルブ27を備えたサブの配管25は、開閉バルブ27を開くことによって、開閉バルブ27が閉じたときより多くの液体100をチャンバー10内に注入し、開閉バルブ27を閉じることによって開閉バルブ27が開いているときより少ない液体100をチャンバー10内に注入しており、注入量調整手段として機能している。 The sub pipe 25 provided with the opening / closing valve 27 opens the opening / closing valve 27 to inject more liquid 100 into the chamber 10 when the opening / closing valve 27 is closed, and closes the opening / closing valve 27 to close the opening / closing valve 27. Less liquid 100 is injected into the chamber 10 than when it is open, and functions as an injection amount adjusting means.
 (排出手段としてのポンプ)
 ポンプ30は、配管31を介してチャンバー10に接続されている。このポンプ30は、チャンバー10内に溜められた液体100をチャンバー10内から排出している。なお、液体100の排出は、ポンプ30によって強制的に行われている。ポンプ30は、注入部20のメインの配管21のみがチャンバー10に注入する液体100の流量よりも多くの液体100をチャンバー10内から排出している。一方、ポンプ30は、メインの配管21及びサブの配管25の双方によってチャンバー10内に注入される液体100の流量よりも少ない液体100をチャンバー10内から排出している。また、このポンプ30は、パイロットライン70によって作動の開始と停止とが制御されている。
(Pump as discharge means)
The pump 30 is connected to the chamber 10 via a pipe 31. The pump 30 discharges the liquid 100 stored in the chamber 10 from the chamber 10. The liquid 100 is forcibly discharged by the pump 30. The pump 30 discharges more liquid 100 from the chamber 10 than the flow rate of the liquid 100 injected into the chamber 10 only by the main pipe 21 of the injection unit 20. On the other hand, the pump 30 discharges the liquid 100 from the chamber 10 that is smaller than the flow rate of the liquid 100 injected into the chamber 10 by both the main pipe 21 and the sub pipe 25. The pump 30 is controlled to start and stop by a pilot line 70.
 (排気部)
 排気部40は、チャンバー10内に溜められている液体100から脱気された気体を排気する部位である。排気部40は、蓋15からチャンバー10の外側に向けて延び、配管31に接続されている配管41と、パイロットライン70によって開閉動作が行われる開閉手段としての開閉バルブ42(以下、単に開閉バルブ42という。)と、を備えている。注入させる液体100の流量よりも多くの流量の液体100をポンプ30が排出する間、開閉バルブ42は、閉じられることによってチャンバー10の内部を密閉している。一方、チャンバー10内の液体100の液面101がチャンバー10のあらかじめ設定された上限位置203まで到達するように液体100をチャンバー10に補充している間、開閉バルブ42は、開かれている。開閉バルブ42が開かれている間、ポンプ30は、配管40,41を介してチャンバー10内の気体を吸引することによって液体100から脱気された気体をチャンバー10の外に排気している。なお、チャンバー10から排気された気体は、ポンプ30の下流側に設けられた配管43を通して外部に放出される。
(Exhaust part)
The exhaust part 40 is a part that exhausts the gas degassed from the liquid 100 stored in the chamber 10. The exhaust part 40 extends from the lid 15 toward the outside of the chamber 10, and is connected to a pipe 41 and an open / close valve 42 (hereinafter simply referred to as an open / close valve) as an open / close means that is opened and closed by a pilot line 70. 42). While the pump 30 discharges the liquid 100 having a flow rate higher than that of the liquid 100 to be injected, the opening / closing valve 42 is closed to seal the inside of the chamber 10. On the other hand, the open / close valve 42 is opened while the liquid 100 is replenished to the chamber 10 so that the liquid level 101 of the liquid 100 in the chamber 10 reaches the preset upper limit position 203 of the chamber 10. While the opening / closing valve 42 is open, the pump 30 exhausts the gas degassed from the liquid 100 to the outside of the chamber 10 by sucking the gas in the chamber 10 through the pipes 40 and 41. Note that the gas exhausted from the chamber 10 is discharged to the outside through a pipe 43 provided on the downstream side of the pump 30.
 (液面センサー)
 液面センサー80は、上下方向に延びるように配置された心棒81と、心棒81の上側と下側の2箇所にそれぞれ設けられたフロート82,83とにより構成されている。2箇所に設けられたフロート82,83は、心棒81の一定の範囲を上下方向に移動可能にそれぞれ構成されており、液体100の浮力によって上側に移動する。液面センサー80を構成している下側のフロート83は、チャンバー10の内部に溜められている液体100の液面101がチャンバー10のあらかじめ設定された位置に到達したことを検出している。なお、下側のフロート83は、後述する脱気装置1の作用の欄で説明するように、液面101が上昇し下限位置202を通過することも検出している。また、液面センサー80を構成している上側のフロート82は、チャンバー10の内部に溜められている液体100の液面101がチャンバー10のあらかじめ設定された位置を通過することを検出している。
(Liquid level sensor)
The liquid level sensor 80 is composed of a mandrel 81 arranged so as to extend in the vertical direction, and floats 82 and 83 provided at two positions on the upper and lower sides of the mandrel 81, respectively. The floats 82 and 83 provided at two locations are configured to be movable in a vertical direction within a certain range of the mandrel 81, and move upward due to the buoyancy of the liquid 100. The lower float 83 constituting the liquid level sensor 80 detects that the liquid level 101 of the liquid 100 stored in the chamber 10 has reached a preset position in the chamber 10. The lower float 83 also detects that the liquid level 101 rises and passes the lower limit position 202, as will be described in the section of the action of the deaeration device 1 described later. The upper float 82 constituting the liquid level sensor 80 detects that the liquid level 101 of the liquid 100 stored in the chamber 10 passes through a preset position of the chamber 10. .
 下側に設けられたフロート83は、液体100の液面101がチャンバー内のあらかじめ設定された下限位置202に達したかどうかを検知する下限センサーである。液体100の液面101が下限位置202に達したとき、液体100の浮力によって押し上げられていたフロート83が下降する。フロート83は、下降することによって、液体100の液面101が下限位置202に達したことを検知している。また、フロート83は、液面101の上昇に伴って押し上げられたときに、タイマー65の作動を開始させている。 The float 83 provided on the lower side is a lower limit sensor that detects whether the liquid surface 101 of the liquid 100 has reached a preset lower limit position 202 in the chamber. When the liquid level 101 of the liquid 100 reaches the lower limit position 202, the float 83 pushed up by the buoyancy of the liquid 100 is lowered. The float 83 descends to detect that the liquid level 101 of the liquid 100 has reached the lower limit position 202. Further, when the float 83 is pushed up as the liquid level 101 rises, the operation of the timer 65 is started.
 上側に設けられたフロート82は、後述する冷却装置50を設けた場合に設けられるセンサーである。フロート82は、液体100の液面101がチャンバー10内のあらかじめ設定された所定位置201を通過したことを検知するセンサーであって、冷却装置50の作動の開始及び停止を行うスイッチとして機能している。液体100の液面101が上昇して所定位置201を通過するとき、フロート82は液体100の浮力によって押し上げられる。フロート82が押し上げられることによって、液体100の液面101が所定位置201まで上昇したことが検知される。一方、液体100の液面101が下降して所定位置201を通過するとき、浮力によって押し上げられていたフロート82は下降する。フロート82が下降することによって、液体100の液面101が所定位置201まで下降したことが検知される。 The float 82 provided on the upper side is a sensor provided when a cooling device 50 described later is provided. The float 82 is a sensor that detects that the liquid level 101 of the liquid 100 has passed a predetermined position 201 in the chamber 10 and functions as a switch for starting and stopping the operation of the cooling device 50. Yes. When the liquid level 101 of the liquid 100 rises and passes through the predetermined position 201, the float 82 is pushed up by the buoyancy of the liquid 100. When the float 82 is pushed up, it is detected that the liquid level 101 of the liquid 100 has risen to the predetermined position 201. On the other hand, when the liquid surface 101 of the liquid 100 descends and passes through the predetermined position 201, the float 82 pushed up by the buoyancy descends. When the float 82 is lowered, it is detected that the liquid level 101 of the liquid 100 has been lowered to the predetermined position 201.
