WO2012169382A1 - Fuel-injection-control device - Google Patents
Fuel-injection-control device Download PDFInfo
- Publication number
- WO2012169382A1 WO2012169382A1 PCT/JP2012/063612 JP2012063612W WO2012169382A1 WO 2012169382 A1 WO2012169382 A1 WO 2012169382A1 JP 2012063612 W JP2012063612 W JP 2012063612W WO 2012169382 A1 WO2012169382 A1 WO 2012169382A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotational speed
- actuator
- engine
- injection amount
- speed
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D31/00—Use of speed-sensing governors to control combustion engines, not otherwise provided for
- F02D31/001—Electric control of rotation speed
- F02D31/007—Electric control of rotation speed controlling fuel supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D31/00—Use of speed-sensing governors to control combustion engines, not otherwise provided for
- F02D31/001—Electric control of rotation speed
- F02D31/007—Electric control of rotation speed controlling fuel supply
- F02D31/008—Electric control of rotation speed controlling fuel supply for idle speed control
Definitions
- the present invention relates to a fuel injection control device for controlling the fuel injection amount in an engine such as a diesel engine.
- Patent Document 1 discloses a fuel injection control apparatus as described above.
- idle rotation control is performed so as to keep the engine idle rotation speed constant in a state in which the load by an auxiliary machine of the engine such as power steering or alternate is high, depending on the state of the engine load.
- the minimum amount of fuel injected into the engine is specified.
- a minimum injection amount is defined.
- This minimum injection amount is an injection amount per injection that is an injection amount when an injection amount adjustment instruction is given once. It is specified.
- the injection amount per one time is defined in this way, if the injection amount is increased frequently in order to increase the engine speed, the injection amount per unit time increases and the driving force also increases. For example, even if it is controlled to the minimum injection amount in order to increase the engine speed during no-load operation and then return the engine speed to the idle speed, the injection amount per unit time increases. As a result, the driving force of the engine is increased, and the engine speed does not decrease.
- an engine speed signal indicating the engine speed detected by the speed detector and a set speed signal transmitted from the control device are input, and at least detected.
- An injection command to the fuel injection device is calculated from the engine speed signal and the transmitted set speed signal.
- PID control means can be used to calculate the injection command.
- the fuel injection control device includes a limiter unit that defines a minimum injection amount per one time. The limiter unit changes the minimum injection amount in accordance with the detected engine speed. An upper limit of the minimum injection amount can be defined, a lower limit can be defined, or both can be defined.
- the limiter unit changes the minimum injection amount according to the detected engine speed. For example, when the engine speed increases in a no-load state, the increased engine speed is detected. Since the minimum injection amount is controlled based on the detected increased engine speed, the engine speed can be reliably reduced to the idle speed even in a no-load state.
- the rotational speed can be reliably reduced to the idle rotational speed even in a no-load state.
- FIG. 1 It is a block diagram of the fuel-injection control apparatus of one Embodiment of this invention. It is a figure which shows the maximum fuel control state by the limiter part in the fuel-injection control apparatus of FIG. It is a figure which shows the minimum fuel control state by the limiter part in the fuel-injection control apparatus of FIG.
- the fuel injection control device 2 of one embodiment of the present invention controls an engine, for example, a fuel injection device of a diesel engine 4 that drives a screw 3 of a ship, for example, an actuator 8 that drives a fuel pump 6. To do.
- a fuel injection device of a diesel engine 4 that drives a screw 3 of a ship
- an actuator 8 that drives a fuel pump 6.
- the fuel injection control device 2 is supplied with a set rotational speed signal from the control device 3. Further, the rotation speed of the rotating body 5 provided on the rotating shaft of the diesel engine 4, that is, the rotation speed detector for detecting the rotation speed of the diesel engine 4, for example, the engine speed signal output from the pulse generator 10 is also supplied to the fuel injection control device. 2 is supplied.
- the set rotational speed signal and the engine rotational speed signal are input to an adder 12 in the fuel injection control device 2, and the adder 12 calculates a difference between the set rotational speed and the engine rotational speed, and a difference signal representing the difference is obtained. Output from the adder 12.
- the difference signal from the adder 12 is supplied to the PID controller 14 and converted into an output signal having a value suitable for PID control.
- the output signal of the PID controller 14 is limited by the limiter unit 16 and output.
- the limiter unit 16 can be configured by a microcomputer, for example, and the function thereof will be described later.
- the output signal of the limiter unit 16 is supplied to the adder 18.
- a position signal representing the position of the actuator 8 is also supplied to the adder 18, and a difference signal representing a difference between the output signal of the limiter unit 16 and the position signal representing the position of the actuator 8 is calculated as an output signal of the adder 18. It is supplied to the actuator drive unit 20.
- the actuator drive unit 20 controls the position of the actuator 8 according to the output signal of the adder 18.
- the actuator 8 is coupled to the fuel pump 6 via the link mechanism 22, the fuel supply amount is adjusted according to the position of the actuator 8, and the rotational speed of the diesel engine changes.
- Such a change in the rotational speed by adjusting the fuel supply amount is performed, for example, every time the set rotational speed is changed and every time the actual rotational speed of the diesel engine 4 is changed. That is, the minimum injection amount, which is the fuel injection amount when the injection amount adjustment instruction is given once, is controlled.
- the limiter unit 16 Since the limiter unit 16 is provided, the overload of the diesel engine 4 is prevented and the stall of the diesel engine 4 due to a significant change in the set rotational speed is prevented.
- the PID controller 14 determines that the position of the actuator 8 is equal to or greater than a predetermined maximum position Y5 (the position of the actuator 8 can take a position larger than the maximum position Y5). 2, the limiter unit 16 limits the output signal of the PID controller 14 so as not to make the position of the actuator 8 larger than the maximum position Y5 as shown in FIG. It has been broken.
- the position of the actuator 8 is limited according to the actual rotational speed X represented by the engine rotational speed signal. For example, depending on which of a plurality of predetermined rotation speed ranks the actual rotation speed X belongs to, the position of the actuator 8 is set to a limit value determined for each rank, for example, a variable limit value determined based on the actual rotation speed for each rank. Is limited.
- the actual rotational speed X is the predetermined The rotation speed is limited to Y1 until it becomes larger than 1 overload prevention rotation speed, for example, X1 rpm. That is, the upper limit value of the position of the actuator 8 is defined.
- the limiter unit 16 does not limit the output signal of the PID controller 14. Output as is.
- the position of the actuator 8 is the actual rotational speed X at that time.
- Y2 to Y2 that are determined according to a linear function having an argument of the actual rotational speed X as an argument, for example, a value in a range from Y1 to the second overload prevention position determined according to Y2, for example, Y2 (Y5> Y2> Y1)
- the actuator 8 Is limited to A as described above.
- the upper limit value of the position of the actuator 8 is defined.
- the limiter The unit 16 outputs the output signal of the PID controller 14 as it is.
- the position of the actuator 8 is determined from Y2 determined according to the actual rotational speed X to a predetermined third speed.
- Overload prevention position for example, a value in the range of Y3 (Y5> Y3> Y2), for example, a value B on the line connecting Y3 and Y2 determined according to a linear function with the actual rotational speed X as an argument, specifically Specifically, even if the output signal of the PID controller 14 indicates that [(Y3 ⁇ Y2) * (X ⁇ X2) / (X3 ⁇ X2)] + Y2 is exceeded, the position of the actuator 8 is B described above.
- the upper limit value of the position of the actuator 8 is defined.
- the limiter The unit 16 outputs the output signal of the PID controller 14 as it is.
- the position of the actuator 8 is determined from Y3 determined according to the actual rotation speed X to a predetermined first rotation speed.
- 4 overload prevention position for example, a value in a range of Y4 (Y5> Y4> Y3), for example, a value C on a line connecting Y4 and Y3, which is determined according to a linear function with the actual rotational speed X as an argument, Specifically, even if the output signal of the PID controller 14 indicates that [(Y4-Y3) * (X ⁇ X3) / (X4 ⁇ X3)] + Y3 is exceeded, the position of the actuator 8 is as described above.
- the limiter The unit 16 outputs the output signal of the PID controller 14 as it is.
- the output signal of the PID controller 14 indicates that the position of the actuator 8 exceeds Y5 from Y4 described above.
- the position of the actuator 8 is a value in the range of Y4 to Y5 determined according to the actual rotational speed Xrpm, for example, a value on the line connecting Y5 and Y4 determined according to a linear function with the actual rotational speed X as an argument.
- the position of the actuator 8 is It is limited to D mentioned above to the maximum. That is, the upper limit value of the position of the actuator 8 is defined.
- the limiter The unit 16 outputs the output signal of the PID controller 14 as it is.
- the engine speed signal is supplied from the pulse generator 10 to the limiter unit 16 to limit the output of the PID controller 14.
- the stall of the diesel engine 4 is prevented by limiting the output signal of the PID controller 14 by the limiter unit 16 as shown in FIG. 3 according to the rotational speed.
- the limitation on the output signal varies depending on which of the plurality of ranks the actual rotational speed X belongs to.
- the output signal of the PID controller 14 determines the position of the actuator 8 in the first stall prevention position.
- the output signal of the PID controller 14 is limited so as not to be lower than y1 even if it is instructed to be lower than y1.
- the minimum injection amount does not decrease below the amount corresponding to the position y1 of the actuator 8 when the rotational speed is equal to or lower than x1 rpm. That is, the lower limit value of the position of the actuator 8 is defined.
- the position of the actuator 8 and the output signal of the PID controller 14 determine the position of the actuator. Even if the second stall prevention position y2 (y2 ⁇ y1) is instructed to be lowered, the output of the PID controller 14 is limited so as not to fall below y2. As a result, the minimum injection amount does not decrease below the amount corresponding to the position y2 of the actuator 8 when the rotational speed is x2 rpm or more. That is, the lower limit value of the position of the actuator 8 is defined.
- the position y of the actuator 8 is proportional to the actual rotational speed X, for example, (y2-y1) (X-x1) / (x2- x1)
- the limiter unit 16 does not output a value lower than the value represented by the above equation, and the minimum injection amount is also the actuator 8 The amount does not fall below the amount corresponding to the position y. That is, the lower limit value of the position of the actuator 8 is defined.
- the minimum injection amount is limited by the limiter unit 16 so as to increase as the rotational speed decreases, and conversely as it decreases as the rotational speed increases. Therefore, for example, when the actual rotational speed of the diesel engine 4 is reduced in a no-load state, the minimum injection amount increases, so the diesel engine 4 does not stop. When there is no possibility of the diesel engine 4 being stopped, the limit by the limiter unit 16 can be canceled so that the fuel injection amount is zero.
- the minimum injection is required to return to the idle speed after that.
- the position of the actuator 8 with the minimum injection amount is set to a constant value regardless of the actual rotational speed. In such a case, when the engine speed is increased in a no-load state, the fuel injection amount per unit time increases, and the engine speed may increase despite the minimum injection amount.
- an overspeed prevention device (not shown), which is one of the safety devices, operates and stops suddenly.
- the minimum injection amount corresponding to the rotational speed is set. That is, the fuel injection amount per unit time is set to be equal to or less than the injection amount that can prevent the engine speed from increasing for each rotation speed. According to this configuration, it is possible to prevent overspeed in a high rotation range.
- the minimum injection amount corresponding to the rotational speed is set. That is, the fuel injection amount per unit time is set to be equal to or less than the injection amount that can prevent the engine speed from increasing and more than the injection amount that can prevent misfire. According to this configuration, it is possible to prevent stalling in the low rotation range of the engine and overspeed in the high rotation range.
- an electric type driven by the actuator 8 is shown as the fuel injection device.
- the invention is not limited to this, and a mechanical type, electromagnetic valve type, or common rail type is used. You can also.
- the present invention is applied to a marine diesel engine.
- the present invention is not limited to this.
- the present invention can also be applied to a vehicle diesel engine.
- the actual rotational speed X depends on which of the six ranks X1 or less, X1 to X2, X2 to X3, X3 to X4, X4 to X5, X5 or more belongs to
- the position of the actuator 8 is changed, the number of ranks is not limited to six, and various ranks can be used as long as the rank is two or more.
- the upper limit value of the position of the actuator 8 is calculated based on a linear function with the actual rotation number as an argument in the ranks X1 to X2, X2 to X3, and X4 to X5, but this is not limited to this. Instead, for example, it can be calculated by a high-order function having an actual rotational speed as an argument, such as a quadratic function or a cubic function. However, the function of each rank is assumed to be continuous. In the above embodiment, in order to prevent the engine from stopping, the position of the actuator 8 is changed depending on which of the three ranks the actual rotation speed is x1 or less, x to x2, or x2 or more.
- the range of x1 to x2 can be divided into a plurality of ranges.
- the ranks x1 to x2 are divided into a plurality of ranks, for example, a rank from x1 rpm to x3 rpm (x1 ⁇ x3 ⁇ x2) and a rank from x3 rpm to x2 rpm, and the actual rotational speed X is used as an argument for each rank.
- the limiter unit prevents the position of the actuator 8 from being lowered from the value represented by each of the above expressions.
- 16 can also limit the output signal of the PID controller 14.
- each of the above equations is continuous, and is not limited to a linear function but may be a high-order function such as a quadratic function or a cubic function.
- Fuel injection control device 4 Diesel engine 6 Fuel pump (fuel injection device) 8 Actuator 16 Limiter
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Fuel-Injection Apparatus (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
A fuel-injection-control device (2) inputs an engine-speed signal from a speed sensor (10) and a set-speed signal transmitted by an operating device (3), and calculates an injection-quantity command for a fuel-injection pump (6) based on at least the engine-speed signal and the set-speed signal. The fuel-injection-control device (2) is provided with a limiter (16) for restricting the minimum amount of injected fuel per event, and the limiter (16) changes the minimum amount of injected fuel according to the engine-speed signal.
Description
本発明は、例えばディーゼルエンジンのようなエンジンにおける燃料の噴射量を制御する燃料噴射制御装置に関する。
The present invention relates to a fuel injection control device for controlling the fuel injection amount in an engine such as a diesel engine.
上述したような燃料噴射制御装置には、例えば特許文献1に開示されているようなものがある。特許文献1の技術では、パワーステアリングまたはオルタネートのようなエンジンの補機による負荷が高い状態でエンジンのアイドル回転速度を一定に保つようにアイドル回転制御が行われ、エンジンの負荷の状態に応じてエンジンへの燃料の最小噴射量が規定されている。
For example, Patent Document 1 discloses a fuel injection control apparatus as described above. In the technique of Patent Literature 1, idle rotation control is performed so as to keep the engine idle rotation speed constant in a state in which the load by an auxiliary machine of the engine such as power steering or alternate is high, depending on the state of the engine load. The minimum amount of fuel injected into the engine is specified.
特許文献1の技術によれば、最小噴射量が規定されているが、この最小噴射量は、噴射量の調整指示が1回与えられた際の噴射量である、1回当たりの噴射量を規定したものである。このように1回当たりの噴射量を規定するものでは、エンジンの回転数を上げるために、頻繁に噴射量を増加させると、単位時間当たりの噴射量が多くなり、駆動力も大きくなる。例えば、無負荷運転時にエンジンの回転数を上昇させ、その後にエンジンの回転数をアイドル回転数に戻すために、最小噴射量に制御したとしても、単位時間当たりの噴射量が増大しているので、エンジンの駆動力が大きくなっており、エンジンの回転数が低下しないという問題が発生する。
According to the technique of Patent Document 1, a minimum injection amount is defined. This minimum injection amount is an injection amount per injection that is an injection amount when an injection amount adjustment instruction is given once. It is specified. In the case where the injection amount per one time is defined in this way, if the injection amount is increased frequently in order to increase the engine speed, the injection amount per unit time increases and the driving force also increases. For example, even if it is controlled to the minimum injection amount in order to increase the engine speed during no-load operation and then return the engine speed to the idle speed, the injection amount per unit time increases. As a result, the driving force of the engine is increased, and the engine speed does not decrease.
本発明は、無負荷状態でも、確実にアイドル回転数までエンジンの回転数を低下させることができる燃料噴射制御装置を提供することを目的とする。
It is an object of the present invention to provide a fuel injection control device that can reliably reduce the engine speed to an idle speed even in a no-load state.
本発明の一態様の燃料噴射制御装置は、回転数検知器により検知されたエンジン回転数を表すエンジン回転数信号と、操縦装置から送信された設定回転数信号とが入力され、少なくとも、検知されたエンジン回転数信号と送信された設定回転数信号とから、燃料噴射装置への噴射指令を算出する。噴射指令の算出にPID制御手段を使用することができる。この燃料噴射制御装置は、1回当たりの最小噴射量を規定するリミッタ部を備えている。このリミッタ部は、検知されたエンジン回転数に応じて最小噴射量を変更する。最少噴射量の上限を規定することもできるし、下限を規定することもできるし、両方を規定することもできる。
In the fuel injection control device according to one aspect of the present invention, an engine speed signal indicating the engine speed detected by the speed detector and a set speed signal transmitted from the control device are input, and at least detected. An injection command to the fuel injection device is calculated from the engine speed signal and the transmitted set speed signal. PID control means can be used to calculate the injection command. The fuel injection control device includes a limiter unit that defines a minimum injection amount per one time. The limiter unit changes the minimum injection amount in accordance with the detected engine speed. An upper limit of the minimum injection amount can be defined, a lower limit can be defined, or both can be defined.
この燃料噴射制御装置では、検知されたエンジン回転数に応じてリミッタ部が最小噴射量を変更するので、例えば無負荷状態でエンジンの回転数が上昇した場合、その上昇したエンジンの回転数が検知され、この検知された上昇したエンジン回転数に基づいて最小噴射量が制御されるので、無負荷状態でもエンジンの回転数を確実にアイドル回転数まで低下させることができる。
In this fuel injection control device, the limiter unit changes the minimum injection amount according to the detected engine speed. For example, when the engine speed increases in a no-load state, the increased engine speed is detected. Since the minimum injection amount is controlled based on the detected increased engine speed, the engine speed can be reliably reduced to the idle speed even in a no-load state.
以上のように、本発明によれば、無負荷状態でも、確実にアイドル回転数まで回転数を低下させることができる。
As described above, according to the present invention, the rotational speed can be reliably reduced to the idle rotational speed even in a no-load state.
本発明の1実施形態の燃料噴射制御装置2は、図1に示すように、エンジン、例えば船舶のスクリュー3を駆動するディーゼルエンジン4の燃料噴射装置、例えば燃料ポンプ6を駆動するアクチュエータ8を制御する。
As shown in FIG. 1, the fuel injection control device 2 of one embodiment of the present invention controls an engine, for example, a fuel injection device of a diesel engine 4 that drives a screw 3 of a ship, for example, an actuator 8 that drives a fuel pump 6. To do.
