JP5921160B2 - Pump control method and control apparatus therefor - Google Patents

Pump control method and control apparatus therefor Download PDF

Info

Publication number
JP5921160B2
JP5921160B2 JP2011254666A JP2011254666A JP5921160B2 JP 5921160 B2 JP5921160 B2 JP 5921160B2 JP 2011254666 A JP2011254666 A JP 2011254666A JP 2011254666 A JP2011254666 A JP 2011254666A JP 5921160 B2 JP5921160 B2 JP 5921160B2
Authority
JP
Japan
Prior art keywords
characteristic line
flow rate
pump
discharge
cavitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011254666A
Other languages
Japanese (ja)
Other versions
JP2013108446A (en
Inventor
博文 黒木
博文 黒木
宏之 武田
宏之 武田
寛明 波多江
寛明 波多江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2011254666A priority Critical patent/JP5921160B2/en
Publication of JP2013108446A publication Critical patent/JP2013108446A/en
Application granted granted Critical
Publication of JP5921160B2 publication Critical patent/JP5921160B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、液体を貯留するタンクに対して注排水するためのポンプの制御方法及びその制御装置に関し、特にタンクから液体排出時にキャビテーションが発生しないように制御するポンプの制御方法及びその制御装置に関する。   The present invention relates to a pump control method and its control device for pouring and draining liquid to a tank storing liquid, and more particularly to a pump control method and control device for controlling so that cavitation does not occur when liquid is discharged from the tank. .

従来より、オイルタンカー等の油槽船では、プロペラ没水深度の確保や空荷時における安全航行の確保のために複数のバラストタンクを設け、貨油管や貨油ポンプ等の貨油管系設備とは分離されたバラスト注排水専用のバラスト管系設備を有している。これにより、出港前にバラスト水(海水)を注水して喫水を形成することができ、荷役中のバラスト水の排水や航海中のバラスト水の入替えを行なうことができる。   Conventionally, in oil tankers such as oil tankers, multiple ballast tanks have been provided in order to ensure the depth of submersion of the propeller and safe navigation when empty, and what are the freight oil pipe systems such as freight oil pipes and freight oil pumps? It has a ballast pipe system dedicated to the separated ballast injection and drainage. Thereby, the ballast water (seawater) can be poured before leaving the port to form a draft, and the drainage of ballast water during cargo handling and the replacement of ballast water during voyage can be performed.

ポンプの吸込性能を評価する数値としてNPSH(Net Positive Suction Head)が使用され、このNPSHには、実際上利用できる有効吸込ヘッド(NPSH Available)と、ポンプ自身の性能によって固有の値である必要吸込ヘッド(NPSH Required)とがある。
注排水用ポンプは、運転中に必要吸込ヘッドの値が有効吸込ヘッドの値を超えると、インペラにキャビテーションが発生して、ポンプの全揚程、流量及びポンプ効率が急激に低下し、騒音や振動、更には、インペラ周辺に潰食による破損を生じることが知られている。特に、前記の貨油ポンプやバラストポンプのような高速且つ大容量のポンプでは、小型のポンプに比べてキャビテーションが発生する可能性が高く、キャビテーション損傷の対策が深刻な課題である。
NPSH (Net Positive Suction Head) is used as a numerical value to evaluate the suction performance of the pump. This NPSH has an effective suction head that can be used in practice (NPSH Available) and the required suction that is specific to the performance of the pump itself. There is a head (NPSH Required).
Note: When the required suction head value exceeds the effective suction head value during operation, drainage pumps will cause cavitation in the impeller, resulting in a sudden drop in the total pump head, flow rate and pump efficiency, and noise and vibration. Furthermore, it is known that damage due to erosion occurs around the impeller. In particular, high-speed and large-capacity pumps such as the above-described coin oil pumps and ballast pumps are more likely to generate cavitation than small pumps, and countermeasures against cavitation damage are a serious issue.

特許文献1のポンプの運転制御装置は、回転数を制御可能なポンプの吸込側に設けられた吸込タンクと、ポンプ揚液から気体を分離する置換室と、置換室のポンプ揚液を吸込タンクに還流させる再循環弁と、必要吸込ヘッドと有効吸込ヘッドを演算すると共にポンプ回転数と吐出弁開度と再循環弁開度とを制御するコントローラとを備え、ポンプ運転時、吸込タンクの液位に基づき吐出弁の開度を絞り側に制御することにより、必要吸込ヘッドが有効吸込ヘッドを超えないようにポンプの吐出流量を調節している。   The pump operation control device of Patent Document 1 includes a suction tank provided on the suction side of a pump capable of controlling the number of revolutions, a replacement chamber for separating gas from the pumped liquid, and a suction tank for pumping liquid in the replacement chamber. A recirculation valve that recirculates the air and a controller that calculates the required suction head and the effective suction head and controls the pump rotation speed, the discharge valve opening, and the recirculation valve opening. By controlling the opening degree of the discharge valve to the throttle side based on the position, the discharge flow rate of the pump is adjusted so that the necessary suction head does not exceed the effective suction head.

また、油槽船のように大容量のポンプが必要とされる場合、回転数が一定に維持された、所謂定格回転数ポンプを備えた注排水設備が用いられている。このような注排水設備では、タンクに対して注排水するためのポンプの吐出側に接続された流量調整可能な吐出弁と、ポンプ吸込側の吸込圧を検出する吸込圧センサと、ポンプ吐出側の吐出圧を検出する吐出圧センサと、両センサにより検出された吸込圧と吐出圧に基づいて吐出弁を制御する制御器とを備えている。   In addition, when a large-capacity pump is required as in an oil tanker, a drainage system equipped with a so-called rated rotational speed pump in which the rotational speed is kept constant is used. In such an injection / drainage system, a discharge valve capable of adjusting the flow rate connected to the discharge side of the pump for injecting / draining the tank, a suction pressure sensor for detecting the suction pressure on the pump suction side, and a pump discharge side And a controller for controlling the discharge valve based on the suction pressure and the discharge pressure detected by both sensors.

図6は、本願出願人が採用してきた注排水制御に関するものであり、前記制御器は、タンクの液位(有効吸込ヘッド相当)がポンプ吸込側の吸込圧Pinにより代替え可能であることを利用して、吸込圧Pinとポンプの吐出流量Qとをパラメータとして夫々予め設定した、必要吸込ヘッド特性線Lhと、この必要吸込ヘッド特性線Lhから第1許容幅離隔させて流量減少側に設定したキャビテーション判定特性線Lcと、このキャビテーション判定特性線Lcよりも第2許容幅離隔させて流量減少側に設定した復帰判定特性線Lsとを記憶している。そして、検出された吸込圧Pinと吐出圧Poutとに基づいて演算された現在のポンプ流量Qと吸込圧Pinとで決まるポンプの作動状態が、吸込圧Pinの減少に応じてキャビテーション判定特性線Lcに達したとき、制御器は、作動状態が復帰判定特性線Ls上の作動状態になるまで吐出弁を絞り側へ調整し、その後、この調整制御を繰り返し行なっている。   FIG. 6 relates to the pouring / drainage control adopted by the applicant of the present application, and the controller utilizes that the tank liquid level (equivalent to an effective suction head) can be replaced by the suction pressure Pin on the pump suction side. Then, the suction pressure Pin and the pump discharge flow rate Q were set in advance as parameters, respectively, and the required suction head characteristic line Lh was set apart from the necessary suction head characteristic line Lh by the first allowable width and set to the flow rate reduction side. The cavitation determination characteristic line Lc and the return determination characteristic line Ls set on the flow rate decrease side by being separated from the cavitation determination characteristic line Lc by the second allowable width are stored. The pump operating state determined by the current pump flow rate Q and the suction pressure Pin calculated based on the detected suction pressure Pin and discharge pressure Pout is a cavitation determination characteristic line Lc according to the decrease in the suction pressure Pin. The controller adjusts the discharge valve to the throttle side until the operating state becomes the operating state on the return determination characteristic line Ls, and then repeatedly performs this adjustment control.

