JP2012057523A - Marine engine control system and method - Google Patents

Marine engine control system and method Download PDF

Info

Publication number
JP2012057523A
JP2012057523A JP2010200992A JP2010200992A JP2012057523A JP 2012057523 A JP2012057523 A JP 2012057523A JP 2010200992 A JP2010200992 A JP 2010200992A JP 2010200992 A JP2010200992 A JP 2010200992A JP 2012057523 A JP2012057523 A JP 2012057523A
Authority
JP
Japan
Prior art keywords
command
rotation speed
marine engine
rotational speed
speed command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010200992A
Other languages
Japanese (ja)
Other versions
JP5296753B2 (en
Inventor
Junya Miyata
淳也 宮田
Shoichi Inami
昭一 稲見
Yasuyuki Tsuji
辻  康之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2010200992A priority Critical patent/JP5296753B2/en
Priority to PCT/JP2011/067481 priority patent/WO2012032878A1/en
Priority to KR1020137004785A priority patent/KR101331042B1/en
Priority to CN2011800400973A priority patent/CN103069135A/en
Priority to TW100132027A priority patent/TW201211380A/en
Publication of JP2012057523A publication Critical patent/JP2012057523A/en
Application granted granted Critical
Publication of JP5296753B2 publication Critical patent/JP5296753B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve fuel economy by correcting a number-of-rotations command according to disturbance.SOLUTION: The actual number of rotations Nof a main shaft 14 connected to a main engine 12 is detected. A PID operation is performed on the difference between a number-of-rotations command Nand an actual number of rotations Nin a control operation unit 17. A governor command obtained by the PID operation is output to a governor 13 to control the fuel quantity to be supplied to the main engine 12. Further, the governor command and the actual number of rotations Nare input to an observer 18 of a control subject S to estimate the propeller inflow velocity variation. In an operation unit 19, the number-of-rotations command Nis corrected by multiplying the propeller inflow velocity variation by a predetermined gain and adding the result to the number-of-rotations command N.

Description

本発明は、舶用エンジンの制御システムに関し、特に舶用エンジンの回転数制御に関する。   The present invention relates to a marine engine control system, and more particularly, to a marine engine rotational speed control.

舶用エンジン(主機)の制御では、設定された目標回転数と実回転数の差がなくなるようにPID制御が行われる。しかし、荒天時には、プロペラが海面上に露出するプロペラレーシングが発生し、プロペラによる負荷トルクが急激に変化するため通常の天候の下での航行を想定したゲインによるPID制御では、十分な応答性能が得られずオーバースピードによる機関の故障を招く恐れがある。このような問題に対しては、外乱によるプロペラ回転数の変動を予測してPID制御のゲインを変更する構成が提案されている(特許文献1)。   In the control of the marine engine (main engine), PID control is performed so that the difference between the set target rotational speed and the actual rotational speed is eliminated. However, during stormy weather, propeller racing occurs where the propeller is exposed on the sea surface, and the load torque due to the propeller changes abruptly, so PID control with a gain that assumes sailing under normal weather provides sufficient response performance. There is a risk of engine failure due to overspeed. In order to deal with such a problem, a configuration has been proposed in which fluctuations in the propeller rotation speed due to disturbance are predicted to change the gain of PID control (Patent Document 1).

特開平8−200131号公報Japanese Patent Laid-Open No. 8-200231

しかし、燃費の改善と言う観点からは、特許文献1の構成においても、波浪などの外乱による回転数変化に対して依然応答遅れが存在し、無駄な燃料投入を行っている。   However, from the viewpoint of improving fuel efficiency, the configuration of Patent Document 1 still has a response delay with respect to changes in the rotational speed due to disturbances such as waves, and wastes fuel.

本発明は、上記問題に鑑みてなされたものであり、外乱に応じて回転数指令の補正を行い燃費の向上を図ることを課題としている。   The present invention has been made in view of the above problems, and an object of the present invention is to improve fuel efficiency by correcting the rotational speed command in accordance with a disturbance.

本発明の舶用エンジン制御システムは、回転数指令および実回転数から主機の回転数を一定にするガバナ指令を演算する制御演算部と、ガバナ指令と実回転数から外乱による所定の物理量の変動を推定するオブザーバと、所定の物理量の変動に応じて回転数指令を補正する回転数指令補正手段とを備たことを特徴としている。   The marine engine control system of the present invention includes a control calculation unit that calculates a governor command for making the main engine speed constant from the rotational speed command and the actual rotational speed, and a predetermined physical quantity variation due to disturbance from the governor command and the actual rotational speed. The present invention is characterized in that an observer to be estimated and a rotational speed command correcting means for correcting the rotational speed command in accordance with a change in a predetermined physical quantity are provided.

回転数指令補正手段は、例えば所定の物理量の変動に所定のゲインを掛けた値を補正値として回転数指令に加算する。また、このとき補正値の位相を主機および制御演算部の遅れに応じて遅らせて回転数指令に加算することでより適切な回転数指令の補正を行うことができる。   The rotational speed command correction means adds, for example, a value obtained by multiplying a predetermined physical quantity variation by a predetermined gain to the rotational speed command as a correction value. Further, at this time, the phase of the correction value is delayed according to the delay of the main engine and the control calculation unit and added to the rotational speed command, so that a more appropriate rotational speed command can be corrected.

所定の物理量の振幅の大きさに応じて上記補正値を修正することで、荒天時における回転数指令を下方修正し、荒天時のプロペラレーシングの発生を防止できる。このとき例えば振幅にゲインを掛けた値を上記補正値から差し引いたものを回転数指令に加算する。上記物理量には、例えばプロペラ流入速度や負荷トルクが含まれる。   By correcting the correction value according to the magnitude of the amplitude of the predetermined physical quantity, the rotational speed command during stormy weather can be corrected downward to prevent the occurrence of propeller racing during stormy weather. At this time, for example, a value obtained by subtracting a value obtained by multiplying the amplitude by the gain from the correction value is added to the rotational speed command. The physical quantity includes, for example, a propeller inflow speed and a load torque.

本発明の船舶は、上記舶用エンジン制御システムを備えたことを特徴としている。   A ship according to the present invention includes the marine engine control system.

本発明の舶用エンジン制御方法は、回転数指令および実回転数から主機の回転数を一定にするガバナ指令を演算し、オブザーバを用いてガバナ指令と実回転数から外乱による所定の物理量の変動を推定し、所定の物理量の変動に応じて回転数指令を補正することを特徴としている。   The marine engine control method of the present invention calculates a governor command for making the main engine speed constant from the rotational speed command and the actual rotational speed, and uses the observer to change a predetermined physical quantity due to disturbance from the governor command and the actual rotational speed. The rotation speed command is corrected according to the estimation and the fluctuation of a predetermined physical quantity.

本発明によれば、外乱に応じて回転数指令の補正を行い燃費の向上を図ることができる。   According to the present invention, it is possible to improve the fuel efficiency by correcting the rotational speed command according to the disturbance.

本発明の実施形態である舶用エンジン制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the marine engine control system which is embodiment of this invention. 本実施形態の演算部の詳細な構成を示す制御ブロック図である。It is a control block diagram which shows the detailed structure of the calculating part of this embodiment.

以下、本発明の実施形態について添付図面を参照して説明する。
図1は、本発明の一実施形態である舶用エンジン制御システムの全体の構成を示すブロック図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a block diagram showing the overall configuration of a marine engine control system according to an embodiment of the present invention.