燃料噴射制御装置2には、操縦装置3から設定回転数信号が供給されている。また、ディーゼルエンジン4の回転軸に設けた回転体5の回転数、即ちディーゼルエンジン4の回転数を検出する回転検出器、例えばパルス発生器10が出力するエンジン回転数信号も、燃料噴射制御装置2に供給されている。設定回転数信号とエンジン回転数信号とは、燃料噴射制御装置2内の加算器12に入力され、加算器12によって設定回転数のエンジン回転数に対する差が算出され、その差を表す差信号が加算器12から出力される。
The fuel injection control device 2 is supplied with a set rotational speed signal from the control device 3. Further, the rotation speed of the rotating body 5 provided on the rotating shaft of the diesel engine 4, that is, the rotation speed detector for detecting the rotation speed of the diesel engine 4, for example, the engine speed signal output from the pulse generator 10 is also supplied to the fuel injection control device. 2 is supplied. The set rotational speed signal and the engine rotational speed signal are input to an adder 12 in the fuel injection control device 2, and the adder 12 calculates a difference between the set rotational speed and the engine rotational speed, and a difference signal representing the difference is obtained. Output from the adder 12.
この加算器12からの差信号は、PID制御器14に供給され、PID制御に適した値の出力信号に変換される。このPID制御器14の出力信号は、リミッタ部16で制限され、出力される。リミッタ部16は、例えばマイクロコンピュータによって構成することができ、その機能については、後述する。
The difference signal from the adder 12 is supplied to the PID controller 14 and converted into an output signal having a value suitable for PID control. The output signal of the PID controller 14 is limited by the limiter unit 16 and output. The limiter unit 16 can be configured by a microcomputer, for example, and the function thereof will be described later.
このリミッタ部16の出力信号は、加算器18に供給される。加算器18には、アクチュエータ8の位置を表す位置信号も供給され、リミッタ部16の出力信号のアクチュエータ8の位置を表す位置信号に対する差を表す差信号が加算器18の出力信号として算出され、アクチュエータドライブユニット20に供給される。アクチュエータドライブユニット20は、加算器18の出力信号に従ってアクチュエータ8の位置を制御する。アクチュエータ8は、リンク機構22を介して燃料ポンプ6に結合され、アクチュエータ8の位置に従って燃料の供給量が調整され、ディーゼルエンジンの回転数が変化する。このような燃料の供給量調整による回転数の変化は、例えば設定回転数が変更されるごとに、またディーゼルエンジン4の実回転数が変化するごとに行われる。即ち、噴射量の調整指示が1回与えられる際の燃料噴射量である最少噴射量が制御されている。
The output signal of the limiter unit 16 is supplied to the adder 18. A position signal representing the position of the actuator 8 is also supplied to the adder 18, and a difference signal representing a difference between the output signal of the limiter unit 16 and the position signal representing the position of the actuator 8 is calculated as an output signal of the adder 18. It is supplied to the actuator drive unit 20. The actuator drive unit 20 controls the position of the actuator 8 according to the output signal of the adder 18. The actuator 8 is coupled to the fuel pump 6 via the link mechanism 22, the fuel supply amount is adjusted according to the position of the actuator 8, and the rotational speed of the diesel engine changes. Such a change in the rotational speed by adjusting the fuel supply amount is performed, for example, every time the set rotational speed is changed and every time the actual rotational speed of the diesel engine 4 is changed. That is, the minimum injection amount, which is the fuel injection amount when the injection amount adjustment instruction is given once, is controlled.
リミッタ部16が設けられていることにより、ディーゼルエンジン4の過負荷の防止が図られている上に、大幅な設定回転数の変更によるディーゼルエンジン4の失速が防止されている。
Since the limiter unit 16 is provided, the overload of the diesel engine 4 is prevented and the stall of the diesel engine 4 due to a significant change in the set rotational speed is prevented.
過負荷の防止は、アクチュエータ8の位置が予め定めた最大限位置Y5(アクチュエータ8の位置は、最大限位置Y5よりも大きな値の位置をとることができる)以上となることをPID制御器14の出力信号が指示していても、図2に示すようにアクチュエータ8の位置を最大限位置Y5よりも大きくしないように、リミッタ部16によって、PID制御器14の出力信号を制限することによって行われている。
To prevent overload, the PID controller 14 determines that the position of the actuator 8 is equal to or greater than a predetermined maximum position Y5 (the position of the actuator 8 can take a position larger than the maximum position Y5). 2, the limiter unit 16 limits the output signal of the PID controller 14 so as not to make the position of the actuator 8 larger than the maximum position Y5 as shown in FIG. It has been broken.
また、エンジン回転数信号が表す実回転数Xに応じてアクチュエータ8の位置が制限されている。例えば実回転数Xが予め定めた複数の回転数ランクのいずれに属するかによって、そのランクごとに定めた制限値、例えばランクごとに実回転数に基づいて定めた可変制限値にアクチュエータ8の位置が制限されている。
Also, the position of the actuator 8 is limited according to the actual rotational speed X represented by the engine rotational speed signal. For example, depending on which of a plurality of predetermined rotation speed ranks the actual rotation speed X belongs to, the position of the actuator 8 is set to a limit value determined for each rank, for example, a variable limit value determined based on the actual rotation speed for each rank. Is limited.
例えばアクチュエータ8の位置が予め定めた第1の過負荷防止位置、例えばY1(Y1<Y5)を超えることをPID制御器14の出力が指示していても、実回転数Xが予め定めた第1の過負荷防止回転数、例えばX1rpmよりも大きくなるまでY1に制限されている。即ち、アクチュエータ8の位置の上限値が規定されている。なお、実回転数XがX1rpm以下で、PID制御器14の出力信号が指示するアクチュエータ8の位置がY1よりも小さいと、リミッタ部16は、制限せずに、PID制御器14の出力信号をそのまま出力する。
For example, even if the output of the PID controller 14 indicates that the position of the actuator 8 exceeds a predetermined first overload prevention position, for example, Y1 (Y1 <Y5), the actual rotational speed X is the predetermined The rotation speed is limited to Y1 until it becomes larger than 1 overload prevention rotation speed, for example, X1 rpm. That is, the upper limit value of the position of the actuator 8 is defined. When the actual rotational speed X is X1 rpm or less and the position of the actuator 8 indicated by the output signal of the PID controller 14 is smaller than Y1, the limiter unit 16 does not limit the output signal of the PID controller 14. Output as is.
また、実回転数Xが、X1rpmから予め定めた第2の過負荷防止回転数、例えばX2(X2>X1)rpmまでの間にある場合、アクチュエータ8の位置が、そのときの実回転数Xに従って定めたY1乃至第2の過負荷防止位置、例えばY2(Y5>Y2>Y1)の範囲の値、例えばそのときの実回転数Xを引数とする1次関数に従って定めた、Y2とY1を繋ぐ線上の値A、具体的には[(Y2-Y1)*(X-X1)/(X2-X1)]+Y1を超えることをPID制御器14の出力信号が指示していても、アクチュエータ8の位置は、上述したAに最大限制限される。即ち、アクチュエータ8の位置の上限値が規定されている。実回転数XがX1rpm乃至X2rpmの間であって、PID制御器16の出力信号が、アクチュエータ8の位置を実回転数Xによって定めた値Aよりも小さくすることを指示している場合、リミッタ部16は、PID制御器14の出力信号をそのまま出力する。
If the actual rotational speed X is between X1 rpm and a predetermined second overload prevention rotational speed, for example, X2 (X2> X1) rpm, the position of the actuator 8 is the actual rotational speed X at that time. Y2 to Y2 that are determined according to a linear function having an argument of the actual rotational speed X as an argument, for example, a value in a range from Y1 to the second overload prevention position determined according to Y2, for example, Y2 (Y5> Y2> Y1) Even if the output signal of the PID controller 14 indicates that the value A on the connecting line exceeds, specifically, [(Y2-Y1) * (X−X1) / (X2−X1)] + Y1, the actuator 8 Is limited to A as described above. That is, the upper limit value of the position of the actuator 8 is defined. When the actual rotational speed X is between X1 rpm and X2 rpm and the output signal of the PID controller 16 indicates that the position of the actuator 8 should be smaller than the value A determined by the actual rotational speed X, the limiter The unit 16 outputs the output signal of the PID controller 14 as it is.
実回転数がX2rpmから予め定めた第3の過負荷防止回転数、例えばX3rpmまでの間にある場合、アクチュエータ8の位置が、そのときの実回転数Xに従って定めたY2乃至予め定めた第3の過負荷防止位置、例えばY3(Y5>Y3>Y2)の範囲の値、例えばそのときの実回転数Xを引数とする1次関数に従って定めた、Y3とY2を繋ぐ線上の値B、具体的には[(Y3-Y2)*(X-X2)/(X3-X2)]+Y2を超えることをPID制御器14の出力信号が指示していても、アクチュエータ8の位置は、上述したBに最大限制限される。即ち、アクチュエータ8の位置の上限値が規定されている。実回転数XがX2rpm乃至X3rpmの間であって、PID制御器16の出力信号が、アクチュエータ8の位置を実回転数Xによって定めた値Bよりも小さくすることを指示している場合、リミッタ部16は、PID制御器14の出力信号をそのまま出力する。
When the actual rotational speed is between X2 rpm and a predetermined third overload prevention rotational speed, for example, X3 rpm, the position of the actuator 8 is determined from Y2 determined according to the actual rotational speed X to a predetermined third speed. Overload prevention position, for example, a value in the range of Y3 (Y5> Y3> Y2), for example, a value B on the line connecting Y3 and Y2 determined according to a linear function with the actual rotational speed X as an argument, specifically Specifically, even if the output signal of the PID controller 14 indicates that [(Y3−Y2) * (X−X2) / (X3−X2)] + Y2 is exceeded, the position of the actuator 8 is B described above. To the maximum. That is, the upper limit value of the position of the actuator 8 is defined. When the actual rotational speed X is between X2 rpm and X3 rpm and the output signal of the PID controller 16 indicates that the position of the actuator 8 should be smaller than the value B determined by the actual rotational speed X, the limiter The unit 16 outputs the output signal of the PID controller 14 as it is.
実回転数XがX3から予め定めた第4の過負荷防止回転数、例えばX4rpmまでの間にある場合、アクチュエータ8の位置が、そのときの実回転数Xに従って定めたY3乃至予め定めた第4の過負荷防止位置、例えばY4(Y5>Y4>Y3)の範囲の値、例えばそのときの実回転数Xを引数とする1次関数に従って定めた、Y4とY3を繋ぐ線上の値C、具体的には[(Y4-Y3)*(X-X3)/(X4-X3)]+Y3を超えることをPID制御器14の出力信号が指示していても、アクチュエータ8の位置は、上述したCに最大限制限される。即ち、アクチュエータ8の位置の上限値が規定されている。実回転数XがX3rpm乃至X4rpmの間であって、PID制御器16の出力信号が、アクチュエータ8の位置を実回転数Xによって定めた値Cよりも小さくすることを指示している場合、リミッタ部16は、PID制御器14の出力信号をそのまま出力する。
When the actual rotation speed X is between X3 and a predetermined fourth overload prevention rotation speed, for example, X4 rpm, the position of the actuator 8 is determined from Y3 determined according to the actual rotation speed X to a predetermined first rotation speed. 4 overload prevention position, for example, a value in a range of Y4 (Y5> Y4> Y3), for example, a value C on a line connecting Y4 and Y3, which is determined according to a linear function with the actual rotational speed X as an argument, Specifically, even if the output signal of the PID controller 14 indicates that [(Y4-Y3) * (X−X3) / (X4−X3)] + Y3 is exceeded, the position of the actuator 8 is as described above. C is maximally limited. That is, the upper limit value of the position of the actuator 8 is defined. When the actual rotational speed X is between X3 rpm and X4 rpm and the output signal of the PID controller 16 indicates that the position of the actuator 8 should be smaller than the value C determined by the actual rotational speed X, the limiter The unit 16 outputs the output signal of the PID controller 14 as it is.
実回転数XがX4から第5の過負荷防止回転数、例えばX5rpmまでの間にある場合、アクチュエータ8の位置がY4から上述したY5を超えることをPID制御器14の出力信号が指示していても、アクチュエータ8の位置は実回転数Xrpmに従って定めたY4乃至Y5の範囲の値、例えばそのときの実回転数Xを引数とする1次関数に従って定めた、Y5とY4を繋ぐ線上の値D、具体的には[(Y5-Y4)*(X-X4)/(X5-X4)]+Y4を超えることをPID制御器14の出力信号が指示していても、アクチュエータ8の位置は、上述したDに最大限制限される。即ち、アクチュエータ8の位置の上限値が規定されている。実回転数XがX4rpm乃至X5rpmの間であって、PID制御器16の出力信号が、アクチュエータ8の位置を実回転数Xによって定めた値Dよりも小さくすることを指示している場合、リミッタ部16は、PID制御器14の出力信号をそのまま出力する。
When the actual rotational speed X is between X4 and a fifth overload prevention rotational speed, for example, X5 rpm, the output signal of the PID controller 14 indicates that the position of the actuator 8 exceeds Y5 from Y4 described above. However, the position of the actuator 8 is a value in the range of Y4 to Y5 determined according to the actual rotational speed Xrpm, for example, a value on the line connecting Y5 and Y4 determined according to a linear function with the actual rotational speed X as an argument. D, specifically, even if the output signal of the PID controller 14 indicates that [(Y5−Y4) * (X−X4) / (X5−X4)] + Y4 is exceeded, the position of the actuator 8 is It is limited to D mentioned above to the maximum. That is, the upper limit value of the position of the actuator 8 is defined. When the actual rotational speed X is between X4 rpm and X5 rpm and the output signal of the PID controller 16 indicates that the position of the actuator 8 should be smaller than the value D determined by the actual rotational speed X, the limiter The unit 16 outputs the output signal of the PID controller 14 as it is.
これらのようにリミッタ部16が動作するため、リミッタ部16には、パルス発生器10からエンジン回転数信号が供給され、PID制御器14の出力を制限している。
Since the limiter unit 16 operates as described above, the engine speed signal is supplied from the pulse generator 10 to the limiter unit 16 to limit the output of the PID controller 14.
また、ディーゼルエンジン4の失速の防止は、回転数に応じて図3に示すようにリミッタ部16によってPID制御器14の出力信号を制限することによって行われている。この出力信号の制限は、実回転数Xが複数のランクのいずれに属するかによって異ならせている。
Further, the stall of the diesel engine 4 is prevented by limiting the output signal of the PID controller 14 by the limiter unit 16 as shown in FIG. 3 according to the rotational speed. The limitation on the output signal varies depending on which of the plurality of ranks the actual rotational speed X belongs to.
例えば、ディーゼルエンジン4の回転数Xが予め定めた第1の失速防止回転数x1rpm以下のランクの場合には、PID制御器14の出力信号がアクチュエータ8の位置を予め定めた第1失速防止位置y1より低下させることを指示していても、y1よりも低下しないようにPID制御器14の出力信号を制限している。これによって回転数がx1rpm以下では最小噴射量がアクチュエータ8の位置y1に対応する量より低下することはない。即ち、アクチュエータ8の位置の下限値が規定されている。
For example, when the rotational speed X of the diesel engine 4 is a predetermined first stall prevention rotational speed x1 rpm or less, the output signal of the PID controller 14 determines the position of the actuator 8 in the first stall prevention position. The output signal of the PID controller 14 is limited so as not to be lower than y1 even if it is instructed to be lower than y1. As a result, the minimum injection amount does not decrease below the amount corresponding to the position y1 of the actuator 8 when the rotational speed is equal to or lower than x1 rpm. That is, the lower limit value of the position of the actuator 8 is defined.
ディーゼルエンジン4の回転数が予め定めた第2の失速防止回転数x2rpm(x2>x1)以上のランクの場合にはアクチュエータ8の位置がPID制御器14の出力信号がアクチュエータの位置を予め定めた第2失速防止位置y2(y2<y1)よりも低下させることを指示していても、y2よりも低下しないようにPID制御器14の出力を制限している。これによって回転数がx2rpm以上では最小噴射量がアクチュエータ8の位置y2に対応する量より低下することはない。即ち、アクチュエータ8の位置の下限値が規定されている。
When the rotational speed of the diesel engine 4 is higher than the predetermined second stall prevention rotational speed x2 rpm (x2> x1) or higher, the position of the actuator 8 and the output signal of the PID controller 14 determine the position of the actuator. Even if the second stall prevention position y2 (y2 <y1) is instructed to be lowered, the output of the PID controller 14 is limited so as not to fall below y2. As a result, the minimum injection amount does not decrease below the amount corresponding to the position y2 of the actuator 8 when the rotational speed is x2 rpm or more. That is, the lower limit value of the position of the actuator 8 is defined.
同様に、実回転数Xがx1rpmからx2rpmまでの間にあるランクでは、アクチュエータ8の位置yは、実回転数Xに比例して、例えば(y2-y1)(X-x1)/(x2-x1)+y1で定まる位置より低下させることをPID制御器14の出力信号が指示していても、リミッタ部16は上記式であらわされる値より低下した値を出力せず、最小噴射量もアクチュエータ8の位置yに対応する量より低下することはない。即ち、アクチュエータ8の位置の下限値が規定されている。
Similarly, in a rank where the actual rotational speed X is between x1 rpm and x2 rpm, the position y of the actuator 8 is proportional to the actual rotational speed X, for example, (y2-y1) (X-x1) / (x2- x1) Even if the output signal of the PID controller 14 instructs to decrease from the position determined by + y1, the limiter unit 16 does not output a value lower than the value represented by the above equation, and the minimum injection amount is also the actuator 8 The amount does not fall below the amount corresponding to the position y. That is, the lower limit value of the position of the actuator 8 is defined.
このように、最小噴射量は、回転数が小さいほど大きくなるように、逆に言えば回転数が大きいほど小さくなるようにリミッタ部16によって制限されている。従って、例えば無負荷状態でディーゼルエンジン4の実回転数を低下させるとき、最小噴射量が増加するので、ディーゼルエンジン4が停止することはない。なお、ディーゼルエンジン4の停止の可能性が無いときには、燃料噴射量を零にするように、リミッタ部16による制限を解除することも可能である。
As described above, the minimum injection amount is limited by the limiter unit 16 so as to increase as the rotational speed decreases, and conversely as it decreases as the rotational speed increases. Therefore, for example, when the actual rotational speed of the diesel engine 4 is reduced in a no-load state, the minimum injection amount increases, so the diesel engine 4 does not stop. When there is no possibility of the diesel engine 4 being stopped, the limit by the limiter unit 16 can be canceled so that the fuel injection amount is zero.
またエンジンの回転数を上げるために、頻繁に噴射量を増加させた結果、単位時間当たりの噴射量が多くなり、駆動力も大きくなっていても、その後にアイドル回転数に戻すために、最小噴射量に制御したとき、実回転数が大きいほど最小噴射量が小さいので、アイドル回転数まで容易に低下させることができる。従来の装置では、最小噴射量がアクチュエータ8の位置が、実回転数とは無関係に一定の値に設定されていた。こうしたものでは、無負荷状態でエンジンの回転数を上げると、単位時間あたりの燃料噴射量が増大し、最小噴射量であるにも係わらず、エンジンの回転数が上昇する恐れがある。エンジンの回転数が上昇し続けると、安全装置の1つである過回転防止装置(図示しない)が作動し、危急停止する。この実施形態では、回転数に対応した最小噴射量に設定している。すなわち、回転数ごとに単位時間あたりの燃料噴射量をエンジン回転数の上昇を防止できる噴射量以下に設定している。この構成によれば、高回転域での過速度を防止することができる。
In addition, even if the injection amount per unit time increases and the driving force increases as a result of increasing the injection amount frequently in order to increase the engine speed, the minimum injection is required to return to the idle speed after that. When the amount is controlled, since the minimum injection amount is smaller as the actual rotational speed is larger, it can be easily reduced to the idle rotational speed. In the conventional apparatus, the position of the actuator 8 with the minimum injection amount is set to a constant value regardless of the actual rotational speed. In such a case, when the engine speed is increased in a no-load state, the fuel injection amount per unit time increases, and the engine speed may increase despite the minimum injection amount. When the engine speed continues to rise, an overspeed prevention device (not shown), which is one of the safety devices, operates and stops suddenly. In this embodiment, the minimum injection amount corresponding to the rotational speed is set. That is, the fuel injection amount per unit time is set to be equal to or less than the injection amount that can prevent the engine speed from increasing for each rotation speed. According to this configuration, it is possible to prevent overspeed in a high rotation range.
また、最小噴射量は、実回転数が小さいほど大きくなるようにリミッタ部16によって制限されているので、燃費が良好となる。特に、大型舶用のディーゼルエンジンでは、圧縮空気をシリンダに送って始動させるため、一度エンジンを停止すると、圧縮空気が無駄になり、しかも再始動にまで時間が掛かる.この実施形態では、最小噴射量は、実回転数が小さいほど大きくなるようにリミッタ部16によって制限されているので、エンジン停止することはない。この実施形態では、回転数に対応した最小噴射量に設定してある。すなわち、回転数ごとに単位時間あたりの燃料噴射量をエンジン回転数の上昇を防止できる噴射量以下、ならびに失火を防止できる噴射量以上に設定している。この構成によれば、エンジンの低回転域での失速防止と高回転域での過速度を防止することができる。
In addition, since the minimum injection amount is limited by the limiter unit 16 so as to increase as the actual rotational speed decreases, fuel efficiency is improved. In particular, in a large marine diesel engine, compressed air is sent to a cylinder to start the engine, so once the engine is stopped, the compressed air is wasted and it takes time to restart. Is limited by the limiter unit 16 so as to increase as the actual rotational speed decreases, the engine does not stop. In this embodiment, the minimum injection amount corresponding to the rotational speed is set. That is, the fuel injection amount per unit time is set to be equal to or less than the injection amount that can prevent the engine speed from increasing and more than the injection amount that can prevent misfire. According to this configuration, it is possible to prevent stalling in the low rotation range of the engine and overspeed in the high rotation range.
上記の実施形態では、燃料噴射装置として、アクチュエータ8によって駆動される電動タイプのものを示したが、これに限ったものではなく、機械式や電磁弁式やコモンなレールタイプのものを使用することもできる。
In the above embodiment, an electric type driven by the actuator 8 is shown as the fuel injection device. However, the invention is not limited to this, and a mechanical type, electromagnetic valve type, or common rail type is used. You can also.
また、上記の実施形態では、舶用のディーゼルエンジンに本発明を実施したが、これに限ったものではなく、例えば車両のディーゼルエンジンにも本発明を実施することもできる。上記の実施形態では、過負荷の防止のため、実回転数XをX1以下、X1乃至X2、X2乃至X3、X3乃至X4、X4乃至X5、X5以上の6つのランクのいずれに属するかによって、アクチュエータ8の位置を変更したが、ランクの数は6つの限ったものでなく、2以上のランクであれば種々のランク数とすることもできる。また、アクチュエータ8の位置の上限値を、X1乃至X2、X2乃至X3、X4乃至X5のランクでは、実回転数を引数とする1次関数に基づいて算出しているが、これに限ったものではなく、例えば実回転数を引数とする高次関数、例えば二次関数または三次関数で算出することもできる。但し、各ランクの関数は、連続性のあるものとする。上記の実施形態では、エンジン停止の防止のため、実回転数がx1以下、x乃至x2、x2以上の3つのランクのいずれに属するかによって、アクチュエータ8の位置を変更したが、ランクの数は3つの限ったものではなく、例えばx1乃至x2の範囲を複数の範囲に分割することもできる。なお、x1乃至x2のランクを、例えばx1rpmからx3rpm(x1<x3<x2)のランクと、x3rpmからx2rpmのランクのように複数のランクに分割し、ランクごとに実回転数Xを引数とする異なる式で求められる値よりもアクチュエータ8の位置を低下させることをPID制御器の出力信号が表していても、上記各式で表される値よりもアクチュエータ8の位置を低下させないようにリミッタ部16がPID制御器14の出力信号を制限することもできる。但し、上記各式は、連続性のあるものとし、1次関数に限らず、高次関数、例えば2次関数または3次関数とすることもできる。
In the above embodiment, the present invention is applied to a marine diesel engine. However, the present invention is not limited to this. For example, the present invention can also be applied to a vehicle diesel engine. In the above embodiment, in order to prevent overload, the actual rotational speed X depends on which of the six ranks X1 or less, X1 to X2, X2 to X3, X3 to X4, X4 to X5, X5 or more belongs to Although the position of the actuator 8 is changed, the number of ranks is not limited to six, and various ranks can be used as long as the rank is two or more. In addition, the upper limit value of the position of the actuator 8 is calculated based on a linear function with the actual rotation number as an argument in the ranks X1 to X2, X2 to X3, and X4 to X5, but this is not limited to this. Instead, for example, it can be calculated by a high-order function having an actual rotational speed as an argument, such as a quadratic function or a cubic function. However, the function of each rank is assumed to be continuous. In the above embodiment, in order to prevent the engine from stopping, the position of the actuator 8 is changed depending on which of the three ranks the actual rotation speed is x1 or less, x to x2, or x2 or more. For example, the range of x1 to x2 can be divided into a plurality of ranges. The ranks x1 to x2 are divided into a plurality of ranks, for example, a rank from x1 rpm to x3 rpm (x1 <x3 <x2) and a rank from x3 rpm to x2 rpm, and the actual rotational speed X is used as an argument for each rank. Even if the output signal of the PID controller represents that the position of the actuator 8 is lowered from a value obtained by a different expression, the limiter unit prevents the position of the actuator 8 from being lowered from the value represented by each of the above expressions. 16 can also limit the output signal of the PID controller 14. However, each of the above equations is continuous, and is not limited to a linear function but may be a high-order function such as a quadratic function or a cubic function.
2 燃料噴射制御装置
4 ディーゼルエンジン
6 燃料ポンプ(燃料噴射装置)
8 アクチュエータ
16 リミッタ部 2 Fuelinjection control device 4 Diesel engine 6 Fuel pump (fuel injection device)
8Actuator 16 Limiter
4 ディーゼルエンジン
6 燃料ポンプ(燃料噴射装置)
8 アクチュエータ
16 リミッタ部 2 Fuel
8
Claims (3)
- 回転数検知器が検知したエンジン回転数を表すエンジン回転数信号と、操縦装置より送信された設定回転数信号とが入力され、少なくとも前記エンジン回転数信号と前記設定回転数信号とから、噴射装置への噴射量指令を算出すると共に、
1回当たりの最小噴射量を規定するリミッタ部を備えた
燃料噴射制御装置において、
前記リミッタ部が、前記エンジン回転数信号に応じて、前記最小噴射量を変更することを特徴とする燃料噴射制御装置。 An engine speed signal representing the engine speed detected by the speed detector and a set speed signal transmitted from the control device are inputted, and at least the engine speed signal and the set speed signal are used to inject the injection device. While calculating the injection amount command to
In a fuel injection control device including a limiter unit that defines a minimum injection amount per one time,
The fuel injection control device, wherein the limiter unit changes the minimum injection amount in accordance with the engine speed signal. - 請求項1記載の燃料噴射制御装置において、前記リミッタ部は、前記最少噴射量の上限値を規定する燃料噴射制御装置。 2. The fuel injection control device according to claim 1, wherein the limiter unit defines an upper limit value of the minimum injection amount.
- 請求項1または2記載の燃料噴射制御装置において、前記リミッタ部は、前記最少噴射量の下限値を規定する燃料噴射制御装置。 3. The fuel injection control apparatus according to claim 1, wherein the limiter unit defines a lower limit value of the minimum injection amount.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011127097A JP2012251532A (en) | 2011-06-07 | 2011-06-07 | Fuel injection control device |
JP2011-127097 | 2011-06-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012169382A1 true WO2012169382A1 (en) | 2012-12-13 |
Family
ID=47295950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/063612 WO2012169382A1 (en) | 2011-06-07 | 2012-05-28 | Fuel-injection-control device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012251532A (en) |
WO (1) | WO2012169382A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108490996A (en) * | 2018-04-19 | 2018-09-04 | 南通航运职业技术学院 | A kind of diesel engine speed based on power function accurately adjusts algorithm |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108828943A (en) * | 2018-06-20 | 2018-11-16 | 南通航运职业技术学院 | A kind of Auto-disturbance-rejection Control with disturbance compensation and finite time convergence control |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5853647A (en) * | 1981-09-28 | 1983-03-30 | Toyota Motor Corp | Fuel injection method of electronically controlled engine |
JPH08334049A (en) * | 1995-06-07 | 1996-12-17 | Nissan Motor Co Ltd | Fuel injection control device of diesel engine |
WO2006098058A1 (en) * | 2005-03-16 | 2006-09-21 | Yanmar Co., Ltd. | Fuel injection system |
-
2011
- 2011-06-07 JP JP2011127097A patent/JP2012251532A/en not_active Withdrawn
-
2012
- 2012-05-28 WO PCT/JP2012/063612 patent/WO2012169382A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5853647A (en) * | 1981-09-28 | 1983-03-30 | Toyota Motor Corp | Fuel injection method of electronically controlled engine |
JPH08334049A (en) * | 1995-06-07 | 1996-12-17 | Nissan Motor Co Ltd | Fuel injection control device of diesel engine |
WO2006098058A1 (en) * | 2005-03-16 | 2006-09-21 | Yanmar Co., Ltd. | Fuel injection system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108490996A (en) * | 2018-04-19 | 2018-09-04 | 南通航运职业技术学院 | A kind of diesel engine speed based on power function accurately adjusts algorithm |
Also Published As
Publication number | Publication date |
---|---|
JP2012251532A (en) | 2012-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101875241B1 (en) | Hybrid construction machine | |
WO2016017674A1 (en) | Shovel | |
KR20110073082A (en) | Hydraulic pump control apparatus and control method for construction machinery | |
KR101527219B1 (en) | Hydraulic pump control apparatus for contruction machinery | |
JP6214075B1 (en) | Ship propulsion method and ship propulsion device | |
CN102216594B (en) | Electronically controlled diesel engine | |
WO2012169382A1 (en) | Fuel-injection-control device | |
WO2017149590A1 (en) | Motor control method and control device | |
EP3374616B1 (en) | Method and device for controlling an internal combustion engine of an agricultural vehicle and agricultural vehicle comprising the device | |
EP2447515A1 (en) | Control method and controller of marine engine | |
WO2010044361A1 (en) | Engine rpm control device | |
EP2362086A1 (en) | Method and device for controlling diesel engine, and ship with same | |
US9909518B2 (en) | Method for controlling the speed of an internal combustion engine | |
CN118019931A (en) | Control unit for a drive and drive with a control unit | |
US7873462B2 (en) | Method and device for air pilot control in speed-controlled internal combustion engines | |
CN114962043A (en) | Speed regulation control device for diesel engine and ship | |
CA2700153A1 (en) | Outboard motor control apparatus | |
JP2008082303A (en) | Engine control device for construction machine | |
JP6640324B2 (en) | Ship propulsion device and ship propulsion method | |
JPH10220274A (en) | Control method for engine of construction machine | |
WO2011004812A1 (en) | Governor control device and control method | |
JP5626305B2 (en) | Control method for internal combustion engine | |
JP2012077758A5 (en) | ||
JP4838085B2 (en) | Engine control device for construction machinery | |
JP6399691B2 (en) | Rotational speed control device, rotational speed control method, and rotational drive system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12796528 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12796528 Country of ref document: EP Kind code of ref document: A1 |