前記調整制御で使用される復帰判定特性線Lsは、タンクが水平状態のとき検出される吸込圧Pinよりも相対的に圧力が高く検出される傾斜状態からタンクが水平状態に復帰した場合、更には、船体復帰時の反動により反対側へタンクが傾斜した傾斜状態の場合でも、ポンプ吸込側の吸込圧Pin(有効吸込ヘッド)が必要吸込ヘッド特性線Lhを下回ることがないように、航行中の船体の揺動を考慮した設計条件に基づいた第2許容幅を用いて設定されている。   The return determination characteristic line Ls used in the adjustment control is further determined when the tank returns to the horizontal state from the inclined state where the pressure is detected to be relatively higher than the suction pressure Pin detected when the tank is in the horizontal state. Is navigating so that the suction pressure Pin (effective suction head) on the pump suction side does not fall below the required suction head characteristic line Lh even when the tank is tilted to the opposite side due to the reaction at the time of hull return The second allowable width is set based on the design conditions considering the swing of the hull.

特許第2716823号Japanese Patent No. 2716823

特許文献1のポンプの運転制御装置では、ポンプ回転数と吐出弁開度と再循環弁開度とを統合制御することにより、キャビテーションの抑制を自動制御することが可能である。
しかし、コントローラに与える制御条件が多く、そのための計測機器が増加するため、構造が複雑化し、製造コストや故障対応等のメインテナンスの面で不利になる虞がある。しかも、注排水作業の効率化のためにポンプの吐出流量を増加した場合、キャビテーションが発生する可能性が高まり、適正な吐出弁の開度調整が困難である。
In the pump operation control device of Patent Document 1, it is possible to automatically control suppression of cavitation by integrally controlling the pump rotation speed, the discharge valve opening, and the recirculation valve opening.
However, since many control conditions are given to the controller and the number of measuring instruments for that increase, the structure becomes complicated, which may be disadvantageous in terms of maintenance such as manufacturing cost and failure handling. In addition, when the discharge flow rate of the pump is increased in order to improve the efficiency of the pouring / drainage work, the possibility of cavitation increases, and it is difficult to adjust the opening of the appropriate discharge valve.

図6に示した注排水制御では、制御条件を検出する計測機器が少なく、吐出弁のみの調整制御であるため、簡単な構造でキャビテーションの発生を抑制することが可能である。
しかし、作動状態が吸込圧の減少に応じてキャビテーション判定特性線Lcに達した際に復帰判定特性線Ls上の作動状態になるまで吐出弁を絞り側へ調整しているため、ポンプの吐出流量が大幅に減少し、排水時間が長期化する虞がある。特に、オイルタンカー等の油槽船では、バラスト水の排出に数十時間要するため、排水時間の長期化は、日程や安全航行に影響を与えることが懸念される。
In the pouring / drainage control shown in FIG. 6, there are few measuring devices that detect the control conditions, and adjustment control is performed only on the discharge valve, so that the occurrence of cavitation can be suppressed with a simple structure.
However, when the operating state reaches the cavitation determination characteristic line Lc according to the decrease in the suction pressure, the discharge valve is adjusted to the throttle side until the operating state on the return determination characteristic line Ls is reached. There is a risk that the drainage time will be prolonged. In particular, in an oil tanker such as an oil tanker, since it takes tens of hours to discharge ballast water, there is a concern that prolonged drainage time may affect the schedule and safe navigation.

ポンプの吐出流量を増すため、前記復帰判定特性線をキャビテーション判定特性線Lcから第2許容幅よりも小さな許容幅だけ離隔させて設定することも可能である。しかし、航行中の船体は揺動しているため、許容幅を小さくした場合、キャビテーション発生の虞がある。即ち、船体の揺動が大きなとき、タンクが水平状態において検出される吸込圧よりも相対的に圧力が高く検出される傾斜状態で吸込圧がキャビテーション判定特性線Lcに達した場合、復帰判定特性線Ls上の作動状態になるまで吐出弁を絞り側へ調整中、或いは、調整後に、船体が反動により反対側へ傾斜した状態になることがある。このとき、キャビテーション判定特性線Lcから離隔した許容幅が小さな復帰判定特性線Lsを用いた調整制御を実行した場合、吐出弁を絞り側(復帰判定特性線Ls上の作動状態)に調整したにも拘わらず、ポンプ吸込側の吸込圧の増加が不足し、吸込圧が急激に低下した結果、吸込圧が必要吸込ヘッド特性線を下回る虞がある。   In order to increase the discharge flow rate of the pump, the return determination characteristic line can be set apart from the cavitation determination characteristic line Lc by an allowable width smaller than the second allowable width. However, since the navigating hull is swinging, cavitation may occur if the allowable width is reduced. That is, when the hull swing is large, if the suction pressure reaches the cavitation determination characteristic line Lc in the inclined state where the pressure is detected to be relatively higher than the suction pressure detected in the horizontal state, the return determination characteristic During the adjustment of the discharge valve to the throttle side until the operating state on the line Ls is reached, or after the adjustment, the hull may be inclined to the opposite side due to the reaction. At this time, when adjustment control using the return determination characteristic line Ls having a small allowable width separated from the cavitation determination characteristic line Lc is executed, the discharge valve is adjusted to the throttle side (operating state on the return determination characteristic line Ls). Nevertheless, the increase in the suction pressure on the pump suction side is insufficient, and as a result of the sudden decrease in the suction pressure, the suction pressure may fall below the required suction head characteristic line.

本発明の目的は、構造の簡単化を図りつつ、液体の排水時間の短縮化とキャビテーション発生の抑制とを両立できるポンプの制御方法及びその制御装置を提供することである。   An object of the present invention is to provide a pump control method and a control apparatus for the pump that can achieve both simplification of the structure and reduction of the drainage time of liquid and suppression of cavitation.

請求項1のポンプの制御方法は、液体を貯留するタンクに対して注排水するためのポンプの吐出側に接続された流量調整可能な吐出弁を、タンクから液体排出時にキャビテーションが発生しないように制御するポンプの制御方法において、前記ポンプ吸込側の吸込圧と流量をパラメータとして、NPSH特性線と、このNPSH特性線から第1許容幅離隔させて流量減少側に設定したキャビテーション判定特性線と、このキャビテーション判定特性線よりも第2許容幅離隔させて流量減少側に設定した復帰判定特性線とを予め設定して特性記憶手段に記憶しておき、吸込圧検出手段により検出したポンプ吸込側の吸込圧と、吐出圧検出手段により検出したポンプ吐出側の吐出圧とを用いて現在の流量を演算する第1工程と、前記現在流量と検出された吸込圧とで決まる作動状態が、吸込圧の減少に応じて前記キャビテーション判定特性線に達したか否か判定する第2工程と、前記第2工程で肯定判定された際に、前記作動状態が前記復帰判定特性線に達するまで吐出弁を絞り側へ調整する第3工程と、前記第3工程の後に前記作動状態が、流量に関して前記復帰判定特性線と前記キャビテーション判定特性線の中間近傍の作動状態になるまで吐出弁を開き側へ調整する第4工程と、を備えたことを特徴としている。 According to the pump control method of the first aspect of the present invention, the flow rate-adjustable discharge valve connected to the discharge side of the pump for pouring and draining the liquid is stored so that cavitation does not occur when the liquid is discharged from the tank. In the control method of the pump to be controlled, with the suction pressure and flow rate on the pump suction side as parameters, an NPSH characteristic line, and a cavitation determination characteristic line set on the flow rate reduction side separated from the NPSH characteristic line by a first allowable width; A return determination characteristic line set on the flow rate decrease side with a second allowable width away from the cavitation determination characteristic line is set in advance and stored in the characteristic storage unit, and the pump suction side detected by the suction pressure detection unit is stored. A first step of calculating the current flow rate using the suction pressure and the discharge pressure on the pump discharge side detected by the discharge pressure detecting means; A second step of determining whether or not the operating state determined by the sucked pressure has reached the cavitation determination characteristic line according to a decrease in the suction pressure, and the affirmative determination in the second step, the operation A third step of adjusting the discharge valve to the throttle side until the state reaches the return determination characteristic line; and after the third step, the operating state is in the middle of the return determination characteristic line and the cavitation determination characteristic line with respect to the flow rate. And a fourth step of adjusting the discharge valve to the open side until the operating state is reached.

請求項2のポンプの制御装置は、液体を貯留するタンクに対して注排水するためのポンプの吐出側に接続された流量調整可能な吐出弁を、タンクから液体排出時にキャビテーションが発生しないように制御するポンプの制御装置において、前記ポンプ吸込側の吸込圧を検出する吸込圧検出手段と、前記ポンプ吐出側の吐出圧を検出する吐出圧検出手段と、前記両検出手段により検出された吸込圧と吐出圧に基づいて吐出弁を制御する制御手段とを備え、前記制御手段は、前記検出された吸込圧と吐出圧に基づいて現在の流量を演算する流量演算手段と、前記ポンプ吸込側の吸込圧と流量をパラメータとして夫々予め設定した、NPSH特性線と、このNPSH特性線から第1許容幅離隔させて流量減少側に設定したキャビテーション判定特性線と、このキャビテーション判定特性線よりも第2許容幅離隔させて流量減少側に設定した復帰判定特性線とを記憶した特性記憶手段と、前記流量演算手段で演算された現在流量と検出された吸込圧とで決まる作動状態が、吸込圧の減少に応じて前記キャビテーション判定特性線に達した際に前記復帰判定特性線上の作動状態になるまで吐出弁を絞り側へ調整した後、流量に関して前記復帰判定特性線と前記キャビテーション判定特性線の中間近傍の作動状態になるまで吐出弁を開き側へ調整する吐出弁調整制御手段とを備えたことを特徴としている。 The pump control device according to claim 2 is configured such that a discharge valve capable of adjusting a flow rate connected to a discharge side of a pump for pouring and draining a liquid storing tank does not generate cavitation when the liquid is discharged from the tank. In the control device of the pump to be controlled, the suction pressure detecting means for detecting the suction pressure on the pump suction side, the discharge pressure detecting means for detecting the discharge pressure on the pump discharge side, and the suction pressure detected by the both detecting means And a control means for controlling the discharge valve based on the discharge pressure, the control means comprising: a flow rate calculating means for calculating a current flow rate based on the detected suction pressure and discharge pressure; and a pump suction side The NPSH characteristic line set in advance with the suction pressure and the flow rate as parameters, respectively, and the cavitation determination characteristic set on the flow rate decreasing side by separating the first allowable width from the NPSH characteristic line. And a characteristic storage means for storing a return determination characteristic line set on the flow rate reduction side with a second allowable width away from the cavitation determination characteristic line, a current flow rate calculated by the flow rate calculation means, and a detected suction When the operating state determined by the pressure reaches the cavitation determination characteristic line according to the decrease in the suction pressure, the discharge valve is adjusted to the throttle side until the operating state on the return determination characteristic line is reached, and then the return with respect to the flow rate is performed. Discharge valve adjustment control means for adjusting the discharge valve to the open side until an operating state near the middle between the determination characteristic line and the cavitation determination characteristic line is provided.

請求項1の発明によれば、ポンプを制御する制御条件が少なく且つそのための計測機器も少ないため、設備の構造を簡単化でき、製造コストや故障対応等のメインテナンスの面で有利である。ポンプの作動状態が吸込圧の減少に応じてキャビテーション判定特性線に達したとき、流量に関して復帰判定特性線とキャビテーション判定特性線の中間近傍の作動状態(目標安定流量)になるまで吐出弁を絞り側へ調整するため、復帰判定特性線上の作動状態になるまで吐出弁を絞り側へ調整したときのポンプ流量に比べてポンプ流量の減少幅を抑制でき、排水時間を短縮化することができる。 According to the first aspect of the present invention, since there are few control conditions for controlling the pump and there are few measuring instruments therefor, the structure of the facility can be simplified, which is advantageous in terms of maintenance such as manufacturing cost and failure handling. When the pump operating state reaches the cavitation determination characteristic line as the suction pressure decreases, the discharge valve is throttled until the operating state (target stable flow rate) is in the middle of the return determination characteristic line and the cavitation determination characteristic line with respect to the flow rate. Therefore, the amount of decrease in the pump flow rate can be suppressed compared to the pump flow rate when the discharge valve is adjusted to the throttle side until the operating state on the return determination characteristic line is reached, and the drainage time can be shortened.

また、吐出弁を復帰判定特性線とキャビテーション判定特性線の中間近傍の作動状態に調整する前段階において、吐出弁を一旦目標安定流量に対応した作動状態よりも絞り側の作動状態に調整することができる。それ故、タンクが水平状態において検出される吸込圧よりも相対的に圧力が高く検出される傾斜状態で吸込圧がキャビテーション判定特性線に達し、船体が反動により反対側へ傾斜した傾斜状態になった場合でも、前記作動状態よりも絞り側で且つ目標安定流量よりも絞り側の調整期間を形成することができるため、ポンプ吸込側の吸込圧の低下を抑えることができ、吸込圧が必要吸込ヘッド特性線を下回ることによるキャビテーションの発生を抑制することができる。しかも、前記絞り側の調整期間において、吐出弁を復帰判定特性線上の作動状態に調整しているため、吐出弁の調整制御を簡単化でき、キャビテーションの発生を一層抑制することができる。   Also, before adjusting the discharge valve to the operating state in the vicinity of the middle between the return determination characteristic line and the cavitation determination characteristic line, the discharge valve is temporarily adjusted to the throttle side operating state rather than the operating state corresponding to the target stable flow rate. Can do. Therefore, the suction pressure reaches the cavitation characteristic line in the inclined state where the pressure is detected to be relatively higher than the suction pressure detected in the horizontal state, and the hull is inclined to the opposite side due to the reaction. Even in this case, since it is possible to form an adjustment period on the throttle side with respect to the operating state and on the throttle side with respect to the target stable flow rate, it is possible to suppress a decrease in the suction pressure on the pump suction side, and the suction pressure is required. Occurrence of cavitation due to falling below the head characteristic line can be suppressed. In addition, since the discharge valve is adjusted to the operating state on the return determination characteristic line in the adjustment period on the throttle side, the adjustment control of the discharge valve can be simplified and the occurrence of cavitation can be further suppressed.

請求項2の発明によれば、基本的に、請求項1の発明と同様の効果を奏するポンプの制御装置を得ることができる。   According to the second aspect of the present invention, it is possible to obtain a pump control device that basically exhibits the same effect as the first aspect of the present invention.

本発明の実施例1に係るポンプの制御装置の全体構成図である。It is a whole block diagram of the control apparatus of the pump which concerns on Example 1 of this invention. 実施例1に係るポンプの特性線図を示し、(a)は全揚程とポンプ流量との関係式、(b)は必要吸込ヘッドとポンプ流量との関係式を示す図である。The characteristic line figure of the pump which concerns on Example 1 is shown, (a) is a relational expression of a total head and pump flow volume, (b) is a figure which shows the relational expression of a required suction head and pump flow volume. 吐出弁調整制御のフローチャートである。It is a flowchart of discharge valve adjustment control. 実施例1に係るポンプの調整制御の作動状態を示す図である。It is a figure which shows the operation state of the adjustment control of the pump which concerns on Example 1. FIG. 図4の要部拡大図である。It is a principal part enlarged view of FIG. 従来のポンプの調整制御の作動状態を示す図である。It is a figure which shows the operating state of the adjustment control of the conventional pump.

以下、本発明を実施するための形態について、タンカーのバラスト管系設備のポンプの制御装置に適用した実施例に基づいて説明する。尚、以下の説明は、ポンプの制御方法の説明を含むものである。   DESCRIPTION OF EMBODIMENTS Hereinafter, modes for carrying out the present invention will be described based on an embodiment applied to a pump control device of a tanker ballast pipe system facility. The following description includes a description of a pump control method.

図1に示すように、このポンプ1の制御装置は、ポンプ1の吸込側の吸込圧Pinを検出する吸込圧センサ2(吸込圧検出手段)と、ポンプ1の吐出側の吐出圧Poutを検出する吐出圧センサ3(吐出圧検出手段)と、制御器10(制御手段)とを備え、海水(液体)を貯留するバラストタンク4(タンク)に対して注排水するためのポンプ1の吐出側に接続された流量調整可能な吐出弁5を、バラストタンク4から海水排出時にキャビテーションが発生しないように制御している。このバラストタンク4は、1又は複数、例えば、船体の左右舷夫々に複数設けられ、各バラストタンク4がポンプ1に対して並列状に接続されている。   As shown in FIG. 1, the control device of the pump 1 detects a suction pressure sensor 2 (suction pressure detection means) that detects a suction pressure Pin on the suction side of the pump 1 and a discharge pressure Pout on the discharge side of the pump 1. The discharge side of the pump 1 is provided with a discharge pressure sensor 3 (discharge pressure detection means) and a controller 10 (control means) for pouring and draining a ballast tank 4 (tank) for storing seawater (liquid). The discharge valve 5 that is adjustable in flow rate is connected to the ballast tank 4 so that cavitation does not occur when the seawater is discharged from the ballast tank 4. One or a plurality of ballast tanks 4 are provided, for example, on the left and right sides of the hull, and each ballast tank 4 is connected to the pump 1 in parallel.

ポンプ1は、常時水面下に位置するように配置された吐出口6とバラストタンク4の下部近傍位置とを接続する接続配管7の途中部に設けられている。このポンプ1は、一定回転数で回動される定格回転数ポンプであり、一方向にのみ吐出可能に構成されている。それ故、ポンプ1は、吐出方向切替回路(図示略)を介して接続管管7に接続され、バラストタンク4から排水後において、海水を吸引してバラストタンク4に注水するとき、吐出方向切替回路を操作して海水の流れる方向を逆方向に変更している。   The pump 1 is provided in the middle of a connecting pipe 7 that connects a discharge port 6 disposed so as to be always located below the water surface and a position near the lower portion of the ballast tank 4. The pump 1 is a rated speed pump that is rotated at a constant speed, and is configured to discharge only in one direction. Therefore, the pump 1 is connected to the connecting pipe 7 via a discharge direction switching circuit (not shown), and after discharging from the ballast tank 4, when the seawater is sucked and poured into the ballast tank 4, the discharge direction is switched. The direction of seawater flow is changed to the opposite direction by operating the circuit.

制御器10は、吸込圧センサ2と吐出圧センサ3と吐出弁5とに夫々電気的に接続され、両センサ2,3により検出された吸込圧Pinと吐出圧Poutとに基づいて吐出弁5の開度を調整可能に構成されている。この制御器10は、マイクロコンピュータを有し、流量演算手段11と、特性記憶手段12と、吐出弁調整制御手段13とを備えている。
流量演算手段11は、検出された吸込圧Pinと吐出圧Poutとに基づいて現在のポンプ1の吐出流量Qを演算している。全揚程Hとポンプ流量Qとの関数f(H)が予め特性記憶手段12に記憶されているため(図2(a)参照)、流量演算手段11は、吸込圧Pinと吐出圧Poutとの圧力差に基づいて全揚程Hを算出し、この全揚程Hから関数f(H)を用いて現在の流量Qを演算している。
The controller 10 is electrically connected to the suction pressure sensor 2, the discharge pressure sensor 3, and the discharge valve 5. The discharge valve 5 is based on the suction pressure Pin and the discharge pressure Pout detected by the sensors 2 and 3. The degree of opening is adjustable. The controller 10 includes a microcomputer, and includes a flow rate calculation means 11, a characteristic storage means 12, and a discharge valve adjustment control means 13.
The flow rate calculation means 11 calculates the current discharge flow rate Q of the pump 1 based on the detected suction pressure Pin and discharge pressure Pout. Since the function f (H) of the total head H and the pump flow rate Q is stored in advance in the characteristic storage unit 12 (see FIG. 2A), the flow rate calculation unit 11 determines the suction pressure Pin and the discharge pressure Pout. The total head H is calculated based on the pressure difference, and the current flow rate Q is calculated from the total head H using a function f (H).

図2,図4,図5に示すように、特性記憶手段12には、前述した全揚程Hとポンプ流量Qとの関数f(H)と、ポンプ1の性能から予め設定されるポンプ流量Qと必要吸込ヘッドhとの関数f(Q)と、NPSH特性線Lhと、キャビテーション判定特性線Lcと、復帰判定特性線Lsとが予め記憶されている。   As shown in FIGS. 2, 4, and 5, the characteristic storage means 12 has a pump flow rate Q that is set in advance from the function f (H) of the total head H and the pump flow rate Q described above and the performance of the pump 1. And a function f (Q) of the required suction head h, an NPSH characteristic line Lh, a cavitation determination characteristic line Lc, and a return determination characteristic line Ls are stored in advance.