 以上、液面センサーがフロート82,83で構成された場合を例に液面センサーについて説明した。しかし、液面センサーはフロート82,83を使用することには限定されない。液面センサーは、光学的に液面101の位置を検出する光センサー、超音波を利用して液面101の位置を検出する超音波センサー、及び静電容量の変化を思料して液面101の位置を検出する静電容量式レベルセンサー等の種々のセンサーを使用することができる。 The liquid level sensor has been described above by taking the case where the liquid level sensor is composed of the floats 82 and 83 as an example. However, the liquid level sensor is not limited to using the floats 82 and 83. The liquid level sensor is an optical sensor that optically detects the position of the liquid level 101, an ultrasonic sensor that detects the position of the liquid level 101 using ultrasonic waves, and a liquid level 101 that reflects changes in capacitance. Various sensors such as a capacitance type level sensor that detects the position of the sensor can be used.
 (タイマー)
 タイマー65は、コントローラ60に設けられており、下限センサーであるフロート83からの信号に基づいてカウントを開始するように設定されている。このタイマー65は、液体100の液面101が下限位置202からチャンバー10内のあらかじめ設定された上限位置203に到達するまでの時間があらかじめ設定されている。フロート83が設けられている下限位置202とチャンバー10の上限位置203との間の容積はあらかじめ設定されている。また、注入部20がチャンバー10に液体100を注入する流量もあらかじめ設定されている。そのため、液面101の位置の制御は、タイマー65で時間を設定し、開閉バルブ27を閉じるタイミングを制御することによって行うことができる。
(timer)
The timer 65 is provided in the controller 60 and is set to start counting based on a signal from the float 83 which is a lower limit sensor. The timer 65 has a preset time until the liquid level 101 of the liquid 100 reaches the preset upper limit position 203 in the chamber 10 from the lower limit position 202. The volume between the lower limit position 202 where the float 83 is provided and the upper limit position 203 of the chamber 10 is set in advance. The flow rate at which the injection unit 20 injects the liquid 100 into the chamber 10 is also set in advance. Therefore, the position of the liquid level 101 can be controlled by setting the time with the timer 65 and controlling the timing for closing the open / close valve 27.
 なお、上記したチャンバー10内のあらかじめ設定された上限位置203は、チャンバー10の蓋15が存在するチャンバー10の上端に設定するとよい。ただし、上限位置203は、チャンバー10の上端に設定することには限定されず、所定位置201とチャンバー10の上端との間の任意の位置に設定してもよい。 Note that the preset upper limit position 203 in the chamber 10 may be set at the upper end of the chamber 10 where the lid 15 of the chamber 10 exists. However, the upper limit position 203 is not limited to being set at the upper end of the chamber 10, and may be set at an arbitrary position between the predetermined position 201 and the upper end of the chamber 10.
 (圧力センサー)
 圧力センサー90は、チャンバー10の内圧を計測しており、圧力に応じた信号をコントローラ60に送っている。この圧力センサー90は、チャンバー10の内圧を計測することによって、チャンバー10の内圧が、液体100から気体を脱気するのに適した圧力まで減圧されているかどうかを判断することに利用されている。
(pressure sensor)
The pressure sensor 90 measures the internal pressure of the chamber 10 and sends a signal corresponding to the pressure to the controller 60. The pressure sensor 90 is used to determine whether the internal pressure of the chamber 10 is reduced to a pressure suitable for degassing the gas from the liquid 100 by measuring the internal pressure of the chamber 10. .
 (パイロットライン)
 パイロットライン70は、圧縮空気が流れるラインであり、注入部20が備えている開閉バルブ27の開閉、ポンプ30の作動の開始及び停止、並びに排気部40が備えている開閉バルブ42の開閉を行っている。なお、冷却装置50に設けられた開閉バルブ54の開閉もパイロットライン70が行っている。
(Pilot line)
The pilot line 70 is a line through which compressed air flows. The pilot line 70 opens and closes the opening / closing valve 27 provided in the injection unit 20, starts and stops the operation of the pump 30, and opens and closes the opening / closing valve 42 provided in the exhaust unit 40. ing. The pilot line 70 also opens and closes the opening / closing valve 54 provided in the cooling device 50.
 図1に示したパイロットライン70に示した符号27,30,42,54は、注入部20の開閉バルブ27、ポンプ30、排気部40の開閉バルブ42及び冷却装置50の開閉バルブ54にそれぞれ対応している。このパイロットライン70は、コントローラ60からの指令に基づいて、開閉バルブ27に接続されたライン、開閉バルブ42に接続されたライン、及び開閉バルブ54に接続されたラインに圧縮空気を流したり停止したりすること、及びポンプ30に接続されたラインに圧縮空気を流したり圧縮空気の流れを停止することを制御している。 1 correspond to the opening / closing valve 27 of the injection unit 20, the pump 30, the opening / closing valve 42 of the exhaust unit 40, and the opening / closing valve 54 of the cooling device 50, respectively. is doing. The pilot line 70 flows or stops compressed air through the line connected to the opening / closing valve 27, the line connected to the opening / closing valve 42, and the line connected to the opening / closing valve 54 based on a command from the controller 60. And the flow of compressed air to the line connected to the pump 30 and the stop of the flow of compressed air are controlled.
 例えば、注入部20の開閉バルブ27を開く場合、圧縮空気が開閉バルブ27に接続されているパイロットライン70に流され、開閉バルブ27の図示しないスプールは、流された圧縮空気によって移動される。逆に、注入部20の開閉バルブ27を閉じる場合、開閉バルブ27に接続されているパイロットライン70に流されていた圧縮空気が停止され、開閉バルブ27の図示しないスプールが元に戻される。 For example, when opening the opening / closing valve 27 of the injection unit 20, compressed air is caused to flow through the pilot line 70 connected to the opening / closing valve 27, and a spool (not shown) of the opening / closing valve 27 is moved by the flowed compressed air. On the contrary, when closing the on-off valve 27 of the injection part 20, the compressed air that has flowed through the pilot line 70 connected to the on-off valve 27 is stopped, and the spool (not shown) of the on-off valve 27 is returned to its original state.
 なお、図1に示すパイロットライン70は、開閉バルブ27に接続されたライン、開閉バルブ42に接続されたライン、及び開閉バルブ54に接続されたラインに圧縮空気を同時に流したり停止したりするように構成したり、開閉バルブ27に接続されたライン、開閉バルブ42に接続されたライン、及び開閉バルブ54に接続されたラインの中から任意に選定したラインに別々に圧縮空気を流したり停止したりするように構成したりしてもよい。 Note that the pilot line 70 shown in FIG. 1 simultaneously flows or stops compressed air through the line connected to the on-off valve 27, the line connected to the on-off valve 42, and the line connected to the on-off valve 54. Or the flow of compressed air to a line arbitrarily selected from the line connected to the on-off valve 27, the line connected to the on-off valve 42, and the line connected to the on-off valve 54 is stopped or stopped. You may comprise so that it may.
 (コントローラ)
 コントローラ60は、パイロットライン70の中のどのラインに圧縮空気を流すかを選択することによって、(1)注入部20が備えている開閉バルブ27の開閉、(2)ポンプ30の作動の開始及び停止、(3)排気部40が備えている開閉バルブ42の開閉、並びに(4)冷却装置50の開閉バルブ54の開閉の制御を行っている。
(controller)
The controller 60 selects which line in the pilot line 70 the compressed air is to flow, so that (1) opening / closing of the opening / closing valve 27 provided in the injection unit 20, (2) start of operation of the pump 30, and Control of stopping, (3) opening / closing of the opening / closing valve 42 provided in the exhaust unit 40, and (4) opening / closing of the opening / closing valve 54 of the cooling device 50 is performed.
 その際、コントローラ60は、液面センサー80のフロート83及びタイマー65からの信号に基づいて圧縮空気を流すパイロットライン70を選択すると共に、そのパイロットライン70に流れていた圧縮空気を停止している。 At that time, the controller 60 selects the pilot line 70 for flowing the compressed air based on the signals from the float 83 and the timer 65 of the liquid level sensor 80 and stops the compressed air flowing through the pilot line 70. .
 このコントローラ60の主な制御の内容は、次の通りである。すなわち、下限センサーであるフロート83が、液体100の液面101が下限位置202に到達したことを検出したときに、コントローラ60は、注入部20の開閉バルブ27を開くように指令を出し、チャンバー10内から排出される液体100の流量よりも多くの流量の液体100をチャンバー10内に注入させている。また、そのときに、フロート83が送る信号はタイマー65を作動させる。このタイマー65は、上記したように、液体100がチャンバー10内のあらかじめ設定された上限位置203に到達するまでの時間が設定されている。一方、タイマー65が作動してから液体100の液面101がチャンバー10内のあらかじめ設定された上限位置203に到達するまでに要する所定時間が経過したときに、コントローラ60は、開閉バルブ27を閉じる指令を出し、チャンバー10内から排出される液体100の流量よりも少ない流量の液体100をチャンバー10内に注入するように制御している。 The main control contents of the controller 60 are as follows. That is, when the float 83 which is the lower limit sensor detects that the liquid level 101 of the liquid 100 has reached the lower limit position 202, the controller 60 issues a command to open the opening / closing valve 27 of the injection unit 20, and the chamber The liquid 100 having a flow rate larger than the flow rate of the liquid 100 discharged from the inside 10 is injected into the chamber 10. At that time, the signal sent by the float 83 activates the timer 65. As described above, the timer 65 is set with a time until the liquid 100 reaches the preset upper limit position 203 in the chamber 10. On the other hand, the controller 60 closes the open / close valve 27 when a predetermined time elapses from when the timer 65 is activated until the liquid level 101 of the liquid 100 reaches the preset upper limit position 203 in the chamber 10. A command is issued, and control is performed so that the liquid 100 having a flow rate smaller than the flow rate of the liquid 100 discharged from the chamber 10 is injected into the chamber 10.
 コントローラ60は、圧力センサー90からの信号に基づいて、脱気装置1の動作をリセットするように脱気装置1の動作を制御することも行っている。気体が液体100に混入している場合、液体100の液面101は、タイマー65にセットされた時間を経過しても、気体の影響を受けて、液面101はチャンバー10内のあらかじめ設定された上限位置203まで到達しない。特に、上限位置203をチャンバー10の上端に設定した場合、液面101とチャンバー10の上端との間に空間が形成されてしまう。こうした状態で脱気を行った場合、チャンバー10の内圧は、脱気を効果的に行うことができる圧力まで減圧されないおそれがある。この現象を生じさせないために、コントローラ60は、圧力センサー90からの信号に基づいて、脱気装置1の動作をリセットするように脱気装置1の動作を制御している。 The controller 60 also controls the operation of the deaeration device 1 so as to reset the operation of the deaeration device 1 based on a signal from the pressure sensor 90. When the gas is mixed in the liquid 100, the liquid level 101 of the liquid 100 is affected by the gas even after the time set in the timer 65 has elapsed, and the liquid level 101 is preset in the chamber 10. The upper limit position 203 is not reached. In particular, when the upper limit position 203 is set at the upper end of the chamber 10, a space is formed between the liquid level 101 and the upper end of the chamber 10. When deaeration is performed in such a state, the internal pressure of the chamber 10 may not be reduced to a pressure that can effectively perform the deaeration. In order not to cause this phenomenon, the controller 60 controls the operation of the deaeration device 1 so as to reset the operation of the deaeration device 1 based on a signal from the pressure sensor 90.
 コントローラ65は記憶部(図示しない)を備えており、この記憶部は効果的に脱気することができる最高内圧を記憶している。コントローラ65は、圧力センサー90から送信される圧力信号と記憶部に記憶されている最高内圧とを比較し、一定時間の間に最高内圧よりも高い圧力信号が圧力センサー90から送信され続けた場合、上述した脱気装置1の動作をリセットする。すなわち、チャンバー10内を空にし、次いで、液体100をチャンバー10内に入れて液面101を上昇させて、フロート83を作動させると共に、フロート83からの信号に基づいてタイマー65を作動させる。脱気装置1の動作をリセットすることは、液体100の液面101がチャンバー10内のあらかじめ設定された上限位置203に到達させることを可能にする。 The controller 65 includes a storage unit (not shown), and this storage unit stores the maximum internal pressure that can be effectively deaerated. The controller 65 compares the pressure signal transmitted from the pressure sensor 90 with the maximum internal pressure stored in the storage unit, and when a pressure signal higher than the maximum internal pressure continues to be transmitted from the pressure sensor 90 for a certain period of time. Then, the operation of the deaeration device 1 described above is reset. That is, the inside of the chamber 10 is emptied, and then the liquid 100 is put into the chamber 10 to raise the liquid level 101 to operate the float 83 and the timer 65 is operated based on a signal from the float 83. Resetting the operation of the degassing device 1 allows the liquid level 101 of the liquid 100 to reach a preset upper limit position 203 in the chamber 10.
 (冷却装置)
 冷却装置50は、上述したように、必要に応じて設けられる。冷却装置50は、チャンバー10の内部で液体100よりも上側に配置された配管52と、配管52に冷媒を循環させるチラー51とを備えている。配管52は、チャンバー10の内部で螺旋状に形成されており、チャンバー10の上部を効率よく冷却している。配管52とチラー51とは、配管53によって接続されている。
(Cooling system)
As described above, the cooling device 50 is provided as necessary. The cooling device 50 includes a pipe 52 disposed above the liquid 100 inside the chamber 10 and a chiller 51 that circulates a refrigerant through the pipe 52. The pipe 52 is formed in a spiral shape inside the chamber 10 and efficiently cools the upper part of the chamber 10. The pipe 52 and the chiller 51 are connected by a pipe 53.
 螺旋状の配管52は、フロート82が設けられている所定位置201よりも上側でチャンバー10の側壁面から一定の距離だけ内側に離れた位置に配置されている。配管53は、開閉バルブ54を備えている。開閉バルブ54は、チラー51から供給された冷媒を螺旋状の配管52に供給したり、供給を停止したりしている。 The spiral pipe 52 is arranged at a position above the predetermined position 201 where the float 82 is provided and away from the side wall surface of the chamber 10 by a certain distance. The pipe 53 includes an open / close valve 54. The on-off valve 54 supplies the refrigerant supplied from the chiller 51 to the spiral pipe 52 or stops the supply.
 具体的には、フロート82は、液体100の液面101が上昇して所定位置を通過するときに液体100の浮力によって押し上げられる。フロート82が押し上げられるとき、フロート82は信号を送る。コントローラ60は、フロート82から送られた信号を受けることによって、開閉バルブ54に供給していた圧縮空気を停止するようにパイロットライン70に指令を出す。開閉バルブ54は、パイロットライン70によって供給されていた圧縮空気が停止されることにより、図示しないスプールが移動し、閉じられる。開閉バルブ54が閉じられることによって、冷却装置50は、冷媒を螺旋状の配管52に供給することを停止する。 Specifically, the float 82 is pushed up by the buoyancy of the liquid 100 when the liquid level 101 of the liquid 100 rises and passes through a predetermined position. When the float 82 is pushed up, the float 82 sends a signal. In response to the signal sent from the float 82, the controller 60 issues a command to the pilot line 70 to stop the compressed air supplied to the opening / closing valve 54. When the compressed air supplied by the pilot line 70 is stopped, the spool (not shown) moves and the open / close valve 54 is closed. When the opening / closing valve 54 is closed, the cooling device 50 stops supplying the refrigerant to the spiral pipe 52.
 一方、フロート82は、液体100の液面101が下降して所定位置201を通過するときに、浮力によって押し上げられていた状態から下降する。フロート82が下降するとき、フロート82は信号を停止する。コントローラ60は、フロート82から送られていた信号が停止されることによって、圧縮空気を開閉バルブ54に供給するようにパイロットライン70に指令を出す。パイロットライン70によって供給された圧縮空気によって、図示しないスプールが移動し、開閉バルブ54は開かれる。開閉バルブ54が開かれることによって、冷却装置50は、冷媒を螺旋状の配管52に供給する。 On the other hand, when the liquid level 101 of the liquid 100 descends and passes through the predetermined position 201, the float 82 descends from a state where it has been pushed up by buoyancy. When the float 82 descends, the float 82 stops signaling. The controller 60 issues a command to the pilot line 70 to supply compressed air to the on-off valve 54 when the signal sent from the float 82 is stopped. The spool (not shown) is moved by the compressed air supplied by the pilot line 70, and the open / close valve 54 is opened. When the opening / closing valve 54 is opened, the cooling device 50 supplies the refrigerant to the spiral pipe 52.
 この冷却装置50は、フロート82が設けられている所定位置201よりもチャンバー10内の上側を冷却することによって、チャンバー10内の上側に滞留する気体の体積を収縮させ、チャンバー10内を減圧し易くする機能も有している。チャンバー10内が減圧された場合、液体100に溶存している気体は気泡として現れやすくなる。冷却装置50は、こうした原理を利用することによって液体100に溶存する気体を液体100から除去させや易くしている。 The cooling device 50 cools the upper side in the chamber 10 from the predetermined position 201 where the float 82 is provided, thereby contracting the volume of the gas staying in the upper side in the chamber 10 and reducing the pressure in the chamber 10. It also has a function to make it easier. When the pressure inside the chamber 10 is reduced, the gas dissolved in the liquid 100 tends to appear as bubbles. The cooling device 50 makes it easy to remove the gas dissolved in the liquid 100 from the liquid 100 by using such a principle.
 また、冷却装置50が以上のように作動することによって、チャンバー10内の上側が冷却される。液体100が蒸発して気化した場合、チャンバー10内の上側を冷却することは、気化した状態から再び液体の状態に戻すことができる。液体100に戻すことによってチャンバー10内が減圧されるので、冷却装置50は液体100から気体を効果的に脱気させることができる。こうした冷却装置50は、沸点が低い液体を脱気する場合に特に有効である。 Moreover, the upper side in the chamber 10 is cooled by operating the cooling device 50 as described above. When the liquid 100 evaporates and vaporizes, cooling the upper side in the chamber 10 can return the liquid state from the vaporized state again. Since the inside of the chamber 10 is decompressed by returning to the liquid 100, the cooling device 50 can effectively degas the liquid from the liquid 100. Such a cooling device 50 is particularly effective when degassing a liquid having a low boiling point.
 以上、脱気装置1がパイロットライン70を備え、パイロット圧を利用して開閉バルブ27,47及びポンプ30の作動を制御する場合について説明した。しかし、脱気装置1は、開閉バルブ27,42及びポンプ30を電磁的に制御するように構成してもよい。 The case where the deaeration device 1 includes the pilot line 70 and controls the operation of the on-off valves 27 and 47 and the pump 30 using the pilot pressure has been described above. However, the deaeration device 1 may be configured to electromagnetically control the open / close valves 27 and 42 and the pump 30.
 以上の構成を備えた脱気装置1は、既存の洗浄装置等の配管に当該脱気装置1を接続するだけで、既存の洗浄装置に組み込むことができる。 The deaeration apparatus 1 having the above configuration can be incorporated into an existing cleaning apparatus by simply connecting the deaeration apparatus 1 to a pipe of an existing cleaning apparatus or the like.
 [脱気装置の作用]
 以上の構成を備えた脱気装置1は、密閉されたチャンバー10内にその上部から液体100を注入すると共に、チャンバー10内に注入する液体100の流量よりも多くの流量の液体100をチャンバー10の下部から排出することによって、チャンバー10内を減圧している。そうした脱気装置1の具体的な作用及び液面センサー80の動作に応じて行われる制御の内容について、図3及び図4を参照しながら説明する。なお、以下では、液面101が到達する上限位置203をチャンバー10の上端(蓋11が存在する位置である。ただし、蓋11は図3に示していない。)に設定した場合を例にして説明する。
[Operation of deaerator]
The deaeration device 1 having the above-described configuration injects the liquid 100 into the sealed chamber 10 from above, and supplies the liquid 100 at a flow rate higher than the flow rate of the liquid 100 injected into the chamber 10. The inside of the chamber 10 is depressurized by discharging from the lower part of the chamber. The specific action of the deaeration device 1 and the content of the control performed according to the operation of the liquid level sensor 80 will be described with reference to FIGS. In the following, the upper limit position 203 where the liquid level 101 reaches is set to the upper end of the chamber 10 (the position where the lid 11 exists. However, the lid 11 is not shown in FIG. 3). explain.
 この脱気装置1は、チャンバー10内に溜められている液体100が増量と減量とを繰り返しながら液体100に溶存する気体を液体100から脱気している。すなわち、チャンバー10内に溜められた液体100の液量が増加し、液体100の液面101がチャンバー10の上端に到達する工程と、チャンバー10内に溜められた液体100の液量が減少し、液体100の液面101が下限位置202に到達する工程とが繰り返される。液体100に溶存する気体は、こうした工程が繰り返されている間に液体100から脱気される。 The degassing device 1 degass the gas dissolved in the liquid 100 from the liquid 100 while the liquid 100 stored in the chamber 10 repeats increasing and decreasing. That is, the amount of the liquid 100 stored in the chamber 10 increases, the liquid surface 101 of the liquid 100 reaches the upper end of the chamber 10, and the amount of the liquid 100 stored in the chamber 10 decreases. The process of the liquid surface 101 of the liquid 100 reaching the lower limit position 202 is repeated. The gas dissolved in the liquid 100 is degassed from the liquid 100 while these steps are repeated.
 (液面の上昇工程)
 脱気装置1の電源が投入される(図4のS1)と、コントローラ60は、注入部20に接続されたパイロットライン70及び排気部40に接続されたパイロットライン70に圧縮空気を流すように指令を出す。これにより注入部20の開閉バルブ27が開かれる。液体100は、図3(A)に示すように、注入部20のメインの配管21及びサブの配管25の双方からチャンバー10内に注入される(図4のS2)。また、電源が投入されることによって、ポンプ30の作動が開始する。そのとき、液体100は配管35からなるバイパス経路を流れており、ポンプ30は、配管35からなるバイパス経路を流れている液体100が供給されている。また、排気部40の開閉バルブ42が開かれる(図4のS3)。ポンプ30は、配管41及び配管31を介してチャンバー10内に滞留している気体を吸引しており、チャンバー10内に滞留している気体がチャンバー10の外に排気される。チャンバー10の外に排気された気体は、配管41及び排気管43を通って外に排気される。
(Liquid level rising process)
When the deaerator 1 is powered on (S1 in FIG. 4), the controller 60 causes the compressed air to flow through the pilot line 70 connected to the injection unit 20 and the pilot line 70 connected to the exhaust unit 40. Issue a command. Thereby, the opening / closing valve 27 of the injection part 20 is opened. As shown in FIG. 3A, the liquid 100 is injected into the chamber 10 from both the main pipe 21 and the sub pipe 25 of the injection unit 20 (S2 in FIG. 4). Moreover, the operation of the pump 30 starts when the power is turned on. At that time, the liquid 100 flows through the bypass path composed of the pipe 35, and the liquid 100 flowing through the bypass path composed of the pipe 35 is supplied to the pump 30. Further, the open / close valve 42 of the exhaust unit 40 is opened (S3 in FIG. 4). The pump 30 sucks the gas staying in the chamber 10 through the pipe 41 and the pipe 31, and the gas staying in the chamber 10 is exhausted outside the chamber 10. The gas exhausted out of the chamber 10 is exhausted through the pipe 41 and the exhaust pipe 43.
 液体100がチャンバー10内に注入され、液面101が上昇して下限位置202を通過したとき(図4のS5)、フロート83は液体100の浮力によって押し上げられる。フロート83が押し上げられることにより、フロート83は信号をコントローラ60に送る。この信号をコントローラ60に内蔵されたタイマー65が受けると、タイマー65が作動する(図4のS6)。タイマー65は液面101が下限位置202を通過してチャンバー10の上端に到達するまでの時間が設定されており、液面101がチャンバー10の上端に到達するまで、コントローラ60は開閉バルブ27を開いておくように制御している。 When the liquid 100 is injected into the chamber 10 and the liquid level 101 rises and passes through the lower limit position 202 (S5 in FIG. 4), the float 83 is pushed up by the buoyancy of the liquid 100. When the float 83 is pushed up, the float 83 sends a signal to the controller 60. When this signal is received by the timer 65 built in the controller 60, the timer 65 is activated (S6 in FIG. 4). The timer 65 is set to a time until the liquid level 101 passes the lower limit position 202 and reaches the upper end of the chamber 10. The controller 60 controls the opening / closing valve 27 until the liquid level 101 reaches the upper end of the chamber 10. Controls to keep open.
 なお、冷却装置50は、上述したように、必要に応じて設けられる装置である。脱気装置1が冷却装置50を備えている場合、冷却装置50が備えるチラー51は、フロート82からの指令に基づいて螺旋状の配管52に冷媒を流したり、冷媒を停止したりしている。まず、電源が投入されたとき、チラー51は螺旋状の配管52に冷媒を循環させる(図4のS4)。液面101が上昇し、所定位置201を通過するとき(図4のS7)、フロート82が液体100の浮力によって押し上げられる。フロート82が押し上げられることにより、フロート82はコントローラ60に信号を送る。コントローラ60は、フロート82からの信号を受けることにより、螺旋状の配管52に冷媒を流すことを停止するようにチラー51に指令を出して、冷却が停止される(図4のS8)。 Note that the cooling device 50 is a device provided as necessary as described above. When the deaeration device 1 includes the cooling device 50, the chiller 51 included in the cooling device 50 causes the refrigerant to flow through the spiral pipe 52 or stops the refrigerant based on a command from the float 82. . First, when the power is turned on, the chiller 51 circulates the refrigerant through the spiral pipe 52 (S4 in FIG. 4). When the liquid level 101 rises and passes through the predetermined position 201 (S7 in FIG. 4), the float 82 is pushed up by the buoyancy of the liquid 100. When the float 82 is pushed up, the float 82 sends a signal to the controller 60. Upon receiving a signal from the float 82, the controller 60 issues a command to the chiller 51 to stop the flow of the refrigerant through the spiral pipe 52, and the cooling is stopped (S8 in FIG. 4).
 (液面の上昇工程から下降工程への切り替わり)
 タイマー65の設定時間が経過したとき(図4のS9)、図3(B)に示すように、液面101がチャンバー10の上端に到達する。コントローラ60は、タイマー65の設定時間が経過したとき、注入部20の開閉バルブ27に接続されたパイロットライン70及び排気部40の開閉バルブ42に接続されたパイロットライン70に流されていた圧縮空気を停止する指令を出す。その結果、注入部20の開閉バルブ27は閉じられ、液体100はメインの配管21のみからチャンバー10内に注入される。また、排気部40の開閉バルブ42が閉じられ(図4のS10)、チャンバー10の内部は密閉される。
(Switching from rising process to descending process)
When the set time of the timer 65 has elapsed (S9 in FIG. 4), the liquid level 101 reaches the upper end of the chamber 10 as shown in FIG. When the set time of the timer 65 elapses, the controller 60 compresses the compressed air that has flowed through the pilot line 70 connected to the opening / closing valve 27 of the injection unit 20 and the pilot line 70 connected to the opening / closing valve 42 of the exhaust unit 40. A command to stop is issued. As a result, the opening / closing valve 27 of the injection unit 20 is closed, and the liquid 100 is injected into the chamber 10 only from the main pipe 21. Further, the open / close valve 42 of the exhaust unit 40 is closed (S10 in FIG. 4), and the inside of the chamber 10 is sealed.
 (液面の下降工程)
 注入部20の開閉バルブ27が閉じられとき、液体100が注入部20のメインの配管21のみからチャンバー10内に注入されるので、メインの配管21のみからチャンバー10内に注入される液体100の流量は、ポンプ30によってチャンバー10内から排出される液体100の流量はよりも少なくなる。そのため、図3(C)に示すように、チャンバー10内に溜められている液体100は注入量と排出量との差の分だけ徐々に減少する(図4のS11)。また、この工程では、排気部40の開閉バルブ42は閉じられているので、チャンバー10の内部は密閉されている。そのため、チャンバー10内に溜められた液体100がポンプ30によって強制的にチャンバー10から排出される際に、チャンバー10内が減圧される。液体100に溶存している気体は、チャンバー10内が減圧する際に、液体100の内部から気泡として現れて液体100から除去される。気泡として現れた気体は、液面が下降する工程ではチャンバー10の上部に滞留する。
(Liquid level lowering process)
When the opening / closing valve 27 of the injection unit 20 is closed, the liquid 100 is injected into the chamber 10 only from the main pipe 21 of the injection unit 20, so that the liquid 100 injected into the chamber 10 only from the main pipe 21 is used. The flow rate of the liquid 100 discharged from the chamber 10 by the pump 30 is smaller. Therefore, as shown in FIG. 3C, the liquid 100 stored in the chamber 10 gradually decreases by the difference between the injection amount and the discharge amount (S11 in FIG. 4). In this process, the opening / closing valve 42 of the exhaust unit 40 is closed, so that the interior of the chamber 10 is sealed. Therefore, when the liquid 100 stored in the chamber 10 is forcibly discharged from the chamber 10 by the pump 30, the pressure in the chamber 10 is reduced. The gas dissolved in the liquid 100 appears as bubbles from the inside of the liquid 100 and is removed from the liquid 100 when the inside of the chamber 10 is depressurized. The gas that appears as bubbles stays in the upper part of the chamber 10 in the process of lowering the liquid level.
 なお、脱気装置1が冷却装置50を備えている場合、冷却装置50は、次のようにして作動の開始が制御される。すなわち、液面が下降し、所定位置201を通過するとき(図4のS12)、浮力によって押し上げられていたフロート82は降下する。フロート82が下降することによって、フロート82は信号を停止する。コントローラ60は、フロート82が信号を送ることを停止したとき、螺旋状の配管52に冷媒を循環させるようにチラー51に指令を出して冷却するように制御する(図4のS13)。冷却装置50がこのように作動を開始したとき、チャンバー10の内部は、所定位置201よりも上側の領域が冷却される。その結果、液体が蒸発してチャンバー10の上部に滞留していても、冷却されることによって、蒸発したものが再び液化する。冷却装置50は、蒸発したものを再び液化することによって、液体100の脱気の効果を向上させている。 In addition, when the deaeration device 1 includes the cooling device 50, the start of the operation of the cooling device 50 is controlled as follows. That is, when the liquid level descends and passes through the predetermined position 201 (S12 in FIG. 4), the float 82 pushed up by the buoyancy descends. As the float 82 descends, the float 82 stops the signal. When the float 82 stops sending a signal, the controller 60 instructs the chiller 51 to circulate the refrigerant through the spiral pipe 52 and controls it to cool (S13 in FIG. 4). When the cooling device 50 starts operating in this way, the area inside the chamber 10 above the predetermined position 201 is cooled. As a result, even if the liquid evaporates and stays in the upper part of the chamber 10, the evaporated liquid is liquefied again by cooling. The cooling device 50 improves the effect of degassing the liquid 100 by liquefying the evaporated material again.
 (液面の下降工程から上昇工程への切り替わり)
 チャンバー10内に溜められた液体100が減少し、液面101が下限位置202に到達したとき(図4のS14)、図3(D)に示すように、液体100の浮力により押し上げられていたフロート83は降下する。フロート83が下降すると、液面センサー80は信号を送ることを停止する。コントローラ60は、液面センサー80が信号を送ることを停止したとき、注入部20に接続されたパイロットライン70に圧縮空気を流す指令を出す。これにより注入部20の開閉バルブ27が開かれる。また、コントローラ60は、排気部40に接続されているパイロットライン70に圧縮空気を流す指令を出す。これにより排気部40の開閉バルブ42は開かれる(図4のS15)。
(Switching from the descent process to the rise process)
When the liquid 100 stored in the chamber 10 decreased and the liquid level 101 reached the lower limit position 202 (S14 in FIG. 4), the liquid 100 was pushed up by the buoyancy of the liquid 100 as shown in FIG. The float 83 descends. When the float 83 descends, the liquid level sensor 80 stops sending signals. When the liquid level sensor 80 stops sending a signal, the controller 60 issues a command for flowing compressed air to the pilot line 70 connected to the injection unit 20. Thereby, the opening / closing valve 27 of the injection part 20 is opened. Further, the controller 60 issues a command for flowing compressed air to the pilot line 70 connected to the exhaust unit 40. Thereby, the opening / closing valve 42 of the exhaust part 40 is opened (S15 in FIG. 4).
 (2回目以降の液面の上昇工程及び下降工程)
 注入部20の開閉バルブ27が開かれたとき、液体100はメインの配管21及びサブの配管25の双方からチャンバー10内に注入される。メインの配管21及びサブの配管25の双方からチャンバー10内に注入される液体100の流量は、ポンプ30によりチャンバー10内から排出される液体100の流量よりも多い。そのため、注入される液体100の流量と排出される液体100の流量との差の分だけチャンバー10内に溜められる液体100の流量は増加して液面101が上昇する(図4のS16)。フロート83は、液面101の上昇に伴って液体100の浮力によって押し上げられる。フロート83が押し上げられたとき、フロート83はコントローラ60に信号を送る。コントローラ60に内蔵されたタイマー65は、フロート83からの信号を受けることにより作動を開始する(図4のS17)。
(Liquid level rising and lowering processes for the second and subsequent times)
When the opening / closing valve 27 of the injection unit 20 is opened, the liquid 100 is injected into the chamber 10 from both the main pipe 21 and the sub pipe 25. The flow rate of the liquid 100 injected into the chamber 10 from both the main pipe 21 and the sub pipe 25 is larger than the flow rate of the liquid 100 discharged from the chamber 10 by the pump 30. Therefore, the flow rate of the liquid 100 stored in the chamber 10 is increased by the difference between the flow rate of the injected liquid 100 and the discharged liquid 100, and the liquid level 101 rises (S16 in FIG. 4). The float 83 is pushed up by the buoyancy of the liquid 100 as the liquid level 101 rises. When the float 83 is pushed up, the float 83 sends a signal to the controller 60. The timer 65 built in the controller 60 starts operating upon receiving a signal from the float 83 (S17 in FIG. 4).
 コントローラ60、タイマー65の設定時間が経過するまで、開閉バルブ27を開いた状態を維持するように制御しているので、図3(E)に示すように、チャンバー10に溜められる液体100の液面101は上昇する。また、開閉バルブ42が開いているので、ポンプ30は配管31及び配管41を介してチャンバー10に滞留している気体を吸引し、チャンバー10の外に排気する。 Since the controller 60 and the timer 65 are controlled to maintain the open / close valve 27 until the set time elapses, the liquid 100 stored in the chamber 10 is maintained as shown in FIG. Surface 101 rises. In addition, since the open / close valve 42 is open, the pump 30 sucks the gas staying in the chamber 10 through the pipe 31 and the pipe 41 and exhausts it outside the chamber 10.
