JP2010236513A - Marine engine control system - Google Patents

Marine engine control system Download PDF

Info

Publication number
JP2010236513A
JP2010236513A JP2009087865A JP2009087865A JP2010236513A JP 2010236513 A JP2010236513 A JP 2010236513A JP 2009087865 A JP2009087865 A JP 2009087865A JP 2009087865 A JP2009087865 A JP 2009087865A JP 2010236513 A JP2010236513 A JP 2010236513A
Authority
JP
Japan
Prior art keywords
load torque
propeller
control system
marine engine
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009087865A
Other languages
Japanese (ja)
Inventor
Junya Miyata
淳也 宮田
Shoichi Inami
昭一 稲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2009087865A priority Critical patent/JP2010236513A/en
Priority to PCT/JP2010/054638 priority patent/WO2010113654A1/en
Priority to TW99108653A priority patent/TW201035441A/en
Publication of JP2010236513A publication Critical patent/JP2010236513A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve fuel efficiency by quickly estimating the effect of disturbance on a propeller and, based on the estimation, making corrections to governor control. <P>SOLUTION: In this marine engine control system, the deviation between a rotation speed command and the actual measured rotation speed N<SB>E</SB>of a main shaft 13 or a main engine 12 is input into a PID computation unit 16, and the amount of fuel supplied to the main engine 12 from a fuel injection device 15 is controlled by feedback. The load torque Q<SB>P</SB>on a propeller 14 is detected, and a governor command output from the PID computation unit 16 to the fuel injection device 15 is corrected. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、舶用エンジンの制御システムに関し、特に舶用エンジンのガバナ制御に関する。   The present invention relates to a marine engine control system, and more particularly to a marine engine governor control.

舶用エンジンの制御では、設定された目標回転数と実回転数の差がなくなるようにPID制御が行われる。しかし、荒天時などには、プロペラによる負荷トルクが急激に変化するため通常の天候の下での航行を想定したゲインによるPID制御では、十分な応答性能が得られずオーバースピードによる機関の故障を招く恐れがある。このような問題に対しては、外乱によるプロペラ回転数の変動を予測してPID制御のゲインを変更する構成が提案されている(特許文献1)。   In the marine engine control, PID control is performed so that the difference between the set target rotational speed and the actual rotational speed is eliminated. However, during stormy weather, the load torque due to the propellers changes abruptly, so PID control with a gain that assumes sailing under normal weather does not provide sufficient response performance, causing engine failure due to overspeed. There is a risk of inviting. In order to deal with such a problem, a configuration has been proposed in which fluctuations in the propeller rotation speed due to disturbance are predicted to change the gain of PID control (Patent Document 1).

特開平8−200131号公報Japanese Patent Laid-Open No. 8-200231

しかし、特許文献1のようにPIDゲインを上げる構成では、ハンチングを起こし易くなったり燃費が悪化したりする。近年では、特に燃費向上が強く求められているため特許文献1の構成では十分ではなく、プロペラへの外乱に対してより高い応答性を備えたガバナ制御が求められている。   However, in the configuration in which the PID gain is increased as in Patent Document 1, hunting is likely to occur or fuel consumption is deteriorated. In recent years, particularly the improvement in fuel efficiency is strongly demanded, so the configuration of Patent Document 1 is not sufficient, and governor control with higher responsiveness to disturbance to the propeller is demanded.

本発明は、上記問題に鑑みてなされたものであり、プロペラへの外乱の影響をより迅速に推定し、これに基づきガバナ制御に修正を加え燃費の向上を図ることを課題としている。   The present invention has been made in view of the above problems, and it is an object of the present invention to more quickly estimate the influence of disturbance on the propeller and to modify the governor control based on this to improve fuel efficiency.

本発明の舶用エンジン制御システムは、主軸または主機の回転数を入力として燃料噴射量のPID制御を行うとともに、プロペラの負荷トルクに基づき前記PID制御からの出力に修正を加えるフィードフォワード制御を行うことを特徴としている。   The marine engine control system of the present invention performs PID control of the fuel injection amount with the rotation speed of the main shaft or main engine as an input, and performs feedforward control for correcting the output from the PID control based on the load torque of the propeller. It is characterized by.

舶用エンジン制御システムは、負荷トルクを検出するための負荷トルク検知手段を備え、負荷トルク検知手段は、例えば主軸の歪みに基づいて、あるいは馬力と回転数に基づいて負荷トルクを算出する。   The marine engine control system includes load torque detection means for detecting load torque, and the load torque detection means calculates the load torque based on, for example, distortion of the main shaft or based on horsepower and rotation speed.

本発明によれば、プロペラへの外乱の影響をより迅速に推定し、これに基づきガバナ制御に修正を加え燃費の向上を図ることができる。   According to the present invention, the influence of disturbance on the propeller can be estimated more quickly, and based on this, the governor control can be modified to improve fuel efficiency.

本発明の一実施形態である舶用エンジン制御システムの構成を示すブロック線図である。It is a block diagram which shows the structure of the marine engine control system which is one Embodiment of this invention. 制御対象をモデル化したブロック線図である。It is the block diagram which modeled the control object. 本実施形態の負荷トルク検知部の構成を示す模式図である。It is a schematic diagram which shows the structure of the load torque detection part of this embodiment. 負荷トルク検知部の第1変形例の構成を示す模式図である。It is a schematic diagram which shows the structure of the 1st modification of a load torque detection part. 負荷トルク検知部の第2変形例の構成を示す模式図である。It is a schematic diagram which shows the structure of the 2nd modification of a load torque detection part. 負荷トルク検知部の第3変形例の構成を示す模式図である。It is a schematic diagram which shows the structure of the 3rd modification of a load torque detection part.

以下、本発明の実施形態について添付図面を参照して説明する。
図1は、本発明の一実施形態である舶用エンジン制御システム全体の構成を示すブロック線図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a block diagram showing the overall configuration of a marine engine control system according to an embodiment of the present invention.

本実施形態の舶用エンジン制御システム10は、船体11、主機12、主軸13、プロペラ14などを制御対象Sとし、主機12には、制御装置Cの燃料噴射装置(アクチュエータ)15から燃料が供給される。主機12とプロペラ14を連結する主軸13には、主軸13または主機12の実回転数N(または角速度ω)を検出する従来周知の回転数(角速度)センサ(不図示)が設けられる。また、主軸13には、主軸13に掛かるプロペラの負荷トルクQを検出する負荷トルク検出部(後述)が設けられる。 The marine engine control system 10 of the present embodiment uses a hull 11, a main engine 12, a main shaft 13, a propeller 14 and the like as a control object S, and fuel is supplied to the main engine 12 from a fuel injection device (actuator) 15 of the control device C. The The main shaft 13 connecting the main machine 12 and the propeller 14 is provided with a conventionally known rotation speed (angular speed) sensor (not shown) for detecting the actual rotation speed N E (or angular speed ω E ) of the main shaft 13 or the main machine 12. Further, the main shaft 13, the load torque detecting unit for detecting a load torque Q P of the propeller acting on the main shaft 13 (described later) is provided.

制御システム10は、主軸回転数(あるいはエンジン回転数)を回転数指令(目標値)としてPID制御を行うもので、主軸13において検出された実回転数Nは、入力側へとフィードバックされる。すなわち、PID演算部16には回転数指令と実回転数Nの間の偏差が入力される。PID演算部16からの出力は、ガバナ指令として燃料噴射装置15へ出力され、主機12への燃料供給量が調整される。 Control system 10, which performs PID control spindle speed (or engine speed) as the rotation speed command (target value), the actual rotational speed N E detected in the main shaft 13 is fed back to the input side . That is, the PID operator 16 deviation between the rotation speed command and the actual rotation speed N E is input. The output from the PID calculation unit 16 is output as a governor command to the fuel injection device 15 and the fuel supply amount to the main engine 12 is adjusted.

更に、本実施形態では、負荷トルク検出部からの負荷トルクQに基づく信号がPID演算部16の出力側へとフィードフォワードされてガバナ指令が修正される。すなわち、プロペラ14には、波浪等の外乱による影響があるため、本実施形態では、負荷トルクQをモニタし、負荷トルクQの変動に対応した修正信号を演算部17において生成し、PID演算部16から出力されるガバナ指令に付加する。 Further, in the present embodiment, a signal based on the load torque Q P from the load torque detecting unit is feedforward governor command is corrected to the output side of the PID computing unit 16. In other words, the propeller 14, because of the influence due to disturbance waves such, in this embodiment, monitors the load torque Q P, the correction signal corresponding to the change in the load torque Q P generated in the arithmetic unit 17, PID This is added to the governor command output from the calculation unit 16.

すなわち本実施形態では、負荷トルクQが主軸回転数N(角速度ω)の時間微分に比例することから、負荷トルクQをモニタすることにより波浪による外乱が主軸回転数Nに大きく影響する前に外乱の影響を検知して出力に修正を加え、外乱による影響を低減している。 That is, in this embodiment, largely from the load torque Q P is proportional to the time derivative of the spindle speed N E (angular velocity omega E), the disturbance caused by waves is spindle speed N E by monitoring the load torque Q P Before the influence, the influence of the disturbance is detected and the output is corrected to reduce the influence of the disturbance.

図2は制御対象Sをモデル化したブロック線図である。図2を参照して、負荷トルクのフィードフォワードによる効果について説明する。図2に示されるように、プロペラ周りの流体のプロペラへの流入速度(プロペラ流入速度)は、船速と波浪による流速とを加え合わせたもので、負荷トルクQは、プロペラ流入速度とプロペラ回転数(主軸回転数)を入力としてプロペラのトルク特性に基づいて決定される。また、主軸13には、主機12による主機トルクQから負荷トルクQを差し引いたトルクQ−Qが作用する。 FIG. 2 is a block diagram in which the control target S is modeled. With reference to FIG. 2, the effect of the feedforward of the load torque will be described. As shown in FIG. 2, the inflow velocity (propeller inflow velocity) of the fluid of the propeller around the propeller, which was added together with the flow rate by the ship speed and wave, the load torque Q P is propeller inflow velocity and the propeller It is determined based on the torque characteristics of the propeller with the rotation speed (spindle rotation speed) as an input. Further, the main shaft 13, torque Q E -Q P minus load torque Q P from the main torque Q E by the main motor 12 is applied.

主軸13の回転数N(角速度ω)は、慣性モーメントをI、時間をt、主機トルクをQとすると、N=∫[(Q−Q)/I]dtとなる。すなわち、回転数Nは、トルクを積分(1/s)したものなのでトルク変動のほうが回転数の変化よりも外乱に対する応答性が高い。したがって、負荷トルクQをモニタしてフィードフォワード制御を行うことにより波浪(外乱)の影響をより有効に低減できる。 The rotational speed N E (angular velocity ω E ) of the main shaft 13 is N E = ∫ [(Q E −Q P ) / I] dt, where I is moment of inertia, t is time, and Q E is the main engine torque. That is, since the rotational speed NE is obtained by integrating the torque (1 / s), the torque fluctuation is more responsive to disturbance than the change in the rotational speed. Thus, the influence of wave (disturbance) by to perform feedforward control monitors the load torque Q P can be more effectively reduced.

次に図3を参照して、本実施形態の負荷トルク検知部の構成について説明する。本実施形態の負荷トルク検知部20は、主軸13に装着された歪ゲージ21および送信機22と、船体側の固定部に配置された受信機23および計測器24から構成される。歪ゲージ21において検出された歪の測定値(歪信号)は、送信機22を介して受信機23に送信され、計測器24において、トルク信号に変換され演算部17へと出力される。すなわち、トルクは歪に比例するため、演算部17では受信した歪の測定値(歪信号に対応)に所定の係数を掛けて負荷トルクQを算出し、トルク信号として演算部17(図2)へ出力する。 Next, with reference to FIG. 3, the structure of the load torque detection part of this embodiment is demonstrated. The load torque detection unit 20 of the present embodiment includes a strain gauge 21 and a transmitter 22 mounted on the main shaft 13, and a receiver 23 and a measuring instrument 24 disposed on a fixed part on the hull side. A strain measurement value (strain signal) detected by the strain gauge 21 is transmitted to the receiver 23 via the transmitter 22, converted into a torque signal by the measuring instrument 24, and output to the computing unit 17. That is, since the torque is proportional to the strain, the strain measurements of received the arithmetic unit 17 (corresponding to the distorted signal) is multiplied by a predetermined coefficient to calculate the load torque Q P, the arithmetic unit 17 as a torque signal (FIG. 2 ).

次に図4を参照して、本実施形態の負荷トルク検知部20の第1変形例の構成について説明する。第1変形例の負荷トルク検知部30は、主軸13に装着された歪ゲージ21、主軸13の周囲に装着され歪ゲージ21に電気的に接続されたスリップリング31、スリップリング31と摺接するブラシ32、ブラシ32に接続された計測器24から構成される。すなわち、歪ゲージ21において検出された歪信号は、スリップリング31、ブラシ32を介して計測器24に送られ、第1実施形態と同様にトルク信号に変換される。また計測器24において生成されたトルク信号は、演算部17へと出力される。以上の構成により第1変形例においても上記実施形態と同様の効果を得ることができる。   Next, with reference to FIG. 4, the structure of the 1st modification of the load torque detection part 20 of this embodiment is demonstrated. The load torque detector 30 of the first modification includes a strain gauge 21 attached to the main shaft 13, a slip ring 31 attached around the main shaft 13 and electrically connected to the strain gauge 21, and a brush that is in sliding contact with the slip ring 31. 32 and the measuring instrument 24 connected to the brush 32. That is, the strain signal detected by the strain gauge 21 is sent to the measuring instrument 24 via the slip ring 31 and the brush 32, and converted into a torque signal as in the first embodiment. Further, the torque signal generated in the measuring instrument 24 is output to the calculation unit 17. With the above configuration, the same effect as that of the above embodiment can be obtained also in the first modification.

次に図5を参照して、負荷トルク検知部の第2変形例の構成について説明する。第2変形例の負荷トルク検知部40では、上記実施形態、第1変形例の歪ゲージ21に替えてプロペラ14近くの主軸13に装着された馬力計41が用いられる。また、第2変形例では計測器24に替えてトルク計算部42が用いられる。   Next, with reference to FIG. 5, the structure of the 2nd modification of a load torque detection part is demonstrated. In the load torque detector 40 of the second modification, a horsepower meter 41 attached to the main shaft 13 near the propeller 14 is used instead of the strain gauge 21 of the above embodiment and the first modification. In the second modification, a torque calculation unit 42 is used instead of the measuring instrument 24.

第2変形例においては、馬力計41からの馬力信号がトルク計算部42に送られる。トルク計算部42には、馬力計41からの馬力信号のほか主機12からエンジン回転数Nが入力される。馬力(本変形例では略伝達馬力DHPに対応)は、トルクと回転数の積に比例するため、トルク計算部42では、馬力(例えばDHP)をエンジン回転数Nで割り所定の係数(例えば1/2π)を掛けることにより負荷トルクQが求められる。算出されたトルクの値はトルク信号として演算部17へ出力される。 In the second modification, a horsepower signal from the horsepower meter 41 is sent to the torque calculator 42. In addition to the horsepower signal from the horsepower meter 41, the engine speed NE is input from the main machine 12 to the torque calculator 42. Hp (corresponding to substantially transmit horsepower DHP in this modification) is proportional to the rotational speed of the product between the torque, the torque calculation unit 42, horsepower (e.g. DHP) split predetermined coefficient by the engine speed N E (e.g. load torque Q P is obtained by applying a 1 / 2π). The calculated torque value is output to the computing unit 17 as a torque signal.

次に図6を参照して、負荷トルク検知部の第3変形例の構成について説明する。第3変形例は、第2変形例の馬力計41を主機12近くの主軸13に配置したもので、その他の構成は第3変形例と同様である。第3変形例では、検出される馬力が略制動馬力BHPに対応するため、トルク計算部42では、検出された馬力(BHP)をエンジン回転数N、伝達効率η、および2πで割ることによりトルクが求められる。以上のように第3変形例においても、上記実施形態および変形例1、2と略同様の効果を得ることができる。 Next, with reference to FIG. 6, the structure of the 3rd modification of a load torque detection part is demonstrated. In the third modified example, the horsepower meter 41 of the second modified example is arranged on the main shaft 13 near the main engine 12, and the other configuration is the same as that of the third modified example. In the third modification, since the detected horsepower corresponds to approximately the braking horsepower BHP, the torque calculation unit 42 divides the detected horsepower (BHP) by the engine speed N E , the transmission efficiency η T , and 2π. Thus, torque is obtained. As described above, also in the third modification, it is possible to obtain substantially the same effects as in the above embodiment and Modifications 1 and 2.

以上のように、本実施形態の構成によれば、波浪等(外乱)によるプロペラ負荷トルクの変動を検知し、これを回転数ベースの燃料供給PID制御にフィードフォワードすることにより、外乱の影響をより早い段階で推測して主機回転数の修正を行うことが可能となり、例えば10秒程の周期の外乱に対しても十分な応答性を示し、燃費を大きく改善することができる。   As described above, according to the configuration of the present embodiment, the fluctuation of the propeller load torque due to waves or the like (disturbance) is detected, and this is fed forward to the rotation speed-based fuel supply PID control, thereby reducing the influence of the disturbance. It is possible to correct the main engine speed by estimating at an earlier stage. For example, sufficient responsiveness can be exhibited even with a disturbance having a period of about 10 seconds, and fuel consumption can be greatly improved.

10 舶用エンジン制御システム
11 船体
12 主機
13 主軸
14 プロペラ
15 ガバナ
16 PID演算部
17 演算部
20、30、40 負荷トルク検知部
21 歪ゲージ
22 送信機
23 受信機
24 計測器
31 スリップリング
32 ブラシ
41 馬力計
42 トルク計算部
C 制御装置
S 制御対象
DESCRIPTION OF SYMBOLS 10 Marine engine control system 11 Hull 12 Main machine 13 Main shaft 14 Propeller 15 Governor 16 PID calculation part 17 Calculation part 20, 30, 40 Load torque detection part 21 Strain gauge 22 Transmitter 23 Receiver 24 Measuring instrument 31 Slip ring 32 Brush 41 Horsepower Total 42 Torque calculator C Controller S Control target

Claims (4)

主軸または主機の回転数を入力として燃料噴射量のPID制御を行うとともに、プロペラの負荷トルクに基づき前記PID制御からの出力に修正を加えるフィードフォワード制御を行うことを特徴とする舶用エンジン制御システム。   A marine engine control system that performs PID control of a fuel injection amount by inputting a rotational speed of a main shaft or a main engine, and performs feedforward control that corrects an output from the PID control based on a load torque of a propeller. 前記負荷トルクを検出するための負荷トルク検知手段を備えることを特徴とする請求項1に記載の舶用エンジン制御システム。   The marine engine control system according to claim 1, further comprising load torque detecting means for detecting the load torque. 前記負荷トルク検知手段が、前記主軸の歪みに基づいて負荷トルクを算出することを特徴とする請求項2に記載の舶用エンジン制御システム。   The marine engine control system according to claim 2, wherein the load torque detection means calculates a load torque based on distortion of the main shaft. 前記負荷トルク検知手段が、馬力と前記回転数に基づいて負荷トルクを算出することを特徴とする請求項2に記載の舶用エンジン制御システム。
The marine engine control system according to claim 2, wherein the load torque detecting means calculates a load torque based on horsepower and the rotational speed.
JP2009087865A 2009-03-31 2009-03-31 Marine engine control system Pending JP2010236513A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009087865A JP2010236513A (en) 2009-03-31 2009-03-31 Marine engine control system
PCT/JP2010/054638 WO2010113654A1 (en) 2009-03-31 2010-03-18 Marine engine control system
TW99108653A TW201035441A (en) 2009-03-31 2010-03-24 Marine engine control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087865A JP2010236513A (en) 2009-03-31 2009-03-31 Marine engine control system

Publications (1)

Publication Number Publication Date
JP2010236513A true JP2010236513A (en) 2010-10-21

Family

ID=42827951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087865A Pending JP2010236513A (en) 2009-03-31 2009-03-31 Marine engine control system

Country Status (3)

Country Link
JP (1) JP2010236513A (en)
TW (1) TW201035441A (en)
WO (1) WO2010113654A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285945A (en) * 2009-06-12 2010-12-24 Nippon Yusen Kk Fuel regulation device of ship
CN113874614A (en) * 2019-05-22 2021-12-31 国立研究开发法人海上·港湾·航空技术研究所 Engine control method, engine control system, and ship

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143144A (en) * 1982-02-17 1983-08-25 Mitsubishi Heavy Ind Ltd Control device for marine engine
JPH08169324A (en) * 1994-12-16 1996-07-02 Mitsubishi Electric Corp Shaft torque detecting device for vehicle control
JPH09158761A (en) * 1995-12-11 1997-06-17 Mitsubishi Heavy Ind Ltd Fuel control device for engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143144A (en) * 1982-02-17 1983-08-25 Mitsubishi Heavy Ind Ltd Control device for marine engine
JPH08169324A (en) * 1994-12-16 1996-07-02 Mitsubishi Electric Corp Shaft torque detecting device for vehicle control
JPH09158761A (en) * 1995-12-11 1997-06-17 Mitsubishi Heavy Ind Ltd Fuel control device for engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285945A (en) * 2009-06-12 2010-12-24 Nippon Yusen Kk Fuel regulation device of ship
CN113874614A (en) * 2019-05-22 2021-12-31 国立研究开发法人海上·港湾·航空技术研究所 Engine control method, engine control system, and ship
CN113874614B (en) * 2019-05-22 2023-06-02 国立研究开发法人海上·港湾·航空技术研究所 Engine control method, engine control system and ship

Also Published As

Publication number Publication date
TW201035441A (en) 2010-10-01
WO2010113654A1 (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP4854756B2 (en) Marine engine control system
JP5296753B2 (en) Marine engine control system and method
US7877174B2 (en) Watercraft speed control device
US7494394B2 (en) Watercraft speed control device
US7229330B2 (en) Watercraft speed control device
JP5830309B2 (en) Ship propulsion device
WO2010064483A1 (en) Method and device for controlling blade angle of variable pitch propeller
US20080009205A1 (en) Watercraft speed control device
US7485021B2 (en) Watercraft speed control device
KR101266024B1 (en) Ship engine control device and ship engine control method
WO2010113654A1 (en) Marine engine control system
WO2010113655A1 (en) Marine engine control system
KR101229816B1 (en) Device and method for controlling ship engine
JP6047923B2 (en) Variable pitch propeller control device, ship equipped with variable pitch propeller control device, and variable pitch propeller control method
JP6907139B2 (en) Control system for main marine engine
JP2010285089A (en) Propulsion control device of vessel
JP5084788B2 (en) Marine fuel regulator
US8475221B1 (en) Watercraft speed control device
JP4888867B2 (en) Marine engine governor control device and control method
KR20220028077A (en) Method and system for controlling the propulsion power output of a ship

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110316

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110525

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110607

A131 Notification of reasons for refusal

Effective date: 20110621

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101