JP2019148212A - Control system of marine main engine - Google Patents

Control system of marine main engine Download PDF

Info

Publication number
JP2019148212A
JP2019148212A JP2018032998A JP2018032998A JP2019148212A JP 2019148212 A JP2019148212 A JP 2019148212A JP 2018032998 A JP2018032998 A JP 2018032998A JP 2018032998 A JP2018032998 A JP 2018032998A JP 2019148212 A JP2019148212 A JP 2019148212A
Authority
JP
Japan
Prior art keywords
main engine
output
correction value
value
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018032998A
Other languages
Japanese (ja)
Other versions
JP6907139B2 (en
Inventor
尾崎 一博
Kazuhiro Ozaki
一博 尾崎
一孝 島田
Kazutaka Shimada
一孝 島田
渡辺 寛樹
Hiroki Watanabe
寛樹 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui E&s Systems Res Inc
Mitsui E&s Systems Research Inc
Mitsui E&S Machinery Co Ltd
Original Assignee
Mitsui E&s Systems Res Inc
Mitsui E&s Systems Research Inc
Mitsui E&S Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui E&s Systems Res Inc, Mitsui E&s Systems Research Inc, Mitsui E&S Machinery Co Ltd filed Critical Mitsui E&s Systems Res Inc
Priority to JP2018032998A priority Critical patent/JP6907139B2/en
Publication of JP2019148212A publication Critical patent/JP2019148212A/en
Application granted granted Critical
Publication of JP6907139B2 publication Critical patent/JP6907139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a control system of a marine main engine capable of suppressing abrupt change of output even in a case where abrupt load fluctuation occurs.SOLUTION: A control system 10 for solving the problem comprises: a main engine output calculation unit 12 that calculates an actual output value of a marine main engine 18 on the basis of an actual rotational speed of the main engine 18 and an amount of fuel supplied to the main engine 18; a correction value calculation unit 14 that calculates a correction value for a target rotational speed of the main engine 18 on the basis of the deviation between a target output value of the main engine 18 and the actual output value; and a governor 16 that adjusts the amount of fuel supplied to the main engine 18 on the basis of the deviation between the corrected target rotational speed obtained by correcting the target rotational speed with the correction value and the actual rotational speed.SELECTED DRAWING: Figure 1

Description

本発明は、船舶に採用される主機関を制御するシステムに係り、特に、主機関の燃費向上に好適な舶用主機関の出力制御システムに関する。   The present invention relates to a system for controlling a main engine employed in a ship, and more particularly to an output control system for a marine main engine suitable for improving the fuel consumption of the main engine.

舶用主機関の運転制御には、種々の方法が提案されてきている。最も一般的に行われている制御としては、例えば特許文献1に開示されているような回転数一定制御による運転である。回転数一定制御は、主機関の回転数としての目標回転数を与え、実際の出力側回転数をフィードバックする事で、目標回転数と実回転数との偏差を小さくするように燃料制御を行うというものである。   Various methods have been proposed for operation control of a marine main engine. The most commonly performed control is, for example, an operation based on constant rotation speed control as disclosed in Patent Document 1. The constant speed control gives the target speed as the main engine speed and feeds back the actual output speed to control the fuel control to reduce the deviation between the target speed and the actual speed. Is to do.

このような制御方式について、負荷変動に応じて燃料供給量が変動し、燃費が悪化したり、低出力域において連続運転が困難になる虞があるといった問題が提示され、特許文献2に開示されているようなプロペラトルク一定制御方式が提案されている。プロペラトルク一定制御方式では、主機関の出力側回転速度を検出し、この検出値の波形に位相遅れとなる遅延操作を施し、フィードバック信号として目標回転速度との偏差を求め、この偏差に基づいて目標回転速度に対する調整値を導き、主機関のプロペラトルクが一定となるように、出力側回転速度を変化させるというものである。   With respect to such a control method, there is a problem that the fuel supply amount fluctuates in accordance with the load fluctuation, the fuel efficiency is deteriorated, and there is a possibility that continuous operation becomes difficult in a low output range, which is disclosed in Patent Document 2. Propeller torque constant control method has been proposed. In the constant propeller torque control method, the output side rotational speed of the main engine is detected, a delay operation that causes a phase delay is performed on the waveform of the detected value, a deviation from the target rotational speed is obtained as a feedback signal, and based on this deviation An adjustment value for the target rotational speed is derived, and the output side rotational speed is changed so that the propeller torque of the main engine is constant.