 タイマー65の設定時間が経過して(図4のS20)、図3(F)に示すように、液面101がチャンバー10の上端に到達したとき、コントローラ60は、排気部40の開閉バルブ42を閉じるように制御する(図4のS21)。また、注入部20の開閉バルブ27を閉じて、チャンバー10内に注入する液体100の流量をチャンバー10内から排出される液体100の流量よりも少なくする(図4のS22)。 When the set time of the timer 65 elapses (S20 in FIG. 4) and the liquid level 101 reaches the upper end of the chamber 10 as shown in FIG. 3 (F), the controller 60 opens and closes the open / close valve 42 of the exhaust unit 40. Is closed (S21 in FIG. 4). Further, the opening / closing valve 27 of the injection unit 20 is closed, and the flow rate of the liquid 100 injected into the chamber 10 is made smaller than the flow rate of the liquid 100 discharged from the chamber 10 (S22 in FIG. 4).
 なお、脱気装置1が冷却装置50を備えている場合、液面101が所定位置201を通過するとき(図4のS18)に、コントローラ60はフロート82からの信号に基づいて冷却装置50の作動を上述した場合と同様に制御して冷却を停止する(図4のS19)。 When the deaeration device 1 includes the cooling device 50, when the liquid level 101 passes through the predetermined position 201 (S18 in FIG. 4), the controller 60 sets the cooling device 50 based on the signal from the float 82. The operation is controlled in the same manner as described above to stop cooling (S19 in FIG. 4).
 注入部20の開閉バルブ27を閉じた後、チャンバー10内に注入される流量よりも排出される流量が多くなるので、チャンバー10内に溜められた液体100の液面101は下降する。液面101が下降して所定位置201を通過したとき(図4のS23)、再び冷却が開始される(図4のS24)。液面101はさらに下降し、チャンバー内の下限位置202に到達する。 After closing the opening / closing valve 27 of the injection unit 20, the flow rate discharged is larger than the flow rate injected into the chamber 10, so that the liquid level 101 of the liquid 100 stored in the chamber 10 falls. When the liquid level 101 descends and passes the predetermined position 201 (S23 in FIG. 4), cooling is started again (S24 in FIG. 4). The liquid level 101 further descends and reaches the lower limit position 202 in the chamber.
 脱気装置1は、こうした工程(図4のS15からS25)を繰り返し行うことによって、液体100に溶存する気体を液体100から除去する。脱気装置1がこうした工程を繰り返し行っている間、圧力センサー90は、チャンバー10の内圧を常時計測している。なお、脱気装置1がこうした工程を行う1サイクルの時間は、チャンバー10の容量や注入部20がチャンバー10内に注入する液体100の流量、及びポンプ30がチャンバー10内から排出する液体100の流量に応じて適宜に設定される。 The degassing device 1 removes the gas dissolved in the liquid 100 from the liquid 100 by repeatedly performing these steps (S15 to S25 in FIG. 4). While the deaeration device 1 repeatedly performs these steps, the pressure sensor 90 constantly measures the internal pressure of the chamber 10. Note that the time for one cycle in which the deaeration device 1 performs these steps is the capacity of the chamber 10, the flow rate of the liquid 100 injected into the chamber 10 by the injection unit 20, and the liquid 100 discharged from the chamber 10 by the pump 30. It is set appropriately according to the flow rate.
 なお、脱気装置1がこうした工程を繰り返し行っている間に、液体100に気体が混入することによってチャンバー10内が所望の圧力まで減圧されないおそれがある。その場合、コントローラ60は、圧力センサー90からの圧力信号に基づいて、脱気装置1の動作をリセットするように脱気装置1の動作を制御する。具体的には、コントローラ65は、圧力センサー90から送信される圧力信号と記憶部に記憶されている最高内圧とを比較し、一定時間の間に最高内圧よりも高い圧力信号が圧力センサー90から送信され続けた場合、脱気装置1の動作をリセットする。すなわち、チャンバー10を空にし、次いで、液体100をチャンバー10に入れて液面101を上昇させて、フロート83を作動させると共に、フロート83からの信号に基づいてタイマー65を作動させる。 In addition, there is a possibility that the inside of the chamber 10 may not be depressurized to a desired pressure due to gas mixed into the liquid 100 while the degassing device 1 repeatedly performs these steps. In that case, the controller 60 controls the operation of the deaeration device 1 to reset the operation of the deaeration device 1 based on the pressure signal from the pressure sensor 90. Specifically, the controller 65 compares the pressure signal transmitted from the pressure sensor 90 with the maximum internal pressure stored in the storage unit, and a pressure signal higher than the maximum internal pressure is output from the pressure sensor 90 for a predetermined time. If the transmission continues, the operation of the deaeration device 1 is reset. That is, the chamber 10 is emptied, then the liquid 100 is put into the chamber 10 to raise the liquid level 101, the float 83 is activated, and the timer 65 is activated based on the signal from the float 83.
 なお、液体100の液面101は、フロート82が設けられた所定位置201とチャンバー100の上端との間の任意の位置に到達するように制御してもよい。その場合、液面101が所望の位置に到達するようにタイマーの時間を設定することによって、開閉バルブ27の作動は制御される。 It should be noted that the liquid surface 101 of the liquid 100 may be controlled to reach an arbitrary position between the predetermined position 201 where the float 82 is provided and the upper end of the chamber 100. In that case, the operation of the on-off valve 27 is controlled by setting a timer time so that the liquid level 101 reaches a desired position.
 こうした脱気装置1及び脱気方法は、以下に列記するように種々の効果を奏する。 Such deaeration device 1 and deaeration method have various effects as listed below.
 脱気装置1及び脱気方法は、超音波を利用して電子部品やウエハー等を洗浄したり、表面の不純物を剥離したりする洗浄システムに組み込むことによってその効果を向上させることができる。ただし、超音波を利用した洗浄システム以外の一般的に用いられている洗浄装置に組み込んで電子部品やウエハー等を洗浄する洗浄液から気体を脱気するために利用することもできる。 The degassing apparatus 1 and the degassing method can improve the effect by incorporating them into a cleaning system that cleans electronic components and wafers using ultrasonic waves, or removes impurities on the surface. However, it can also be used for degassing a cleaning liquid for cleaning electronic components, wafers, and the like by incorporating it into a generally used cleaning apparatus other than a cleaning system using ultrasonic waves.
 脱気装置1及び脱気方法は、液体から超音波障害物を除去し、キャビテーション効果を向上させることができる。 The degassing device 1 and the degassing method can remove ultrasonic obstacles from the liquid and improve the cavitation effect.
 脱気装置1及び脱気方法は、揮発性の溶剤を利用することができる。例えば、剥離液としてNMP(N-メチル-2-ピロリドン)、フォトレジスト剥離液等を用いることができる。 The degassing apparatus 1 and the degassing method can use a volatile solvent. For example, NMP (N-methyl-2-pyrrolidone), a photoresist stripping solution, or the like can be used as the stripping solution.
 脱気装置1及び脱気方法は、液体100が溶存する気体の影響を受けて劣化することを防止することができる。特に、溶存する気体が酸素の場合、脱気装置1及び脱気方法は、液体が酸化することを防止することができる。 The degassing device 1 and the degassing method can prevent the liquid 100 from being deteriorated by the influence of the gas in which the liquid 100 is dissolved. In particular, when the dissolved gas is oxygen, the degassing apparatus 1 and the degassing method can prevent the liquid from being oxidized.
 脱気装置1及び脱気方法は、洗浄や剥離等の時間を短縮させることができる。 The degassing device 1 and the degassing method can shorten the time for cleaning and peeling.
 脱気装置1は、その他に、既存の洗浄装置等が備える配管に接続するだけで洗浄装置等に容易に組み込むことができるという効果や、定期的なメインテナンスをする必要がないという効果を奏する。 The deaeration device 1 has an effect that it can be easily incorporated into a cleaning device only by connecting to a pipe provided in an existing cleaning device, and that there is no need for regular maintenance.
 1 脱気装置
 10 チャンバー
 11 本体
 12 底面
 13 排出部
 15 蓋
 20 注入部
 21 メインの配管
 22 フィルタ
 25 サブの配管(流量調整手段)
 26 フィルタ
 27 開閉バルブ(流量調整手段)
 30 ポンプ(排出手段)
 31 配管
 35 配管
 40 排気部
 41 配管
 42 開閉バルブ(開閉手段)
 50 冷却装置
 51 チラー
 52 螺旋状の配管
 53 配管
 60 コントローラ
 65 タイマー
 70 パイロットライン
 80 液面センサー
 81 心棒
 82 フロート
 83 フロート(下限センサー)
 90 圧力センサー
 100 液体
 101 液面
 201 所定位置
 202 下限位置
 203 上限位置
 
