JPS5965319A - Control method for fluid pressure - Google Patents

Control method for fluid pressure

Info

Publication number
JPS5965319A
JPS5965319A JP57174318A JP17431882A JPS5965319A JP S5965319 A JPS5965319 A JP S5965319A JP 57174318 A JP57174318 A JP 57174318A JP 17431882 A JP17431882 A JP 17431882A JP S5965319 A JPS5965319 A JP S5965319A
Authority
JP
Japan
Prior art keywords
pressure
control
fluid
valve
characteristic value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57174318A
Other languages
Japanese (ja)
Inventor
Takuya Arakawa
卓也 荒川
Shuichiro Kobayashi
小林 主一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57174318A priority Critical patent/JPS5965319A/en
Publication of JPS5965319A publication Critical patent/JPS5965319A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2013Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Fluid Pressure (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To always ensure a stable control response, by calculating the linear conversion model characteristic value of a fluid to be controlled and performing automatic control based on said calculated characteristic value so as to obtain a constant crossing angle frequency of the control response time. CONSTITUTION:The water, i.e., a fluid to be controlled is discharged from a pump 1 and distributed to a consumer house 4. A water flow rate detector 6, an opening detector 5 of the valve 3 and a water pressure detector 7 are provided at the secondary side of the valve 3 to detect each process data. These data are supplied to an electronic computer 10 via an input device 9 together with the pressure target value given from a set data input device 8. Based on the result of calculation of the computer 10, the valve 3 is operated via an output device 11 and a pressure control valve opening controller 12. With this operation the characteristic value of a linear model is calculated from each process data mentioned above, and a control parameter is automatically controlled based on said characteristic value so as to obtain a constant crossing angle frequency.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は流体圧力制御方法に関し、特に比例、積分、微
分(PID ン制御方式を用いた流体圧力制御方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fluid pressure control method, and more particularly to a fluid pressure control method using a proportional, integral, differential (PID) control method.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、被制御流体の圧力検出値と予め設定された圧力
目標値の偏差の積分及び微分に対しである制御パラメー
タを乗じ、その和をもって圧力制御弁の弁開度を調節す
るいわゆるPID制御方式を用いた従来の流体圧力制御
方法は、これらの演算に使用される制御パラメータが固
定パラメータとして使用されている。しかしながら、固
定制御/4’ラメータを用いて流体の圧力をPID制御
した場合、被制御流体の圧力変化と圧力制御弁の弁開度
との関係が非線形となってしまい、このため従来は常に
望ましい制御応答を得ることが極めて困難であった。
Generally, the so-called PID control method is used in which the integral and differential of the deviation between the detected pressure value of the controlled fluid and the preset pressure target value are multiplied by a certain control parameter, and the valve opening of the pressure control valve is adjusted using the sum of the integrals and derivatives. In the conventional fluid pressure control method used, the control parameters used for these calculations are fixed parameters. However, when the fluid pressure is PID controlled using a fixed control/4' parameter, the relationship between the pressure change of the controlled fluid and the valve opening of the pressure control valve becomes non-linear, which is why it has always been desirable to It was extremely difficult to obtain a control response.

〔発明の目的〕[Purpose of the invention]

本発明は上記の問題点を克服するためなされたもので、
被制御流体の圧力変動に対して常に望ましい制御応答を
行ない得る流体圧力制御方法を提供することを目的とす
るものである0〔発明の概女〕 本発明は上記の目的を達成するだめに、被制御流体の微
小圧力変化内における被制御流体の流量と圧力制御弁の
弁開度をプロセス量とする被制御流体の圧力と弁開度と
の線形モデルの特性値を求め、この特性値に基づいて1
liU御応答時間の父差角周波数が一定となるように制
御パラメータを自動調整することを特徴としている。
The present invention has been made to overcome the above problems.
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention has the following features: Find the characteristic values of a linear model between the pressure of the controlled fluid and the valve opening in which the process quantities are the flow rate of the controlled fluid and the valve opening of the pressure control valve within a minute pressure change of the controlled fluid. Based on 1
It is characterized by automatically adjusting control parameters so that the difference angular frequency of the liU response time is constant.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照して詳細に説明する
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図〜第4図はいずれも本発明の一実施例を説明する
だめのもので、第1図は一実施例としての上水道配水系
における水圧力制御系を示す図で、第2図は水圧力と圧
力制御弁開度の線形モデルを示す図で、第3図は第2図
の線形モデルにPI制御モデルを組合せた図で、第4図
は同実施例の電子計算機のアルゴリズムを示す図である
Figures 1 to 4 are all for explaining one embodiment of the present invention. Figure 1 is a diagram showing a water pressure control system in a water supply distribution system as an embodiment, and Figure 2 is a diagram showing a water pressure control system in a water supply distribution system as an embodiment. This is a diagram showing a linear model of water pressure and pressure control valve opening. Figure 3 is a diagram that combines the linear model of Figure 2 with a PI control model, and Figure 4 shows the computer algorithm of the same example. It is a diagram.

第1図において符号1で示すものはνJ?ンプであり、
ポンプ1から吐出された水は管路2、圧力制御弁311
:通シ、需要家4に配水される。この制御系は同図に示
すように圧力制御弁3の2次側に圧力制御弁3の弁開度
を検出する開度検出器5と、水の流量を検出する流量検
出器6と、水圧力を検出する圧力検出器7とが設置され
ている。これらの検出器5.6.7よシ検出されたプロ
セスデータは、設定データ入力装置8から供給される圧
力目標値とともに入力装置9を介して電子計算機10に
入力される。電子計算機10では入力装置9を介して入
力された検出器5,6.7のプロセスデータと設定デー
タ入力装*Sに記憶されている圧力目標値とを予め内蔵
されている後述する所定のロジックに従い演算し、その
演算結果を出力装置11を介して圧力制御弁開度制御装
置12に操作指令信号として供給する。その結果、圧力
制御弁開度制御装置J2は電子計算機10よシ供給され
る操作指令信号に基づいて圧力制御弁3の弁開度を操作
し、水圧力を目標設定、圧ツカに、制御する。
What is indicated by the symbol 1 in FIG. 1 is νJ? is a
The water discharged from the pump 1 is transferred to the pipe line 2 and the pressure control valve 311.
:Water is distributed to customer 4. As shown in the figure, this control system includes, on the secondary side of the pressure control valve 3, an opening detector 5 for detecting the valve opening of the pressure control valve 3, a flow rate detector 6 for detecting the flow rate of water, and a flow rate detector 6 for detecting the flow rate of water. A pressure detector 7 for detecting pressure is installed. The process data detected by these detectors 5, 6, 7 is input to the computer 10 via the input device 9 together with the pressure target value supplied from the setting data input device 8. The electronic computer 10 inputs the process data of the detectors 5, 6.7 input via the input device 9 and the pressure target value stored in the setting data input device *S using a built-in predetermined logic described below. The calculation result is supplied to the pressure control valve opening control device 12 as an operation command signal via the output device 11. As a result, the pressure control valve opening degree control device J2 operates the valve opening degree of the pressure control valve 3 based on the operation command signal supplied from the electronic computer 10, and controls the water pressure to the target setting and pressure level. .

前記電子計算機10に内蔵されるロジックは、大別して
2つに分れる。第1は制御対象である上水道の微小圧力
変化内での水圧力と圧力制御弁開度の線形化であシ、第
2は第1のロジックにより得られ九磁形化モデルの特性
値から制御パラメータを決定するアルゴリズムである。
The logic built into the electronic computer 10 can be roughly divided into two types. The first is linearization of the water pressure and pressure control valve opening within the minute pressure changes of the water supply, which is the control target, and the second is control from the characteristic values of the nine magnetization model obtained by the first logic. This is an algorithm for determining parameters.

まず、上水道の微小圧力変化内での水圧力と圧力制御弁
開度の線形化について説明する。一般に、第1図に示さ
れるような流体圧力制御系の圧力平衡式は次式のように
表わされる0ただし、上式において h!:ポンプ吐出圧 h2 :圧力制御弁の2次側圧力 U :圧力制御弁開度 f (u) :圧力制御弁の損失水頭係数q :管路を
流れる流量 fo:管路摩擦損失係数 fc:慣性による損失係数 nym : 7’ラント固有の定数 である。ここで(1)式の右辺の第3項及び第4項の値
は比較的小さいので、(1)式は(2)式のように近似
することができる。
First, linearization of water pressure and pressure control valve opening degree within a small pressure change of waterworks will be explained. Generally, the pressure balance equation for a fluid pressure control system as shown in FIG. 1 is expressed as the following equation: 0 However, in the above equation, h! : Pump discharge pressure h2 : Secondary side pressure of the pressure control valve U : Pressure control valve opening f (u) : Head loss coefficient q of the pressure control valve : Flow rate through the pipe fo : Pipe friction loss coefficient fc : Inertia Loss coefficient nym: A constant specific to the 7' runt. Here, since the values of the third and fourth terms on the right side of equation (1) are relatively small, equation (1) can be approximated as equation (2).

h、−h、=tu<u>−q”・・−・−・・・−(2
)(2)式から明らかなようにポンプ吐出圧h!と圧力
制御弁302次側圧力h2との圧力差は、管路2を流れ
る流iqのn乗と圧力制御弁開度u′jF!:変数とす
る圧力制御弁3の損失水頭係数fu(u)との積のかた
ちで表され、上記圧力差と弁開度Uとの関係は非線形と
なっている。
h, −h, = tu<u>−q”・・−・−・・−(2
) As is clear from equation (2), the pump discharge pressure h! The pressure difference between the pressure control valve 30 secondary pressure h2 and the flow iq flowing through the pipe line 2 to the nth power and the pressure control valve opening degree u'jF! : Expressed as a product of the head loss coefficient fu(u) of the pressure control valve 3 as a variable, and the relationship between the pressure difference and the valve opening degree U is non-linear.

したがって、この関係を線形化させるためには上記圧力
差が微小変化内における圧力制御弁開度Uと流量qがプ
ロセス量として得られればよい。すなわち、いま仮シに
制御流体の対象範囲がある平衡点の近傍にあるとすると
次式が成り立つ。
Therefore, in order to linearize this relationship, it is sufficient to obtain the pressure control valve opening degree U and the flow rate q within a minute change in the pressure difference as process variables. That is, assuming that the target range of the control fluid is near a certain equilibrium point, the following equation holds true.

bso−h2gWju(u)aqon+*・・−・−・
・(3)(hlo+Δhx)  (hso+Δha)−
fu(uo+ΔU)(qo十Δq)n・・・・・・・・
・ (4)ただし、上式において uo:ゾロネスがある平衡点にあった時の圧・力制御弁
開度 Δu :プロセスがある平衡点にあった時の圧力制御弁
開度からの偏差 qo:プロセスがある平衡点にあった時の流量 Δq :ノロセスがある平衡点にあった時の流量からの
偏差 hl。:プロセスがある平衡点にあった時のポンプの吐
出圧 Δh1:プロセスがある平衡点にあった時のポンプ吐出
圧からの偏差 hzo:プロセスがある平衡点にあった時の圧力制御弁
の2次側圧力 Δh2:プロセスがある平衡点にあった時の圧力制−御
弁の2次−j圧力からの偏差 である0なお、その他の記号については(1)式と同様
である。
bso-h2gWju(u)aqon+*・・・−・−・
・(3) (hlo+Δhx) (hso+Δha)−
fu (uo + ΔU) (qo + Δq) n・・・・・・・・・
・ (4) However, in the above equation, uo: Pressure/force control valve opening Δu when Zorones is at a certain equilibrium point: Deviation from the pressure control valve opening when the process is at a certain equilibrium point qo: Flow rate Δq when the process is at a certain equilibrium point: Deviation hl from the flow rate when the process is at a certain equilibrium point. : Pump discharge pressure when the process is at a certain equilibrium point Δh1: Deviation from the pump discharge pressure when the process is at a certain equilibrium point hzo: 2 of the pressure control valve when the process is at a certain equilibrium point Next side pressure Δh2: 0 which is the deviation from the secondary -j pressure of the pressure control valve when the process is at a certain equilibrium point.Other symbols are the same as in equation (1).

ここで(4)式においてΔU・Δh2の項を無視し、(
3)式に代入すると(5)式が得られる。
Here, in equation (4), ignoring the term ΔU・Δh2, (
By substituting into equation 3), equation (5) is obtained.