特開2012−57523号公報JP 2012-57523 A 特開2012−193641号公報JP 2012-193641 A

特許文献2に開示されているようなプロペラトルク一定制御によれば、波浪等に基づく負荷変動による推進効率の低下を防止し、燃費の向上を図ることができる。   According to the constant propeller torque control disclosed in Patent Document 2, it is possible to prevent a reduction in propulsion efficiency due to load fluctuations based on waves and the like, and to improve fuel efficiency.

しかし、特許文献2に開示されている制御方式では、時々刻々と変化するプロペラトルクを、時間遅れに基づく予測値に起因した偏差に基づいて制御しているため、急激な負荷変動が生じた場合には、対応ができなくなる可能性がある。また、特許文献2に開示されている制御方式では、目標回転速度に変化が無いため、長期的な運航時には、主機関の平均出力が変動するといった問題もある。   However, in the control method disclosed in Patent Document 2, since the propeller torque that changes from moment to moment is controlled based on the deviation caused by the predicted value based on the time delay, when a sudden load fluctuation occurs May not be possible. Moreover, in the control system disclosed in Patent Document 2, there is a problem that the average output of the main engine fluctuates during long-term operation because there is no change in the target rotational speed.

そこで本発明では、急激な負荷変動が生じた場合であっても出力の急激な変化を抑制することができ、かつ長期的な運航における主機関の平均出力を安定させることができる舶用主機関の制御システムを提供することを目的とする。   Therefore, in the present invention, a marine main engine that can suppress a rapid change in output even when sudden load fluctuation occurs and can stabilize the average output of the main engine in long-term operation. An object is to provide a control system.

上記目的を達成するための本発明に係る舶用主機関の制御システムは、舶用の主機関における実回転速度と、前記主機関に対する供給燃料量とに基づいて前記主機関の実出力値を算出する主機関出力算出部と、前記主機関の目標出力値と、前記実出力値との偏差に基づいて、前記主機関の目標回転速度に対する補正値を算出する補正値算出部と、前記目標回転速度を前記補正値により補正した補正目標回転速度と、前記実回転速度との偏差に基づいて、前記主機関に対する供給燃料量の調整を行うガバナと、を備えたことを特徴とする。   In order to achieve the above object, a marine main engine control system according to the present invention calculates an actual output value of the main engine based on an actual rotational speed of the marine main engine and an amount of fuel supplied to the main engine. A main engine output calculation unit; a correction value calculation unit that calculates a correction value for the target engine speed of the main engine based on a deviation between the target output value of the main engine and the actual output value; and the target engine speed And a governor that adjusts the amount of fuel supplied to the main engine based on a deviation between the corrected target rotational speed corrected by the correction value and the actual rotational speed.

また、上記のような特徴を有する舶用主機関の制御システムにおいて、前記主機関出力算出部は、前記実回転速度と前記供給燃料量に基づいて出力トルクを導き、前記出力トルクと前記実回転速度から前記実出力値を算出するものとすることができる。このような特徴を有する事により、複雑な演算を行う事なく出力トルクを導き出し、かつ実出力を算出することができる。   In the marine main engine control system having the characteristics as described above, the main engine output calculation unit derives an output torque based on the actual rotational speed and the supplied fuel amount, and the output torque and the actual rotational speed are calculated. From the above, the actual output value can be calculated. By having such a feature, the output torque can be derived and the actual output can be calculated without performing complicated calculations.

さらに、上記のような特徴を有する舶用主機関の制御システムにおいて、前記補正値算出部は、前記目標出力値と前記実出力値との偏差に基づくPID制御を行い、算出された仮補正値を閾値を定めたリミッタに入力し、前記仮補正値が前記閾値の範囲内であった場合には、前記仮補正値を補正値として出力し、前記仮補正値が前記閾値の範囲を超えていた場合には、前記閾値を補正値として出力するものとすると良い。このような特徴を有する事により、目標回転速度に対する補正値が極端に大きな値、あるいは小さな値となり、目標回転数に基づく供給燃料制御を急激に変化させるといった事態を避けることができる。   Furthermore, in the marine main engine control system having the above-described characteristics, the correction value calculation unit performs PID control based on a deviation between the target output value and the actual output value, and calculates the calculated temporary correction value. When the threshold value is input to a limiter and the temporary correction value is within the threshold value range, the temporary correction value is output as a correction value, and the temporary correction value exceeds the threshold value range. In this case, the threshold value is preferably output as a correction value. By having such characteristics, it is possible to avoid a situation in which the correction value for the target rotational speed becomes an extremely large value or a small value, and the supply fuel control based on the target rotational speed is rapidly changed.

上記のような特徴を有する舶用主機関の制御システムによれば、実測値に基づくフィードバック制御により、急激な負荷変動が生じた場合であっても出力の急激な変化を抑制することが可能となる。これにより、主機関の燃費の悪化や、過負荷に起因した機械部品の損傷等を防止することができる。   According to the control system for a marine main engine having the above-described characteristics, it is possible to suppress a rapid change in output even when a sudden load fluctuation occurs by feedback control based on an actual measurement value. . Thereby, deterioration of the fuel consumption of the main engine, damage to machine parts due to overload, and the like can be prevented.

実施形態に係る舶用主機関の制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the control system of the ship main engine which concerns on embodiment.

以下、本発明の舶用主機関の制御システムに係る実施の形態について、図面を参照して詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment according to a control system for a marine main engine of the present invention will be described in detail with reference to the drawings.

本実施形態に係る舶用主機関の制御システム(制御システム10と称す)は、主機関18に付帯するものであり、主機関出力算出部12と、補正値算出部14、およびガバナ16を有する。また、主機関18には、出力側に回転速度検出部20が備えられ、燃料供給側に燃料量検出部22が備えられている。回転速度検出部20は、主機関18におけるクランク軸(回転軸)の回転速度(以下、実回転速度と称す)を検出する役割を担う要素である。一方、燃料量検出部22は、主機関18に供給される燃料の供給量を検出する役割を担う要素である。   A marine main engine control system (referred to as control system 10) according to the present embodiment is attached to the main engine 18, and includes a main engine output calculation unit 12, a correction value calculation unit 14, and a governor 16. Further, the main engine 18 is provided with a rotation speed detection unit 20 on the output side, and a fuel amount detection unit 22 on the fuel supply side. The rotational speed detector 20 is an element that plays a role of detecting the rotational speed of the crankshaft (rotary shaft) in the main engine 18 (hereinafter referred to as the actual rotational speed). On the other hand, the fuel amount detection unit 22 is an element that plays a role of detecting the amount of fuel supplied to the main engine 18.

回転速度検出部20による検出値である実回転速度と、燃料量検出部22による検出値である燃料量は共に、主機関出力算出部12に入力される。主機関出力算出部12は、入力値として与えられる実回転速度と、燃料量に基づき、主機関18の実出力値を算出する役割を担う要素である。実出力値の算出の一例としては、次のようなものであれば良い。   Both the actual rotational speed detected by the rotational speed detector 20 and the fuel amount detected by the fuel amount detector 22 are both input to the main engine output calculator 12. The main engine output calculation unit 12 is an element that plays a role of calculating the actual output value of the main engine 18 based on the actual rotation speed given as an input value and the fuel amount. An example of the actual output value calculation is as follows.

例えば、燃料量とトルクの関係において、燃料量(%)=トルクT(%)の近似式を立て、この近似式に基づき、T・nにより、実出力P(%)を算出すれば良い(nは、実回転数)。   For example, an approximate expression of fuel amount (%) = torque T (%) is established in the relationship between the fuel amount and torque, and the actual output P (%) may be calculated from T · n based on this approximate expression ( n is the actual number of revolutions).

算出された実出力値Pは、制御システム10に与えられる目標出力値Pとの偏差が求められ、この偏差が補正値算出部14に入力される。補正値算出部14は、制御システム10に与えられる目標回転速度に対する補正値を算出する要素である。補正値算出部14には、PID制御部14aが備えられ、目標出力値Pと実出力値Pとの偏差に基づくPID(Proportional Integral Differential)制御を行い、偏差を0に近付けるための目標回転速度に対する補正値(仮補正値)が求められる。 A deviation of the calculated actual output value P from the target output value P 0 given to the control system 10 is obtained, and this deviation is input to the correction value calculation unit 14. The correction value calculation unit 14 is an element that calculates a correction value for the target rotation speed given to the control system 10. The correction value calculation unit 14, PID controller 14a is provided, performs a PID (Proportional Integral Differential) control based on a deviation between the target output value P 0 and the actual output value P, the target rotation for bringing the deviation to zero A correction value (temporary correction value) for the speed is obtained.

また、本実施形態における補正値算出部14には、PID制御部14aの出力側にリミッタ14bが備えられている。   Further, the correction value calculation unit 14 in the present embodiment is provided with a limiter 14b on the output side of the PID control unit 14a.

リミッタ14bは、PID制御部14aにより求められた仮補正値が、目標回転速度に対する補正値の範囲に収まるようにフィルタをかける役割を担う要素である。目標回転速度は、詳細を後述するガバナ16に対する指令値の1つである。補正値が目標回転速度を著しく異ならせる数値である場合、これに基づく制御は、主機関18の出力を大きく変動させるものとなり、負荷変動による燃費の悪化や、機械部品への負荷増大を招くこととなる。また、荒天時の負荷増大により、回転速度が制限なく低下した場合には、失速して推進力を失う場合もある。このため、補正値を特定の閾値の範囲に定め、仮補正値が、この閾値を超える範囲である場合には、閾値を補正値として出力し、仮補正値が閾値の範囲である場合には、仮補正値を補正値として出力する。このような制御により、主機関18の出力が安定し、燃費の悪化を防止すると共に、機械部品の損傷を抑制することができる。   The limiter 14b is an element that plays a role of filtering so that the temporary correction value obtained by the PID control unit 14a falls within the range of the correction value with respect to the target rotation speed. The target rotation speed is one of command values for the governor 16 whose details will be described later. If the correction value is a numerical value that makes the target rotational speed significantly different, control based on this will cause the output of the main engine 18 to fluctuate greatly, leading to deterioration in fuel consumption due to load fluctuations and an increase in load on machine parts. It becomes. In addition, when the rotational speed decreases without limitation due to an increase in load during stormy weather, the vehicle may stall and lose its propulsive force. For this reason, the correction value is set to a specific threshold range, and if the temporary correction value is in a range exceeding the threshold, the threshold is output as a correction value. If the temporary correction value is in the threshold range, The temporary correction value is output as a correction value. By such control, the output of the main engine 18 can be stabilized, deterioration of fuel consumption can be prevented, and damage to machine parts can be suppressed.

補正値算出部14から出力された補正値は、目標回転速度に対する補正値として働き、補正後の目標回転速度(補正目標回転速度)と、回転速度検出部20によって検出された実回転速度との偏差が求められ、この偏差がガバナ16に対する調整値として与えられる。   The correction value output from the correction value calculation unit 14 serves as a correction value for the target rotation speed, and the corrected target rotation speed (corrected target rotation speed) and the actual rotation speed detected by the rotation speed detection unit 20 are calculated. A deviation is obtained, and this deviation is given as an adjustment value for the governor 16.

ガバナ16は、主機関18に供給する燃料量を調節する役割を担う要素である。ガバナ16は、例えば図示しない制御器と調節器とから構成され、制御器に調整値が入力される事により、制御器から調整器へ制御信号が出力され、調整器により燃料量の調整が成される。   The governor 16 is an element that plays a role of adjusting the amount of fuel supplied to the main engine 18. The governor 16 is composed of, for example, a controller and a controller (not shown). When a control value is input to the controller, a control signal is output from the controller to the controller, and the fuel amount is adjusted by the controller. Is done.

このような構成の制御システム10によれば、目標回転速度に対して、目標出力値と実出力値に基づく補正値が、リミッタ14bにより調整された上で与えられ、この補正値に基づいて制御が成されることとなる。このため、荒天時における波浪や操舵等の影響により負荷に急激な変動が生じた場合であっても、過負荷運転を防止し、燃費の悪化を抑えることができる。   According to the control system 10 having such a configuration, a correction value based on the target output value and the actual output value is given to the target rotation speed after being adjusted by the limiter 14b, and control is performed based on the correction value. Will be made. For this reason, even when the load fluctuates suddenly due to the influence of waves, steering, etc. during stormy weather, overload driving can be prevented and deterioration of fuel consumption can be suppressed.

また、追い風や凪などの影響により、負荷が減る場合であっても、出力が所定値以下になる事を防止することができる。これにより、ノッキングや、急激な負荷変動の影響による機械部品の損傷を抑制し、メンテナンスコストの削減を図ることもできる。また、上記実施形態によれば、目標回転速度自体に補正値を与え、これを調整する制御を行っている。このため、長期的な運航においても、主機関18の平均出力を安定させることが可能となる。   Further, it is possible to prevent the output from becoming a predetermined value or less even when the load is reduced due to the influence of the tailwind or dredging. As a result, it is possible to reduce the maintenance cost by suppressing damage to the machine parts due to the influence of knocking or sudden load fluctuation. Moreover, according to the said embodiment, the correction value is given to target rotational speed itself, and the control which adjusts this is performed. For this reason, the average output of the main engine 18 can be stabilized even during long-term operation.

また、主機関18の出力が安定する事により、これに依存する過給機の効率低下を抑制し、燃費の悪化を抑えることもできる。また、当然に、操縦者による操作負担を軽減することもできる。   Further, since the output of the main engine 18 is stabilized, it is possible to suppress a decrease in efficiency of the supercharger depending on the output, and to suppress deterioration in fuel consumption. Naturally, the operation burden on the operator can be reduced.

10………制御システム、12………主機関出力算出部、14………補正値算出部、14a………PID制御部、14b………リミッタ、16………ガバナ、18………主機関、20………回転速度検出部、22………燃料量検出部。
10... Control system, 12. Main engine, 20... Rotational speed detector, 22... Fuel amount detector.

Claims (3)

舶用の主機関における実回転速度と、前記主機関に対する供給燃料量とに基づいて前記主機関の実出力値を算出する主機関出力算出部と、
前記主機関の目標出力値と、前記実出力値との偏差に基づいて、前記主機関の目標回転速度に対する補正値を算出する補正値算出部と、
前記目標回転速度を前記補正値により補正した補正目標回転速度と、前記実回転速度との偏差に基づいて、前記主機関に対する供給燃料量の調整を行うガバナと、を備えたことを特徴とする舶用主機関の制御システム。
A main engine output calculation unit that calculates an actual output value of the main engine based on an actual rotational speed of the marine main engine and the amount of fuel supplied to the main engine;
A correction value calculation unit that calculates a correction value for the target engine speed of the main engine based on a deviation between the target output value of the main engine and the actual output value;
And a governor for adjusting the amount of fuel supplied to the main engine based on a deviation between a corrected target rotational speed obtained by correcting the target rotational speed with the correction value and the actual rotational speed. Marine main engine control system.
前記主機関出力算出部は、前記実回転速度と前記供給燃料量に基づいて出力トルクを導き、前記出力トルクと前記実回転速度から前記実出力値を算出することを特徴とする請求項1に記載の舶用主機関の制御システム。   The said main engine output calculation part derives | leads-out output torque based on the said actual rotational speed and the said supplied fuel amount, and calculates the said actual output value from the said output torque and the said actual rotational speed. The marine main engine control system described. 前記補正値算出部は、前記目標出力値と前記実出力値との偏差に基づくPID制御を行い、算出された仮補正値を閾値を定めたリミッタに入力し、前記仮補正値が前記閾値の範囲内であった場合には、前記仮補正値を補正値として出力し、前記仮補正値が前記閾値の範囲を超えていた場合には、前記閾値を補正値として出力することを特徴とする請求項1または2に記載の制御システム。
The correction value calculation unit performs PID control based on a deviation between the target output value and the actual output value, inputs the calculated temporary correction value to a limiter that defines a threshold value, and the temporary correction value is equal to the threshold value. When the temporary correction value is within the range, the temporary correction value is output as a correction value, and when the temporary correction value exceeds the threshold value range, the threshold value is output as a correction value. The control system according to claim 1 or 2.
JP2018032998A 2018-02-27 2018-02-27 Control system for main marine engine Active JP6907139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018032998A JP6907139B2 (en) 2018-02-27 2018-02-27 Control system for main marine engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018032998A JP6907139B2 (en) 2018-02-27 2018-02-27 Control system for main marine engine

Publications (2)

Publication Number Publication Date
JP2019148212A true JP2019148212A (en) 2019-09-05
JP6907139B2 JP6907139B2 (en) 2021-07-21

Family

ID=67850361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018032998A Active JP6907139B2 (en) 2018-02-27 2018-02-27 Control system for main marine engine

Country Status (1)

Country Link
JP (1) JP6907139B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210144563A (en) * 2020-05-22 2021-11-30 나부테스코 가부시키가이샤 Ship control apparatus, ship control method, and program recorded on recording medium
JP7330025B2 (en) 2019-09-13 2023-08-21 古野電気株式会社 Boat speed control device, boat speed control method, and boat speed control program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052577A (en) * 2009-08-31 2011-03-17 Mitsui Eng & Shipbuild Co Ltd Marine engine control system and method
JP2011052578A (en) * 2009-08-31 2011-03-17 Mitsui Eng & Shipbuild Co Ltd Marine engine control system and method
JP2012057523A (en) * 2010-09-08 2012-03-22 Mitsui Eng & Shipbuild Co Ltd Marine engine control system and method
JP2012193641A (en) * 2011-03-15 2012-10-11 Mitsui Eng & Shipbuild Co Ltd Device and method for controlling marine engine
JP2013014326A (en) * 2008-12-25 2013-01-24 Mitsubishi Heavy Ind Ltd Propulsion method of ship with waste heat recovery system mounted thereon, and ship

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014326A (en) * 2008-12-25 2013-01-24 Mitsubishi Heavy Ind Ltd Propulsion method of ship with waste heat recovery system mounted thereon, and ship
JP2011052577A (en) * 2009-08-31 2011-03-17 Mitsui Eng & Shipbuild Co Ltd Marine engine control system and method
JP2011052578A (en) * 2009-08-31 2011-03-17 Mitsui Eng & Shipbuild Co Ltd Marine engine control system and method
JP2012057523A (en) * 2010-09-08 2012-03-22 Mitsui Eng & Shipbuild Co Ltd Marine engine control system and method
JP2012193641A (en) * 2011-03-15 2012-10-11 Mitsui Eng & Shipbuild Co Ltd Device and method for controlling marine engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7330025B2 (en) 2019-09-13 2023-08-21 古野電気株式会社 Boat speed control device, boat speed control method, and boat speed control program
KR20210144563A (en) * 2020-05-22 2021-11-30 나부테스코 가부시키가이샤 Ship control apparatus, ship control method, and program recorded on recording medium
KR102631619B1 (en) * 2020-05-22 2024-02-01 나부테스코 가부시키가이샤 Ship control apparatus, ship control method, and program recorded on recording medium

Also Published As

Publication number Publication date
JP6907139B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
KR101331042B1 (en) Marine engine control system and method
CN113518860A (en) Method for operating a wind power plant, control device arrangement, wind power plant and wind park
CN107922041B (en) Motor control method and control device
JP2019148212A (en) Control system of marine main engine
WO2017149589A1 (en) Ship propulsion method and ship propulsion device
KR101266024B1 (en) Ship engine control device and ship engine control method
JP4750880B2 (en) Marine engine control system and method
JP4750881B2 (en) Marine engine control system and method
CN109252970B (en) Engine rotating speed control method, engine and vehicle
JP5125896B2 (en) Control device for internal combustion engine
KR101167578B1 (en) Ship engine control device and method
KR101167577B1 (en) Engine control device and method
WO2010113655A1 (en) Marine engine control system
JP7048088B2 (en) Fuel supply control method and fuel supply control system
JP6640324B2 (en) Ship propulsion device and ship propulsion method
JP4888867B2 (en) Marine engine governor control device and control method
WO2011004812A1 (en) Governor control device and control method
JP6399691B2 (en) Rotational speed control device, rotational speed control method, and rotational drive system
JP2010236513A (en) Marine engine control system
JP5264667B2 (en) Engine electronic governor
JP2009002302A (en) Control method for fuel injection quantity

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210630

R150 Certificate of patent or registration of utility model

Ref document number: 6907139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350