 
DESCRIPTION OF SYMBOLS 1 Deaeration device 10 Chamber 11 Main body 12 Bottom surface 13 Discharge part 15 Lid 20 Injection part 21 Main piping 22 Filter 25 Sub piping (flow rate adjusting means)
26 Filter 27 Open / close valve (flow rate adjusting means)
30 Pump (Discharge means)
31 Piping 35 Piping 40 Exhaust section 41 Piping 42 Open / close valve (open / close means)
50 Cooling Device 51 Chiller 52 Spiral Piping 53 Piping 60 Controller 65 Timer 70 Pilot Line 80 Liquid Level Sensor 81 Mandrel 82 Float 83 Float (Lower Limit Sensor)
90 Pressure sensor 100 Liquid 101 Liquid level 201 Predetermined position 202 Lower limit position 203 Upper limit position

Claims (8)

  1.  密閉可能な構造を有し、脱気される液体が溜められるチャンバーと、
     前記チャンバーの内部の密閉状態を保持しつつ、前記チャンバーの上部から前記チャンバー内に前記液体を注入する注入部と、
     前記チャンバー内に溜められている前記液体を前記チャンバーの下部から排出させる排出手段と、を備え、
     前記排出手段が、前記チャンバーの内部を密閉した状態で、前記チャンバー内に注入する前記液体の流量よりも多くの流量の前記液体を前記チャンバー内から排出し、前記チャンバー内を減圧させることを特徴とする脱気装置。
    A chamber having a sealable structure and storing a liquid to be degassed;
    An injection part for injecting the liquid into the chamber from the upper part of the chamber, while maintaining a sealed state inside the chamber;
    Discharging means for discharging the liquid stored in the chamber from the lower part of the chamber,
    The discharge means discharges the liquid at a flow rate larger than the flow rate of the liquid to be injected into the chamber while the inside of the chamber is sealed, and depressurizes the chamber. And deaeration device.
  2.  前記チャンバー内に溜めた液体から脱気された気体を排気する排気部と、
     前記排気部を開閉する開閉手段と、
     前記チャンバー内に注入する前記液体の流量を調整する注入量調整手段と、
     前記開閉手段の動作及び前記注入量調整手段の動作を制御するコントローラと、をさらに備え、
     前記コントローラは、
     前記注入量調整手段を制御して前記チャンバー内から排出される前記液体の流量よりも少ない流量の前記液体を前記チャンバー内に注入する間に、前記開閉手段で前記排気部を閉じて前記チャンバー内を密閉状態とし、
     前記注入量調整手段を制御して前記チャンバー内から排出する前記液体の流量よりも多くの前記液体を前記チャンバー内に注入する間に、前記開閉手段で前記排気部を開いて前記チャンバー内の密閉状態を解除する制御している、請求項1に記載の脱気装置。
    An exhaust section for exhausting a gas degassed from the liquid stored in the chamber;
    Opening and closing means for opening and closing the exhaust part;
    Injection amount adjusting means for adjusting the flow rate of the liquid injected into the chamber;
    A controller for controlling the operation of the opening / closing means and the operation of the injection amount adjusting means,
    The controller is
    While injecting the liquid having a flow rate smaller than the flow rate of the liquid discharged from the chamber by controlling the injection amount adjusting unit, the exhaust unit is closed by the opening / closing unit to close the inside of the chamber. Is sealed and
    While the liquid amount larger than the flow rate of the liquid discharged from the chamber by controlling the injection amount adjusting means is injected into the chamber, the exhaust part is opened by the opening / closing means to seal the inside of the chamber. The deaeration device according to claim 1, wherein the deaeration device is controlled to release the state.
  3.  前記排出手段は、前記排気部に接続されており、前記開閉手段が開いたときに前記チャンバー内から排気される気体を吸引している、請求項2に記載の脱気装置。 The deaeration device according to claim 2, wherein the exhaust unit is connected to the exhaust unit and sucks a gas exhausted from the chamber when the opening / closing unit is opened.
  4.  前記チャンバー内に溜められている前記液体の液面があらかじめ設定された前記チャンバーの下限位置に到達したことを検出する下限センサーと、
     前記下限センサーからの信号に基づいて作動するタイマーと、をさらに備え、
     前記下限センサーが、前記液体の液面が前記下限位置に到達したことを検出したときに、前記コントローラは、前記注入量調整手段の動作を制御して前記チャンバーから排出させる前記液体の流量よりも多くの流量の前記液体を前記チャンバーに注入するように制御し、
     前記タイマーが作動してから前記液体の液面が前記チャンバーのあらかじめ設定された上限位置に到達するまでに要する所定時間を経過したときに、前記コントローラは、前記注入量調整手段の動作を制御して前記チャンバーから排出される前記液体の流量よりも少ない流量の前記液体を前記チャンバーに注入するように制御している、請求項2又は3に記載の脱気装置。
    A lower limit sensor for detecting that the liquid level of the liquid stored in the chamber has reached a preset lower limit position of the chamber;
    A timer that operates based on a signal from the lower limit sensor, and
    When the lower limit sensor detects that the liquid level of the liquid has reached the lower limit position, the controller controls the operation of the injection amount adjusting means to discharge the liquid from the chamber. Control to inject a large amount of the liquid into the chamber;
    The controller controls the operation of the injection amount adjusting means when a predetermined time required until the liquid level of the liquid reaches the preset upper limit position of the chamber after the timer is activated. The deaeration device according to claim 2, wherein the liquid is controlled to be injected into the chamber at a flow rate smaller than a flow rate of the liquid discharged from the chamber.
  5.  前記チャンバー内のあらかじめ設定された所定位置よりも上側を冷却する冷却装置を備えている、請求項1~4のいずれか1項に記載の脱気装置。 The deaeration device according to any one of claims 1 to 4, further comprising a cooling device that cools an upper side of a predetermined position in the chamber.
  6.  密閉されたチャンバーの内部に注入部によって当該チャンバーの上部から液体を注入し、
     所定の条件を満たしており、前記密閉されたチャンバー内に液体を注入する際に、前記チャンバー内に注入する液体の流量よりも多くの流量の前記液体を前記チャンバーの下部から排出し、前記チャンバー内を減圧させることを特徴とする脱気方法。
    Inject liquid from the top of the chamber by the injection part into the sealed chamber,
    When the liquid is injected into the sealed chamber that satisfies a predetermined condition, the liquid having a flow rate larger than the flow rate of the liquid injected into the chamber is discharged from the lower portion of the chamber, and the chamber A degassing method characterized by decompressing the inside.
  7.  前記液体の液面があらかじめ設定された前記チャンバー内の下限位置に到達したときに、前記チャンバー内から排出される前記液体の流量よりも多い流量の前記液体を前記チャンバー内に注入するように制御し、
     前記液体の液面が前記チャンバー内のあらかじめ設定された上限位置に到達したときに、前記チャンバー内から排出される前記液体の流量よりも少ない流量の前記液体を前記チャンバー内に注入するように制御している、請求項6に記載の脱気方法。
    When the liquid level of the liquid reaches a preset lower limit position in the chamber, control is performed so that the liquid having a flow rate larger than the flow rate of the liquid discharged from the chamber is injected into the chamber. And
    When the liquid level of the liquid reaches a preset upper limit position in the chamber, control is performed so that the liquid having a flow rate smaller than the flow rate of the liquid discharged from the chamber is injected into the chamber. The deaeration method according to claim 6.
  8.  前記チャンバー内のあらかじめ設定された所定位置よりも上側を冷却している、請求項6又は7に記載の脱気方法。
     
    The deaeration method according to claim 6 or 7, wherein an upper side of a predetermined position in the chamber is cooled.
PCT/JP2013/082235 2013-11-29 2013-11-29 Degassing device and degassing method WO2015079571A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/082235 WO2015079571A1 (en) 2013-11-29 2013-11-29 Degassing device and degassing method
JP2015550298A JP6227005B2 (en) 2013-11-29 2013-11-29 Deaeration device and deaeration method
KR1020167011303A KR102182891B1 (en) 2013-11-29 2013-11-29 Degassing device and degassing method
CN201380081167.9A CN105764584B (en) 2013-11-29 2013-11-29 Degasser and degassing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/082235 WO2015079571A1 (en) 2013-11-29 2013-11-29 Degassing device and degassing method

Publications (1)

Publication Number Publication Date
WO2015079571A1 true WO2015079571A1 (en) 2015-06-04

Family

ID=53198556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082235 WO2015079571A1 (en) 2013-11-29 2013-11-29 Degassing device and degassing method

Country Status (4)

Country Link
JP (1) JP6227005B2 (en)
KR (1) KR102182891B1 (en)
CN (1) CN105764584B (en)
WO (1) WO2015079571A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022540325A (en) * 2019-06-18 2022-09-15 エナプター エス.アール.エル. Liquid degassing means and method
US11597550B2 (en) 2018-01-10 2023-03-07 Optima consumer GmbH Device and method for degassing and gassing containers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244597A1 (en) * 2018-06-20 2019-12-26 株式会社イズミフードマシナリ Extraction apparatus and extraction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002074703A1 (en) * 2001-03-12 2002-09-26 Ebara Corporation Method and device for fluid treatment
JP2003275745A (en) * 2002-03-26 2003-09-30 Izumi Food Machinery Co Ltd Deoxygenation method and deoxygenation device
JP2004330013A (en) * 2003-05-01 2004-11-25 Izumi Food Machinery Co Ltd Method and apparatus for preparing solution containing easily oxidizable substance
JP3144415U (en) * 2008-06-17 2008-08-28 カゴメ株式会社 Liquid food material deaerator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068010A (en) * 1983-09-22 1985-04-18 Yamatake Honeywell Co Ltd Degassing device for oil
JPH0515932Y2 (en) * 1988-11-24 1993-04-27
JP2556771Y2 (en) * 1993-05-18 1997-12-08 佐藤 辰彦 Degassing device
JPH09187603A (en) 1996-01-09 1997-07-22 Sato Tatsuhiko Deaerator and deaerator for ultrasonic washer
CN1186711A (en) * 1996-06-12 1998-07-08 尚德敏 Deoxidation method and device for boiler feeding water
JP4020492B2 (en) 1998-05-14 2007-12-12 株式会社スター・クラスター Vacuum deaerator
JP2000130704A (en) * 1998-10-22 2000-05-12 Toshiba Corp Deaerator controller
JP3579612B2 (en) 1999-04-07 2004-10-20 株式会社スター・クラスター Degassing device and ultrasonic cleaning device provided with the degassing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002074703A1 (en) * 2001-03-12 2002-09-26 Ebara Corporation Method and device for fluid treatment
JP2003275745A (en) * 2002-03-26 2003-09-30 Izumi Food Machinery Co Ltd Deoxygenation method and deoxygenation device
JP2004330013A (en) * 2003-05-01 2004-11-25 Izumi Food Machinery Co Ltd Method and apparatus for preparing solution containing easily oxidizable substance
JP3144415U (en) * 2008-06-17 2008-08-28 カゴメ株式会社 Liquid food material deaerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11597550B2 (en) 2018-01-10 2023-03-07 Optima consumer GmbH Device and method for degassing and gassing containers
JP2022540325A (en) * 2019-06-18 2022-09-15 エナプター エス.アール.エル. Liquid degassing means and method
JP7486212B2 (en) 2019-06-18 2024-05-17 エナプター エス.アール.エル. Means and methods for degassing liquids

Also Published As

Publication number Publication date
CN105764584A (en) 2016-07-13
KR20160091317A (en) 2016-08-02
KR102182891B1 (en) 2020-11-25
CN105764584B (en) 2017-08-25
JPWO2015079571A1 (en) 2017-03-16
JP6227005B2 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
JP6227005B2 (en) Deaeration device and deaeration method
CN110022958B (en) Degasser for removing gas components dissolved in liquid
JP6601275B2 (en) Vacuum cooling device
WO2016119708A1 (en) Water tank assembly for water purifier, and water purifier
RU2016113548A (en) SCREW COMPRESSOR WITH INJECTION LIQUID, CONTROL DEVICE FOR TRANSITION OF SUCH SCREW COMPRESSOR FROM UNLOADED CONDITION TO LOADED AND METHOD CARRIED OUT WITH THEIR USE
WO2019244597A1 (en) Extraction apparatus and extraction method
JP5438187B2 (en) Water supply pump device
JP5921160B2 (en) Pump control method and control apparatus therefor
JP2011131175A (en) Cleaning device
JP6095912B2 (en) Vacuum cooling device
JP2002306904A (en) Deaeration device and method for removing gaseous component dissolved in liquid
JP2017166413A (en) Operational method for water seal type vacuum pump and utilization device
KR20160026724A (en) Rinsing bath and substrate cleaning method using such rinsing bath
JP5942799B2 (en) Ballast water discharge device
KR101355347B1 (en) Supply apparatus of coolant for machine tool
JP3654874B2 (en) Oil dissolved gas extraction device
JP2002357516A (en) Gas-in-oil monitoring apparatus
US20180347902A1 (en) Method and system for drying an enclosure
JP5729678B2 (en) Cleaning device
JP5801563B2 (en) Drain discharge device for continuous pressure steaming device and drain discharge method for continuous pressure steaming device
JP5676976B2 (en) Capacitor cooling water control device for steam injection vacuum pump
JP6376792B2 (en) Contaminated water storage equipment
KR20150061304A (en) Automatic Fluid Discharging Device
KR20190079088A (en) Apparatus and method of dispensing coating material and dispensing valve for the same
JP5444128B2 (en) refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550298

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167011303

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898250

Country of ref document: EP

Kind code of ref document: A1