九、−Δb2= fu’(uo) ” q”Δu・・・
・・曲(5)(6)式から明らかなようにΔh、−Δh
2はΔU及びΔh2に関して線形となシ、この線形モデ
ルを図示すると第2図のようになる。なお、同図におい
てKは線形モデルの特性値であり、(5)式から次のよ
うに表される。
9, -Δb2=fu'(uo) "q"Δu...
...As is clear from equations (5) and (6), Δh, -Δh
2 is linear with respect to ΔU and Δh2, and this linear model is illustrated in FIG. 2. Note that in the figure, K is a characteristic value of the linear model, which is expressed as follows from equation (5).

K=  fu’(uo) ” q” ””−・・(6)
したがって、このモデルは比例系として表現されたこと
になシ、前述したように圧力制御弁開度u6及び流量q
oがプロセス量として得られれば、fu′は関数−とじ
て、nは予め設定可能な定数なので、線形な制御モデル
の特性値Kが得られる。
K=fu'(uo) ``q''``''-(6)
Therefore, this model is expressed as a proportional system, and as mentioned above, the pressure control valve opening degree u6 and the flow rate q
If o is obtained as a process variable, fu' is a function -, and n is a constant that can be set in advance, so a characteristic value K of a linear control model can be obtained.

次に、特性値KからPID制御の制御パラメータを決定
するアルゴリズムについて説明する。
Next, an algorithm for determining control parameters for PID control from characteristic value K will be explained.

なお、ここでは微分制御は雑音に対して好ましくない影
響を及ぼす場合があるので比例・積分制御を適用した場
合について述べる。
Note that, since differential control may have an undesirable effect on noise, a case where proportional/integral control is applied will be described here.

第3図に示すように、制御対象が比例となる系にPI−
制御を施した場合、この系の開ループ伝達関数は次式の
ように表される。
As shown in Figure 3, in a system where the controlled object is proportional, PI-
When controlled, the open-loop transfer function of this system is expressed as follows.

G(5)=Kp@に−I・(1+T!S)・・・・・・
・・・ (7)ただし、同図及び(7)式においてに、
及びTIは制御ノ9ラメータとしての比例ゲイン及び積
分時間であり、Sはラグラス演算子、Δhrは圧力偏差
Δhの目標値でおる。ここで、線形モデルの特性値には
(6)式からも明らかなように弁開度u6や一流量(t
oによって変動する。したがって、本実施例ではこの変
動に対して制御応答を一定に保つため矢のような指針を
設定する0 指針1:制御応答時間を一定とするために交差角周波数
ωcを一定となるよう比例ゲ インに、及び積分時間TI ”を決定する0指針2 :
 (7)式において(1+TI)の項があるので立上9
応答時間を安定させるため l/TIt−3ωC以上とする。
G(5)=Kp@-I・(1+T!S)・・・・・・
... (7) However, in the same figure and equation (7),
and TI are the proportional gain and integral time as control parameters, S is the Lagrass operator, and Δhr is the target value of the pressure deviation Δh. Here, as is clear from equation (6), the characteristic values of the linear model include the valve opening degree u6 and the flow rate (t
Varies depending on o. Therefore, in this embodiment, in order to keep the control response constant against this variation, a pointer like an arrow is set. Pointer 1: In order to keep the control response time constant, a proportional gain is set to keep the crossing angular frequency ωc constant. and 0 guideline 2 to determine the integration time TI”:
Since there is a term (1+TI) in equation (7), the rise is 9
In order to stabilize the response time, it is set to l/TIt-3ωC or more.

指針3:定常状態における安定性を保つため、開ループ
伝達関数G(S)の周波数応答におけるダイン特性のω
C付近での傾 斜に−20dB/decとなるようにする。
Guideline 3: In order to maintain stability in the steady state, the dyne characteristic ω in the frequency response of the open-loop transfer function G(S) is
The slope near C should be -20 dB/dec.

この指針1〜3に従えば、(7)式よりωC==に−に
、/TXを考慮して、交差角周波数ωCが一定となる′
ように制御ノリメータKp + T 1が決定される。
If you follow these guidelines 1 to 3, the crossing angular frequency ωC will be constant from equation (7) so that ωC==−, taking /TX into account.
The control norm Kp + T 1 is determined as follows.

したがって、前記電子計算機1oでは上述したロジック
に基づいて第4図に示すように、始めに交差角周波数ω
Cが設定され、制御対象の特性値Kが演算・検出される
。そしてPI制御の制御ノリメータである比例ゲインに
、及び積分時間TXが上記指釧1〜3に基づいて決定さ
れ、操作出力信号が算出される。
Therefore, in the electronic computer 1o, based on the above-mentioned logic, as shown in FIG.
C is set, and the characteristic value K of the controlled object is calculated and detected. Then, the proportional gain, which is the control norm of the PI control, and the integral time TX are determined based on the finger hooks 1 to 3, and the operation output signal is calculated.

このように本実施例によれば、ポンプ1の吐出圧と圧カ
フ17!I御弁3の2次側圧力との圧力差が微小変化内
における圧力制御弁開度u6及び流量qoヲプロセス量
とする線形モデルの特性値Kt″求め、この特性値Kに
基づいて交差角周波数ωCが一定となるよう圧制御パラ
メータに、、TIt−自動調整することにょシ常に安定
した制御、応答が可能となる。
As described above, according to this embodiment, the discharge pressure of the pump 1 and the pressure cuff 17! The characteristic value Kt'' of the linear model in which the pressure control valve opening u6 and the flow rate qo are the process amount when the pressure difference with the secondary side pressure of the I control valve 3 is within a minute change is determined, and based on this characteristic value K, the crossing angular frequency is calculated. By automatically adjusting the pressure control parameters and TIt so that ωC remains constant, stable control and response are always possible.

なお、本実施例ではプロセス信号の雑音を考慮してPI
制御を適用した場合について述べたが、本発明によれば
プロセスからの入力信号をフィルタ全通して入力するよ
うにしてもよい。
Note that in this embodiment, taking into account the noise of the process signal, the PI
Although the case where control is applied has been described, according to the present invention, the input signal from the process may be inputted through all the filters.

このようにすればプロセス信号に含まれる雑音全減少で
さ、PIDID制御用適用ばさらに安定した制御応答を
得ることができる。また本発明は上述した上水道配水系
に限定されるものではなり1.例えばプラント等の流体
移送設備における流体圧・力についても同様の方法で圧
力制御かり能である。
In this way, the noise contained in the process signal is completely reduced, and when applied to PIDID control, a more stable control response can be obtained. Furthermore, the present invention is not limited to the above-mentioned water supply distribution system; 1. For example, fluid pressure and force in fluid transfer equipment such as plants can be controlled in a similar manner.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、被制御流体の微小
圧力変化における圧力制御弁開度と流量とをプロセz竜
とする線形化モデル特性値を算出し、この特性値に基づ
いて制御応答時間の交差角周波数が一定となるように制
御パラメータを自動調整するようにしたので、流体の試
験調整時間を短編でき、常に望ましい制御応答が得られ
る実用性の高い流体圧力制御全提供することができる。
As explained above, according to the present invention, a linearized model characteristic value is calculated in which the pressure control valve opening degree and flow rate in a minute pressure change of the controlled fluid are processed, and the control response is calculated based on this characteristic value. Since the control parameters are automatically adjusted so that the time crossing angular frequency is constant, the fluid test adjustment time can be shortened, and a highly practical fluid pressure control system that always provides the desired control response can be provided. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜tg4図はいずれも本発明の一実施例全説明す
るだめの図で、第1図は一実施例としての上水道配水系
における水圧力制御系を示すブロック図、第2図は水圧
力変化と圧力制御弁開度の線形モデルを示すモデル図、
第3図は第2図の線形モデルKPI制御モデルを組合せ
たモデル図、第4図は電子計算様のアルゴリズムを示す
流れ図である。 1・・・ポンダ、2・・・管路、3・・・圧力制御弁、
5・・・弁開度検出器、6・・・流量検出器、7・・・
圧力検出器、8・・・設定r−タ入力装置、10・・・
電子計算様、12・・・圧力制御弁開度制御装置。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図
Figures 1 to 4 are all diagrams for explaining one embodiment of the present invention. Figure 1 is a block diagram showing a water pressure control system in a water supply distribution system as an embodiment, and Figure 2 is a block diagram showing a water pressure control system in a water supply distribution system as an embodiment. Model diagram showing a linear model of pressure change and pressure control valve opening,
FIG. 3 is a model diagram combining the linear model KPI control model of FIG. 2, and FIG. 4 is a flowchart showing an electronic calculation-like algorithm. 1... Ponder, 2... Pipe line, 3... Pressure control valve,
5... Valve opening degree detector, 6... Flow rate detector, 7...
Pressure detector, 8... Setting rotor input device, 10...
Electronic calculation, 12...Pressure control valve opening control device. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 被制御流体の圧力検出値と予め設定された圧力目標値の
偏差の積分及び微分に対して制御パラメータを乗じ、そ
の和をもって圧力制御弁の弁開度を調節する流体圧力制
御方法において、前記被制御流体の微小圧力変化内にお
ける前記被制御流体の流量と前記圧力制御弁の弁開度を
プロセス量とする前記被制御流体の圧力変化と前記圧力
制御弁の弁開度との線形モデルの特性値を算出し、この
特性値に基づいて制御応答時間の交差角周波数が一定と
なるように前記制御パラメータを調整するようにしたこ
とを特徴とする流体圧力制御方法。
In the fluid pressure control method, the integral and differential of the deviation between the detected pressure value of the controlled fluid and a preset pressure target value are multiplied by a control parameter, and the valve opening degree of the pressure control valve is adjusted using the sum of the integrated and differentiated deviations between the detected pressure value of the controlled fluid and a preset pressure target value. Characteristics of a linear model of the pressure change of the controlled fluid and the valve opening of the pressure control valve in which the flow rate of the controlled fluid and the valve opening of the pressure control valve are process quantities within a minute pressure change of the control fluid. A fluid pressure control method characterized in that the control parameter is adjusted based on the characteristic value so that the crossing angular frequency of the control response time is constant.
JP57174318A 1982-10-04 1982-10-04 Control method for fluid pressure Pending JPS5965319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57174318A JPS5965319A (en) 1982-10-04 1982-10-04 Control method for fluid pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57174318A JPS5965319A (en) 1982-10-04 1982-10-04 Control method for fluid pressure

Publications (1)

Publication Number Publication Date
JPS5965319A true JPS5965319A (en) 1984-04-13

Family

ID=15976546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57174318A Pending JPS5965319A (en) 1982-10-04 1982-10-04 Control method for fluid pressure

Country Status (1)

Country Link
JP (1) JPS5965319A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103682A (en) * 1989-09-14 1991-04-30 Hitachi Ltd Control device for gas valve device
JPH03171306A (en) * 1989-11-30 1991-07-24 Ricoh Co Ltd Method and device for controlling fluid pressure
JPH0635306U (en) * 1992-07-03 1994-05-10 株式会社伊田屋本店 Curb
JP2019162569A (en) * 2018-03-19 2019-09-26 オルガノ株式会社 Liquid supply device and pressure control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831433A (en) * 1971-08-30 1973-04-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831433A (en) * 1971-08-30 1973-04-25

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103682A (en) * 1989-09-14 1991-04-30 Hitachi Ltd Control device for gas valve device
JPH03171306A (en) * 1989-11-30 1991-07-24 Ricoh Co Ltd Method and device for controlling fluid pressure
JPH0635306U (en) * 1992-07-03 1994-05-10 株式会社伊田屋本店 Curb
JP2019162569A (en) * 2018-03-19 2019-09-26 オルガノ株式会社 Liquid supply device and pressure control method

Similar Documents

Publication Publication Date Title
JP2647217B2 (en) Composite control method
WO2001004717A1 (en) System and method for a variable gain proportional-integral (pi) controller
US4255089A (en) Method of controlling series fans driving a variable load
JP2988163B2 (en) Water conditioning operation control device
JPS5965319A (en) Control method for fluid pressure
JPH1182897A (en) Distributed water pressure control device
JP3373269B2 (en) Valve control device
JPH0132525B2 (en)
US6573679B1 (en) Servomechanical control system and method
JP2637248B2 (en) Control device for gas valve device
JPS6339922B2 (en)
JPS6149519B2 (en)
JPH0612116B2 (en) Variable speed water supply device
JP3853556B2 (en) Plant control method and control apparatus
JPS58107913A (en) Flow rate controlling method
JPS60144804A (en) Flow rate controller
JPH11324932A (en) Water-distribution pressure control device
Smuts PID controllers explained
JPS6337241B2 (en)
JPS63236939A (en) Automatic pressure governing device
JPS6237721B2 (en)
JPH0578041B2 (en)
JPH0619556A (en) Instrumentation controller
JPH02183814A (en) Water pipe network controller
JPH1163481A (en) Method and apparatus for controlling pressure of fuel gas in gas fired boiler