本実施形態の舶用エンジン制御システム10は、船体11に設けられた主機12の回転数を制御するもので、主機12へ供給される燃料量はガバナ13によって制御される。ガバナ13は、回転数指令Nと主軸14の実回転数Nに基づき算出されるガバナ制御装置15からのガバナ指令によって制御される。なお、実回転数Nは、主軸14の回転数(角速度)を従来周知の方法で検出することにより求められる。 The marine engine control system 10 of this embodiment controls the rotational speed of the main machine 12 provided in the hull 11, and the amount of fuel supplied to the main machine 12 is controlled by the governor 13. Governor 13 is controlled by a governor command from the governor control unit 15, which is calculated based on the actual rotational speed N E of the rotation speed command N O and the main shaft 14. The actual rotational speed NE is obtained by detecting the rotational speed (angular velocity) of the main shaft 14 by a conventionally known method.

ガバナ制御装置15は、補正演算部16と制御演算部17からなり、補正演算部16は、ガバナ指令と実回転数Nに基づき回転数指令Nに対する補正値(回転数指令補正値)nを演算し、制御演算部17は、回転数指令補正値nにより補正された回転数指令N’と実回転数Nに基づき制御演算を行う。そして制御演算部17からの出力はガバナ指令としてガバナ13へと出力される。なお、回転数指令Nの補正は、回転数指令補正値nを回転数指令Nに加算することで行われ、制御演算部17では、補正回転数指令N’(=N+n)と実回転数Nの偏差e(=N−N+n)に対してPID演算が行われる。 Governor control unit 15 is composed of a correction calculation unit 16 and the control arithmetic unit 17, the correction calculation unit 16, a governor command and the actual rotation speed N correction value for the rotational speed command N O based on the E (rotation speed command correction value) n calculates a control arithmetic unit 17 performs control calculation based rotational speed corrected by the speed command correction value n instruction n O 'and the actual rotational speed n E. And the output from the control calculating part 17 is output to the governor 13 as a governor command. The correction of the rotation speed command N O is performed by adding the speed command correction value n in the rotation speed command N O, the control arithmetic unit 17, the correction rotation speed command N O '(= N O + n) PID operation is performed with respect to the deviation e of the actual rotation speed n E (= n O -N E + n).

補正演算部16は、オブザーバ18と演算部19を備える。オブザーバ18は、船体11、主機12、ガバナ13等を含む制御対象Sの状態観測器であり、ガバナ指令と実回転数Nに基づいて波浪等の外乱に起因する所定の物理量(プロペラ流入速度や負荷トルクなど)の変動を推定する。演算部19は、オブザーバ18によって推定された物理量の変動に基づいて回転数指令補正値nを算出する。 The correction calculation unit 16 includes an observer 18 and a calculation unit 19. Observer 18, hull 11, a main motor 12, state observer control object S including the governor 13 and the like, predetermined physical quantity due to the disturbance wave or the like based on the governor command and the actual rotation speed N E (propeller inflow velocity And load torque). The computing unit 19 calculates the rotation speed command correction value n based on the fluctuation of the physical quantity estimated by the observer 18.

次に図2の制御ブロック図を参照して本実施形態における演算部19のより具体的な構成について説明する。   Next, a more specific configuration of the calculation unit 19 in the present embodiment will be described with reference to the control block diagram of FIG.

回転数指令補正値nは、基本的には推定された物理量(図2の例ではプロペラ流入速度)の変動にゲインKを掛けることで得られる。しかし、実際の主機12や制御演算部(PID)17には応答遅れが存在するので、本実施形態ではこの応答遅れに合わせて補正値の位相を遅延する。すなわち、推定物理量(プロペラ流入速度m/s)の変動に対してブロック20においてゲインKを掛け、回転数(rpm)に対応する補正値を算出し、その後算出された補正値の位相をブロック21において主機12および制御演算部(PID)17の遅れに対応して遅らせる。   The rotational speed command correction value n is basically obtained by multiplying the fluctuation of the estimated physical quantity (propeller inflow speed in the example of FIG. 2) by the gain K. However, since there is a response delay in the actual main machine 12 and the control calculation unit (PID) 17, in the present embodiment, the phase of the correction value is delayed in accordance with this response delay. That is, the fluctuation of the estimated physical quantity (propeller inflow velocity m / s) is multiplied by a gain K in block 20 to calculate a correction value corresponding to the rotational speed (rpm), and the phase of the calculated correction value is then calculated in block 21. In FIG. 4, the delay is made in response to the delay of the main machine 12 and the control calculation unit (PID) 17.

なお、応答遅れは、主機12や制御演算部(PID)17の特性により決定されるもので、予め実験や計算により求められる。また、例えばプロペラ流入速度の変動は、(プロペラ流入速度)−(船速)で求められる。なお船速Vは、オブザーバ18で算出することも可能であるが、実測値が得られる場合には、実測された船速Vをオブザーバ18に入力し、実回転数N、船速V、ガバナ指令を用いてプロペラ流入速度や、その他の各物理量を算出してもよい。 The response delay is determined by the characteristics of the main machine 12 and the control calculation unit (PID) 17 and is obtained in advance by experiments and calculations. Further, for example, the fluctuation of the propeller inflow speed is obtained by (propeller inflow speed) − (ship speed). The ship speed V can be calculated by the observer 18, but when an actual measurement value is obtained, the actually measured ship speed V is input to the observer 18, and the actual rotational speed N E , the ship speed V, Propeller inflow speed and other physical quantities may be calculated using a governor command.

また更に、本実施形態では、荒天時におけるプロペラレーシングによる過回転を防止するとともに燃費を改善するため、波浪状況に応じて回転数指令を自動で抑える構成が採用される。すなわち、本実施形態では、推定物理量(プロペラ流入速度m/s)の変動の振幅が抽出され、この振幅に基づいて、位相が遅延された補正値が更に修正され、回転数指令補正値nとされる。例えば、プロペラ流入速度(m/s)の振幅がブロック22において抽出され、ブロック23では抽出された振幅に所定のゲインLが掛けられる。その後ブロック23からの出力がブロック21からの補正値から引かれて回転数指令補正値nとされる。すなわち、振幅が増大するに従って目標回転数は下げられる。   Furthermore, in this embodiment, in order to prevent over-rotation due to propeller racing during stormy weather and improve fuel efficiency, a configuration is adopted in which the rotational speed command is automatically suppressed according to wave conditions. That is, in this embodiment, the amplitude of fluctuation of the estimated physical quantity (propeller inflow velocity m / s) is extracted, and based on this amplitude, the correction value whose phase is delayed is further corrected, and the rotational speed command correction value n Is done. For example, the amplitude of the propeller inflow speed (m / s) is extracted in the block 22, and the extracted amplitude is multiplied by a predetermined gain L in the block 23. Thereafter, the output from the block 23 is subtracted from the correction value from the block 21 to obtain the rotational speed command correction value n. That is, the target rotational speed is lowered as the amplitude increases.

以上のように、本実施形態によれば、オブザーバにより外乱による物理量変動を推定し、これに基づき回転数指令を補正することで、ガバナ指令の変動が抑えられ、応答遅れに起因する燃費の悪化が防止される。特に本実施形態では、外乱に基づく物理量変動を実回転数、ガバナ指令に基づきオブザーバで推定し、これに基づき回転数指令を補正しているので、既存のガバナ制御システムに大幅な変更を加えることなく適用することができる。   As described above, according to the present embodiment, the fluctuation of the governor command is suppressed by estimating the physical quantity fluctuation due to the disturbance by the observer and correcting the rotational speed command based on this, and the deterioration of the fuel consumption due to the response delay Is prevented. In particular, in this embodiment, the physical quantity fluctuation based on disturbance is estimated by the observer based on the actual rotational speed and the governor command, and the rotational speed command is corrected based on this, so that a significant change is made to the existing governor control system. Can be applied without.

また、本実施形態では、物理量変動に制御演算部および主機の応答遅れに応じた位相遅れを与えることでより効果的なタイミングでガバナ指令の変動を抑えることができる。   Further, in the present embodiment, the change in the governor command can be suppressed at a more effective timing by giving the phase delay corresponding to the response delay of the control arithmetic unit and the main engine to the physical quantity fluctuation.

また本実施形態では、変動の振幅から海象の状態に合わせて回転数指令を自動的に変更でき(荒天時に回転数を下方修正)、プロペラレーシングによる過回転の発生を防止し燃費の悪化を抑えることができる。なお、振幅の変動に対応するために、振幅抽出ブロックの後にローパスフィルタを設けてもよい。これにより、例えば急にうねりの多い海域に入ったときなどに、数十分オーダーの変動に対して回転数指令を自動修正でき、手動での対応を行うことなく燃費の向上を図ることができる。   In the present embodiment, the rotation speed command can be automatically changed from the amplitude of fluctuation according to the state of the sea (rotation speed is corrected downward during stormy weather), and the occurrence of over-rotation due to propeller racing is prevented to suppress deterioration of fuel consumption. be able to. Note that a low-pass filter may be provided after the amplitude extraction block in order to cope with fluctuations in amplitude. This makes it possible to automatically correct the rotational speed command for fluctuations in the order of several tens of minutes, for example when suddenly entering a sea area with a lot of swells, and to improve fuel efficiency without taking manual action. .

10 舶用エンジン制御システム
11 船体
12 主機
13 ガバナ
14 主軸
15 ガバナ制御装置
16 補正演算部
17 制御演算部(PID演算部)
18 オブザーバ
19 演算部
20 ゲインK演算ブロック
21 位相遅れ演算ブロック
22 振幅抽出ブロック
23 ゲインL演算ブロック
S 制御対象
DESCRIPTION OF SYMBOLS 10 Marine engine control system 11 Hull 12 Main machine 13 Governor 14 Spindle 15 Governor control device 16 Correction | amendment calculating part 17 Control calculating part (PID calculating part)
18 Observer 19 Calculation Unit 20 Gain K Calculation Block 21 Phase Delay Calculation Block 22 Amplitude Extraction Block 23 Gain L Calculation Block S Control Target

Claims (8)

回転数指令および実回転数から主機の回転数を一定にするガバナ指令を演算する制御演算部と、
前記ガバナ指令と前記実回転数から、外乱による所定の物理量の変動を推定するオブザーバと、
前記所定の物理量の変動に応じて前記回転数指令を補正する回転数指令補正手段と
を備えることを特徴とする舶用エンジン制御システム。
A control calculation unit for calculating a governor command for making the rotation speed of the main engine constant from the rotation speed command and the actual rotation speed;
An observer for estimating a change in a predetermined physical quantity due to a disturbance from the governor command and the actual rotational speed;
A marine engine control system comprising: a rotation speed command correcting unit that corrects the rotation speed command in accordance with a change in the predetermined physical quantity.
前記回転数指令補正手段が、前記所定の物理量の変動に所定のゲインを掛けた値を補正値として前記回転数指令に加算することを特徴とする請求項1に記載の舶用エンジン制御システム。   2. The marine engine control system according to claim 1, wherein the rotation speed command correction means adds a value obtained by multiplying the fluctuation of the predetermined physical quantity by a predetermined gain to the rotation speed command as a correction value. 前記補正値の位相を前記主機および前記制御演算部の遅れに応じて遅らせて前記回転数指令に加算することを特徴とする請求項2に記載の舶用エンジン制御システム。   The marine engine control system according to claim 2, wherein the phase of the correction value is delayed according to a delay of the main engine and the control calculation unit and added to the rotation speed command. 前記所定の物理量の変動における振幅の大きさに応じて前記補正値を修正し、荒天時における前記回転数指令を下方修正することを特徴とする請求項2に記載の舶用エンジン制御システム。   3. The marine engine control system according to claim 2, wherein the correction value is corrected according to the magnitude of the amplitude in the fluctuation of the predetermined physical quantity, and the rotation speed command in a stormy weather is corrected downward. 前記振幅にゲインを掛けた値を前記補正値から差し引いて前記回転数指令に加算することを特徴とする請求項4に記載の舶用エンジン制御システム。   The marine engine control system according to claim 4, wherein a value obtained by multiplying the amplitude by a gain is subtracted from the correction value and added to the rotation speed command. 前記物理量が、プロペラ流入速度または負荷トルクを含むことを特徴とする請求項5に記載の舶用エンジン制御システム。   The marine engine control system according to claim 5, wherein the physical quantity includes a propeller inflow speed or a load torque. 請求項1〜6の何れか一項に記載の舶用エンジン制御システムを備えることを特徴とする船舶。   A marine engine comprising the marine engine control system according to any one of claims 1 to 6. 回転数指令および実回転数から主機の回転数を一定にするガバナ指令を演算し、
オブザーバを用いて前記ガバナ指令と前記実回転数から外乱による所定の物理量の変動を推定し、
前記所定の物理量の変動に応じて前記回転数指令を補正する
ことを特徴とする舶用エンジン制御方法。
Calculate the governor command to make the main engine speed constant from the rotational speed command and the actual rotational speed,
Estimating a change in a predetermined physical quantity due to a disturbance from the governor command and the actual rotational speed using an observer,
The marine engine control method, wherein the rotational speed command is corrected in accordance with a change in the predetermined physical quantity.
JP2010200992A 2010-09-08 2010-09-08 Marine engine control system and method Expired - Fee Related JP5296753B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010200992A JP5296753B2 (en) 2010-09-08 2010-09-08 Marine engine control system and method
PCT/JP2011/067481 WO2012032878A1 (en) 2010-09-08 2011-07-29 Marine engine control system and method
KR1020137004785A KR101331042B1 (en) 2010-09-08 2011-07-29 Marine engine control system and method
CN2011800400973A CN103069135A (en) 2010-09-08 2011-07-29 Marine engine control system and method
TW100132027A TW201211380A (en) 2010-09-08 2011-09-06 Marine engine control system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010200992A JP5296753B2 (en) 2010-09-08 2010-09-08 Marine engine control system and method

Publications (2)

Publication Number Publication Date
JP2012057523A true JP2012057523A (en) 2012-03-22
JP5296753B2 JP5296753B2 (en) 2013-09-25

Family

ID=45810481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010200992A Expired - Fee Related JP5296753B2 (en) 2010-09-08 2010-09-08 Marine engine control system and method

Country Status (5)

Country Link
JP (1) JP5296753B2 (en)
KR (1) KR101331042B1 (en)
CN (1) CN103069135A (en)
TW (1) TW201211380A (en)
WO (1) WO2012032878A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104481717A (en) * 2014-12-05 2015-04-01 中国航空工业集团公司第六三一研究所 Engine speed control method with online setting of PID (proportion integration differentiation) parameters
JP2016205270A (en) * 2015-04-24 2016-12-08 三井造船株式会社 Fuel supply system and marine vessel
JP2019148212A (en) * 2018-02-27 2019-09-05 株式会社三井E&Sマシナリー Control system of marine main engine
JP2019173633A (en) * 2018-03-28 2019-10-10 国立研究開発法人 海上・港湾・航空技術研究所 Fuel supply control method and fuel supply control system
CN113874614A (en) * 2019-05-22 2021-12-31 国立研究开发法人海上·港湾·航空技术研究所 Engine control method, engine control system, and ship
JP7448415B2 (en) 2020-01-28 2024-03-12 ナブテスコ株式会社 Fuel control device and rudder control device
JP7448414B2 (en) 2020-01-28 2024-03-12 ナブテスコ株式会社 Rudder control device and ship

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103786860B (en) * 2014-02-19 2016-05-04 哈尔滨工程大学 Marine main engine executing agency and control method thereof
CN103786859B (en) * 2014-02-19 2016-03-09 哈尔滨工程大学 Marine main engine operating control
CN106976541A (en) * 2016-01-17 2017-07-25 哈尔滨工业大学(威海) The anti-overwinding control strategy of watercraft electric propulsion system under a kind of non-orderly sea

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143144A (en) * 1982-02-17 1983-08-25 Mitsubishi Heavy Ind Ltd Control device for marine engine
JPH01124347U (en) * 1988-02-16 1989-08-24
JPH09158761A (en) * 1995-12-11 1997-06-17 Mitsubishi Heavy Ind Ltd Fuel control device for engine
JP2004019477A (en) * 2002-06-12 2004-01-22 Daihatsu Motor Co Ltd Rotation speed control method of internal combustion engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104481717A (en) * 2014-12-05 2015-04-01 中国航空工业集团公司第六三一研究所 Engine speed control method with online setting of PID (proportion integration differentiation) parameters
CN104481717B (en) * 2014-12-05 2017-01-18 中国航空工业集团公司第六三一研究所 Engine speed control method with online setting of PID (proportion integration differentiation) parameters
JP2016205270A (en) * 2015-04-24 2016-12-08 三井造船株式会社 Fuel supply system and marine vessel
JP2019148212A (en) * 2018-02-27 2019-09-05 株式会社三井E&Sマシナリー Control system of marine main engine
JP2019173633A (en) * 2018-03-28 2019-10-10 国立研究開発法人 海上・港湾・航空技術研究所 Fuel supply control method and fuel supply control system
JP7048088B2 (en) 2018-03-28 2022-04-05 国立研究開発法人 海上・港湾・航空技術研究所 Fuel supply control method and fuel supply control system
CN113874614A (en) * 2019-05-22 2021-12-31 国立研究开发法人海上·港湾·航空技术研究所 Engine control method, engine control system, and ship
KR20220012872A (en) 2019-05-22 2022-02-04 고쿠리츠겐큐카이하츠호진 가이죠·고완·고쿠기쥬츠겐큐죠 Engine control method, engine control system, and ship
CN113874614B (en) * 2019-05-22 2023-06-02 国立研究开发法人海上·港湾·航空技术研究所 Engine control method, engine control system and ship
JP7448415B2 (en) 2020-01-28 2024-03-12 ナブテスコ株式会社 Fuel control device and rudder control device
JP7448414B2 (en) 2020-01-28 2024-03-12 ナブテスコ株式会社 Rudder control device and ship

Also Published As

Publication number Publication date
JP5296753B2 (en) 2013-09-25
WO2012032878A1 (en) 2012-03-15
KR101331042B1 (en) 2013-11-20
TW201211380A (en) 2012-03-16
KR20130086037A (en) 2013-07-30
CN103069135A (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5296753B2 (en) Marine engine control system and method
CN202718807U (en) Wind turbine
JP7114228B2 (en) Ship performance analysis system
Vrijdag et al. Control of propeller cavitation in operational conditions
JP4854756B2 (en) Marine engine control system
KR101266024B1 (en) Ship engine control device and ship engine control method
JP6271410B2 (en) Ship equipment maintenance judgment device
WO2011122375A1 (en) Marine engine control device and method
WO2010113655A1 (en) Marine engine control system
JP2013237392A (en) Variable pitch propeller control device, ship mounting the same, and variable pitch propeller control method
JP4790072B1 (en) Marine engine control apparatus and method
JP2011052577A (en) Marine engine control system and method
JP4898935B2 (en) Engine control apparatus and method
JP7448414B2 (en) Rudder control device and ship
JP2019148212A (en) Control system of marine main engine
CN106976541A (en) The anti-overwinding control strategy of watercraft electric propulsion system under a kind of non-orderly sea
JP2010236513A (en) Marine engine control system
JP5426651B2 (en) Marine engine control apparatus and method
JP2018192816A (en) Bubble generation detector and bubble generation detecting method
WO2011004813A1 (en) Governor control device and method for marine engines
JP2013060883A (en) Thermal efficiency estimation device for engine and engine torque control device
JPS6226503A (en) Adaptive control device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees