JPS60195357A - Method of controlling speed of main diesel-engine - Google Patents

Method of controlling speed of main diesel-engine

Info

Publication number
JPS60195357A
JPS60195357A JP5118184A JP5118184A JPS60195357A JP S60195357 A JPS60195357 A JP S60195357A JP 5118184 A JP5118184 A JP 5118184A JP 5118184 A JP5118184 A JP 5118184A JP S60195357 A JPS60195357 A JP S60195357A
Authority
JP
Japan
Prior art keywords
speed
actuator
engine
main engine
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5118184A
Other languages
Japanese (ja)
Inventor
Nobuhiko Sakamoto
坂本 伸彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP5118184A priority Critical patent/JPS60195357A/en
Publication of JPS60195357A publication Critical patent/JPS60195357A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enhance the control performance, and as well to aim at saving fuel consumption, by restraining variations in speed with respect to variations in load of a main engine, and as well by improving the followability upon change of set speed while any wasteful motion by an actuator is restrained upon steady state operation. CONSTITUTION:A speed control device 10 composed of a proportioning unit 5, a bias setting unit 6, a torque compensator 7 and an optimum filter 8 has a constant which is utilized as one of dynamic characteristic models determined by engine parameters and a rotational system constant. Meanwhile, by passing a speed detection signal from a speed detector 12 through an optimum filter 8 which is obtained from the rotational dynamic model of a main engine 3, a speed value (g) which is nearly equal to a true value is obtained to enhance the degree of accuracy. It is possible to prevent any wasteful motion by an actuator 2. When set speed is changed, if a generated torque from the main engine 3 is small, a signal (b) is large so that the amount of fuel injection is increased, but if the generated torque is large, the signal (b) is made not large to restrain the amount of fuel injection from being increased.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はディーピル主l!閏の速度1I11制御/j法
に係り、特に主機関の動特性を考慮した速度補+rtを
行なって操縦性能を向上さしたしのに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention is based on a deep pill! This invention relates to the leap speed 1I11 control/j method, and particularly relates to improving maneuverability by performing speed compensation +rt taking into account the dynamic characteristics of the main engine.

[発明の技術的前頭] ディーゼル主機関、特にプ【−1ベラ装備船に、113
4フる主機関や、発電機を駆動する)!イーゼ主機関関
にあっては、安定しlこ機関の回転ツメ要求されるため
、速度制御が重要である。
[Technical Front of the Invention] Diesel main engine, especially for ships equipped with P-1 bella, 113
(Drives the 4 full main engine and generator)! In the case of an easement main engine, speed control is important because stable rotation of the engine is required.

T51図は、従来、採用されているディービル主機関の
速度制御11システムをtJ< シ/こものぐ、これを
簡単にS2明りるど、設定速度と、+1−パスフィルタ
4によりフィルタリングした検出速度どの速磨偏tを1
〕1制御し、このP I 8.+Iυ11動作により得
られた操作単に基づき燃料噴射ポンプ1のアクヂ」J−
夕2を操作Jる。このアクブーJ−I−り2の操作によ
り燃石イI則ωが調節され4一機関3の速度制御がなさ
れる。これにJ、す、速度情報のみに基づいた速度制御
を行なうことが(−6るようになっている。
The T51 diagram shows the speed control 11 system of the D-Ville main engine that has been adopted in the past. The speed is 1
] 1 and control this P I 8. Based on the operation obtained by +Iυ11 operation, the operation of fuel injection pump 1 is ``J-''.
Operate evening 2. By operating this Akbu JI-ri 2, the fuel oil I law ω is adjusted and the speed of the engine 3 is controlled. In addition, speed control based only on speed information is designed to be (-6).

[ハ景技術の問題点] ところが、上述した従来のものは速度のみの情報のフィ
ードバックであり、速度偏差のみの情報によりP I 
1111190を行なっているため、次のような問題が
あつIこ。
[Problems with C-viewing technology] However, the conventional method described above feeds back information only on speed, and P I
1111190, the following problems occur.

(1) ディーピル主機関の特性が考慮されていないた
め、過大なA−バーシュートが発生し、過長な整定時間
を要りることとなつ−で、設定速度の変更が大きくとれ
なかった。
(1) Because the characteristics of the Deep Pill main engine were not taken into consideration, excessive A-bar shoot occurred, requiring an excessively long settling time, and the set speed could not be changed significantly.

(2) また、急激な負荷変動に対して速度が大きく振
動し、整定時間も長くなっていた。
(2) In addition, the speed fluctuated greatly in response to sudden load changes, and the settling time was also long.

(3) 検出速度をIFFるため速度検出器の出力をI
] −パスフィルタに通しているが、雑音とともに高周
波域の透電成分を5カツ1〜しCしようため速度検出の
正確さに欠けていた。
(3) In order to IFF the detected speed, the output of the speed detector is
] - Although it passes through a pass filter, it lacks accuracy in speed detection because it filters out conductive components in the high frequency range along with noise.

(4) 不正1イ「な速度偏差に1;4づく積分1制御
動作の1、:め、定常運転状態にJ3いてアクチュJ−
り2が照駄な動きをしていた。
(4) Illegal speed deviation: 1 of the integral 1 control operation, which is 1:4 due to the speed deviation: Actuator J-
Ri2 was making strange movements.

[発明の目的] 本発明は上記従来の問題点に鑑みなされたしので、その
目的は、ディーゼル主機関の負荷変動に対Jる速度変動
の抑制と、設定速度変更口、)の追従性とを改善すると
ともに、速度検出のf111度をγ(1め、定常運転時
のアクチュエータのpa駄な動きを抑制し、もって操作
性能の向上と省燃費化をC1Lかれるディーゼル主機関
の速度制御方法を得ることて゛ある。
[Object of the Invention] The present invention has been made in view of the above-mentioned conventional problems, and its objects are to suppress speed fluctuations in response to load fluctuations of a diesel main engine, and to improve followability of a set speed change port. In addition to improving the f111 degree of the speed detection There is something to be gained.

[発明の概要] 燃料噴射mと発生1〜ルクとに相関があり、かつ速度偏
差が同じでも発生]・ルクの大ささにJ、り燃料唱射ポ
ンプのアクチュュータの操作■を異ならせるべきである
こと、真に近い速度(2号を得る!こめに必要な相合除
去を行なうフィルタや上配発71トルクは主機関の動1
jJ性を知つく物理的モデルとして把握することにより
形成あるいはL’ !H(”さること、PI制御のう〕
うのI ilj制御tよ定律偏Z’iを除くために行な
っているが、この定゛帛偏差は速度のJ、うに絶えず変
化づるもの−Cはなく、例えば船底やプロペラ等にイ」
着物が(Jいて特性が変化J−る等の4″14j−変化
に起因リ−るので、一度、定常偏差を除去づる設定をり
−れば長期間その設定値を動かず必要がないこと、した
がってI制御をPI制御から分前りることができ、残る
P制御まで上記物理的モデルを拡張しうろこと等の知見
のもとに、上記目的を達成づべく本発明は次のように構
成したものである。叩ら、設定速度と推定速度との偏差
に応じて燃料噴射ポンプのアクヂュュータを操作し゛C
燃料噴射鉛を調節りるディーゼル主機関の速度制御方法
において、上記アクチュエータの操作指令信号とエンジ
ンモデルを把41’N−Jるために予めめた機関系動1
!I性とから主(幾関の発生i〜シルク算出し、この寥
ン出した発生I・ルクをもとに検出速度とプロペラ等の
回転系モデルを把11−るために予めめた回転系動性f
1とから上記1扛定速度を算出する一方、上記偏差に基
づいて得られる比例動作信号を上記発生トルクで補正し
、この補正して得られたアクチュエータの操作指令信号
に定常偏差を除くための固定のバイアス信号を加えてア
クチュエータの操作量を制御311するようにしたこと
をQ5徴とづる。
[Summary of the invention] There is a correlation between the fuel injection m and the occurrence of 1 to lux, and it occurs even if the speed deviation is the same] - The operation of the actuator of the fuel injection pump should be made different depending on the magnitude of lux. There is a fact that the speed close to the true speed (obtain No. 2!) The filter that removes the necessary coupling and the upper torque 71 are the main engine's movement 1.
Formation or L'! by understanding jJ nature as a physical model. H (“Monkey, PI Control”)
This is done to remove the constant frequency deviation Z'i from the control t, but this constant frequency deviation does not change constantly like the speed J.
Since the characteristics of the kimono change due to changes such as changes in the characteristics of the kimono, once a setting is made to remove the steady-state deviation, there is no need to change the set value for a long period of time. , Therefore, I control can be separated from PI control, and based on the knowledge that the above physical model can be extended to the remaining P control, the present invention has been devised as follows in order to achieve the above object. The actuator of the fuel injection pump is operated according to the deviation between the set speed and the estimated speed.
In a speed control method for a diesel main engine that adjusts fuel injection lead, engine system movement 1 is performed in advance in order to understand the operation command signal of the actuator and the engine model.
! Calculate the main (occurrence i~silk) from the I characteristic, and use the detected speed and rotational system model of propellers etc. Dynamic f
While calculating the above-mentioned 1-stroke constant speed from 1, the proportional operation signal obtained based on the above-mentioned deviation is corrected by the above-mentioned generated torque, and the steady-state deviation is removed from the actuator operation command signal obtained by this correction. The fact that the operation amount of the actuator is controlled 311 by adding a fixed bias signal is referred to as Q5 feature.

[発明の実施例コ 以下に、本発明の好適一実施例を添(’J図面に従って
説明づる。
[Embodiment of the Invention] A preferred embodiment of the present invention is attached below and will be explained in accordance with the drawings.

第2図は、本発明yJ払を実施Jるためのアイ−主機関
磯関の速度制御211シスラムの一例を承り系統図であ
る。
FIG. 2 is a system diagram of an example of the main engine speed control 211 system for implementing the present invention.

本実施例に係る制御システムにあつ−(は、そのフィー
ドバックループ4形成Jる回路自体の重水構成は従来と
同様である。
In the control system according to this embodiment, the heavy water configuration of the circuit itself that forms the feedback loop 4 is the same as the conventional one.

同図に示す如く、比例器5どバイアス39定器6、トル
ク補償器7、最適フィルタ8から成る速度制御方法10
が制御ラインに接続され(いる、。
As shown in the figure, a speed control method 10 comprising a proportional device 5, a bias 39, a constant device 6, a torque compensator 7, and an optimum filter 8.
is connected to the control line.

比例器5はP制御部に相当づるしのC1人)) (;−
1号にゲインF1を乗じる機能を右し、設定速!11さ
1任定速度qとの速度偏差りから比例動作(、′;号を
形成Jる。
The proportional device 5 corresponds to the P control section.
Turn on the function that multiplies No. 1 by gain F1, and set the speed! 11 A proportional operation is formed from the speed deviation from the given speed q.

バイアス設定器6は、I制御部に相当りるしので、P 
fiil制御部に相当する比例器5から完全に分却され
ており、任意に設定される設定バイアス信号iを出力4
る機能を有し、アクチュエータ操作指令信号すを設定バ
イアス信号iで補正して定常運転時の速度の定常偏差を
零に1べく、アクチュエータ2への操作量jを増幅Jる
増副器11の前段に接続Jる。、− トルク補償器7は、比例器5とバイアス設定器6の補正
点とを結ぶ制御ラインにこれと並列に接続され、このト
ルク補償器7を介しT−1:開操作指令信号すを変換し
た後、比例器5の出力側にローカルフィードバックさけ
て比例器5の比例動作信号aを補正している。トルク補
償器7は、比例器5の比例動作信号aとトルク補償器7
の出力信号との差であるアクチュエータ操作指令信号す
から主機III発生1〜ルクをt)出ダるとどもに、そ
の弁用した発生1〜ルクにゲインF!を乗じて臼−カル
フィードバックイエ号Cを形成JるIjl能を石する。
The bias setting device 6 corresponds to the I control section, so the P
It is completely separated from the proportional device 5 which corresponds to the fiil control section, and outputs a set bias signal i which can be arbitrarily set.
The amplifier 11 has the function of correcting the actuator operation command signal with the setting bias signal i to amplify the operation amount j to the actuator 2 in order to reduce the steady-state deviation of the speed during steady operation to zero. Connect to the front stage. , - The torque compensator 7 is connected in parallel to the control line connecting the proportional device 5 and the correction point of the bias setting device 6, and converts the T-1: opening operation command signal through the torque compensator 7. After that, the proportional operation signal a of the proportional device 5 is corrected by applying local feedback to the output side of the proportional device 5. The torque compensator 7 receives the proportional operation signal a of the proportional device 5 and the torque compensator 7.
Since the actuator operation command signal which is the difference between the output signal of the main engine III and the output signal of t), the gain F! Multiply it to form the millstone feedback number C.

この機能をさせるため、1機械、主軸、プロペラ、船体
などの特性から決まる主機関3の機関系動¥:i性を予
めめるが、この動特性は次のような一次匠れの伝達関数
どして表わすことができる。
In order to perform this function, the engine system dynamics of the main engine 3, which are determined from the characteristics of the first machine, main shaft, propeller, hull, etc., are determined in advance, and this dynamic characteristic is determined by the transfer function of the first-order craftsmanship as shown below. How can it be expressed?

に 但し、α、には機関定数 Sはラプラス澄10了 この動特性から機関モデルを把握して1機関3の正確な
発生1−ルクを(1【定づるようにし、これにゲインF
+を乗することによりシック位首1Δ号に変換している
However, for α, the engine constant S is Laplace's coefficient 10. From this dynamic characteristic, the engine model is grasped, and the accurate generated 1-lux of 1 engine 3 is determined as (1), and the gain F is
By multiplying by +, it is converted to the chic place number 1Δ.

最適フィルタ8は、l・ルク補償器7のトルク仏号dど
速度検出器12の検出迷電イ3号eどの2つの比較信号
を入力信号とJべく 1−ルク捕(a器7ど速度検出器
12とを結ぶラインに介挿己れ、この最適フィルタ8を
介してめた推定速度Qを比例器5の入力側にメインフィ
ードバックさけて設定速度と速度偏差りをとっている。
The optimal filter 8 compares the two comparison signals of l, torque compensator 7's torque d, and speed detector 12's detection stray current a, 3 e, with the input signal. A line connecting the detector 12 is inserted, and the estimated speed Q obtained through the optimum filter 8 is fed back to the input side of the proportional device 5 to obtain a speed deviation from the set speed.

最適フィルタ8はjfHlt:速度Qと検出速1哀信号
eとの偏差[にフィルタゲイン(フィードバックゲイン
)K+を乗じたものと、1〜ルク信QL dに回転系定
数γを乗じたものどの和をとり、この和を積分して上記
推定速度Qを粋出りる機能を右づる。ずなわら、かかる
機能は、トルクから1りられる推定速度と速度検出器1
2 bs tう(9られる検出速度との偏着が、高周波
域の雑音成分と真の速度成分とを含んだ混合偏差であり
、この偏差情報を考慮し積分して平均値化し、実際に見
合うように推定速度を補正しているのである。したがっ
て、当該フィルタ8に検出速度イ=号eを通ずことによ
り、真に近い速度値を得ることができる。このため、回
転軸、プロペラ等から主1ffi I’WJ 3の回転
系動特性を予めめるが、この動特性は基本的には次のよ
うな積分の伝達関数どして表ね−ことができる。
The optimal filter 8 is jfHlt: the sum of the deviation [between the speed Q and the detected speed 1 signal e] multiplied by the filter gain (feedback gain) K+, and the product of the rotation system constant γ and the torque signal QL d. , and integrate this sum to determine the estimated speed Q. Of course, this function is based on the estimated speed calculated from the torque and the speed detector 1.
2 bs t (9) The deviation from the detected speed is a mixed deviation that includes a noise component in the high frequency range and a true speed component, and this deviation information is integrated and averaged to calculate the actual value. The estimated speed is corrected as follows. Therefore, by passing the detected speed i = e through the filter 8, it is possible to obtain a speed value that is close to the true value. The rotation system dynamic characteristics of the main 1ffi I'WJ 3 will be described in advance, and these dynamic characteristics can basically be expressed as the following integral transfer function.

γ l−1<s ン −□− (1」シ、Tは回転系定数 Sはラプラス演p子 この動特性にフィードバックゲインに1を加えて最適フ
ィルタ8たる回転系モデルを形成している。
γ l−1<s n −□− (1”), T is a rotational system constant S is a Laplace operator p, and 1 is added to the feedback gain to this dynamic characteristic to form a rotational system model that is the optimal filter 8.

上記比例器5及び1〜ルク補償器7の各フィードバック
ゲインF1及びF+はI幾関定数α、に、回転系定数γ
及び次に示刀評価関数の重み係数ρから、評価関数が最
小となるJ:うに決定りる。
The respective feedback gains F1 and F+ of the proportioners 5 and 1 to the torque compensator 7 are determined by the I geometrical constant α, the rotational system constant γ
Then, from the weighting coefficient ρ of the sword evaluation function, J: sea urchin with which the evaluation function is the minimum is determined.

評価関数= 一方、最適フィルタ8のフィードバックゲインKlは速
度の推定誤Kfの分散がR小になるように決定する。
Evaluation function = On the other hand, the feedback gain Kl of the optimal filter 8 is determined so that the variance of the speed estimation error Kf becomes R small.

このように、本実施例の速四制tall 装置10の構
成IJ1、比例器5、バイアスF、S(定器6、l〜ル
ク補(ξを器7、最適フィルタ8から成り、その定数を
、エンジンバラメーク(]ンジン定数、1ンシングイン
)及び回転系定数(Ii:’+性[−メン1〜)から決
定した1つの動特性モデルをなしている。11に、1)
1.1JIIlに相当づる比例器5を・し動特性−しゲ
ルとしく把握したところにQ?−がある。づイ1わら、
既述しりJ、’J k: P I 1lIl till
 (D ウ#3 +7) I LIOII GJ、5L
 ’、i+巳運転li六の速度の定常偏着を零にJる機
能をもっており、ブ1コベラ装備船や発電機を駆動りる
ディーゼル主fillにあっ−Cは当初Aフセット碩を
決めてやれば艮期間変史づることなく上記機能は発揮さ
れるのC,設定バイアス信号iを操作員jに加えるバイ
アス設定器6を設けることで足り、・でれ故に1制御を
P 1iIJ allから分離Jることができる。そし
て、このII、1ltillに相当するバイアス設定器
6を最終段にもってくるようにして、トルクの粋出やフ
ィルタ機能に対して本来゛不必要なI成分の影響を回避
できる結果、トルクのり)出やフィルタ機能に1成分を
考慮づる必要がなくなって、エンジン特性を無視したP
制御の代わりに、エンジン動特性を考虞に入れたフィー
ドバックゲイン定数1=1を有する比例器5を速度制御
装置10に導入したところにS、6がある。
In this way, the configuration of the four-speed control tall device 10 of this embodiment consists of IJ1, proportional device 5, bias F, S (constant device 6, , constitutes one dynamic characteristic model determined from engine parameter makeup (engine constant, 1 nsing in) and rotational system constant (Ii: '+ character [-men 1~). 11, 1)
Q. What is the dynamic characteristic of the proportional device 5 corresponding to 1.1 JIIl and understand it as a gel? -There is. Zui 1 straw,
Already mentioned J, 'J k: P I 1lIl till
(D U#3 +7) I LIOII GJ, 5L
It has the function of zeroing out the steady eccentricity at the speed of i+sea operation li6, and is used for the diesel main fill that drives the generator and the ship equipped with a steamer. In this case, the above function can be achieved without changing the operating period.C, it is sufficient to provide a bias setting device 6 that applies the setting bias signal i to the operator j. Therefore, 1 control is separated from P 1iIJ allJ can be done. By placing the bias setting device 6 corresponding to II and 1till in the final stage, it is possible to avoid the influence of the unnecessary I component on the torque output and filter function, resulting in torque increase. It is no longer necessary to take one component into consideration for output and filter function, and the engine characteristics are ignored.
S, 6 is obtained by introducing into the speed control device 10 a proportional regulator 5 having a feedback gain constant of 1=1, which takes the engine dynamic characteristics into account, instead of the control.

上記速度制御装置10は実施例の如く個別回路らしくは
これど等価な回路で構成しても、あるいは全体をマイク
ロコンピュータ相当の演on能をイ1する演算装置で実
現することもできる。
The speed control device 10 may be constructed of individual circuits or equivalent circuits as in the embodiment, or the entire speed control device 10 may be realized by an arithmetic device having performance equivalent to that of a microcomputer.

次に、上記実施例の作用につい°C説明づる。Next, the operation of the above embodiment will be explained.

速度検出器12により検出された検出迷電は、高周波域
にI合成分と真の速度成分の両方を含んでいるが、主機
関3の回転系動1)性七fルから成る最適フィルタ8を
通ずことにJ、す、より真値に近い推定速度刃となり、
速度推定植の積数が向1する。そして、この正確なJl
l定速麿に暴づいて速度偏差りがとられ、比例器5によ
っ’(It 1lin動作仁号となりバイアス設定器6
′c段定バイアス4.: >2 +を加えてアクチュエ
ータ2の操作16をjiするの(・、アクチュエータ2
が無駄な動きをづるのを防止できる。特に、バイアス設
定器6からのi+u定バイアス信号iを加えることによ
り一率に定常偏λを塔。
The detected stray electricity detected by the speed detector 12 contains both an I composite component and a true speed component in the high frequency range. In particular, it becomes an estimated speed blade closer to the true value,
The product of speed estimation increases by 1. And this exact Jl
The speed deviation is corrected by the constant speed, and the proportional unit 5 becomes the 1 line operation signal and the bias setting device 6
'c-stage constant bias 4. : Add >2 + and perform operation 16 of actuator 2 (・, actuator 2
can prevent unnecessary movements. In particular, by adding the i+u constant bias signal i from the bias setter 6, the steady polarization λ can be uniformly increased.

にして、常に平均化をはかつて定常偏差を五にしている
積分動作を除去するようにしたのC1定常運転中にJ3
Gプるアク1コ土−り2の無駄な動きを0効に抑制でき
る。
During steady operation of C1, J3
It is possible to suppress the wasteful movement of G-puru aku 1 and soil 2 to 0 effect.

このような前提のむとで、設定速度を変更りるとき、及
び負荷変動が生じるとさ本制御シス゛〕l\は次のよう
に作用づる。
Under these assumptions, when the set speed is changed or load fluctuation occurs, the present control system operates as follows.

まず、設定速度を変更するとき、アクヂュ1−タ操作指
令4m 号すによってトルク補償器70↓ン出された主
機関発生1〜ルクが小さいと、速度偏差[1に基づいて
出される比例器5の比例動作信号aは、ローカルフィー
ドバック信号Cにより僅かに減少補正がなされるだけな
ので、はぼ速度偏差りに応じた大きさのアクチコエータ
操作指令信4bとなってアクヂ」エータ2に入ツノする
。逆に、主機関発生トルクが大きいと、比例器5の比例
動作信号aは[1−カルフィー゛ドパツク信号Cにより
大さく減少補正され、速度偏差1)のみに応じて得られ
る比例器5の比例動作信号よりも大幅に小さくなったア
クヂュエータ操作指令信qbとなってアクチュエータ2
に入ノ〕(る。したがって、トルクが小さいどきは大ぎ
なアクチュエータ操作指令信号を出して燃料噴射mを増
大さl!速やかに設定速度に到3!づるので、整定時間
が過長どなるのを防止できる。また、トルクが大ぎいど
きはアクチュエータ操作指令信号すが大き過ぎないよう
にし燃料哨OAI O)増大を抑制して過大なA−バー
シュートの発生を防止できる。その結果、設定速度変更
時の追従性が向上し、設定速度の変更114間を大きく
とることかできる。
First, when changing the set speed, if the main engine generated torque output from the torque compensator 70↓ by the actuator operation command 4m is small, the proportional regulator 5 output based on the speed deviation [1 Since the proportional operation signal a is only slightly reduced by the local feedback signal C, it enters the actuator 2 as an acticoator operation command signal 4b whose magnitude corresponds to the speed deviation. Conversely, when the torque generated by the main engine is large, the proportional operation signal a of the proportional device 5 is greatly reduced by the [1-cal feed pack signal C, and the proportional operation signal a of the proportional device 5 obtained in response to only the speed deviation 1) is The actuator operation command signal qb becomes much smaller than the operation signal, and the actuator 2
Therefore, when the torque is small, a large actuator operation command signal is issued to increase the fuel injection m! The set speed is quickly reached, so that the settling time is not too long. Furthermore, when the torque is large, the actuator operation command signal is not too large, and the increase in fuel pressure is suppressed, thereby preventing the occurrence of excessive A-bar shoot. As a result, the followability when changing the set speed is improved, and the interval between changes in the set speed 114 can be increased.

同様に、負荷変動が生じたときは、負荷1−ルクが増加
して速度が落ちると、7クチコエ・−夕操f1指令信号
すが大きくなってmiiイ1射ごを増大さυ速やかに設
定速度にもっていくことができ、逆に負荷1〜ルクが減
少して速度が上昇りるど、アクチュエータ操作指令信号
すが小さくなって燃料噴q10を減少さけ速やかに設定
速度にもどづことができる。その結果、負荷変動に対り
る速度変動が抑制され、急澹’tr Sl向変動に対し
て速度が大きく撮動することも、整定g、l、間が長く
なることb有効に防止できる。
Similarly, when a load change occurs, as the load 1-lux increases and the speed decreases, the 7-stroke command signal increases and the mii 1-stroke is increased.υ Set quickly. On the other hand, as the load decreases and the speed increases, the actuator operation command signal decreases, allowing the fuel injection q10 to be reduced and quickly return to the set speed. . As a result, speed fluctuations in response to load fluctuations are suppressed, and photographing at a large speed in response to sudden fluctuations in the direction of S1 can be effectively prevented, as can effectively prevent the settling intervals g, l, and b from becoming long.

このように、上記実施例によれば主(段間3の動!le
j性の特徴を忠実に1llll Th11にとり入れて
いるため、主ぼ関の負荷変動に対づる速度変動抑制と、
シシ定速度変更時の追従性を可及的に向」ニさUること
ができ、速度制御の定に特性及び過渡特性にづぐれてい
る。また、速度検出器12にJ、り検出された検出速度
の中に含まれている雑音の除去に、主機関の動特性モデ
ルを利用した最適フィルタ8により行っているためti
t定速度精度が向上し、しかも、バイアス設定器6を設
りることにより積分動作がなくbるので通常運転時アク
チュエータ2の無駄な動ぎが抑えられ省燃費を達成ぐき
る。更に、P制御に相当1Jる比例器5も動特性を考慮
してその定数が決定されでいるので、比例器5の比例動
作13号に基づいて4Fiられる発生トルクや最適フィ
ルタ8の粘度が良り、イの結果アクチュエータ2への操
イ1♀jが適正化され操縦性能の一層の向上がはかれる
In this way, according to the above embodiment, the main (movement of the third stage!
Since the characteristics of J characteristics are faithfully incorporated into 1llll Th11, speed fluctuations can be suppressed in response to load fluctuations of the main control.
It is possible to improve the followability when changing the constant speed of the shifter as much as possible, and the constant characteristics and transient characteristics of speed control are well maintained. In addition, noise contained in the detected speed detected by the speed detector 12 is removed by an optimal filter 8 that uses a dynamic characteristic model of the main engine.
The constant speed accuracy is improved, and since there is no integral action by providing the bias setting device 6, unnecessary movement of the actuator 2 during normal operation is suppressed, and fuel efficiency can be achieved. Furthermore, since the constant of the proportional device 5, which has 1J corresponding to P control, is determined by considering the dynamic characteristics, the generated torque that is 4Fi based on the proportional operation No. 13 of the proportional device 5 and the viscosity of the optimal filter 8 can be made to be good. As a result of (a), the operation (1♀j) to the actuator 2 is optimized, and the control performance is further improved.

[発明の効果] 以−L要りるに本発明ににれば次のような優れた効果を
発揮Jる。
[Effects of the Invention] In short, the present invention provides the following excellent effects.

(1)ニし機関の動特性の特徴を忠実に制御にとり入れ
(いるIこめ迷電制御の過渡特性及び定常特性にJぐれ
Cいる。
(1) The characteristics of the dynamic characteristics of the engine are faithfully incorporated into the control.

(2) 速1良偏差にもとづくアクチュエータの操作室
を機関の光牛トルクで補iトしイの適正化をはかってい
るのぐ、設定速度の変更に対してA−バージコートがな
く追従でき、またf1伺急変時における速度の振動用ψ
を生じない。
(2) Although the actuator control room based on the speed 1 deviation is compensated for by the engine's light torque, it is not possible to follow changes in the set speed without A-barge coat. , and ψ for speed oscillation when f1 suddenly changes.
does not occur.

(3) 検出速度のN音除去に[1−バスフィルタぐは
なく、主機関の動特性モデルを利用した最適フィルタを
使用したのぐ、Jll定速度の精度の向上がはかれ、ま
た積分動作の代わりに設定バイアス信号を操作mに加え
て定常偏差をなくすようにしたので、定常運転時のアク
ブユ]−−タの無駄な動さを6効に抑a、lIすること
がぐきる。
(3) By using an optimal filter that utilizes the dynamic characteristics model of the main engine, the accuracy of Jll constant speed can be improved, and the integral operation Instead, a setting bias signal is applied to the operation m to eliminate the steady state deviation, so that unnecessary movement of the actuator during steady operation can be suppressed to six effects.

(4)シたがって、主機関の操縦1/l能を可及的に向
トさせることがでさるとともに、省燃費化をはかること
ができる。
(4) Therefore, the controllability of the main engine can be improved as much as possible, and fuel efficiency can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の31!度制御システムの系統図、第2図
は本発明方法を実施づるための速度制ta11システム
の好適一実施例を示づ系統図である。 尚、図中1は燃料噴射ポンプ、2はアクf:+ュータ、
3は主機関、5は比例動作化)°Jを出(」比例器、6
は設定バイアスイエ丹を出すバイアス設定器、7は発生
トルクを算出する1〜ルク補憤器、8GよJtl定速度
を算出づ゛る最適フィルタ、12は検出速度を検出づる
速度検出器、aは比例動作信号、bはアクヂュl−夕の
操作指令信号、dは発生トルク、eは検出速度、Qは1
「定速度、hは速度偏差、jは操作Gである。 特 r[出 願 人 ゛石川島播IP:東工業株式会社
代理人弁理士 絹 谷 4M M
Figure 1 shows the conventional 31! FIG. 2 is a system diagram showing a preferred embodiment of a speed control TA11 system for carrying out the method of the present invention. In the figure, 1 is the fuel injection pump, 2 is the actuator,
3 is the main engine, 5 is proportional operation) ° J is output ('' proportional device, 6 is
1 is a bias setter that outputs the setting bias, 7 is a torque compensator that calculates the generated torque, 8G is an optimal filter that calculates JTL constant speed, 12 is a speed detector that detects the detected speed, and a is a Proportional operation signal, b is actuator operation command signal, d is generated torque, e is detected speed, Q is 1
"Constant speed, h is the speed deviation, and j is the operation G."

Claims (1)

【特許請求の範囲】[Claims] 設定速度と推定速度との偏差に応じて燃料噴射ポンプの
7クヂユエータを操作して燃料噴射口を調整づるディー
ゼル主機関の速度ill all方法に+5いて、上記
アク1ユュータの操作指令信号と予めめた機関系動特1
1とから主機関の発生トルクをn出し、゛この算出した
発4−1−ルクをもとに検出速度と予めめた回転系動特
性とから上記lit定速度を算出するーh、上記偏差に
基づいて得られる比例動作信号を上記発生1−ルクで補
正し、この補正して得られたアクチュエータの操作指令
信号に定常偏差を除くための設定バイアス信号を加えて
アクチュュータの操作aをtlIlIllりるようにし
たことを特徴とりるディービル主(大関の速度制御方法
1゜
The speed of the diesel main engine, which adjusts the fuel injection port by operating the 7 units of the fuel injection pump according to the deviation between the set speed and the estimated speed, is +5, and the operation command signal of the actuator 1 is set in advance. Engine system dynamic special 1
Calculate the generated torque of the main engine from 1 and calculate the above lit constant speed from the detected speed and the predetermined rotational system dynamic characteristics based on the calculated torque.h, the above deviation. The proportional operation signal obtained based on the above is corrected by the above-mentioned generated 1-lux, and a setting bias signal for eliminating the steady-state deviation is added to the actuator operation command signal obtained by this correction, and the actuator operation a is adjusted to tlIlIll. The main characteristic is that the Ozeki's speed control method 1゜
JP5118184A 1984-03-19 1984-03-19 Method of controlling speed of main diesel-engine Pending JPS60195357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5118184A JPS60195357A (en) 1984-03-19 1984-03-19 Method of controlling speed of main diesel-engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5118184A JPS60195357A (en) 1984-03-19 1984-03-19 Method of controlling speed of main diesel-engine

Publications (1)

Publication Number Publication Date
JPS60195357A true JPS60195357A (en) 1985-10-03

Family

ID=12879667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5118184A Pending JPS60195357A (en) 1984-03-19 1984-03-19 Method of controlling speed of main diesel-engine

Country Status (1)

Country Link
JP (1) JPS60195357A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150349A1 (en) * 2009-06-23 2010-12-29 日本郵船株式会社 Control method and controller of marine engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150349A1 (en) * 2009-06-23 2010-12-29 日本郵船株式会社 Control method and controller of marine engine

Similar Documents

Publication Publication Date Title
JP2647217B2 (en) Composite control method
CA1240380A (en) Transient derivative scheduling control system
US4171613A (en) Device for controlling the rotational speed of turbo-jet engines
JPH06149306A (en) Water adjusting operation controller
JPS60195357A (en) Method of controlling speed of main diesel-engine
JPS6038523B2 (en) Turbine control device
JPH0436250B2 (en)
JPS62113205A (en) Adaptive controller
JPH09158761A (en) Fuel control device for engine
JPS61190602A (en) Regulator
JP3853556B2 (en) Plant control method and control apparatus
JPS5965319A (en) Control method for fluid pressure
JPS5593906A (en) Controller for turbine regulating valve in pressure change operation
JPS60209820A (en) Holding control method of ship position
JPS60195356A (en) Method of controlling speed of main diesel-engine
JPS60218106A (en) Control device
RU1809493C (en) Method of automatic control over power transfer
JPS6134360A (en) Governor for water turbine or pump water wheel
SU1537603A1 (en) Control system of vessel turbine plant with controllable-pitch propeller
JPS60204944A (en) Speed control method for diesel main engine
JPH0338602B2 (en)
SU1100429A1 (en) Device for controlling compressors
SU1372463A1 (en) Method of automatic control of overflow of power between two parts of power system
SU1078110A1 (en) System for adjusting power-generating unit power
JPH0240005A (en) Controller for oil temperature in main turbine