有効吸込ヘッドは、ポンプ1の基準面において、液体が持つ全圧が液体のその温度における飽和蒸気圧よりもいくら高いかをヘッド(水頭)を用いて表したものであり、本実施例では、ポンプ吸込側の吸込圧Pinが有効吸込ヘッドに相当している。これにより、必要吸込ヘッドhに相当するNPSH特性線Lhは、ポンプ吸込側の吸込圧Pinとポンプ1の吐出流量Qをパラメータとして、関数f(Q)に基づき予め設定することができる。それ故、キャビテーション判定特性線Lcは、NPSH特性線Lhから第1許容幅、例えば、ヘッド換算にて0.5m相当流量減少側に離隔させて設定し、復帰判定特性線Lsはキャビテーション判定特性線Lcから第2許容幅、例えば、ヘッド換算にて0.5m相当流量減少側に離隔させて設定している。尚、第2許容幅は、バラストタンク4が水平状態のとき検出される吸込圧Pinよりも相対的に圧力が高く検出される傾斜状態から船体復帰時の反動により反対側へタンクが傾斜した傾斜状態の場合でも、ポンプ吸込側の吸込圧PinがNPSH特性線Lhを下回ることがないように予め実験値に基づき設定されている。   The effective suction head is expressed by using the head (water head) how much the total pressure of the liquid is higher than the saturated vapor pressure of the liquid at the temperature on the reference surface of the pump 1, and in this embodiment, The suction pressure Pin on the pump suction side corresponds to the effective suction head. Thus, the NPSH characteristic line Lh corresponding to the necessary suction head h can be set in advance based on the function f (Q) with the suction pressure Pin on the pump suction side and the discharge flow rate Q of the pump 1 as parameters. Therefore, the cavitation determination characteristic line Lc is set to be separated from the NPSH characteristic line Lh by a first allowable width, for example, a flow rate decrease side corresponding to 0.5 m in terms of the head, and the return determination characteristic line Ls is the cavitation determination characteristic line. It is set apart from Lc to a second allowable width, for example, a flow rate decreasing side equivalent to 0.5 m in terms of head. Note that the second allowable width is an inclination in which the tank is inclined to the opposite side due to a reaction when the hull returns from an inclined state where the pressure is detected to be relatively higher than the suction pressure Pin detected when the ballast tank 4 is in a horizontal state. Even in the state, the suction pressure Pin on the pump suction side is set in advance based on experimental values so as not to fall below the NPSH characteristic line Lh.

吐出弁調整制御手段13は、流量演算手段11で演算された現在流量Qと検出された吸込圧Pinとから決まるポンプ1の作動状態Xが、吸込圧Pin(有効吸込ヘッド)の減少に応じてキャビテーション判定特性線Lcに達した際に復帰判定特性線Ls上の作動状態になるまで吐出弁5を絞り側へ調整した後、復帰判定特性線Lsとキャビテーション判定特性線Lcの中間近傍の目標安定流量Qtn(但し、n=1,2…)に対応した作動状態になるまで吐出弁5を開き側へ調整するように構成されている。これにより、ポンプ1を目標安定流量Qtnに調整する前に、目標安定流量Qtnよりもポンプ流量を絞った調整期間を確保することができる。   The discharge valve adjustment control unit 13 determines that the operating state X of the pump 1 determined from the current flow rate Q calculated by the flow rate calculation unit 11 and the detected suction pressure Pin is in accordance with a decrease in the suction pressure Pin (effective suction head). When the discharge valve 5 is adjusted to the throttle side until reaching the operating state on the return determination characteristic line Ls when the cavitation determination characteristic line Lc is reached, the target stability near the middle of the return determination characteristic line Ls and the cavitation determination characteristic line Lc is reached. The discharge valve 5 is adjusted to the open side until an operating state corresponding to the flow rate Qtn (where n = 1, 2,...) Is obtained. Thereby, before adjusting the pump 1 to the target stable flow rate Qtn, it is possible to ensure an adjustment period in which the pump flow rate is narrower than the target stable flow rate Qtn.

次に、図3の吐出弁調整制御のフローチャート及び図4,図5の説明図に基づき、ポンプ1の流量調整の処理手順について具体的に説明する。尚、Si(i=1,2…)は各ステップを示す。   Next, a processing procedure for adjusting the flow rate of the pump 1 will be specifically described based on the flowchart of the discharge valve adjustment control in FIG. 3 and the explanatory diagrams in FIGS. 4 and 5. Si (i = 1, 2,...) Indicates each step.

まず、S1にて、バラストタンク4からの排水開始と同時に、吸込圧センサ2で検出された吸込圧Pinと吐出圧センサ3で検出された吐出圧Poutとを夫々読み込み、S2へ移行する。S2では、吸込圧Pinと吐出圧Poutとから全揚程Hを算出し、関数f(H)を用いて現在のポンプ流量Qを演算する。
図5に示すように、作動状態Xは現在のポンプ流量Qと吸込圧Pinとから決定することができ、処理開始時において、作動状態X(Q,Pin)は、初期流量Q1を維持した状態において吸込圧Pinは徐々に減少する。
First, in S1, simultaneously with the start of drainage from the ballast tank 4, the suction pressure Pin detected by the suction pressure sensor 2 and the discharge pressure Pout detected by the discharge pressure sensor 3 are read, respectively, and the process proceeds to S2. In S2, the total head H is calculated from the suction pressure Pin and the discharge pressure Pout, and the current pump flow rate Q is calculated using the function f (H).
As shown in FIG. 5, the operating state X can be determined from the current pump flow rate Q and the suction pressure Pin. At the start of processing, the operating state X (Q, Pin) is a state in which the initial flow rate Q1 is maintained. The suction pressure Pin gradually decreases.

S3では、作動状態Xが吸込圧Pinの減少に応じてキャビテーション判定特性線Lcに達したか否か判定している。S3の判定の結果、作動状態Xがキャビテーション判定特性線Lcに達したとき、所定の速度で吐出弁5を閉操作し(S4)、作動状態Xがキャビテーション判定特性線Lcに達していないとき、S1へリターンする。
図5に示すように、吸込圧Pinの減少により作動状態Xがキャビテーション判定特性線Lc上の点X1(Q1,P1)に達したとき、吐出弁5を絞り側に閉操作する。作動状態Xがキャビテーション判定特性線Lc上の点X1(Q1,P1)に達していないときは、現在の流量Q1を維持した状態で排水を継続する。
In S3, it is determined whether or not the operating state X has reached the cavitation determination characteristic line Lc in accordance with the decrease in the suction pressure Pin. As a result of the determination in S3, when the operating state X reaches the cavitation determination characteristic line Lc, the discharge valve 5 is closed at a predetermined speed (S4), and when the operating state X does not reach the cavitation determination characteristic line Lc, Return to S1.
As shown in FIG. 5, when the operating state X reaches a point X1 (Q1, P1) on the cavitation determination characteristic line Lc due to a decrease in the suction pressure Pin, the discharge valve 5 is closed to the throttle side. When the operating state X has not reached the point X1 (Q1, P1) on the cavitation determination characteristic line Lc, the drainage is continued while the current flow rate Q1 is maintained.

S5では、作動状態Xが吐出弁5の閉操作に応じて復帰判定特性線Lsに達したか否か判定している。S5の判定の結果、作動状態Xが復帰判定特性線Lsに達したとき、目標安定流量Qtnを決定し(S6)、作動状態Xが復帰判定特性線Lsに達していないとき、S4へリターンする。図5に示すように、吐出弁5の閉操作により作動状態Xが復帰判定特性線Ls上の点X2(Q2,P1)に達したとき、吐出弁5の閉操作を停止し、目標安定流量Qtnを演算している。作動状態Xが復帰判定特性線LS上の点X2(Q2,P1)に達していないとき、吐出弁5の閉操作を継続すし、ポンプの流量減少幅を増加する。   In S5, it is determined whether or not the operating state X has reached the return determination characteristic line Ls according to the closing operation of the discharge valve 5. As a result of the determination in S5, when the operating state X reaches the return determination characteristic line Ls, the target stable flow rate Qtn is determined (S6), and when the operating state X does not reach the return determination characteristic line Ls, the process returns to S4. . As shown in FIG. 5, when the operating state X reaches a point X2 (Q2, P1) on the return determination characteristic line Ls by closing the discharge valve 5, the closing operation of the discharge valve 5 is stopped and the target stable flow rate is reached. Qtn is calculated. When the operating state X has not reached the point X2 (Q2, P1) on the return determination characteristic line LS, the closing operation of the discharge valve 5 is continued, and the flow rate reduction width of the pump is increased.

S6では、目標安定流量Qtnを演算する。
本実施例では、目標安定流量Qtnを次式(1)により演算する。
Qtn=(Qn+Q(n+1))/2 … (1)
(n=1,2,3…)
図5に示すように、目標安定流量Qt1は(Q1+Q2)/2に設定され、この目標安定流量Qt1になるように吐出弁5が開操作される(S7)。
In S6, a target stable flow rate Qtn is calculated.
In this embodiment, the target stable flow rate Qtn is calculated by the following equation (1).
Qtn = (Qn + Q (n + 1)) / 2 (1)
(N = 1, 2, 3 ...)
As shown in FIG. 5, the target stable flow rate Qt1 is set to (Q1 + Q2) / 2, and the discharge valve 5 is opened so as to be the target stable flow rate Qt1 (S7).

S8では、吐出弁5の開操作によって、作動状態Xがこの目標安定流量Qt1に対応した作動状態X3(Qt1,P2)に達したか否か判定する。
図5に示すように、S8の判定の結果、作動状態Xがこの目標安定流量Qt1に対応する作動状態X3(Qt1,P2)に達したとき、吐出弁5の開操作を停止する。S8の判定の結果、作動状態Xがこの目標安定流量Qt1に対応する作動状態X3(Qt1,P2)に達していないとき、S7にリターンして吐出弁5の開操作を継続する。
In S8, it is determined whether or not the operating state X has reached the operating state X3 (Qt1, P2) corresponding to the target stable flow rate Qt1 by opening the discharge valve 5.
As shown in FIG. 5, when the operating state X reaches the operating state X3 (Qt1, P2) corresponding to the target stable flow rate Qt1 as a result of the determination in S8, the opening operation of the discharge valve 5 is stopped. As a result of the determination in S8, when the operating state X has not reached the operating state X3 (Qt1, P2) corresponding to the target stable flow rate Qt1, the process returns to S7 and the opening operation of the discharge valve 5 is continued.

図5に示すように、目標安定流量Qt1に対応する作動状態X3(Qt1,P2)に達した後、ポンプ1の目標安定流量Qt1を維持し(S9)、リターンする。これにより、吐出弁5を作動状態X2(Q2,P1)を経由して目標安定流量Qt1に対応する作動状態X3(Qt1,P2)に調整するため、目標安定流量Qt1よりも絞り側の調整期間を形成することができる。   As shown in FIG. 5, after reaching the operating state X3 (Qt1, P2) corresponding to the target stable flow rate Qt1, the target stable flow rate Qt1 of the pump 1 is maintained (S9), and the process returns. As a result, the discharge valve 5 is adjusted to the operating state X3 (Qt1, P2) corresponding to the target stable flow rate Qt1 via the operating state X2 (Q2, P1). Can be formed.

図5に示すように、S9の後、作動状態Xは、目標安定流量Qt1を維持した状態で吸込圧Pinが徐々に減少するため、作動状態X(Q,Pin)がキャビテーション判定特性線Lc上の点X4(Qt1,P3)に達したとき、吐出弁5を絞り側に閉操作する。以下、前述の調整制御が繰り返され、吐出弁5を作動状態X5(Q3,P3)を経由して目標安定流量Qt2に対応した作動状態X6(Qt2,P4)に調整するため、目標安定流量Qt2よりも絞り側の調整期間を形成することができる。これらの調整制御が、バラストタンク4が所定の貯留量になるまで繰り返される。   As shown in FIG. 5, after S9, in the operating state X, the suction pressure Pin gradually decreases while maintaining the target stable flow rate Qt1, and therefore the operating state X (Q, Pin) is on the cavitation determination characteristic line Lc. When the point X4 (Qt1, P3) is reached, the discharge valve 5 is closed to the throttle side. Thereafter, the aforementioned adjustment control is repeated, and the target stable flow rate Qt2 is adjusted to adjust the discharge valve 5 to the operating state X6 (Qt2, P4) corresponding to the target stable flow rate Qt2 via the operating state X5 (Q3, P3). An adjustment period closer to the aperture can be formed. These adjustment controls are repeated until the ballast tank 4 reaches a predetermined storage amount.

次に、本ポンプの制御装置の作用・効果について説明する。
本ポンプの制御装置によれば、ポンプ1を制御する制御条件が少なく且つそのための計測機器も少ないため、設備の構造を簡単化でき、製造コストや故障対応等のメインテナンスの面で有利である。ポンプ1の作動状態が吸込圧Pinの減少に応じてキャビテーション判定特性線Lcに達したとき、復帰判定特性線Lsとキャビテーション判定特性線Lcの中間近傍の作動状態X3,X6になるまで吐出弁5を絞り側へ調整するため、復帰判定特性線Ls上の作動状態X2,X5になるまで吐出弁5を絞り側へ調整したときのポンプ流量Qに比べてポンプ流量Qの減少幅を抑制でき、排水時間を短縮化することができる。
Next, the operation and effect of the pump control device will be described.
According to this pump control device, since there are few control conditions for controlling the pump 1 and there are few measuring instruments therefor, the structure of the equipment can be simplified, which is advantageous in terms of maintenance such as manufacturing cost and failure handling. When the operating state of the pump 1 reaches the cavitation determination characteristic line Lc in accordance with the decrease in the suction pressure Pin, the discharge valve 5 until the operating state X3, X6 near the middle of the return determination characteristic line Ls and the cavitation determination characteristic line Lc. , The amount of decrease in the pump flow rate Q can be suppressed compared to the pump flow rate Q when the discharge valve 5 is adjusted to the throttle side until the operating state X2, X5 on the return determination characteristic line Ls is reached. The drainage time can be shortened.

また、図4,図5に示すように、吐出弁5を復帰判定特性線Lsとキャビテーション判定特性線Lcの中間近傍の作動状態X3,X6に調整する前段階において、吐出弁5を作動状態X3,X6よりも絞り側の作動状態X2,X5に調整することができる。それ故、バラストタンク4が水平状態において検出される吸込圧Pinよりも相対的に圧力が高く検出される傾斜状態で吸込圧Pinがキャビテーション判定特性線Lcに達し、復帰判定特性線Lsとキャビテーション判定特性線Lcの中間近傍の作動状態X3,X6になるまで吐出弁5を絞り側へ調整した後に、船体が反動により反対側へ傾斜した傾斜状態になった場合でも、前記作動状態X3,X6よりも絞り側で且つ目標安定流量Qt1,Qt2よりも絞り側の調整期間を形成することができるため、ポンプ吸込側の吸込圧Pinの低下を抑えることができ、吸込圧Pinが必要吸込ヘッド特性線Lhを下回ることによるキャビテーションの発生を抑制することができる。しかも、前記絞り側の調整期間において、吐出弁2を復帰判定特性線Ls上の作動状態X2,X5に調整しているため、吐出弁5の調整制御を簡単化でき、キャビテーションの発生を一層抑制することができる。   In addition, as shown in FIGS. 4 and 5, before the discharge valve 5 is adjusted to the operation states X3 and X6 near the middle of the return determination characteristic line Ls and the cavitation determination characteristic line Lc, the discharge valve 5 is set to the operation state X3. , X6 can be adjusted to the operating states X2 and X5 on the aperture side. Therefore, the suction pressure Pin reaches the cavitation determination characteristic line Lc in the inclined state where the pressure is detected to be relatively higher than the suction pressure Pin detected in the horizontal state, and the return determination characteristic line Ls and the cavitation determination Even after the discharge valve 5 is adjusted to the throttle side until the operating state X3, X6 near the middle of the characteristic line Lc, even if the hull is inclined to the opposite side due to the reaction, the operating state X3, X6 In addition, since it is possible to form an adjustment period on the throttle side and on the throttle side with respect to the target stable flow rates Qt1 and Qt2, it is possible to suppress a decrease in the suction pressure Pin on the pump suction side, and the suction pressure Pin is necessary for the suction head characteristic line. Occurrence of cavitation due to falling below Lh can be suppressed. Moreover, since the discharge valve 2 is adjusted to the operating states X2 and X5 on the return determination characteristic line Ls in the adjustment period on the throttle side, the adjustment control of the discharge valve 5 can be simplified and the occurrence of cavitation is further suppressed. can do.

次に、前記実施例を部分的に変更した変形例について説明する。
1〕前記実施例においては、バラスト注排水用ポンプの例を説明したが、貨油ポンプ等にも適用することができる。また、船舶分野に限ることなく、他の分野のポンプ制御にも適用しても良い。
Next, a modification in which the above embodiment is partially changed will be described.
1] Although the example of the ballast pouring / draining pump has been described in the above embodiment, the present invention can be applied to a coin oil pump and the like. Further, the present invention may be applied to pump control in other fields without being limited to the ship field.

2〕前記実施例においては、吸込圧の減少により作動状態がキャビテーション判定特性線上に達したときから作動状態が復帰判定特性線上に達するときまで、吐出弁の閉操作を吸込圧を一定にした例を説明したが、少なくとも、絞り側の調整期間を形成することができればよく、吐出弁の閉操作に伴い吸込圧が増加するような閉操作であっても良い。 2) In the above-described embodiment, the suction pressure is kept constant from the time when the operating state reaches the cavitation determination characteristic line due to the reduction of the suction pressure to the time when the operating state reaches the return determination characteristic line. However, it is sufficient that at least the adjustment period on the throttle side can be formed, and the closing operation may be such that the suction pressure increases with the closing operation of the discharge valve.

3〕前記実施例においては、目標安定流量をキャビテーション判定特性線上に達したときのポンプ流量と復帰判定特性線上に達したときのポンプ流量との間において50%に設定した例を説明したが、少なくとも、キャビテーション判定特性線上に達したときのポンプ流量と復帰判定特性線上に達したときのポンプ流量との間において40〜60%の範囲に設定すれば本発明の効果を奏することが可能である。 3) In the above embodiment, an example has been described in which the target stable flow rate is set to 50% between the pump flow rate when reaching the cavitation determination characteristic line and the pump flow rate when reaching the return determination characteristic line. The effect of the present invention can be achieved by setting at least a range of 40 to 60% between the pump flow rate when reaching the cavitation determination characteristic line and the pump flow rate when reaching the return determination characteristic line. .

4〕その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態も包含するものである。 4) In addition, those skilled in the art can implement the present invention in various forms added with various modifications without departing from the spirit of the present invention, and the present invention includes such modifications. is there.

本発明は、タンクから液体排出時にキャビテーションが発生しないように制御するポンプの制御方法及びその制御装置において、吸込圧がキャビテーション判定特性線に達したとき、目標安定流量に絞り調整する前に目標安定流量よりも絞り側の調整期間を形成することにより、構造の簡単化を図りつつ、液体の排水時間の短縮化とキャビテーション発生の抑制とを両立できる。   The present invention relates to a pump control method and a control device for controlling so that cavitation does not occur when liquid is discharged from a tank. When the suction pressure reaches the cavitation determination characteristic line, the target stabilization is performed before the throttle is adjusted to the target stable flow rate. By forming the adjustment period on the throttle side with respect to the flow rate, it is possible to achieve both simplification of the structure and reduction of the liquid drain time and suppression of cavitation.

1 ポンプ
2 吸込圧センサ
3 吐出圧センサ
4 バラストタンク
5 吐出弁
10 制御器
11 流量演算手段
12 特性記憶手段
13 吐出弁調整制御手段
Lh NPSH特性線
Lc キャビテーション判定特性線
Ls 復帰判定特性線
X 作動状態
Reference Signs List 1 pump 2 suction pressure sensor 3 discharge pressure sensor 4 ballast tank 5 discharge valve 10 controller 11 flow rate calculation means 12 characteristic storage means 13 discharge valve adjustment control means Lh NPSH characteristic line Lc cavitation determination characteristic line Ls return determination characteristic line X operating state

Claims (2)

液体を貯留するタンクに対して注排水するためのポンプの吐出側に接続された流量調整可能な吐出弁を、タンクから液体排出時にキャビテーションが発生しないように制御するポンプの制御方法において、
前記ポンプ吸込側の吸込圧と流量をパラメータとして、NPSH特性線と、このNPSH特性線から第1許容幅離隔させて流量減少側に設定したキャビテーション判定特性線と、このキャビテーション判定特性線よりも第2許容幅離隔させて流量減少側に設定した復帰判定特性線とを予め設定して特性記憶手段に記憶しておき、
吸込圧検出手段により検出したポンプ吸込側の吸込圧と、吐出圧検出手段により検出したポンプ吐出側の吐出圧とを用いて現在の流量を演算する第1工程と、
前記現在流量と検出された吸込圧とで決まる作動状態が、吸込圧の減少に応じて前記キャビテーション判定特性線に達したか否か判定する第2工程と、
前記第2工程で肯定判定された際に、前記作動状態が前記復帰判定特性線に達するまで吐出弁を絞り側へ調整する第3工程と、
前記第3工程の後に前記作動状態が、流量に関して前記復帰判定特性線と前記キャビテーション判定特性線の中間近傍の作動状態になるまで吐出弁を開き側へ調整する第4工程と、を備えたことを特徴とするポンプの制御方法。
In a pump control method for controlling a discharge valve capable of adjusting a flow rate connected to a discharge side of a pump for pouring and draining a liquid storing tank so that cavitation does not occur when the liquid is discharged from the tank,
Using the suction pressure and flow rate on the pump suction side as parameters, the NPSH characteristic line, the cavitation determination characteristic line set on the flow rate reduction side by separating the first allowable width from the NPSH characteristic line, and the cavitation determination characteristic line (2) A return determination characteristic line set on the flow rate reduction side with a separation of the allowable width is set in advance and stored in the characteristic storage means,
A first step of calculating the current flow rate using the suction pressure on the pump suction side detected by the suction pressure detection means and the discharge pressure on the pump discharge side detected by the discharge pressure detection means;
A second step of determining whether an operating state determined by the current flow rate and the detected suction pressure has reached the cavitation determination characteristic line according to a decrease in the suction pressure;
A third step of adjusting the discharge valve to the throttle side until the operating state reaches the return determination characteristic line when an affirmative determination is made in the second step;
After the third step, the fourth step of adjusting the discharge valve to the open side until the operating state becomes an operating state near the middle of the return determination characteristic line and the cavitation determination characteristic line with respect to the flow rate, A pump control method characterized by the above.
液体を貯留するタンクに対して注排水するためのポンプの吐出側に接続された流量調整可能な吐出弁を、タンクから液体排出時にキャビテーションが発生しないように制御するポンプの制御装置において、
前記ポンプ吸込側の吸込圧を検出する吸込圧検出手段と、
前記ポンプ吐出側の吐出圧を検出する吐出圧検出手段と、
前記両検出手段により検出された吸込圧と吐出圧に基づいて吐出弁を制御する制御手段とを備え、
前記制御手段は、
前記検出された吸込圧と吐出圧に基づいて現在の流量を演算する流量演算手段と、
前記ポンプ吸込側の吸込圧と流量をパラメータとして夫々予め設定した、NPSH特性線と、このNPSH特性線から第1許容幅離隔させて流量減少側に設定したキャビテーション判定特性線と、このキャビテーション判定特性線よりも第2許容幅離隔させて流量減少側に設定した復帰判定特性線とを記憶した特性記憶手段と、
前記流量演算手段で演算された現在流量と検出された吸込圧とで決まる作動状態が、吸込圧の減少に応じて前記キャビテーション判定特性線に達した際に前記復帰判定特性線上の作動状態になるまで吐出弁を絞り側へ調整した後、流量に関して前記復帰判定特性線と前記キャビテーション判定特性線の中間近傍の作動状態になるまで吐出弁を開き側へ調整する吐出弁調整制御手段とを備えたことを特徴とするポンプの制御装置。
In the control device of the pump that controls the discharge valve, which is connected to the discharge side of the pump for pouring and draining the liquid storing tank, so that cavitation does not occur when the liquid is discharged from the tank,
A suction pressure detecting means for detecting a suction pressure on the pump suction side;
A discharge pressure detecting means for detecting a discharge pressure on the pump discharge side;
Control means for controlling the discharge valve based on the suction pressure and the discharge pressure detected by the both detection means,
The control means includes
A flow rate calculation means for calculating a current flow rate based on the detected suction pressure and discharge pressure;
The suction pressure and flow rate on the pump suction side are set in advance as parameters, the NPSH characteristic line, the cavitation determination characteristic line set on the flow rate reduction side with a first allowable width distance from the NPSH characteristic line, and the cavitation determination characteristic Characteristic storage means for storing a return determination characteristic line set on the flow rate reduction side with a second allowable width away from the line;
When the operating state determined by the current flow rate calculated by the flow rate calculation means and the detected suction pressure reaches the cavitation determination characteristic line according to the reduction of the suction pressure, the operating state is set on the return determination characteristic line. And a discharge valve adjustment control means for adjusting the discharge valve to the open side until the operating state is in the middle of the return determination characteristic line and the cavitation determination characteristic line with respect to the flow rate after the discharge valve is adjusted to the throttle side. A control device for a pump.
JP2011254666A 2011-11-22 2011-11-22 Pump control method and control apparatus therefor Expired - Fee Related JP5921160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011254666A JP5921160B2 (en) 2011-11-22 2011-11-22 Pump control method and control apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011254666A JP5921160B2 (en) 2011-11-22 2011-11-22 Pump control method and control apparatus therefor

Publications (2)

Publication Number Publication Date
JP2013108446A JP2013108446A (en) 2013-06-06
JP5921160B2 true JP5921160B2 (en) 2016-05-24

Family

ID=48705432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011254666A Expired - Fee Related JP5921160B2 (en) 2011-11-22 2011-11-22 Pump control method and control apparatus therefor

Country Status (1)

Country Link
JP (1) JP5921160B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6082772B2 (en) * 2015-05-29 2017-02-15 日立アプライアンス株式会社 Pump device
KR102238747B1 (en) * 2016-06-28 2021-04-08 한국조선해양 주식회사 Floating marine structure with electric power generator
JP2018020671A (en) * 2016-08-03 2018-02-08 三浦工業株式会社 Ballast device and ballast water circulation control method
TWI657199B (en) * 2017-12-20 2019-04-21 吳建興 Pumping system and controlling method for the same
JP2019120195A (en) * 2018-01-05 2019-07-22 建興 ▲呉▼ Pump system and its control method
CN110821849B (en) * 2019-12-03 2020-10-30 湖南凯利特泵业有限公司 Cavitation monitoring method for fire pump

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107996U (en) * 1983-01-12 1984-07-20 株式会社日立製作所 pump control device
JPS61244898A (en) * 1985-04-19 1986-10-31 Shipbuild Res Assoc Japan Cavitation avoiding device for centrifugal pump
JPH0524852Y2 (en) * 1989-02-02 1993-06-23
JP2706336B2 (en) * 1989-12-01 1998-01-28 三菱重工業株式会社 Pump flow control device
JP2716823B2 (en) * 1989-12-15 1998-02-18 三菱重工業株式会社 Pump operation control device
JP2006017025A (en) * 2004-07-01 2006-01-19 Nikkiso Co Ltd Method of delivering liquid of storage tank

Also Published As

Publication number Publication date
JP2013108446A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
JP5921160B2 (en) Pump control method and control apparatus therefor
JP7034759B2 (en) Condensation system control method and condensate system and ships equipped with it
JP5951316B2 (en) Marine fin stabilizer control system, fin stabilizer including the same, and marine vessel
TWI477345B (en) Coolant system for machine tools
JP2009281149A (en) Engine control device and working machine equipped with the same
WO2010150349A1 (en) Control method and controller of marine engine
JP5680716B2 (en) Marine engine control method and control device thereof
JP6569713B2 (en) Hydroelectric power generation system
KR102411994B1 (en) hydraulic unit
KR20110091230A (en) System and method for ship ballast water discharge valve control to prevent pump cavitation
US20180023270A1 (en) Method for controlling flow rate of hydraulic pump of construction machine
JP5090957B2 (en) Marine engine control method and control device thereof
JP6490416B2 (en) Control process for reducing electrical energy consumption of pump equipment
JP5280553B2 (en) Marine engine control method and control device thereof
TWM558852U (en) Pumping system
KR20180000146A (en) Ship including Ballast Water Treatment System
KR102044264B1 (en) Suction pot level control apparatus of high pressure pump for vessel and method for operating the apparatus
JP5921085B2 (en) Pump device and work vehicle equipped with the pump device
EP4001652B1 (en) Centrifugal pump operation
JP2923265B2 (en) Water supply device and its pump control method
TWI657199B (en) Pumping system and controlling method for the same
KR102154876B1 (en) Apparatus for Preventing Freezing of Ballast Water
JP2019120195A (en) Pump system and its control method
JP2012077758A5 (en)
JP2016108943A (en) Engine control device and engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160412

R150 Certificate of patent or registration of utility model

Ref document number: 5921160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees