WO2010150349A1 - Control method and controller of marine engine - Google Patents

Control method and controller of marine engine Download PDF

Info

Publication number
WO2010150349A1
WO2010150349A1 PCT/JP2009/061381 JP2009061381W WO2010150349A1 WO 2010150349 A1 WO2010150349 A1 WO 2010150349A1 JP 2009061381 W JP2009061381 W JP 2009061381W WO 2010150349 A1 WO2010150349 A1 WO 2010150349A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotational speed
marine engine
fuel
normal mode
mode
Prior art date
Application number
PCT/JP2009/061381
Other languages
French (fr)
Japanese (ja)
Inventor
寿和 高橋
勝徳 梶山
富雄 志垣
Original Assignee
日本郵船株式会社
株式会社Mti
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本郵船株式会社, 株式会社Mti, ナブテスコ株式会社 filed Critical 日本郵船株式会社
Priority to EP09846482.9A priority Critical patent/EP2447515B1/en
Priority to KR1020117026621A priority patent/KR20120018310A/en
Priority to CN200980159618.XA priority patent/CN102449291B/en
Priority to PCT/JP2009/061381 priority patent/WO2010150349A1/en
Priority to DK09846482.9T priority patent/DK2447515T3/en
Priority to KR1020137027980A priority patent/KR101438018B1/en
Publication of WO2010150349A1 publication Critical patent/WO2010150349A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1012Engine speed gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • F02D31/009Electric control of rotation speed controlling fuel supply for maximum speed control

Definitions

  • the present invention relates to a method for controlling a marine engine equipped with a speed governor and a control device used therefor.
  • the marine engine is provided with a speed governor (governor) that controls fuel control parameters such as the fuel injection amount so that the rotation speed is adjusted to a target rotation speed set by the operator.
  • a speed governor for example, as disclosed in Patent Document 1, the actual rotational speed of the marine engine and the set rotational speed are compared and calculated, and the rack position of the fuel pump included in the marine period is determined according to the comparison calculation result.
  • the rack position of the fuel pump included in the marine period is determined according to the comparison calculation result.
  • the rack position of the fuel pump is adjusted sequentially according to the result of the comparison calculation, and the fuel supply amount is adjusted sequentially according to the deviation between the actual rotational speed and the set rotational speed.
  • the rack position and the fuel supply amount are adjusted successively, the rotational speed of the marine engine is always controlled to be constant, but there is a possibility that fuel is wasted.
  • the sequential control is stopped, the rotational speed of the marine engine fluctuates, but the fuel consumption can be suppressed. Accordingly, it is desirable to appropriately switch between a state in which the rotational speed is sequentially controlled to be constant and a state in which the sequential control is stopped.
  • the present invention provides a marine vessel that can improve fuel efficiency by efficiently switching to a mode in which change of the output value to the fuel supply means is prohibited or variation in the amount of fuel supply is reduced while maintaining ship maneuverability. It is an object to provide an engine control method and a control apparatus therefor.
  • the output value to the fuel supply means is changed from the difference between the set rotational speed set by the operator and the actual rotational speed that is the actual rotational speed of the marine engine.
  • a normal mode and a fuel save mode in which the change of the output value is prohibited or the change width per unit time is smaller than that in the normal mode are provided.
  • the fuel supply means an actuator for controlling the fuel pump can be used in the case of mechanical control, and an electromagnetic valve can be used in the case of electronic control.
  • the fuel save mode is switched to the normal mode under a predetermined condition.
  • a calculation means for calculating an output value to the fuel supply means in the normal mode and the fuel save mode. Furthermore, monitoring means for monitoring the fluctuation of the set rotational speed or the actual rotational speed is provided. The monitoring means generates a release command when the set rotational speed or the actual rotational speed exceeds a predetermined range, and the calculation means is switched to the normal mode in response to the release command.
  • the ship maneuverability can be maintained in the normal mode, and the fuel efficiency can be improved in the fuel save mode.
  • the predetermined condition may be, for example, when the actual rotational speed is out of a rotational speed range set for safe operation against sea conditions or disturbance.
  • the monitoring unit can issue a release command when the actual rotational speed is equal to or lower than the rotational speed set for ensuring the maneuverability.
  • the mode is switched to the normal mode, so that the maneuverability is improved. Further, when safe operation is possible, fuel consumption can be suppressed by the fuel save mode.
  • the predetermined condition may be when the actual rotational speed is equal to or lower than the rotational speed used in the open ocean.
  • the monitoring means can generate a release command when the actual rotational speed is equal to or lower than the rotational speed used in the open ocean.
  • the predetermined condition may be when the actual rotational speed is equal to or higher than a rotational speed set to prevent over-rotation.
  • the monitoring means can generate a release command when the actual rotational speed is equal to or higher than the rotational speed set for preventing over-rotation.
  • the fuel save mode can be switched to the normal mode, so that the actual rotational speed can be prevented from being excessive.
  • the predetermined condition can be set when the set rotational speed is changed by the operator.
  • the monitoring unit can generate a release command when the set rotational speed is changed by the operator.
  • the mode is switched to the normal mode, so that the marine engine can be rotated at the actual rotational speed corresponding to the set rotational speed. Thereafter, the fuel consumption efficiency can be improved by switching to the fuel saving mode and continuing the navigation of the ship.
  • the fuel save mode can be maintained, and the monitoring means can also maintain the fuel save mode.
  • fine adjustment for example, there is a set rotational speed of 2 rpm / second or less.
  • the mode when the difference between the set rotational speed in the normal mode and the actual rotational speed is in the first range, the mode is switched to the fuel save mode, and the setting in the fuel save mode is performed.
  • the difference between the rotational speed and the actual rotational speed is larger than the second range, the normal mode can be switched.
  • the second range is larger than the first range.
  • the monitoring unit stops the release signal when the difference between the set rotational speed and the actual rotational speed in the normal mode is in the first range, and the fuel save mode The release signal can be generated when the difference between the set rotational speed and the actual rotational speed at is greater than the second range.
  • the second range is larger than the first range.
  • the output value when the normal mode is switched to the fuel save mode, the output value can be changed to an average value.
  • an average value calculation unit that calculates an average value of the output value to the fuel supply unit is provided, and when the normal mode is switched to the fuel save mode, the output value is output from the average value calculation unit. Switching means for switching to an average value for a predetermined time may be provided.
  • Such a configuration makes it possible to reduce the change in the rotational speed of the marine engine in the fuel save mode, so that the switching to the normal mode can be reduced and the fuel consumption efficiency can be improved.
  • the save mode upper limit of the output value to the fuel supply means can be defined during the fuel save mode.
  • the calculation means saves the output value to the fuel supply means.
  • a mode upper limit value is defined, and when the calculated output value exceeds the save mode upper limit value, the save mode upper limit value can also be output.
  • proportional-integral-derivative control can be used to calculate the output value to the fuel supply means.
  • the proportional gain constant used for the proportional control during the proportional integral derivative control is multiplied by the proportional multiplication factor, and the integral time used for the integral control during the proportional integral derivative control is integrated.
  • the calculation means can include a proportional-integral-derivative control means.
  • the proportional gain constant used for the proportional control in the proportional integral derivative control means is multiplied by the proportional magnification, and the integral time used for the integral control of the proportional integral derivative control means is calculated.
  • the change of the output value to the fuel supply means is prohibited or unit time compared to the normal mode.
  • the change range per unit time of the output value per unit is reduced. Furthermore, each magnification can be set.
  • FIG. 1 is a block diagram of a marine engine control apparatus according to an embodiment of the present invention. It is the block diagram which showed the function which the controller shown in FIG. 1 performs.
  • the marine engine control apparatus controls a marine engine, for example, a marine internal combustion engine 2, as shown in FIG.
  • the marine internal combustion engine 2 is a multi-cylinder diesel engine, for example, and is provided with a fuel injection valve and a fuel supply means, for example, a fuel injection pump, in each cylinder, although not shown.
  • the fuel injection valve supplies the supplied fuel to the corresponding cylinder when the pressure of the fuel supplied from the fuel injection pump is equal to or higher than a predetermined pressure.
  • Each fuel injection pump supplies an amount of fuel based on an output value from a control device described later, for example, the controller 4, to a corresponding fuel injection valve.
  • the marine internal combustion engine 2 can be a fuel injection system that controls the fuel supply by an electromagnetic valve to each cylinder, for example, a common rail type or a pressure increasing cylinder type fuel injection system, in addition to a fuel injection valve and a fuel injection pump.
  • each cylinder may be provided with a fuel supply means, for example, an injector as a fuel injection valve.
  • the injector controls the fuel injection into the corresponding cylinder by moving the valve body by exciting or demagnetizing the electromagnet provided therein, and is controlled based on the output value of the controller 4.
  • the controller 4 includes calculation means such as a microprocessor and storage means such as ROM and RAM.
  • the controller 4 is supplied with an actual rotational speed signal representing the actual rotational speed that is the actual rotational speed of the marine internal combustion engine 2 from the rotational speed detector 6.
  • the controller 4 is also supplied with a set speed signal indicating the set speed of the marine internal combustion engine 2 from the control device 8.
  • the controller 4 functions as an adding means for calculating a deviation between the set rotational speed signal and the actual rotational speed signal, for example, an adder 10, and PID control to which this deviation is supplied. It also functions as a means, for example, a PID controller 12. That is, the PID controller 12 performs proportional control by multiplying the supplied deviation by a proportional gain constant, integrates the supplied deviation, and multiplies this by the inverse of the integration time to perform integration control. The deviation is differentiated, and the derivative time is multiplied by this to perform derivative control, and a value obtained by adding the values obtained by the proportional control, integral control and derivative control is output as an output value.
  • the PID controller 12 is provided with a limiter 14, and is configured to output the limiter upper limit value when the calculated output value exceeds the limiter upper limit value set in the limiter 14. Yes.
  • the PID controller 12 is configured to operate in a mode selected from the normal mode and the fuel save mode.
  • the integral control and the derivative time are set so that the integral control is stronger than the normal mode and the differential control hardly works.
  • the proportional gain constant is set so that the strength of the proportional control is smaller than that in the normal mode.
  • the proportional gain constant, integral time and derivative time setting in the fuel save mode do not change these themselves, but the initial value, for example, the normal mode proportional gain constant, integral time and derivative time, the proportional gain constant magnification, This is performed by multiplying the integration time magnification and the differentiation time magnification, respectively. Therefore, without knowing the proportional gain constant, integration time, and derivative time itself in the normal mode, only how many times the proportional gain constant in normal mode, how many times the integral time, and how many times the derivative time are to be set. Since it only has to be considered, setting becomes easy.
  • the proportional gain constant magnification, integration time magnification, and differential time magnification can be arbitrarily set by the operator.
  • the controller 4 also functions as a filter 16 such as a low-pass filter that averages the output of the PID controller 12.
  • the controller 4 also functions as switching means, for example, a changeover switch 18, which selects one of the output of the filter 16 and the output of the PID controller 12 and supplies the fuel injection pump or injector in the marine internal combustion engine 2. To do.
  • the change-over switch 18 supplies the output of the PID controller 12 directly to the fuel injection pump or the injector in the normal mode. However, as will be described later, for example, the change-over switch 18 is configured to save fuel from the normal mode.
  • the output of the filter 16 is supplied to the fuel injection pump or injector for a predetermined period or one loop period of the control program.
  • the controller 4 also functions as monitoring means, for example, five detection units.
  • the five detection units an actual rotation number overspeed detection unit 20, an actual rotation number level detection unit 22, a set rotation number level detection unit 24, a set rotation number change amount detection unit 26, and a rotation number fluctuation amount detection unit 28 are provided. ing.
  • the actual rotational speed overspeed level detection unit 20 receives an actual rotational speed signal, determines whether or not the actual rotational speed signal is equal to or higher than a predetermined overspeed level, and if the actual rotational speed signal is equal to or higher than the overspeed level, An OFF signal for switching to the normal mode is output, and an ON signal for switching to the fuel save mode is output if the actual rotational speed signal is less than the overspeed level.
  • the overspeed level is set to a level at which it can be determined that the marine internal combustion engine 2 is over-rotating. Therefore, when the marine internal combustion engine 2 is over-rotating in the fuel save mode, it is possible to switch to the normal mode, and when the marine internal combustion engine 2 is not over-rotating in the normal mode, it is possible to switch to the fuel save mode. is there.
  • the actual rotational speed level detection unit 22 receives the actual rotational speed signal, determines whether or not the actual rotational speed signal is equal to or higher than the navigation full rotational speed, and outputs an OFF signal when the actual rotational speed signal is equal to or higher than the navigation full rotational speed. If the actual rotational speed signal is less than the navigation full rotational speed, an ON signal is output.
  • the navigation full rotational speed represents the rotational speed when the marine internal combustion engine 2 is used in the open sea. Therefore, in the fuel save mode, when the actual rotational speed signal is equal to or higher than the navigation full rotational speed, it is possible to switch to the normal mode. Further, when the actual rotational speed signal is less than the navigation full rotational speed in the normal mode, it is possible to switch to the fuel save mode.
  • the navigation full rotation speed is a rotation speed at the time of ocean navigation calculated in advance based on the shape and size of the ship.
  • the number of revolutions that can be safely navigated in consideration of sea conditions and disturbances is calculated in advance, and when navigating in the bay, if the actual number of revolutions is greater than this calculated number of revolutions,
  • the level detector 22 outputs an OFF signal, and outputs an ON signal when the actual rotational speed signal is less than the calculated rotational speed.
  • the set rotational speed level detection unit 24 receives the set rotational speed signal, determines whether or not the rotational speed is equal to or higher than the navigation full rotational speed, and outputs an OFF signal when the rotational speed is equal to or higher than the full navigation rotational speed. If there is, an ON signal is output. Accordingly, when the set rotational speed signal is equal to or higher than the navigation full rotational speed in the fuel save mode, the mode can be switched to the normal mode. Further, when the set rotational speed signal is less than the navigation full rotational speed in the normal mode, it is possible to switch to the fuel save mode.
  • the set rotational speed change amount detection unit 26 receives the set rotational speed signal, calculates the rate of change per unit time, for example, 1 second, and whether this rate of change is a predetermined value, for example, 2 rpm / second or more. If it is 2 rpm / second or more, an OFF signal is output, and if it is less than 2 rpm / second, an ON signal is output.
  • This predetermined value is set to a value at which the amount of change in the set rotational speed can be regarded as being within the fine adjustment range.
  • the rotational speed fluctuation amount detection unit 28 is input with a deviation signal (deviation signal between the set rotational speed signal and the actual rotational speed signal) from the adder 10.
  • This deviation signal represents the amount of variation of the actual number of rotations with respect to the set number of rotations.
  • a predetermined first range for example, ⁇ 3 rpm
  • an ON signal is output.
  • An OFF signal is output when the fluctuation amount is a predetermined second range, for example, +5 rpm or more or ⁇ 5 rpm or less.
  • the rotational speed fluctuation amount which is a deviation signal between the set rotational speed signal and the actual rotational speed signal, increases by 5 rpm or more or decreases to -5 rpm or less, it can be switched to the normal mode.
  • the rotational speed fluctuation amount is a fluctuation within a range of ⁇ 3 rpm, it is possible to switch to the fuel save mode.
  • the output signals of these detection units 20, 22, 24, 26, and 28 are supplied to a logic gate that is configured by the controller 4, for example, an AND gate 30.
  • the AND gate 30 generates an output when the output signals of the detection units 20, 24, 26, and 28 are all ON signals.
  • This output is supplied to the timer 32 which the controller 4 comprises.
  • the timer 32 generates an output when the output of the AND gate 30 continues for a predetermined time. Therefore, even if all the detection units 20, 22, 24, 26, 28 output ON signals for a short time, the timer 32 does not generate an output, and all the detection units 20, 22, 24, 26, 28 are When the ON signal is generated for a predetermined time, the timer 32 generates an output.
  • the output of the timer 32 is supplied to a fuel save mode preparation completion display unit 36 provided in the display 34 shown in FIG. 1, and this lights up to indicate that the fuel save mode is ready.
  • the output of the timer 32 is supplied to a logic gate configured by the controller 4, for example, an AND gate 38.
  • the AND gate 38 is also supplied with a fuel save mode selection signal generated when the fuel save mode selection button 40 provided on the control device 8 is closed.
  • the AND gate 38 generates an output only when the timer 34 supplies an output and the fuel save mode selection signal is supplied from the fuel save mode selection button 40. Therefore, even if the timer 32 generates an output, that is, even if all the detection units 20, 22, 24, 26, and 28 generate an ON signal for a predetermined time, the fuel save mode selection signal is supplied. Unless done, AND gate 38 does not generate an output.
  • the output of the AND gate 38 is supplied to the PID controller 12.
  • the PID controller 12 is switched from the normal mode to the fuel save mode by receiving the output of the AND gate 38, and performs PID control in the fuel save mode.
  • the output of the AND gate 38 is supplied to a fuel save mode indicator 42 provided in the indicator 34 to indicate that the fuel save mode has been entered.
  • the PID controller 12 is switched from the fuel save mode to the normal mode.
  • the output of the AND gate 38 is supplied to the switching control unit 19, and the switching control unit 19 switches the changeover switch 18 so that the output of the filter 16 is supplied to the fuel injection pump or the injector.
  • the output value of the PID controller 12 varies due to the switching from the normal mode to the fuel save mode. In addition, at the initial stage of switching, what is relaxed by the filter 16 is supplied to the fuel injection pump or injector, so that fluctuations at the time of switching can be suppressed. After a predetermined period, the changeover switch 18 is switched, and the output of the PID controller 12 is supplied to the fuel injection pump or the injector as it is.
  • the PID controller 12 in the normal mode, when all the detection units 20, 22, 24, 26, and 28 output the ON signal for a certain time, the PID controller 12 is switched to the fuel save mode, and the PID controller 12 is switched to the fuel save mode. To output an output value for controlling the fuel injection pump or injector.
  • the PID controller 12 in this fuel save mode, when any of the detection units 20, 22, 24, 26, 28 outputs an OFF signal, the PID controller 12 is switched to the normal mode, and the PID controller 12 injects fuel in the normal mode. Outputs an output value that controls the pump or injector.
  • the output of the PID controller 12 is averaged and output by the filter 16 for a predetermined period of time when the mode is switched to the fuel save mode, the output value supplied to the fuel injection pump or the injector fluctuates greatly. There is nothing. As a result, the amount of change in the rotational speed of the marine engine 2 does not vary greatly, and it is possible to prevent switching to the normal mode immediately after switching to the fuel save mode.
  • the PID controller 12 since the PID controller 12 is provided with the limiter 14, the output value thereof does not become larger than the limiter upper limit value, the amount of change of the fuel does not become abnormally large, and the overspeed is not increased. Can be prevented.
  • the amount of operation of the actuator and the injector In the fuel save mode, the amount of operation of the actuator and the injector is extremely small. Therefore, after the mode is switched to the fuel save mode, there is a possibility that the rotational speed fluctuation becomes larger than that in the normal mode. Therefore, this limiter 14 is provided.
  • the limiter 14 is preferably 5 to 10 percent lower than the upper limit of the output of the PID controller 12 in the normal mode.
  • the five detection units 20, 22, 24, 26, and 28 are provided. However, depending on the situation, a desired single or a plurality of detection units can be used.
  • the AND gate 30 is not necessary.
  • the fuel save mode selection button 40 is provided and the fuel save mode selection signal is supplied to the AND gate 38.
  • the fuel save mode selection button 40 and the AND gate 38 are removed, and the output of the timer 32 is directly connected to the PID. It can also be supplied to the controller 12, the switching control unit 19, and the fuel save mode display unit 42. The timer 32, the filter 46, the changeover switch 18, and the changeover control unit 19 can be removed depending on the situation.
  • the PID controller 12 continues the PID control by setting the proportional gain constant, the integration time, and the derivative time to values different from the normal mode in the fuel save mode. It is also possible to configure so that the PID control in the PID controller 12 is stopped and the output value of the PID controller 12 immediately before the control stop is output as it is.

Abstract

Ship-handling performance is maintained while fuel efficiency is enhanced by switching between a fuel saving mode and a normal mode efficiently. In normal mode, a set rotation speed and an actual rotation speed are inputted to a controller (4), and a PID controller (12) calculates an output value to the fuel supply means of a marine engine (2) based on the difference between the set rotation speed and the actual rotation speed. The PID controller (12) also has a fuel saving mode for reducing the variation range of an output value per unit time as compared with the normal mode.  Detection sections (20, 22, 24, 26, 28) for monitoring variations in the set rotation speed and actual rotation speed are provided, and, when the set rotation speed or actual rotation speed exceeds a predetermined range in the fuel saving mode, the PID controller (12) is switched to the normal mode on the basis of the outputs from the detection sections.

Description

舶用機関の制御方法及びその制御装置Marine engine control method and control device thereof
 本発明は、調速装置を備えた舶用機関の制御方法及びそれに使用する制御装置に関する。 The present invention relates to a method for controlling a marine engine equipped with a speed governor and a control device used therefor.
 舶用機関には、その回転数が操縦者によって設定された目標回転数に調整されるように燃料噴射量などの燃料制御パラメータを制御する調速装置(ガバナ)が設けられている。このガバナとしては、例えば特許文献1に開示されているように、舶用機関の実際の回転数と設定回転数とを比較演算して、この比較演算結果に従って舶用期間が備える燃料ポンプのラック位置を調整するものや、特許文献2に開示されているように、主機関の実際の回転数と設定回転数との偏差に応じて主機関の燃料供給量を調整するものがある。 The marine engine is provided with a speed governor (governor) that controls fuel control parameters such as the fuel injection amount so that the rotation speed is adjusted to a target rotation speed set by the operator. As this governor, for example, as disclosed in Patent Document 1, the actual rotational speed of the marine engine and the set rotational speed are compared and calculated, and the rack position of the fuel pump included in the marine period is determined according to the comparison calculation result. There are those that adjust, and those that adjust the fuel supply amount of the main engine according to the deviation between the actual rotational speed of the main engine and the set rotational speed, as disclosed in Patent Document 2.
特開平7-279738号公報JP-A-7-29738 特開平8-200131号公報Japanese Patent Laid-Open No. 8-200231
 上記の特許文献1、2の技術によれば、比較演算の結果に従って逐次燃料ポンプのラック位置の調整が行われ、実際の回転数と設定回転数との偏差に応じて逐次燃料供給量の調整が行われている。逐次ラック位置の調整や燃料供給量の調整を行うと、舶用機関の回転数は常に一定に制御されるが、燃料が無駄に消費される可能性がある。一方、逐次制御を中止した場合、舶用機関の回転数は変動するが、燃料の消費量を抑えることができる。そこで、回転数を一定に逐次制御する状態と、逐次制御を中止する状態とを適宜に切り換えることが望ましい。 According to the techniques of Patent Documents 1 and 2 described above, the rack position of the fuel pump is adjusted sequentially according to the result of the comparison calculation, and the fuel supply amount is adjusted sequentially according to the deviation between the actual rotational speed and the set rotational speed. Has been done. When the rack position and the fuel supply amount are adjusted successively, the rotational speed of the marine engine is always controlled to be constant, but there is a possibility that fuel is wasted. On the other hand, when the sequential control is stopped, the rotational speed of the marine engine fluctuates, but the fuel consumption can be suppressed. Accordingly, it is desirable to appropriately switch between a state in which the rotational speed is sequentially controlled to be constant and a state in which the sequential control is stopped.
 また、逐次制御に代えて、制御に使用するパラメータの変化の速度を落とし、燃料の供給量の変動を少なくする制御を行うことも可能である。しかし、この場合、操縦者が設定した回転数に実際の回転数がなかなか一致せず、操船が難しい。 Also, instead of sequential control, it is also possible to perform control to reduce the fluctuation of the fuel supply amount by reducing the speed of change of parameters used for control. However, in this case, the actual number of rotations does not readily match the number of rotations set by the operator, making it difficult to operate the boat.
 本発明は、操船性を維持しながら、燃料供給手段への出力値の変更を禁止するかまたは燃料の供給量の変動を小さくするモードに効率よく切り換えて、燃料効率を向上させることができる舶用機関の制御方法及びその制御装置を提供することを目的とする。 The present invention provides a marine vessel that can improve fuel efficiency by efficiently switching to a mode in which change of the output value to the fuel supply means is prohibited or variation in the amount of fuel supply is reduced while maintaining ship maneuverability. It is an object to provide an engine control method and a control apparatus therefor.
 本発明による舶用機関の制御方法の一態様は、操縦者によって設定される設定回転数と、舶用機関の実際の回転数である実回転数との差から燃料供給手段への出力値を変更する通常モードと、出力値の変更を禁止するかまたは通常モードに比べて単位時間当たりの変更幅を小さくする燃料セーブモードとを、備えている。燃料供給手段としては、機械制御の場合には燃料ポンプを制御するアクチュエータや、電子制御の場合には電磁弁を使用することができる。所定の条件で前記燃料セーブモードから前記通常モードに切り換えられる。 In one aspect of the marine engine control method according to the present invention, the output value to the fuel supply means is changed from the difference between the set rotational speed set by the operator and the actual rotational speed that is the actual rotational speed of the marine engine. A normal mode and a fuel save mode in which the change of the output value is prohibited or the change width per unit time is smaller than that in the normal mode are provided. As the fuel supply means, an actuator for controlling the fuel pump can be used in the case of mechanical control, and an electromagnetic valve can be used in the case of electronic control. The fuel save mode is switched to the normal mode under a predetermined condition.
 この方法に用いる制御装置の一態様では、通常モードと燃料セーブモードで燃料供給手段への出力値を算出する演算手段が設けられている。更に、設定回転数または実回転数の変動を監視する監視手段が設けられている。監視手段は、設定回転数または実回転数が所定範囲を超えたときに、解除指令を発生し、演算手段は、解除指令を受けて、通常モードに切り換えられる。 In one aspect of the control device used in this method, there is provided a calculation means for calculating an output value to the fuel supply means in the normal mode and the fuel save mode. Furthermore, monitoring means for monitoring the fluctuation of the set rotational speed or the actual rotational speed is provided. The monitoring means generates a release command when the set rotational speed or the actual rotational speed exceeds a predetermined range, and the calculation means is switched to the normal mode in response to the release command.
 これらのように通常モードと燃料セーブモードとを切り換えるので、通常モードにおいて操船性を維持し、燃料セーブモードで燃料効率を向上させることができる。 Since the normal mode and the fuel save mode are switched as described above, the ship maneuverability can be maintained in the normal mode, and the fuel efficiency can be improved in the fuel save mode.
 上記の態様の制御方法において、前記所定の条件を、例えば、前記実回転数が、海象や外乱に対する安全運行のために設定された回転数範囲外となったときとすることができる。上記の態様の制御装置では、監視手段は、実回転数が操船性確保のために設定された回転数以下になったときに、解除指令を発生することができる。 In the control method of the above aspect, the predetermined condition may be, for example, when the actual rotational speed is out of a rotational speed range set for safe operation against sea conditions or disturbance. In the control device according to the aspect described above, the monitoring unit can issue a release command when the actual rotational speed is equal to or lower than the rotational speed set for ensuring the maneuverability.
 これらのように構成すると、例えば外乱の変化によって安全運行が困難になる可能性がある場合に、通常モードに切り換えられるので、操船性が向上する。また、安全運行が可能なときには、燃料セーブモードによって燃料消費を押さえることができる。 With such a configuration, for example, when safe operation may be difficult due to a change in disturbance, the mode is switched to the normal mode, so that the maneuverability is improved. Further, when safe operation is possible, fuel consumption can be suppressed by the fuel save mode.
 上記の態様の制御方法において、前記所定の条件を、前記実回転数が、外洋で使用される回転数以下となったときとすることもできる。上記の態様の制御装置では、監視手段は、実回転数が外洋で使用される回転数以下となったとき解除指令を発生することができる。 In the control method of the above aspect, the predetermined condition may be when the actual rotational speed is equal to or lower than the rotational speed used in the open ocean. In the control device of the above aspect, the monitoring means can generate a release command when the actual rotational speed is equal to or lower than the rotational speed used in the open ocean.
 これらのように構成すると、例えば実回転数が外洋で使用される回転数以下になって、安全運行が困難になる可能性がある場合、燃料消費を押さえることが可能な燃料セーブモードから通常モードに切り換えられるので、操船性が向上する。 When configured as described above, for example, when the actual rotational speed is less than the rotational speed used in the open ocean and there is a possibility that safe operation may be difficult, the fuel save mode that can suppress fuel consumption is changed to the normal mode. As a result, the ship maneuverability is improved.
 上記の態様の制御方法において、前記所定の条件を、前記実回転数が過回転防止のために設定された回転数以上となったときとすることもできる。上記の態様の制御装置では、監視手段は、前記実回転数が過回転防止のために設定された回転数以上となったとき解除指令を生成することもできる。 In the control method of the above aspect, the predetermined condition may be when the actual rotational speed is equal to or higher than a rotational speed set to prevent over-rotation. In the control device of the above aspect, the monitoring means can generate a release command when the actual rotational speed is equal to or higher than the rotational speed set for preventing over-rotation.
 これらのように構成すると、実回転数が過回転となる可能性がある場合には、燃料セーブモードから通常モードに切り換えられるので、実回転数を過回転となることを防止できる。 With such a configuration, when there is a possibility that the actual rotational speed is excessive, the fuel save mode can be switched to the normal mode, so that the actual rotational speed can be prevented from being excessive.
 上記の態様の制御方法において、前記所定の条件を、前記設定回転数が前記操縦者によって変更されたときとすることができる。上記の態様の制御装置では、監視手段は、前記設定回転数が前記操縦者によって変更されたとき、解除指令を生成することができる。 In the control method of the above aspect, the predetermined condition can be set when the set rotational speed is changed by the operator. In the control device of the above aspect, the monitoring unit can generate a release command when the set rotational speed is changed by the operator.
 これらのように構成すると、操縦者が設定回転数を変更した場合、通常モードに切り換えられるので、設定回転数に応じた実回転数で舶用機関を回転させることができる。その後、燃料セーブモードに切り換えて、舶の航行を続けると、燃料消費効率を改善することができる。 With such a configuration, when the driver changes the set rotational speed, the mode is switched to the normal mode, so that the marine engine can be rotated at the actual rotational speed corresponding to the set rotational speed. Thereafter, the fuel consumption efficiency can be improved by switching to the fuel saving mode and continuing the navigation of the ship.
 更に、前記設定回転数の変更量が微調整の範囲のとき、前記燃料セーブモードを維持することもできるし、監視手段が燃料セーブモードを維持することもできる。微調整としては、例えば2rpm/秒以下の設定回転数がある。このように構成すると、設定回転数が微調整の範囲の場合、燃料セーブモードが維持されるので、燃料消費効率を向上させることができる。 Furthermore, when the amount of change in the set rotational speed is within a fine adjustment range, the fuel save mode can be maintained, and the monitoring means can also maintain the fuel save mode. As fine adjustment, for example, there is a set rotational speed of 2 rpm / second or less. With this configuration, when the set rotational speed is within the fine adjustment range, the fuel save mode is maintained, so that the fuel consumption efficiency can be improved.
 また、上記の態様の制御方法において、前記通常モードでの前記設定回転数と前記実回転数との差が第1範囲のときに、前記燃料セーブモードに切り換え、前記燃料セーブモードでの前記設定回転数と前記実回転数との差が、第2範囲よりも大きいときに、前記通常モードに切り換えることができる。この場合、第2範囲が第1範囲よりも大きい。同様に、上記の態様の制御装置において、監視手段は、前記通常モードでの前記設定回転数と前記実回転数との差が第1範囲のときに、解除信号を停止し、前記燃料セーブモードでの前記設定回転数と前記実回転数との差が、第2範囲よりも大きいときに、解除信号を生成することができる。この場合も、第2範囲が第1範囲よりも大きい。 In the control method of the above aspect, when the difference between the set rotational speed in the normal mode and the actual rotational speed is in the first range, the mode is switched to the fuel save mode, and the setting in the fuel save mode is performed. When the difference between the rotational speed and the actual rotational speed is larger than the second range, the normal mode can be switched. In this case, the second range is larger than the first range. Similarly, in the control device of the above aspect, the monitoring unit stops the release signal when the difference between the set rotational speed and the actual rotational speed in the normal mode is in the first range, and the fuel save mode The release signal can be generated when the difference between the set rotational speed and the actual rotational speed at is greater than the second range. Also in this case, the second range is larger than the first range.
 これらのように構成すると、第2範囲が第1範囲よりも大きいので、燃料セーブモードから通常モードには切り替わりにくいので、燃料セーブモードで航行する時間が長く、燃料消費効率を向上させることができる。 With such a configuration, since the second range is larger than the first range, it is difficult to switch from the fuel save mode to the normal mode. Therefore, it takes a long time to navigate in the fuel save mode, and fuel consumption efficiency can be improved. .
 また、上記の態様の制御方法において、前記通常モードから前記燃料セーブモードに切り替わるとき、前記出力値を平均値に変更することができる。或いは、上記の態様の制御装置において、燃料供給手段への出力値の平均値を算出する平均値算出手段を設け、通常モードから燃料セーブモードに切り替わるとき、前記出力値を平均値算出手段からの所定時間における平均値に切り換える切換手段を設けることもできる。 In the control method of the above aspect, when the normal mode is switched to the fuel save mode, the output value can be changed to an average value. Alternatively, in the control device according to the above aspect, an average value calculation unit that calculates an average value of the output value to the fuel supply unit is provided, and when the normal mode is switched to the fuel save mode, the output value is output from the average value calculation unit. Switching means for switching to an average value for a predetermined time may be provided.
 これらのように構成すると、燃料セーブモードにおいて舶用機関の回転数の変化を少なくすることができるので、通常モードへの切換を低減させることができ、燃料消費効率を改善することができる。 Such a configuration makes it possible to reduce the change in the rotational speed of the marine engine in the fuel save mode, so that the switching to the normal mode can be reduced and the fuel consumption efficiency can be improved.
 上記の態様の制御方法において、前記燃料セーブモード時に、燃料供給手段への出力値のセーブモード上限を規定することができる。或いは、上記の態様の制御装置において、演算手段は、燃料セーブモードが燃料供給手段の出力値の変更を通常モードに比べて変更幅を小さくする場合には、燃料供給手段への出力値のセーブモード上限値を規定し、算出された出力値がセーブモード上限値を超えたときには、このセーブモード上限値を出力することもできる。 In the control method of the above aspect, the save mode upper limit of the output value to the fuel supply means can be defined during the fuel save mode. Alternatively, in the control device according to the above aspect, when the fuel save mode makes the change in the output value of the fuel supply means smaller than the normal mode, the calculation means saves the output value to the fuel supply means. A mode upper limit value is defined, and when the calculated output value exceeds the save mode upper limit value, the save mode upper limit value can also be output.
 これらのように構成すると、燃料セーブモードでは、荒天時に実回転数の変動が大きくなるが、燃料供給手段への出力値に上限を設けているので、燃料の供給量の変化が大きくなりすぎることがなく、過回転を防止することができる。また、実回転数の変動が大きくなることも防止できる。 When configured as described above, in the fuel save mode, the fluctuation in the actual rotational speed increases during stormy weather, but since the upper limit is set for the output value to the fuel supply means, the change in the fuel supply amount becomes too large. No over-rotation can be prevented. In addition, it is possible to prevent fluctuations in the actual rotational speed from increasing.
 上記の態様の制御方法において、燃料供給手段への出力値の算出には、比例積分微分制御を使用することができる。この場合、前記燃料セーブモードの際には、前記比例積分微分制御中の比例制御に使用する比例ゲイン定数に比例用倍率を掛け、前記比例積分微分制御中の積分制御に使用する積分時間に積分用倍率を掛け、前記比例積分微分制御中の微分制御に使用する微分時間に微分用倍率を掛けることによって、燃料供給手段への出力値の変更を禁止しまたは前記通常モードに比べて単位時間当たりの前記出力値の単位時間当たりの変更幅を小さくする。さらに、各倍率を設定可能にしてある。 In the control method of the above aspect, proportional-integral-derivative control can be used to calculate the output value to the fuel supply means. In this case, in the fuel save mode, the proportional gain constant used for the proportional control during the proportional integral derivative control is multiplied by the proportional multiplication factor, and the integral time used for the integral control during the proportional integral derivative control is integrated. By multiplying the differential time and multiplying the differential time used for the differential control during the proportional integral differential control by the differential magnification, the change of the output value to the fuel supply means is prohibited or per unit time compared to the normal mode. The change width per unit time of the output value is reduced. Furthermore, each magnification can be set.
 或いは、上記の態様の制御装置において、演算手段は、比例積分微分制御手段を備えることができる。この場合、前記燃料セーブモードの際には、前記比例積分微分制御手段での比例制御に使用する比例ゲイン定数に比例用倍率を掛け、前記比例積分微分制御手段の積分制御に使用する積分時間に積分用倍率を掛け、前記比例積分微分制御手段の微分制御に使用する微分時間に微分用倍率を掛けることによって、燃料供給手段への出力値の変更を禁止しまたは前記通常モードに比べて単位時間当たりの前記出力値の単位時間当たりの変更幅を小さくする。さらに、各倍率を設定可能にしてある。 Alternatively, in the control device according to the above aspect, the calculation means can include a proportional-integral-derivative control means. In this case, in the fuel save mode, the proportional gain constant used for the proportional control in the proportional integral derivative control means is multiplied by the proportional magnification, and the integral time used for the integral control of the proportional integral derivative control means is calculated. By multiplying the integral magnification and multiplying the differential time used for the differential control of the proportional integral differential control means by the differential magnification, the change of the output value to the fuel supply means is prohibited or unit time compared to the normal mode. The change range per unit time of the output value per unit is reduced. Furthermore, each magnification can be set.
 燃料セーブモードにおいて比例ゲイン定数、積分時間、微分時間を変更しようとすると、まず通常モードにおけるこれらの値を把握し、これら把握された値と比較しながら、新たに比例ゲイン定数、積分時間、微分時間を設定する必要があり、処理が面倒である。これに対し、比例ゲイン定数、積分時間、微分時間に対して倍率を掛けるものであれば、いちいち通常モードにおける比例ゲイン定数、積分時間、微分時間を把握する必要が無く、設定を容易に行える。 If you try to change the proportional gain constant, integration time, and derivative time in the fuel save mode, first grasp these values in the normal mode and compare them with the grasped values. It is necessary to set time, and processing is troublesome. On the other hand, if the proportional gain constant, the integration time, and the derivative time are multiplied by the magnification, it is not necessary to grasp the proportional gain constant, the integration time, and the derivative time in the normal mode, and the setting can be easily performed.
本発明の1実施形態の舶用機関の制御装置のブロック図である。1 is a block diagram of a marine engine control apparatus according to an embodiment of the present invention. 図1に示すコントローラが果たす機能を示したブロック図である。It is the block diagram which showed the function which the controller shown in FIG. 1 performs.
 本発明の一実施態様の舶用機関の制御装置は、図2に示すように、舶用機関、例えば舶用内燃機関2を制御するものである。舶用内燃機関2は、例えば多気筒のディーゼルエンジンで、図示していないが、各気筒にそれぞれ燃料噴射弁と燃料供給手段、例えば燃料噴射ポンプとを備えている。燃料噴射弁は、燃料噴射ポンプから供給される燃料の圧力が所定圧力以上のときに、供給された燃料を対応する気筒に供給する。各燃料噴射ポンプは、後述する制御装置、例えばコントローラ4からの出力値に基づいた量の燃料を、対応する燃料噴射弁に供給する。舶用内燃機関2は、燃料噴射弁や燃料噴射ポンプを備えたもの以外に、各気筒に電磁弁で燃料供給を制御するもの、例えばコモンレール式や増圧シリンダ式の燃料噴射システムにすることもできる。その他に、各気筒に燃料供給手段、例えば燃料噴射弁としてのインジェクタを備えたものとすることもできる。インジェクタは、その内部に設けた電磁石を励磁または消磁することによって、弁体を移動させて、対応する気筒内に燃料噴射を制御するもので、それぞれコントローラ4の出力値に基づいて制御される。 The marine engine control apparatus according to one embodiment of the present invention controls a marine engine, for example, a marine internal combustion engine 2, as shown in FIG. The marine internal combustion engine 2 is a multi-cylinder diesel engine, for example, and is provided with a fuel injection valve and a fuel supply means, for example, a fuel injection pump, in each cylinder, although not shown. The fuel injection valve supplies the supplied fuel to the corresponding cylinder when the pressure of the fuel supplied from the fuel injection pump is equal to or higher than a predetermined pressure. Each fuel injection pump supplies an amount of fuel based on an output value from a control device described later, for example, the controller 4, to a corresponding fuel injection valve. The marine internal combustion engine 2 can be a fuel injection system that controls the fuel supply by an electromagnetic valve to each cylinder, for example, a common rail type or a pressure increasing cylinder type fuel injection system, in addition to a fuel injection valve and a fuel injection pump. . In addition, each cylinder may be provided with a fuel supply means, for example, an injector as a fuel injection valve. The injector controls the fuel injection into the corresponding cylinder by moving the valve body by exciting or demagnetizing the electromagnet provided therein, and is controlled based on the output value of the controller 4.
 コントローラ4は、演算手段、例えばマイクロプロセッサ及び記憶手段、例えばROM、RAMを備えている。コントローラ4には、舶用内燃機関2の実際の回転数である実回転数を表す実回転数信号が、回転数検出器6から供給されている。また、コントローラ4には、操縦装置8から舶用内燃機関2の設定回転数を表す設定回転数信号も供給されている。 The controller 4 includes calculation means such as a microprocessor and storage means such as ROM and RAM. The controller 4 is supplied with an actual rotational speed signal representing the actual rotational speed that is the actual rotational speed of the marine internal combustion engine 2 from the rotational speed detector 6. The controller 4 is also supplied with a set speed signal indicating the set speed of the marine internal combustion engine 2 from the control device 8.
 この実施形態では、コントローラ4は、図2に示すように、設定回転数信号と実回転数信号との偏差を算出する加算手段、例えば加算器10として機能し、この偏差が供給されるPID制御手段、例えばPID制御器12としても機能する。即ち、PID制御器12は、供給された偏差に比例ゲイン定数を乗算して比例制御を行い、供給された偏差を積分して、これに積分時間の逆数を乗算して積分制御を行い、供給された偏差を微分して、これに微分時間を乗算して微分制御を行い、これら比例制御、積分制御及び微分制御で得られた各値を加算した値を出力値として出力する。 In this embodiment, as shown in FIG. 2, the controller 4 functions as an adding means for calculating a deviation between the set rotational speed signal and the actual rotational speed signal, for example, an adder 10, and PID control to which this deviation is supplied. It also functions as a means, for example, a PID controller 12. That is, the PID controller 12 performs proportional control by multiplying the supplied deviation by a proportional gain constant, integrates the supplied deviation, and multiplies this by the inverse of the integration time to perform integration control. The deviation is differentiated, and the derivative time is multiplied by this to perform derivative control, and a value obtained by adding the values obtained by the proportional control, integral control and derivative control is output as an output value.
 なお、PID制御器12には、リミッタ14が設けられており、算出された出力値がリミッタ14に設定されているリミッタ上限値を超える場合には、リミッタ上限値を出力するように構成されている。 The PID controller 12 is provided with a limiter 14, and is configured to output the limiter upper limit value when the calculated output value exceeds the limiter upper limit value set in the limiter 14. Yes.
 PID制御器12は、通常モードと燃料セーブモードとのうち、選択されたモードで動作するように構成されている。 The PID controller 12 is configured to operate in a mode selected from the normal mode and the fuel save mode.
 通常モードでは、設定回転数信号が変化した場合にも、オフセットが発生することがなく、また速やかに設定回数信号に実回転数信号が一致するように、比例ゲイン定数、積分時間及び微分時間が設定されている。 In the normal mode, even when the set speed signal changes, no offset occurs, and the proportional gain constant, integration time, and derivative time so that the actual speed signal matches the set number signal quickly. Is set.
 燃料セーブモードでは、通常モードよりも積分制御の働きの強さが強くなり、微分制御が殆ど働かないように、積分時間及び微分時間が設定されている。また比例制御の働きの強さが通常モードの比例制御よりも小さくなるように比例ゲイン定数が設定されている。このように設定することにより、通常モードに比べてPID制御器12の出力値の単位時間当たりの変動幅が小さくされている。 ∙ In the fuel save mode, the integral control and the derivative time are set so that the integral control is stronger than the normal mode and the differential control hardly works. The proportional gain constant is set so that the strength of the proportional control is smaller than that in the normal mode. By setting in this way, the fluctuation range per unit time of the output value of the PID controller 12 is made smaller than in the normal mode.
 燃料セーブモードにおける比例ゲイン定数、積分時間及び微分時間の設定は、これら自体を変更するのではなく、初期値、例えば通常モードの比例ゲイン定数、積分時間及び微分時間に、比例ゲイン定数用倍率、積分時間用倍率及び微分時間用倍率をそれぞれ乗算することによって行われる。従って、通常モードにおける比例ゲイン定数、積分時間及び微分時間自体を把握しなくても、通常モードにおける比例ゲイン定数の何倍、同積分時間の何倍、同微分時間の何倍とするかだけを考えればよいので、設定が容易になる。なお、比例ゲイン定数用倍率、積分時間用倍率及び微分時間用倍率は、それぞれ操縦者が任意に設定することができる。 The proportional gain constant, integral time and derivative time setting in the fuel save mode do not change these themselves, but the initial value, for example, the normal mode proportional gain constant, integral time and derivative time, the proportional gain constant magnification, This is performed by multiplying the integration time magnification and the differentiation time magnification, respectively. Therefore, without knowing the proportional gain constant, integration time, and derivative time itself in the normal mode, only how many times the proportional gain constant in normal mode, how many times the integral time, and how many times the derivative time are to be set. Since it only has to be considered, setting becomes easy. The proportional gain constant magnification, integration time magnification, and differential time magnification can be arbitrarily set by the operator.
 燃料セーブモードと通常モードとの間の切換については、後述する。 切換 Switching between fuel save mode and normal mode will be described later.
 コントローラ4は、PID制御器12の出力を平均化する、例えばローパスフィルタのようなフィルタ16としても機能する。このフィルタ16の出力と、PID制御器12の出力とのうち一方を選択して、舶用内燃機関2内の燃料噴射ポンプまたはインジェクタへ供給する切換手段、例えば切換スイッチ18としても、コントローラ4は機能する。切換スイッチ18は、通常モードではPID制御器12の出力を燃料噴射ポンプまたはインジェクタへ直接に供給しているが、後述するようにコントローラ4が構成する切換制御部19によって、例えば通常モードから燃料セーブモードに切り換えられたとき、フィルタ16の出力を、燃料噴射ポンプまたはインジェクタへ、所定期間または制御プログラムの1ループ期間供給する。 The controller 4 also functions as a filter 16 such as a low-pass filter that averages the output of the PID controller 12. The controller 4 also functions as switching means, for example, a changeover switch 18, which selects one of the output of the filter 16 and the output of the PID controller 12 and supplies the fuel injection pump or injector in the marine internal combustion engine 2. To do. The change-over switch 18 supplies the output of the PID controller 12 directly to the fuel injection pump or the injector in the normal mode. However, as will be described later, for example, the change-over switch 18 is configured to save fuel from the normal mode. When switched to mode, the output of the filter 16 is supplied to the fuel injection pump or injector for a predetermined period or one loop period of the control program.
 上述した通常モードと燃料セーブモードとの間での切換を決定するために、コントローラ4は、監視手段、例えば5つの検出部としても機能する。5つの検出部として、実回転数オーバースピード検出部20、実回転数レベル検出部22、設定回転数レベル検出部24、設定回転数変化量検出部26、回転数変動量検出部28が設けられている。 In order to determine the switching between the normal mode and the fuel save mode described above, the controller 4 also functions as monitoring means, for example, five detection units. As the five detection units, an actual rotation number overspeed detection unit 20, an actual rotation number level detection unit 22, a set rotation number level detection unit 24, a set rotation number change amount detection unit 26, and a rotation number fluctuation amount detection unit 28 are provided. ing.
 実回転数オーバースピードレベル検出部20は、実回転数信号を入力し、これが、予め定めたオーバースピードレベル以上であるか否かを判定し、実回転数信号がオーバースピードレベル以上であると、通常モードに切り換えるOFF信号を出力し、実回転数信号がオーバースピードレベル未満であると、燃料セーブモードに切り換えるON信号を出力する。オーバースピードレベルは、舶用内燃機関2が過回転していると判定できるレベルに設定されている。従って、燃料セーブモードにおいて舶用内燃機関2が過回転している場合には、通常モードに切換可能であり、通常モードにおいて舶用内燃機関2が過回転していない場合、燃料セーブモードに切換可能である。 The actual rotational speed overspeed level detection unit 20 receives an actual rotational speed signal, determines whether or not the actual rotational speed signal is equal to or higher than a predetermined overspeed level, and if the actual rotational speed signal is equal to or higher than the overspeed level, An OFF signal for switching to the normal mode is output, and an ON signal for switching to the fuel save mode is output if the actual rotational speed signal is less than the overspeed level. The overspeed level is set to a level at which it can be determined that the marine internal combustion engine 2 is over-rotating. Therefore, when the marine internal combustion engine 2 is over-rotating in the fuel save mode, it is possible to switch to the normal mode, and when the marine internal combustion engine 2 is not over-rotating in the normal mode, it is possible to switch to the fuel save mode. is there.
 実回転数レベル検出部22は、実回転数信号を入力し、これがナビフル回転数以上であるか否かを判定し、実回転数信号がナビフル回転数以上であると、OFF信号を出力し、実回転数信号がナビフル回転数未満であると、ON信号を出力する。ナビフル回転数は、舶用内燃機関2を外洋で使用している場合の回転数を表している。従って、燃料セーブモードにおいて、実回転数信号がナビフル回転数以上の場合、通常モードに切換可能である。また、通常モードにおいて実回転数信号がナビフル回転数未満であると、燃料セーブモードに切換可能である。ナビフル回転数は、船舶の形状や大きさ等から予め算出された外洋航行時の回転数である。その他に湾内を航行時においても海象や外乱なども考慮して安全に航行できる回転数が予め算出され、湾内航行時には、実回転数が、この算出された回転数以上であると、実回転数レベル検出部22はOFF信号を出力し、実回転数信号が上記算出された回転数未満であると、ON信号を出力する。 The actual rotational speed level detection unit 22 receives the actual rotational speed signal, determines whether or not the actual rotational speed signal is equal to or higher than the navigation full rotational speed, and outputs an OFF signal when the actual rotational speed signal is equal to or higher than the navigation full rotational speed. If the actual rotational speed signal is less than the navigation full rotational speed, an ON signal is output. The navigation full rotational speed represents the rotational speed when the marine internal combustion engine 2 is used in the open sea. Therefore, in the fuel save mode, when the actual rotational speed signal is equal to or higher than the navigation full rotational speed, it is possible to switch to the normal mode. Further, when the actual rotational speed signal is less than the navigation full rotational speed in the normal mode, it is possible to switch to the fuel save mode. The navigation full rotation speed is a rotation speed at the time of ocean navigation calculated in advance based on the shape and size of the ship. In addition, when navigating in the bay, the number of revolutions that can be safely navigated in consideration of sea conditions and disturbances is calculated in advance, and when navigating in the bay, if the actual number of revolutions is greater than this calculated number of revolutions, The level detector 22 outputs an OFF signal, and outputs an ON signal when the actual rotational speed signal is less than the calculated rotational speed.
 設定回転数レベル検出部24は、設定回転数信号を入力し、これがナビフル回転数以上であるか否かを判定し、ナビフル回転数以上である場合、OFF信号を出力し、ナビフル回転数未満である場合、ON信号を出力する。従って、燃料セーブモードにおいて設定回転数信号がナビフル回転数以上の場合、通常モードに切換可能である。また、通常モードにおいて設定回転数信号がナビフル回転数未満の場合、燃料セーブモードに切換可能である。 The set rotational speed level detection unit 24 receives the set rotational speed signal, determines whether or not the rotational speed is equal to or higher than the navigation full rotational speed, and outputs an OFF signal when the rotational speed is equal to or higher than the full navigation rotational speed. If there is, an ON signal is output. Accordingly, when the set rotational speed signal is equal to or higher than the navigation full rotational speed in the fuel save mode, the mode can be switched to the normal mode. Further, when the set rotational speed signal is less than the navigation full rotational speed in the normal mode, it is possible to switch to the fuel save mode.
 設定回転数変化量検出部26は、設定回転数信号を入力し、その単位時間、例えば1秒当たりの変化率を算出し、この変化率が予め定めた値、例えば2rpm/秒以上であるか否かを判定し、2rpm/秒以上の場合、OFF信号を出力し、2rpm/秒未満の場合、ON信号を出力する。この予め定めた値は、設定回転数の変化量が微調整の範囲であると見なせる値に設定されている。従って、燃料セーブモードにおいて設定回転数の変化量が微調整の範囲外である場合には、通常モードに切換可能であり、通常モードにおいて設定回転数の変化量が微調整の範囲内である場合には、燃料セーブモードに切換可能である。 The set rotational speed change amount detection unit 26 receives the set rotational speed signal, calculates the rate of change per unit time, for example, 1 second, and whether this rate of change is a predetermined value, for example, 2 rpm / second or more. If it is 2 rpm / second or more, an OFF signal is output, and if it is less than 2 rpm / second, an ON signal is output. This predetermined value is set to a value at which the amount of change in the set rotational speed can be regarded as being within the fine adjustment range. Accordingly, when the change amount of the set rotational speed is outside the fine adjustment range in the fuel save mode, it is possible to switch to the normal mode, and in the normal mode, the change amount of the set rotational speed is within the fine adjustment range. Can be switched to the fuel save mode.
 回転数変動量検出部28には、加算器10からの偏差信号(設定回転数信号と実回転数信号との偏差信号)が入力されている。この偏差信号は、実回転数の設定回転数に対する変動量を表しており、この変動量が予め定めた第1の範囲、例えば±3rpmの範囲内にある場合に、ON信号を出力し、この変動量が予め定めた第2の範囲、例えば+5rpm以上であるか-5rpm以下の場合にOFF信号を出力する。従って、燃料セーブモードにおいて、設定回転数信号と実回転数信号との偏差信号である回転数変動量が、5rpm以上増加した場合、または-5rpm以下に減少した場合、通常モードに切換可能である。また、通常モードにおいて、回転数変動量が±3rpmの範囲内の変動の場合、燃料セーブモードに切換可能である。 The rotational speed fluctuation amount detection unit 28 is input with a deviation signal (deviation signal between the set rotational speed signal and the actual rotational speed signal) from the adder 10. This deviation signal represents the amount of variation of the actual number of rotations with respect to the set number of rotations. When this amount of variation is within a predetermined first range, for example, ± 3 rpm, an ON signal is output. An OFF signal is output when the fluctuation amount is a predetermined second range, for example, +5 rpm or more or −5 rpm or less. Therefore, in the fuel save mode, when the rotational speed fluctuation amount, which is a deviation signal between the set rotational speed signal and the actual rotational speed signal, increases by 5 rpm or more or decreases to -5 rpm or less, it can be switched to the normal mode. . Further, in the normal mode, when the rotational speed fluctuation amount is a fluctuation within a range of ± 3 rpm, it is possible to switch to the fuel save mode.
 これら各検出部20、22、24、26、28の出力信号は、コントローラ4が構成している論理ゲート、例えばアンドゲート30に供給される。アンドゲート30は、各検出部20、24、26、28の出力信号が全てON信号の場合に、出力を発生する。この出力は、コントローラ4が構成するタイマ32に供給される。このタイマ32は、アンドゲート30の出力が予め定めた時間にわたって継続したときに、出力を発生する。従って、短時間だけ全ての検出部20、22、24、26、28がON信号を出力しても、タイマ32は出力を発生せず、全ての検出部20、22、24、26、28が予め定めた時間にわたってON信号を発生したときに、タイマ32は出力を発生する。このタイマ32の出力が、図1に示す表示器34に設けられた燃料セーブモード準備完了表示部36に供給され、これが点灯し、燃料セーブモードが準備完了していることを表示する。 The output signals of these detection units 20, 22, 24, 26, and 28 are supplied to a logic gate that is configured by the controller 4, for example, an AND gate 30. The AND gate 30 generates an output when the output signals of the detection units 20, 24, 26, and 28 are all ON signals. This output is supplied to the timer 32 which the controller 4 comprises. The timer 32 generates an output when the output of the AND gate 30 continues for a predetermined time. Therefore, even if all the detection units 20, 22, 24, 26, 28 output ON signals for a short time, the timer 32 does not generate an output, and all the detection units 20, 22, 24, 26, 28 are When the ON signal is generated for a predetermined time, the timer 32 generates an output. The output of the timer 32 is supplied to a fuel save mode preparation completion display unit 36 provided in the display 34 shown in FIG. 1, and this lights up to indicate that the fuel save mode is ready.
 タイマ32の出力は、コントローラ4が構成した論理ゲート、例えばアンドゲート38に供給されている。このアンドゲート38には、操縦装置8に設けた燃料セーブモード選択ボタン40が閉じられたときに生成される燃料セーブモード選択信号も供給される。アンドゲート38は、タイマ34が出力を供給し、かつ燃料セーブモード選択ボタン40から燃料セーブモード選択信号が供給されているときのみ、出力を発生する。従って、タイマ32が出力を発生していても、即ち、全ての検出部20、22、24、26、28が予め定めた時間にわたってON信号を発生していても、燃料セーブモード選択信号が供給されていない限り、アンドゲート38は出力を発生しない。 The output of the timer 32 is supplied to a logic gate configured by the controller 4, for example, an AND gate 38. The AND gate 38 is also supplied with a fuel save mode selection signal generated when the fuel save mode selection button 40 provided on the control device 8 is closed. The AND gate 38 generates an output only when the timer 34 supplies an output and the fuel save mode selection signal is supplied from the fuel save mode selection button 40. Therefore, even if the timer 32 generates an output, that is, even if all the detection units 20, 22, 24, 26, and 28 generate an ON signal for a predetermined time, the fuel save mode selection signal is supplied. Unless done, AND gate 38 does not generate an output.
 アンドゲート38の出力は、PID制御器12に供給される。PID制御器12は、アンドゲート38の出力の供給を受けたことにより、通常モードから燃料セーブモードに切り換えられ、燃料セーブモードでPID制御を行う。同時に、アンドゲート38の出力は、表示器34に設けられた燃料セーブモード表示器42に供給され、燃料セーブモードに移行したことを表示する。逆に、アンドゲート38の出力がPID制御器12に供給されなくなったとき、PID制御器12は燃料セーブモードから通常モードに切り換えられる。 The output of the AND gate 38 is supplied to the PID controller 12. The PID controller 12 is switched from the normal mode to the fuel save mode by receiving the output of the AND gate 38, and performs PID control in the fuel save mode. At the same time, the output of the AND gate 38 is supplied to a fuel save mode indicator 42 provided in the indicator 34 to indicate that the fuel save mode has been entered. Conversely, when the output of the AND gate 38 is not supplied to the PID controller 12, the PID controller 12 is switched from the fuel save mode to the normal mode.
 また、アンドゲート38の出力は、切換制御部19に供給され、切換制御部19は、フィルタ16の出力を燃料噴射ポンプまたはインジェクタへ供給するように、切換スイッチ18を切り換える。通常モードから燃料セーブモードに切り換えられたことによってPID制御器12の出力値に変動が生じる。なお、切り換えの初期にはフィルタ16で緩和したものが、燃料噴射ポンプまたはインジェクタへ供給されるから、切り換える時の変動を抑制できる。所定期間経過後に、切換スイッチ18が切り換えられ、PID制御器12の出力が、そのまま燃料噴射ポンプまたはインジェクタへ供給される。 The output of the AND gate 38 is supplied to the switching control unit 19, and the switching control unit 19 switches the changeover switch 18 so that the output of the filter 16 is supplied to the fuel injection pump or the injector. The output value of the PID controller 12 varies due to the switching from the normal mode to the fuel save mode. In addition, at the initial stage of switching, what is relaxed by the filter 16 is supplied to the fuel injection pump or injector, so that fluctuations at the time of switching can be suppressed. After a predetermined period, the changeover switch 18 is switched, and the output of the PID controller 12 is supplied to the fuel injection pump or the injector as it is.
 このように通常モードにおいて、全ての検出部20、22、24、26、28がON信号を一定時間にわたって出力すると、PID制御器12は燃料セーブモードに切り換えられ、PID制御器12は燃料セーブモードで燃料噴射ポンプまたはインジェクタを制御する出力値を出力する。しかし、この燃料セーブモードにおいて、検出部20、22、24、26、28のいずれかがOFF信号を出力すると、PID制御器12は通常モードに切り換えられ、通常モードでPID制御器12は燃料噴射ポンプまたはインジェクタを制御する出力値を出力する。 Thus, in the normal mode, when all the detection units 20, 22, 24, 26, and 28 output the ON signal for a certain time, the PID controller 12 is switched to the fuel save mode, and the PID controller 12 is switched to the fuel save mode. To output an output value for controlling the fuel injection pump or injector. However, in this fuel save mode, when any of the detection units 20, 22, 24, 26, 28 outputs an OFF signal, the PID controller 12 is switched to the normal mode, and the PID controller 12 injects fuel in the normal mode. Outputs an output value that controls the pump or injector.
 従って、実回転数がオーバースピードレベル以上に増加した場合、実回転数がナビフル回転数以上に増加した場合、設定回転数が2rpm以上増加した場合、設定回転数がナビフル回転数以上に増加した場合、または回転数の変動量が±5rpm以上変化した場合には、今まで燃料セーブモードで制御が行われていても、通常モードに制御が切り換えられるので、安全航行に影響を与えることはないし、操船性が向上する。また、燃料セーブモードの間には、燃料の消費量が抑制される。 Therefore, when the actual rotation speed increases above the overspeed level, when the actual rotation speed increases above the navigation full rotation speed, when the setting rotation speed increases by 2 rpm or more, when the setting rotation speed increases above the navigation full rotation speed Or, if the amount of change in the rotational speed has changed by ± 5 rpm or more, even if the control has been performed in the fuel save mode until now, the control is switched to the normal mode, so there is no influence on safe navigation, Maneuverability is improved. Further, the fuel consumption is suppressed during the fuel save mode.
 また、燃料セーブモードに切り換えられた所定期間、PID制御器12の出力は、フィルタ16によって平均化されて出力されているので、燃料噴射ポンプまたはインジェクタに供給される出力値が急激に大きく変動することがない。その結果、舶用機関2の回転数の変動量が大きく変動せず、燃料セーブモードに切り替わって即座に、通常モードに再び切り換えられることを防止できる。 Further, since the output of the PID controller 12 is averaged and output by the filter 16 for a predetermined period of time when the mode is switched to the fuel save mode, the output value supplied to the fuel injection pump or the injector fluctuates greatly. There is nothing. As a result, the amount of change in the rotational speed of the marine engine 2 does not vary greatly, and it is possible to prevent switching to the normal mode immediately after switching to the fuel save mode.
 また、PID制御器12には、リミッタ14が設けられているので、その出力値は、リミッタ上限値よりも大きくなることはなく、燃料の変化量は異常に大きくなることはなく、過回転を防止できる。燃料セーブモードでは、アクチュエータやインジェクタの操作量が極端に少なくなるので、燃料セーブモードに切り換えられた後、通常モードよりも回転数変動が大きくなる可能性がある。そのため、このリミッタ14を設けてある。なお、このリミッタ14は、通常モードでのPID制御器12の出力上限よりも5から10パーセント低い値とするのが良い。 Further, since the PID controller 12 is provided with the limiter 14, the output value thereof does not become larger than the limiter upper limit value, the amount of change of the fuel does not become abnormally large, and the overspeed is not increased. Can be prevented. In the fuel save mode, the amount of operation of the actuator and the injector is extremely small. Therefore, after the mode is switched to the fuel save mode, there is a possibility that the rotational speed fluctuation becomes larger than that in the normal mode. Therefore, this limiter 14 is provided. The limiter 14 is preferably 5 to 10 percent lower than the upper limit of the output of the PID controller 12 in the normal mode.
 上記の実施形態では、5つの検出部20、22、24、26、28を設けたが、状況に応じて、これら5つの検出部のうち所望の単数または複数のものを使用することもできる。単数の検出部30を使用する場合には、アンドゲート30は不要である。また、燃料セーブモード選択ボタン40を設けて、燃料セーブモード選択信号をアンドゲート38に供給したが、燃料セーブモード選択ボタン40、アンドゲート38を除去して、タイマ32の出力を、直接にPID制御器12、切換制御部19、燃料セーブモード表示部42に供給することもできる。また、タイマ32、フィルタ46、切換スイッチ18、切換制御部19は、状況に応じて除去することもできる。 In the above embodiment, the five detection units 20, 22, 24, 26, and 28 are provided. However, depending on the situation, a desired single or a plurality of detection units can be used. When using the single detection unit 30, the AND gate 30 is not necessary. Further, the fuel save mode selection button 40 is provided and the fuel save mode selection signal is supplied to the AND gate 38. However, the fuel save mode selection button 40 and the AND gate 38 are removed, and the output of the timer 32 is directly connected to the PID. It can also be supplied to the controller 12, the switching control unit 19, and the fuel save mode display unit 42. The timer 32, the filter 46, the changeover switch 18, and the changeover control unit 19 can be removed depending on the situation.
 また、上記の実施形態では、PID制御器12は、燃料セーブモードでは、比例ゲイン定数、積分時間、微分時間を通常モードと異なる値に設定してPID制御を継続したが、燃料セーブモードを、PID制御器12でのPID制御を停止し、制御停止直前のPID制御器12の出力値をそのまま出力するように構成することもできる。 In the above embodiment, the PID controller 12 continues the PID control by setting the proportional gain constant, the integration time, and the derivative time to values different from the normal mode in the fuel save mode. It is also possible to configure so that the PID control in the PID controller 12 is stopped and the output value of the PID controller 12 immediately before the control stop is output as it is.

Claims (20)

  1.  操縦者によって設定される設定回転数と、舶用機関の実際の回転数である実回転数との差から燃料供給手段への出力値を変更する通常モードと、前記出力値の変更を禁止しまたは通常モードに比べて単位時間当たりの前記出力値の変更幅を小さくする燃料セーブモードとを、備え、所定の条件で前記燃料セーブモードから前記通常モードに切り換えることを特徴とする舶用機関の制御方法。 A normal mode in which the output value to the fuel supply means is changed from the difference between the set rotational speed set by the operator and the actual rotational speed that is the actual rotational speed of the marine engine, and the change of the output value is prohibited or A marine engine control method comprising: a fuel save mode for reducing a change range of the output value per unit time as compared with the normal mode; and switching from the fuel save mode to the normal mode under a predetermined condition. .
  2.  請求項1記載の舶用機関の制御方法において、
     前記所定の条件は、前記実回転数が、海象や外乱に対する安全運行のために設定された回転数範囲外となったときであることを特徴とする舶用機関の制御方法。
    The marine engine control method according to claim 1,
    The marine engine control method, wherein the predetermined condition is when the actual rotational speed is out of a rotational speed range set for safe operation against sea conditions and disturbances.
  3.  請求項1記載の舶用機関の制御方法において、
     前記所定の条件は、前記実回転数が、外洋で使用される回転数以下となったときであることを特徴とする舶用機関の制御方法。
    The marine engine control method according to claim 1,
    The predetermined condition is when the actual rotational speed is equal to or lower than the rotational speed used in the open ocean.
  4.  請求項1記載の舶用機関の制御方法において、
     前記所定の条件は、前記実回転数が過回転防止のために設定された回転数以上となったときであることを特徴とする舶用機関の制御方法。
    The marine engine control method according to claim 1,
    The control method for a marine engine, wherein the predetermined condition is when the actual rotational speed is equal to or higher than a rotational speed set for preventing excessive rotation.
  5.  請求項1記載の舶用機関の制御方法において、
     前記所定の条件は、前記設定回転数が前記操縦者によって変更されたときであることを特徴とする舶用機関の制御方法。
    The marine engine control method according to claim 1,
    The control method for a marine engine, wherein the predetermined condition is when the set rotational speed is changed by the operator.
  6.  請求項5に記載の舶用機関の制御方法において、前記設定回転数の変更量が微調整の範囲のとき、前記燃料セーブモードを維持することを特徴とする舶用機関の制御方法。 6. The marine engine control method according to claim 5, wherein the fuel save mode is maintained when a change amount of the set rotational speed is within a fine adjustment range.
  7.  請求項1記載の舶用機関の制御方法において、
     前記通常モードでの前記設定回転数と前記実回転数との差が第1範囲のときに、前記燃料セーブモードに切り替わり、前記燃料セーブモードでの前記設定回転数と前記実回転数との差が、第2範囲よりも大きいときに、前記通常モードに切り替わり、第2範囲が第1範囲よりも大きいことを特徴とする舶用機関の制御方法。
    The marine engine control method according to claim 1,
    When the difference between the set rotational speed in the normal mode and the actual rotational speed is in the first range, the mode is switched to the fuel save mode, and the difference between the set rotational speed in the fuel save mode and the actual rotational speed However, when it is larger than the second range, the mode is switched to the normal mode, and the second range is larger than the first range.
  8.  請求項1記載の舶用機関の制御方法において、
     前記通常モードから前記燃料セーブモードに切り替わるとき、前記出力値を平均値に変更することを特徴とする舶用機関の制御方法。
    The marine engine control method according to claim 1,
    The marine engine control method, wherein the output value is changed to an average value when the fuel saving mode is switched from the normal mode.
  9.  請求項1に記載の舶用機関の制御方法において、前記燃料セーブモード時に、前記出力値のセーブモード上限を規定したことを特徴とする舶用機関の制御方法。 2. The marine engine control method according to claim 1, wherein an upper limit of the save mode of the output value is defined in the fuel save mode.
  10.  請求項1乃至8いずれか記載の舶用機関の制御方法において、
     前記出力値の算出には、比例積分微分制御を使用し、前記燃料セーブモードの際には、前記比例積分微分制御中の比例制御に使用する比例ゲイン定数に比例用倍率を掛け、前記比例積分微分制御中の積分制御に使用する積分時間に積分用倍率を掛け、前記比例積分微分制御中の微分制御に使用する微分時間に微分用倍率を掛けることによって、前記出力値の変更を禁止しまたは前記通常モードに比べて単位時間当たりの前記出力値の単位時間当たりの変更幅を小さくし、
     前記各倍率を設定可能にしたことを特徴とする舶用機関の制御方法。
    The method for controlling a marine engine according to any one of claims 1 to 8,
    For the calculation of the output value, proportional integral derivative control is used. In the fuel save mode, the proportional gain constant used for proportional control during the proportional integral derivative control is multiplied by a proportional magnification, and the proportional integral is calculated. The change of the output value is prohibited by multiplying the integration time used for the integral control during the derivative control by the multiplication factor and multiplying the derivative time used for the derivative control during the proportional integral derivative control by the differentiation factor, or Compared to the normal mode, the change per unit time of the output value per unit time is reduced,
    A marine engine control method characterized in that each of the magnifications can be set.
  11.  請求項1に記載の舶用機関の制御方法に用いられる制御装置であって、
     設定回転数と、実回転数とが、入力され、前記設定回転数と前記実回転数との差から前記舶用機関の燃料供給手段への出力値を算出する通常モードを有する演算手段を、備えた舶用機関の制御装置において、
     前記演算手段は、前記出力値の変更を禁止しまたは前記通常モードに比べて単位時間当たりの前記出力値の変更幅を小さくする燃料セーブモードを、有し、前記通常モードと前記燃料セーブモードとに切換可能に構成され、
     前記設定回転数または前記実回転数の変動を監視する監視手段を備え、前記設定回転数または前記実回転数が所定範囲を超えたとき解除指令を発し、
     前記演算手段は、前記解除指令を受けて、前記通常モードに切り換えられることを特徴とする舶用機関の制御装置。
    A control device used in the marine engine control method according to claim 1,
    Computation means having a normal mode in which a set rotational speed and an actual rotational speed are inputted, and an output value to the fuel supply means of the marine engine is calculated from a difference between the set rotational speed and the actual rotational speed. In a marine engine control device,
    The calculation means has a fuel save mode that prohibits the change of the output value or reduces the change range of the output value per unit time as compared to the normal mode, and the normal mode, the fuel save mode, Can be switched to,
    Comprising monitoring means for monitoring fluctuations in the set rotational speed or the actual rotational speed, and issuing a release command when the set rotational speed or the actual rotational speed exceeds a predetermined range;
    The marine engine control device, wherein the calculation means is switched to the normal mode in response to the release command.
  12.  請求項11記載の舶用機関の制御装置において、
     前記監視手段は、前記実回転数が、操船性確保のために設定された回転数以下になったときに、前記解除指令を発信することを特徴とする舶用機関の制御装置。
    The control device for a marine engine according to claim 11,
    The marine engine control device, wherein the monitoring means transmits the release command when the actual rotational speed is equal to or lower than a rotational speed set to ensure ship maneuverability.
  13.  請求項11記載の舶用機関の制御装置において、
     前記監視手段は、前記実回転数が、外洋で使用される回転数以下となったときに、前記解除指令を発信することを特徴とする舶用機関の制御装置。
    The control device for a marine engine according to claim 11,
    The marine engine control device, wherein the monitoring means transmits the release command when the actual rotational speed is equal to or lower than the rotational speed used in the open ocean.
  14.  請求項11記載の舶用機関の制御装置において、
     前記監視手段は、前記実回転数が、過回転防止のために設定された回転数以上となったときに、前記解除指令を発信することを特徴とする舶用機関の制御装置。
    The control device for a marine engine according to claim 11,
    The marine engine control device, wherein the monitoring means transmits the release command when the actual rotational speed is equal to or higher than a rotational speed set to prevent over-rotation.
  15.  請求項11記載の舶用機関の制御装置において、
     前記監視手段は、前記設定回転数が、操縦者によって変更されたときに、前記解除指令を発信することを特徴とする舶用機関の制御装置。
    The control device for a marine engine according to claim 11,
    The marine engine control device, wherein the monitoring means transmits the release command when the set rotational speed is changed by a driver.
  16.  請求項11記載の舶用機関の制御装置において、
     前記監視手段は、前記設定回転数の変更量が、微調整の範囲のときに、前記燃料セーブモードを維持することを特徴とする舶用機関の制御装置。
    The control device for a marine engine according to claim 11,
    The marine engine control device, wherein the monitoring means maintains the fuel save mode when the change amount of the set rotational speed is within a fine adjustment range.
  17.  請求項11記載の舶用機関の制御装置において、
     前記監視手段は、前記通常モードにおいて前記設定回転数と前記実回転数との差が、第1範囲内のときに、前記解除指令を停止し、前記燃料セーブモードにおいて前記設定回転数と前記実回転数との差が第2範囲を超えたとき、前記解除指令を発信し、第2範囲は第1範囲よりも大きく設定されていることを特徴とする舶用機関の制御装置。
    The control device for a marine engine according to claim 11,
    The monitoring means stops the release command when the difference between the set rotational speed and the actual rotational speed is within the first range in the normal mode, and the set rotational speed and the actual rotational speed are in the fuel save mode. When the difference from the rotational speed exceeds the second range, the cancel command is transmitted, and the second range is set to be larger than the first range.
  18.  請求項11記載の舶用機関の制御装置において、
     前記出力値の平均値を算出する平均値演算手段を設け、前記通常モードから前記燃料セーブモードに切り替わるとき、前記出力値を前記平均値に切り換える切換手段を設けたことを特徴とする舶用機関の制御装置。
    The control device for a marine engine according to claim 11,
    An average value calculating means for calculating an average value of the output values is provided, and a switching means for switching the output value to the average value when switching from the normal mode to the fuel save mode is provided. Control device.
  19.  請求項11記載の舶用機関の制御装置において、
     前記演算手段は、前記燃料セーブモードが前記出力値の変更を前記通常モードに比べて変更幅を小さくする場合、前記出力値のセーブモード上限値を規定し、算出された出力値が、前記セーブモード上限値を超えたとき、前記セーブモード上限値を出力することを特徴とする舶用機関の制御装置。
    The control device for a marine engine according to claim 11,
    When the fuel save mode makes the change of the output value smaller than the normal mode, the calculation means defines a save mode upper limit value of the output value, and the calculated output value is the save value. The marine engine control device that outputs the save mode upper limit value when the mode upper limit value is exceeded.
  20.  請求項11記載の舶用機関の制御装置において、
     前記演算手段は、比例積分微分制御を行う比例積分微分制御手段を有し、前記燃料セーブモードの際には、前記比例積分微分制御中の比例制御に使用する比例ゲイン定数に比例用倍率を掛け、前記比例積分微分制御中の積分制御に使用する積分時間に積分用倍率を掛け、前記比例積分微分制御中の微分制御に使用する微分用倍率を掛けることによって、前記出力値の変更を禁止しまたは前記通常モードに比べて単位時間当たりの前記出力値の単位時間当たりの変更幅を小さくし、
     前記各倍率を設定可能にしたことを特徴とする舶用機関の制御装置。
    The control device for a marine engine according to claim 11,
    The arithmetic means has proportional integral derivative control means for performing proportional integral derivative control. In the fuel save mode, the proportional gain constant used for proportional control during the proportional integral derivative control is multiplied by a proportional magnification. The change of the output value is prohibited by multiplying the integral time used for integral control during the proportional integral differential control by the integral magnification and by multiplying the differential magnification used for the differential control during the proportional integral derivative control. Or, the change width per unit time of the output value per unit time is smaller than that in the normal mode,
    A marine engine control apparatus characterized in that each magnification can be set.
PCT/JP2009/061381 2009-06-23 2009-06-23 Control method and controller of marine engine WO2010150349A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09846482.9A EP2447515B1 (en) 2009-06-23 2009-06-23 Control method and controller of marine engine
KR1020117026621A KR20120018310A (en) 2009-06-23 2009-06-23 Control method and controller of marine engine
CN200980159618.XA CN102449291B (en) 2009-06-23 2009-06-23 Control method and controller of marine engine
PCT/JP2009/061381 WO2010150349A1 (en) 2009-06-23 2009-06-23 Control method and controller of marine engine
DK09846482.9T DK2447515T3 (en) 2009-06-23 2009-06-23 The control method and control to a marine engine
KR1020137027980A KR101438018B1 (en) 2009-06-23 2009-06-23 Control method and controller of marine engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/061381 WO2010150349A1 (en) 2009-06-23 2009-06-23 Control method and controller of marine engine

Publications (1)

Publication Number Publication Date
WO2010150349A1 true WO2010150349A1 (en) 2010-12-29

Family

ID=43386144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061381 WO2010150349A1 (en) 2009-06-23 2009-06-23 Control method and controller of marine engine

Country Status (5)

Country Link
EP (1) EP2447515B1 (en)
KR (2) KR20120018310A (en)
CN (1) CN102449291B (en)
DK (1) DK2447515T3 (en)
WO (1) WO2010150349A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104149779A (en) * 2014-07-08 2014-11-19 江苏大学 Vehicle power matching system with hydraulic mechanical continuously-variable transmission
JP2015078884A (en) * 2013-10-16 2015-04-23 富士通株式会社 Monitoring device, monitoring program, and monitoring method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017219785A1 (en) * 2017-11-07 2019-05-09 Robert Bosch Gmbh Method for controlling a speed of an internal combustion engine with compensation of a dead time
CN108104960B (en) * 2017-12-15 2019-12-03 潍柴西港新能源动力有限公司 Hybrid power engine revolving speed communication strategy
JP2022015997A (en) * 2020-07-10 2022-01-21 ナブテスコ株式会社 Engine characteristic estimation device, engine characteristic estimation method, engine characteristic estimation program, and engine state estimation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195357A (en) * 1984-03-19 1985-10-03 Ishikawajima Harima Heavy Ind Co Ltd Method of controlling speed of main diesel-engine
JPH07279738A (en) 1994-04-13 1995-10-27 Nabco Ltd Rotational speed control device for engine
JPH08200131A (en) 1995-01-26 1996-08-06 Mitsubishi Heavy Ind Ltd Load fluctuation control unit of electronic governor for marine use
JP2008045484A (en) * 2006-08-16 2008-02-28 Japan Marine Science Inc Control method and control device for marine internal combustion engine
JP2009036180A (en) * 2007-08-03 2009-02-19 Yanmar Co Ltd Engine rotation speed control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932630A (en) * 1982-08-17 1984-02-22 Mitsubishi Heavy Ind Ltd Control apparatus for main engine of ship
DE4333351C2 (en) * 1993-09-30 2003-10-09 Motoren Werke Mannheim Ag Seegangabhängige speed regulation for an internal combustion engine
DE102005060540B3 (en) * 2005-12-17 2007-04-26 Mtu Friedrichshafen Gmbh Moment-orientated control process for internal combustion engine involves calculating intended moment value by revs regulator
JP2007168495A (en) * 2005-12-19 2007-07-05 Toyota Motor Corp Power output device, control method therefor, and vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195357A (en) * 1984-03-19 1985-10-03 Ishikawajima Harima Heavy Ind Co Ltd Method of controlling speed of main diesel-engine
JPH07279738A (en) 1994-04-13 1995-10-27 Nabco Ltd Rotational speed control device for engine
JPH08200131A (en) 1995-01-26 1996-08-06 Mitsubishi Heavy Ind Ltd Load fluctuation control unit of electronic governor for marine use
JP2008045484A (en) * 2006-08-16 2008-02-28 Japan Marine Science Inc Control method and control device for marine internal combustion engine
JP2009036180A (en) * 2007-08-03 2009-02-19 Yanmar Co Ltd Engine rotation speed control device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2447515A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078884A (en) * 2013-10-16 2015-04-23 富士通株式会社 Monitoring device, monitoring program, and monitoring method
CN104149779A (en) * 2014-07-08 2014-11-19 江苏大学 Vehicle power matching system with hydraulic mechanical continuously-variable transmission

Also Published As

Publication number Publication date
KR101438018B1 (en) 2014-09-04
DK2447515T3 (en) 2016-08-01
CN102449291B (en) 2015-01-28
KR20120018310A (en) 2012-03-02
EP2447515A1 (en) 2012-05-02
EP2447515A4 (en) 2013-08-21
EP2447515B1 (en) 2016-05-04
CN102449291A (en) 2012-05-09
KR20140013042A (en) 2014-02-04

Similar Documents

Publication Publication Date Title
WO2010150349A1 (en) Control method and controller of marine engine
JP5033210B2 (en) Ship main engine control system and method
JP5680716B2 (en) Marine engine control method and control device thereof
US9340270B2 (en) Nautical automatic steering device, automatic steering method, and non-transitory computer-readable medium storing automatic steering program
US9764812B1 (en) Systems and methods for setting engine speed using a feed forward signal
US9555869B1 (en) Systems and methods for setting engine speed in a marine propulsion device
JP2008045484A (en) Control method and control device for marine internal combustion engine
JP6214075B1 (en) Ship propulsion method and ship propulsion device
JP6125124B1 (en) Motor control method and control apparatus
JP5090957B2 (en) Marine engine control method and control device thereof
JP5921160B2 (en) Pump control method and control apparatus therefor
JP5280553B2 (en) Marine engine control method and control device thereof
JP2012077758A (en) Method and device for controlling ship engine
JP2012077758A5 (en)
EP3153688A1 (en) Engine control device and engine
WO2010044361A1 (en) Engine rpm control device
JP5551723B2 (en) Marine engine control method and control device thereof
JP2012077759A (en) Method and device for controlling ship engine
WO2011025005A1 (en) Marine engine control system and method
WO2014002435A1 (en) Horsepower limiting device and horsepower limiting method
JP7330025B2 (en) Boat speed control device, boat speed control method, and boat speed control program
JP7019369B2 (en) Remote control device
JP2016108943A (en) Engine control device and engine
US9957028B1 (en) Methods for temporarily elevating the speed of a marine propulsion system's engine
WO2012169382A1 (en) Fuel-injection-control device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159618.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117026621

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009846482

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP