WO2014002435A1 - Horsepower limiting device and horsepower limiting method - Google Patents

Horsepower limiting device and horsepower limiting method Download PDF

Info

Publication number
WO2014002435A1
WO2014002435A1 PCT/JP2013/003825 JP2013003825W WO2014002435A1 WO 2014002435 A1 WO2014002435 A1 WO 2014002435A1 JP 2013003825 W JP2013003825 W JP 2013003825W WO 2014002435 A1 WO2014002435 A1 WO 2014002435A1
Authority
WO
WIPO (PCT)
Prior art keywords
horsepower
flow rate
hydraulic pump
pump unit
discharge
Prior art date
Application number
PCT/JP2013/003825
Other languages
French (fr)
Japanese (ja)
Inventor
太田 英明
藤本 浩明
孝一 正岡
武久 加藤
智秀 服部
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to KR1020147018501A priority Critical patent/KR101567446B1/en
Priority to CN201380022689.1A priority patent/CN104271950B/en
Publication of WO2014002435A1 publication Critical patent/WO2014002435A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/05Pressure after the pump outlet

Definitions

  • the present invention relates to a horsepower limiting method and a horsepower limiting device for limiting the discharge flow rate of a hydraulic pump unit based on the discharge pressure of the hydraulic pump unit.
  • a hydraulic pump discharges hydraulic oil by rotational movement using a motor or an engine as a power source, and the discharged oil is supplied to a hydraulic actuator via a control valve.
  • the hydraulic actuator may temporarily stop due to an excessive load. In such a case, the discharge pressure of the hydraulic pump increases and the pump output increases. As a result, the load applied to the power source of the pump also increases, causing the motor to trip and the engine to stop the engine.
  • the horsepower restriction is performed to reduce the discharge flow rate of the pump in order to avoid overloading the motor and the engine.
  • the flow rate restriction value Q m [L / L] that restricts the pump flow rate with respect to the preset horsepower restriction value Wm [kW]. min] is calculated by the following formula.
  • Q m (60 ⁇ ⁇ ) W m / P (10)
  • the flow rate command value for commanding the pump discharge flow rate is made smaller than the flow rate limit value Q m [L / min] to limit the pump discharge flow rate (see, for example, Patent Document 1).
  • the present invention has been made to solve such a problem, and aims to reduce hunting caused by a delay in response of the discharge pressure of the hydraulic pump unit to the flow rate command value in the hydraulic pump unit under a horsepower limit. To do.
  • a horsepower limiting device includes a pressure detector that detects a discharge pressure of a hydraulic pump unit, and commands a discharge flow rate that is horsepower limited to the hydraulic pump unit.
  • a parallel feedforward compensator that outputs a compensation value for compensating the discharge pressure detected by the pressure detector based on a post-horsepower limiting flow command to be output, and a compensation value output by the parallel feedforward compensator
  • the flow rate limit value calculation unit that calculates the discharge flow rate limit value of the hydraulic pump unit and the flow rate limit value calculation unit calculate The flow rate command after the horsepower limitation is determined based on the flow rate limit value and the flow rate command commanding the discharge flow rate of the hydraulic pump unit. Comprising a flow restriction to be outputted to the pump unit.
  • the discharge pressure of the hydraulic pump unit detected by the pressure detector is compensated by the compensation value output by the parallel feedforward compensator, and the discharge pressure after the compensation and the preset hydraulic pump unit
  • a limit value for the discharge flow rate of the hydraulic pump unit is calculated, and based on the calculated flow rate limit value and a flow rate command for commanding the discharge flow rate of the hydraulic pump unit, a flow rate command after the horsepower limit is set.
  • the response delay of the discharge pressure of the hydraulic pump unit to the flow rate command can be compensated for in the hydraulic pump unit under the horsepower limit. As a result, hunting caused by response delay can be reduced.
  • the parallel feedforward compensator may be composed of a constant gain and a band pass filter. According to the above configuration, it is possible to suitably compensate for a response delay of the discharge pressure of the hydraulic pump unit with respect to the flow rate command.
  • a horsepower limiting method is to detect a discharge pressure of a hydraulic pump unit and to discharge a horsepower limited to the hydraulic pump unit.
  • the output of the compensation value may be output by a parallel feedforward compensator configured by a constant gain and a band pass filter.
  • the present invention has the configuration described above, and has an effect of reducing hunting caused by a response delay of the discharge pressure of the hydraulic pump unit with respect to the flow rate command value in the hydraulic pump unit under the horsepower limit.
  • FIG. 1 is a block diagram showing a schematic configuration example of a hydraulic drive system using the horsepower limiting device according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration example of the horsepower limiting device in FIG. 1.
  • FIG. 3 is a graph showing a response waveform of the discharge pressure after compensation in the horsepower limit controller.
  • FIG. 4 is a graph showing characteristics of the hydraulic pump due to the horsepower limitation according to the first comparative example.
  • FIG. 5 is a graph showing characteristics of the hydraulic pump due to the horsepower limitation according to the first embodiment.
  • FIG. 6 is a graph showing a simulation result by the horsepower limitation according to the first comparative example.
  • FIG. 7 is a graph showing a simulation result by the horsepower limitation according to the first embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration example of a hydraulic drive system using the horsepower limiting device according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration example of the horsepower
  • FIG. 8 is a block diagram illustrating a configuration example of a series filter with horsepower limitation according to the second comparative example.
  • FIG. 9 is a block diagram illustrating a configuration example of a parallel filter with horsepower limitation according to the first embodiment.
  • FIG. 10 is a Bode diagram showing the frequency characteristics of the series filter due to the horsepower limitation according to the second comparative example.
  • FIG. 11 is a Bode diagram showing the frequency characteristics of the parallel filter according to the horsepower limitation according to the first embodiment.
  • FIG. 12 is a block diagram for limiting the horsepower of the hydraulic pump according to the third comparative example.
  • FIG. 13 is a block diagram of a horsepower limiting device according to Embodiment 2 of the present invention.
  • FIG. 1 is a block diagram showing a schematic configuration of a hydraulic drive system using a horsepower limiting device according to Embodiment 1 of the present invention.
  • the hydraulic drive system 100 includes a hydraulic pump 1, a motor 2 as a power source of the hydraulic pump 1, a hydraulic actuator 3, a control valve 4, a pressure sensor 5, an operating device 6, a horsepower limit controller 7, and a regulator 8.
  • the pressure sensor 5 and the horsepower limiting controller 7 constitute a horsepower limiting device 101.
  • the hydraulic pump 1, the motor 2, and the regulator 8 constitute a hydraulic pump unit 102.
  • a configuration in which the discharge flow rate of the hydraulic pump 1 is controlled by inputting a command signal including a flow rate command value limited in horsepower to the regulator 8 is exemplified. May be configured to control the discharge flow rate of the hydraulic pump 1 (see other embodiments).
  • the hydraulic pump 1 discharges hydraulic oil by a rotational motion using, for example, a motor 2 as a power source.
  • the discharged oil is supplied to the hydraulic actuator 3 via the control valve 4.
  • a known pump can be used as the hydraulic pump 1.
  • the hydraulic pump 1 is driven at a constant rotation by, for example, the motor 2 and can change the discharge flow rate of the hydraulic pump 1 (hereinafter sometimes simply referred to as a flow rate) by adjusting the swash plate tilt angle. It is a pump.
  • the power source is not limited to the motor 2 and may be, for example, an internal combustion engine.
  • the hydraulic actuator 3 drives a load (not shown) by the discharge oil discharged from the hydraulic pump 1.
  • An example of the hydraulic actuator 3 is a hydraulic cylinder.
  • the control valve 4 controls the supply and discharge of the discharged oil to and from the hydraulic actuator 3, thereby controlling the operation of the hydraulic actuator 3.
  • the control valve 4 operates in accordance with a control signal output by a controller (not shown) according to a user operation input (operation input for commanding the operation of the actuator 3).
  • a controller not shown
  • operation input operation input for commanding the operation of the actuator 3
  • the control valve 4 discharges the hydraulic oil from the actuator 3
  • the discharged hydraulic oil returns to the hydraulic pump 1 from the control valve 4 through an oil passage (not shown) as relief oil.
  • the pressure sensor 5 detects the discharge pressure of the hydraulic pump 1 (hereinafter sometimes simply referred to as pressure).
  • the pressure sensor 5 is installed in the oil passage 20 that supplies the discharge oil from the hydraulic pump 1 to the hydraulic actuator 3, detects the pressure of the discharge oil supplied through the oil passage 20, and the detected discharge pressure. Is output to the horsepower limit controller 7.
  • the operating device 6 is operated by the user in order to command the discharge flow rate to the hydraulic pump 1.
  • the operation device 6 generates a command signal for the discharge flow rate of the hydraulic pump 1 in accordance with the operation amount of the operation device 6, and outputs the command signal to the horsepower limit controller 7.
  • the horsepower limit controller 7 includes a flow rate command value limited in horsepower based on the discharge pressure of the hydraulic pump 1 detected by the pressure sensor 5 and the discharge flow rate command signal of the hydraulic pump 1 input by the operating device 6.
  • a command signal is generated and output to the regulator 8.
  • the flow rate command value is a tilt angle command value for controlling the swash plate of the hydraulic pump 1.
  • the regulator 8 adjusts the tilt angle of the swash plate of the hydraulic pump 1 in accordance with the tilt angle command value included in the discharge flow rate command signal, and changes the discharge flow rate of the hydraulic pump 1 being driven.
  • FIG. 2 is a block diagram illustrating a configuration example of the horsepower limiting device 101.
  • the horsepower limiting device 101 includes a pressure sensor 5 and a horsepower limiting controller 7.
  • the horsepower limit controller 7 includes a parallel feedforward compensator (hereinafter referred to as PFC) 9, an adder 10, a flow rate limit value calculation unit 11, and a flow rate limiter 12.
  • the horsepower limiting controller 7 is composed of a computing unit such as a microcontroller or PLC (Programmable Logic Controller), for example.
  • the PFC 9, the adder 10, the flow rate limit value calculation unit 11, and the flow rate limit unit 12 are realized by the calculation unit executing the built-in operation program.
  • the PFC 9 is based on the flow rate command value Qc [L / min] after the horsepower limit commanding the regulator 8 for the discharge flow rate limited to the horsepower, and the actual value (output) of the discharge pressure detected by the pressure sensor 5 A compensation value Pf [MPa] for compensating the discharge pressure) is output.
  • the adder 10 adds the compensation value Pf [MPa] outputted by the PFC 9 and the actual value P [MPa] of the discharge pressure detected and outputted by the pressure sensor 5, and the compensated discharge pressure value P ′ [ MPa] is output.
  • the flow rate limit value calculation unit 11 Based on the compensated discharge pressure value P ′ [MPa] output from the adder 10 and the preset horsepower limit value Wm [kW] of the hydraulic pump 1, the flow rate limit value calculation unit 11 The discharge flow rate limit value Qm [L / min] is calculated. The flow rate limit value Qm [L / min] is calculated based on the following equation (1).
  • the flow restriction unit 12 is based on the flow restriction value Qm [L / min] calculated by the flow restriction value calculator 11 and the flow command value Qd [L / min] that instructs the discharge flow rate of the hydraulic pump 1.
  • the subsequent flow rate command value Qc [L / min] is output to the hydraulic pump 1.
  • the flow restriction unit 12 compares the flow command value Qd with the flow restriction value Qm, and when the flow command value Qd is smaller than the flow restriction value Qm, the flow command value Qc output to the hydraulic pump 1 is flowed.
  • the flow rate command value Qc output to the hydraulic pump is set as the flow rate limit value Qm.
  • the flow rate command value Qd [L / min] is commanded from the operating device 6 in FIG. 1 and temporarily stored in a storage unit (not shown) inside the horsepower limiting controller 7.
  • the storage unit for storing the horsepower limit value Wm and the flow rate command value Qd is a memory inside the arithmetic unit, an external memory such as a hard disk drive, or any other storage device accessible by a computer connected via a network. It may be.
  • the PFC 9 receives the flow rate command value Qc after the horsepower limit and outputs a compensation value Pf for compensating the discharge pressure of the hydraulic pump.
  • a compensation value Pf for compensating the discharge pressure of the hydraulic pump.
  • a constant gain and a secondary A band-pass filter having a high-pass filter and a first-order low-pass filter.
  • the transfer function Gf (s) of the PFC 9 is expressed by the following equation (2).
  • ⁇ H1 and ⁇ H2 are cutoff frequencies of the secondary high-pass filter
  • ⁇ L is the cutoff frequency of the primary low-pass filter
  • Kf is a constant gain
  • FIG. 3 is a graph showing the response waveform of the discharge pressure after compensation by PFC9.
  • the vertical axis represents pressure, and the horizontal axis represents time.
  • the solid line indicates the pressure P ′ after PFC compensation, the broken line indicates the actual pressure value P, and the alternate long and short dash line indicates the PFC compensation value Pf.
  • the response waveform of the pressure when the flow rate command value changes stepwise under a certain load condition is shown.
  • the actual pressure value P is delayed in response to a change in the flow rate command value (period td in the figure).
  • the PFC compensation value Pf generates a pseudo output during a period td until the actual pressure value P changes.
  • the pressure P ′ after PFC compensation does not appear to have a response delay.
  • the PFC 9 can generate a pseudo output during the time lag from when the flow rate command value changes until the actual pressure value changes, so that the response delay of the actual pressure value can be compensated. .
  • the flow rate limit value calculation unit 11 calculates the flow rate limit value Qm (k) at time k using the actual pressure value P (k) at time k and the output Pf (k) of PFC 9 as follows.
  • takes into account the efficiency of the pump, and it is possible to limit the horsepower more accurately by making it variable according to the pressure and flow rate.
  • the flow rate command value is not changed more than necessary, so that hunting in the horsepower limit can be suppressed.
  • the actual value (output horsepower) W of horsepower is calculated from the flow rate of the hydraulic pump and the discharge pressure of the hydraulic pump based on the equation (9).
  • a flow rate limit value Qm [L / min] for limiting the flow rate of the hydraulic pump is calculated from the following equation with respect to a preset horsepower limit value Wm [kW].
  • Qm (60 ⁇ ⁇ ) Wm / P (7)
  • the flow rate command value for commanding the discharge flow rate of the hydraulic pump is limited to the flow rate limit value Qm [L / min] to limit the discharge flow rate of the hydraulic pump. , Thereby limiting the horsepower of the hydraulic pump.
  • FIG. 4 is a graph showing characteristics of the hydraulic pump due to the horsepower limitation according to the first comparative example.
  • the vertical axis represents the discharge flow rate of the hydraulic pump, and the horizontal axis represents the discharge pressure of the hydraulic pump.
  • a curve Wm in the graph indicates a horsepower limit curve connecting the points of flow rate and pressure to be horsepower Wm.
  • a trajectory P indicated by a solid line is a plot of the position of the flow rate and pressure at a certain time in a time series at regular intervals (points a to i in the figure).
  • the flow rate command value becomes a flow rate at which the horsepower Wm is obtained at the pressure at the point a as indicated by the dotted line. Limited.
  • the flow rate command value is limited to a flow rate at which the horsepower Wm is obtained at the pressure at the point b.
  • FIG. 5 is a graph showing the characteristics of the hydraulic pump due to the horsepower limitation according to the first embodiment.
  • the vertical axis represents the discharge flow rate of the hydraulic pump
  • the horizontal axis represents the discharge pressure of the hydraulic pump.
  • a curve Wm in the graph indicates a horsepower limit curve connecting the points of flow rate and pressure to be horsepower Wm.
  • a trajectory P indicated by a broken line is a plot of the flow rate and pressure position at a certain time in a time series at regular intervals (points a to d in the figure).
  • a trajectory P ′ indicated by a solid line is a plot of the flow rate at a certain time and the position of the pressure after compensation by the PFC at a certain time interval (points a ′ to d ′ in the figure).
  • the flow rate is limited to a horsepower Wm.
  • the flow rate command value is limited to a flow rate at which the horsepower Wm is obtained at the pressure after compensation at the point b ', as indicated by the dotted line.
  • the response delay with respect to the flow rate command value is compensated by the PFC, and the delay is very small. Therefore, the locus P ′ due to this operation immediately converges on the horsepower limit curve Wm. Furthermore, if the compensated pressure converges, the actual pressure locus P also converges to the horsepower limit curve Wm. That is, hunting is reduced.
  • the simulation condition is that the flow rate command value Qd is 800 [L / min], the horsepower limit value Wm is 200 [kW], the volume of the hydraulic cylinder is 10 [L], and the relief flow rate is 800 [L / min] to 250 [L]. / Min] is assumed to be changed in 30 seconds.
  • FIG. 6 is a graph showing a simulation result by the horsepower limitation according to the first comparative example.
  • FIG. 6A shows a time response waveform of the actual horsepower value
  • FIG. 6B shows the characteristics of the hydraulic pump due to the horsepower limitation. From the simulation result, in the first comparative example, significant hunting occurs in the vicinity of 20 seconds after 15 seconds from the start.
  • FIG. 7 is a graph showing a simulation result by the horsepower limitation according to the first embodiment.
  • FIG. 7A shows the time response waveform of the horsepower actual value
  • FIG. 7B shows the characteristics of the hydraulic pump due to the horsepower limitation. From the simulation result, in this embodiment, hunting is reduced as compared with the first comparative example.
  • St comparative example Next, the effect of the horsepower limitation according to the present embodiment using the PFC 9 will be described in comparison with the second comparative example.
  • the second comparative example is configured to include a compensation circuit in the first comparative example.
  • FIG. 8 is a block diagram of a compensation circuit in the second comparative example.
  • G is a control target (hydraulic pump or the like)
  • u is an operation amount (flow command value)
  • y is an output (pressure after compensation (actual pressure))
  • F is a series filter (phase advance filter) as a compensation element.
  • the second comparative example includes a filter in series with the controlled object (hydraulic pump) in order to compensate for the response delay.
  • FIG. 9 is a block diagram of the compensation circuit in the first embodiment.
  • G is a control target (hydraulic pump or the like)
  • u is an operation amount (flow rate command value)
  • y is an output (pressure after compensation)
  • H is a parallel filter (PFC).
  • Fig.9 (a) in this embodiment, in order to compensate a response delay, a parallel filter is provided with respect to a hydraulic pump.
  • a parallel filter is provided with respect to a hydraulic pump.
  • G -1 generally includes higher-order differential terms, it is impossible to use such a filter in practice. Accordingly, there is an essential difference in configuration between the second comparative example using a series filter as a compensation element and the present embodiment in which a parallel filter is applied as a compensation element.
  • FIG. 10 is a Bode diagram showing the frequency characteristics of the series filter according to the second comparative example.
  • FIG. 10A shows a gain diagram
  • FIG. 10B shows a phase diagram.
  • the solid line indicates the characteristic after compensation
  • H (s) indicates the characteristic of the series filter
  • G (s) indicates the characteristic to be controlled.
  • the delay of the control object G (s) is large, indicating that the phase delay can hardly be improved.
  • FIG. 11 is a Bode diagram showing the frequency characteristics of the parallel filter according to the first embodiment.
  • FIG. 11A shows a gain diagram
  • FIG. 11B shows a phase diagram.
  • the solid line indicates the characteristic after compensation
  • H (s) indicates the characteristic of the series filter
  • G (s) indicates the characteristic to be controlled.
  • the compensated characteristic in the low frequency region, is substantially equal to the control target characteristic G (s), while in the high frequency region, the compensated characteristic is substantially equal to the parallel filter characteristic H (s).
  • the phase delay can be eliminated.
  • equation (8) is regarded as pressure feedback control, it can be seen that (60 ⁇ ) Wm / P 0 2 corresponds to the feedback gain, and that the gain becomes very large when the pressure P 0 at the operating point is low.
  • the theory of feedback control if there is a frequency region in which a response delay is 180 degrees or more in phase delay, it becomes unstable when feedback is performed with a gain larger than a certain level.
  • the phase lag becomes 180 degrees or more in the high frequency region, so that hunting may occur.
  • the phase lag can be reduced over the entire frequency region, so that hunting can be made difficult to occur.
  • the horsepower of a hydraulic pump is generally the product of the discharge flow rate and the discharge pressure
  • the control target (flow rate ⁇ horsepower) in the block diagram of FIG. 12 has a non-linear characteristic. It cannot be applied as it is.
  • the hydraulic pump is configured as shown in the block diagram of FIG. 2 by utilizing the fact that the pressure can be changed by manipulating the flow rate and the changed pressure can be measured.
  • control target (flow rate ⁇ pressure) basically has a characteristic that can be linearly approximated, and the concept of PFC compensation can be applied. Further, no compensation element such as a PID controller is required, and the horsepower limit can be realized with a very simple configuration.
  • the configuration of the horsepower restriction according to the present embodiment is different in the dimension of the feedback actual pressure value and the command value (horsepower), and the actual feedback pressure value is fed back.
  • the phase of is not reversed.
  • PFC can be used by feeding back such pressure actual value in the form of division.
  • Embodiment 2 of the present invention will be described with reference to FIG.
  • the description of the configuration common to the first embodiment is omitted, and only the configuration that is different will be described.
  • FIG. 13 is a block diagram of a horsepower limiting device according to Embodiment 2 of the present invention. Compared with Embodiment 1, this embodiment further includes an adder / subtractor 13 in which the horsepower limit controller 7 subtracts a value obtained by subtracting the flow rate command value Qd from the flow rate command value Qc after the horsepower limit. The difference is that the input is PFC9.
  • the PFC 9 basically corrects the response in the high frequency region, when there is no fluctuation in the flow rate command value Qd in such a high frequency region (typically when the flow rate command value Qd is constant), the PFC 9 Even if the component of the flow rate command value Qd is subtracted from the input to, the effect of the PFC 9 is not impaired.
  • the flow rate command value is raised in steps from 0 to a specified value when there is no load when the hydraulic pump 1 is started, the actual pressure does not increase, but the compensation of the PFC 9 It can prevent the value from increasing and the horsepower limit from working.
  • the PFC 9 is composed of a constant gain and a bandpass filter having a secondary high-pass filter and a primary low-pass filter, but is not limited to this.
  • the PFC 9 may be configured by, for example, a constant gain and other band pass filters, or may be configured only by the constant gain. Also good.
  • the rotational speed of the motor 2 in the hydraulic pump 1 is constant, and the command to the hydraulic pump 1 is performed by converting the flow rate command value into a command for the tilt angle of the pump.
  • the present invention is not limited to this, and the tilt angle of the hydraulic pump may be fixed, and the command to the hydraulic pump may be performed by converting the flow rate command value into a command for the rotational speed of the motor.
  • the present invention can be used in the field of hydraulic pumps that restrict the discharge flow rate of a pump based on the discharge pressure of the hydraulic pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

This horsepower limiting device (101) is equipped with: a pressure sensor (5), which detects the discharge pressure of a hydraulic pump unit; a parallel feed-forward compensator (9), which outputs a compensation value for the purpose of compensating the discharge pressure detected by the pressure sensor on the basis of a post-horsepower-limiting flow volume command specifying a horsepower-limited discharge volume for the hydraulic pump unit; a flow volume limit value calculation unit (11), which calculates a limit value for the discharge flow volume of the hydraulic pump unit on the basis of a preset horsepower limit value for the hydraulic pump unit, and the compensated discharge pressure, which has been compensated by the compensation value output by the parallel feed-forward compensator; and a flow volume limiting unit (12), which outputs the post-horsepower-limiting flow volume command to the hydraulic pump unit on the basis of the flow volume limit value calculated by the flow volume limit value calculation unit and on the basis of a flow volume command designating the discharge flow volume for the hydraulic pump unit.

Description

馬力制限装置及び馬力制限方法Horsepower limiting device and horsepower limiting method
 本発明は、油圧ポンプユニットの吐出圧力に基づいて油圧ポンプユニットの吐出流量を制限する馬力制限方法及び馬力制限装置に関するものである。 The present invention relates to a horsepower limiting method and a horsepower limiting device for limiting the discharge flow rate of a hydraulic pump unit based on the discharge pressure of the hydraulic pump unit.
 一般に、油圧駆動を行うためのシステムにおいて、油圧ポンプは、モータやエンジンを動力源として、回転運動で作動油を吐出し、吐出油は制御弁を経由して、油圧アクチュエータに供給される。ポンプの馬力W[kW]は吐出流量Q[L/min]と吐出圧力P[MPa]、効率ηより、次式で求まる。
W=P・Q/(60・η)・・・(9)
 ところで、油圧アクチュエータの動作環境によっては、過大な負荷により油圧アクチュエータが一時的に停止してしまうような場合がある。このような場合は、油圧ポンプの吐出圧力が高くなり、ポンプの出力は増大する。その結果、ポンプの動力源にかかる負荷もまた増大し、モータではトリップを起こし、エンジンであればエンジンストップを起こしてしまう。
In general, in a system for performing hydraulic drive, a hydraulic pump discharges hydraulic oil by rotational movement using a motor or an engine as a power source, and the discharged oil is supplied to a hydraulic actuator via a control valve. The pump horsepower W [kW] is obtained from the discharge flow rate Q [L / min], the discharge pressure P [MPa], and the efficiency η by the following equation.
W = P · Q / (60 · η) (9)
By the way, depending on the operating environment of the hydraulic actuator, the hydraulic actuator may temporarily stop due to an excessive load. In such a case, the discharge pressure of the hydraulic pump increases and the pump output increases. As a result, the load applied to the power source of the pump also increases, causing the motor to trip and the engine to stop the engine.
 従来、油圧ポンプでは、ポンプの吐出圧力が高くなると、モータやエンジンが過負荷になるのを避けるため、ポンプの吐出流量を下げる馬力制限が行われる。このようなポンプの吐出圧力に基づいてポンプの吐出流量を制限する馬力制限では、予め設定された馬力制限値Wm[kW]に対して、ポンプの流量を制限する流量制限値Q[L/min]を次式により算出する。
=(60・η) W/P・・・(10)
 そして、ポンプの吐出流量を指令する流量指令値を、流量制限値Q[L/min]より小さくして、ポンプの吐出流量を制限することで行われる(例えば、特許文献1を参照)。
Conventionally, in a hydraulic pump, when the discharge pressure of the pump becomes high, the horsepower restriction is performed to reduce the discharge flow rate of the pump in order to avoid overloading the motor and the engine. In the horsepower restriction that restricts the discharge flow rate of the pump based on the discharge pressure of the pump as described above, the flow rate restriction value Q m [L / L] that restricts the pump flow rate with respect to the preset horsepower restriction value Wm [kW]. min] is calculated by the following formula.
Q m = (60 · η) W m / P (10)
The flow rate command value for commanding the pump discharge flow rate is made smaller than the flow rate limit value Q m [L / min] to limit the pump discharge flow rate (see, for example, Patent Document 1).
特開平7-208403号公報Japanese Patent Laid-Open No. 7-208403
 しかしながら、従来の油圧ポンプの馬力制限では、流量指令値が変化してからポンプの吐出圧力が変化するまでに応答遅れがあるため、その間に流量制限値が必要以上に変化してしまい、しばしばハンチングを起こすという課題があった。 However, in the conventional horsepower limit of a hydraulic pump, there is a response delay between the change of the flow rate command value and the change of the pump discharge pressure, so the flow rate limit value changes more than necessary during that time, often hunting. There was a problem of waking up.
 本発明はこのような課題を解決するためになされたものであり、馬力制限下の油圧ポンプユニットにおいて流量指令値に対する油圧ポンプユニットの吐出圧力の応答遅れに起因したハンチングを低減することを目的とする。 The present invention has been made to solve such a problem, and aims to reduce hunting caused by a delay in response of the discharge pressure of the hydraulic pump unit to the flow rate command value in the hydraulic pump unit under a horsepower limit. To do.
 上記の課題を解決するために、本発明のある態様に係る馬力制限装置は、油圧ポンプユニットの吐出圧力を検出する圧力検出器と、前記油圧ポンプユニットに対して馬力制限された吐出流量を指令する馬力制限後流量指令に基づいて、前記圧力検出器により検出された吐出圧力を補償するための補償値を出力する並列フィードフォワード補償器と、前記並列フィードフォワード補償器により出力された補償値による補償後の吐出圧力及び予め設定された前記油圧ポンプユニットの馬力制限値に基づいて、前記油圧ポンプユニットの吐出流量の制限値を演算する流量制限値演算部と、前記流量制限値演算部により演算された流量制限値及び前記油圧ポンプユニットの吐出流量を指令する流量指令に基づいて、前記馬力制限後流量指令を前記油圧ポンプユニットに出力する流量制限部と、を備える。 In order to solve the above problems, a horsepower limiting device according to an aspect of the present invention includes a pressure detector that detects a discharge pressure of a hydraulic pump unit, and commands a discharge flow rate that is horsepower limited to the hydraulic pump unit. A parallel feedforward compensator that outputs a compensation value for compensating the discharge pressure detected by the pressure detector based on a post-horsepower limiting flow command to be output, and a compensation value output by the parallel feedforward compensator Based on the compensated discharge pressure and the preset horsepower limit value of the hydraulic pump unit, the flow rate limit value calculation unit that calculates the discharge flow rate limit value of the hydraulic pump unit and the flow rate limit value calculation unit calculate The flow rate command after the horsepower limitation is determined based on the flow rate limit value and the flow rate command commanding the discharge flow rate of the hydraulic pump unit. Comprising a flow restriction to be outputted to the pump unit.
 上記構成によれば、圧力検出器により検出された油圧ポンプユニットの吐出圧力が並列フィードフォワード補償器により出力された補償値によって補償され、この補償後の吐出圧力と予め設定された油圧ポンプユニットの馬力制限値とに基づいて、油圧ポンプユニットの吐出流量の制限値が演算され、当該演算された流量制限値と油圧ポンプユニットの吐出流量を指令する流量指令とに基づいて、馬力制限後流量指令が油圧ポンプユニットに出力されるので、馬力制限下の油圧ポンプユニットにおいて、流量指令に対する油圧ポンプユニットの吐出圧力の応答遅れを補償することができる。その結果、応答遅れに起因したハンチングを低減することができる。 According to the above configuration, the discharge pressure of the hydraulic pump unit detected by the pressure detector is compensated by the compensation value output by the parallel feedforward compensator, and the discharge pressure after the compensation and the preset hydraulic pump unit Based on the horsepower limit value, a limit value for the discharge flow rate of the hydraulic pump unit is calculated, and based on the calculated flow rate limit value and a flow rate command for commanding the discharge flow rate of the hydraulic pump unit, a flow rate command after the horsepower limit is set. Is output to the hydraulic pump unit, the response delay of the discharge pressure of the hydraulic pump unit to the flow rate command can be compensated for in the hydraulic pump unit under the horsepower limit. As a result, hunting caused by response delay can be reduced.
 前記並列フィードフォワード補償器は、定数ゲインと帯域通過フィルタにより構成されてもよい。上記構成によれば、流量指令に対する油圧ポンプユニットの吐出圧力の応答遅れを好適に補償することができる。
前記の課題を解決するために、本発明の他の形態(aspect)に係る馬力制限方法は、油圧ポンプユニットの吐出圧力を検出することと、前記油圧ポンプユニットに対して馬力制限された吐出流量を指令する馬力制限後流量指令に基づいて、前記検出された吐出圧力を補償するための補償値を出力することと、前記出力された補償値による補償後の吐出圧力及び予め設定された前記油圧ポンプユニットの馬力制限値に基づいて、前記油圧ポンプユニットの吐出流量の制限値を演算することと、前記演算された流量制限値及び前記油圧ポンプユニットの吐出流量を指令する流量指令に基づいて、前記馬力制限後流量指令を前記油圧ポンプユニットに出力することと、を備える。
The parallel feedforward compensator may be composed of a constant gain and a band pass filter. According to the above configuration, it is possible to suitably compensate for a response delay of the discharge pressure of the hydraulic pump unit with respect to the flow rate command.
In order to solve the above-mentioned problem, a horsepower limiting method according to another aspect of the present invention is to detect a discharge pressure of a hydraulic pump unit and to discharge a horsepower limited to the hydraulic pump unit. Output a compensation value for compensating the detected discharge pressure based on the post-horsepower limited flow command for commanding, the discharge pressure after compensation by the output compensation value, and the preset hydraulic pressure Based on the horsepower limit value of the pump unit, calculating the limit value of the discharge flow rate of the hydraulic pump unit, and based on the flow rate command commanding the calculated flow rate limit value and the discharge flow rate of the hydraulic pump unit, Outputting the post-horsepower limited flow rate command to the hydraulic pump unit.
 前記補償値を出力することは、定数ゲインと帯域通過フィルタにより構成された並列フィードフォワード補償器により出力することであってもよい。 The output of the compensation value may be output by a parallel feedforward compensator configured by a constant gain and a band pass filter.
 本発明は、以上に説明した構成を有し、馬力制限下の油圧ポンプユニットにおいて流量指令値に対する油圧ポンプユニットの吐出圧力の応答遅れに起因したハンチングを低減させることができるという効果を奏する。 The present invention has the configuration described above, and has an effect of reducing hunting caused by a response delay of the discharge pressure of the hydraulic pump unit with respect to the flow rate command value in the hydraulic pump unit under the horsepower limit.
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。 The above object, other objects, features, and advantages of the present invention will become apparent from the following detailed description of preferred embodiments with reference to the accompanying drawings.
図1は、本発明の実施の形態1に係る馬力制限装置を用いた油圧駆動システムの概略的な構成例を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration example of a hydraulic drive system using the horsepower limiting device according to Embodiment 1 of the present invention. 図2は、図1の馬力制限装置の構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of the horsepower limiting device in FIG. 1. 図3は、馬力制限コントローラにおける補償後の吐出圧力の応答波形を示したグラフである。FIG. 3 is a graph showing a response waveform of the discharge pressure after compensation in the horsepower limit controller. 図4は、第1比較例に係る馬力制限による油圧ポンプの特性を示したグラフである。FIG. 4 is a graph showing characteristics of the hydraulic pump due to the horsepower limitation according to the first comparative example. 図5は、実施の形態1に係る馬力制限による油圧ポンプの特性を示したグラフである。FIG. 5 is a graph showing characteristics of the hydraulic pump due to the horsepower limitation according to the first embodiment. 図6は、第1比較例に係る馬力制限によるシミュレーション結果を示したグラフである。FIG. 6 is a graph showing a simulation result by the horsepower limitation according to the first comparative example. 図7は、実施の形態1に係る馬力制限によるシミュレーション結果を示したグラフである。FIG. 7 is a graph showing a simulation result by the horsepower limitation according to the first embodiment. 図8は、第2比較例に係る馬力制限による直列フィルタの構成例を示すブロック図である。FIG. 8 is a block diagram illustrating a configuration example of a series filter with horsepower limitation according to the second comparative example. 図9は、実施の形態1に係る馬力制限による並列フィルタの構成例を示すブロック図である。FIG. 9 is a block diagram illustrating a configuration example of a parallel filter with horsepower limitation according to the first embodiment. 図10は、第2比較例に係る馬力制限による直列フィルタの周波数特性を示したボード線図である。FIG. 10 is a Bode diagram showing the frequency characteristics of the series filter due to the horsepower limitation according to the second comparative example. 図11は、実施の形態1に係る馬力制限による並列フィルタの周波数特性を示したボード線図である。FIG. 11 is a Bode diagram showing the frequency characteristics of the parallel filter according to the horsepower limitation according to the first embodiment. 図12は、第3比較例に係る油圧ポンプの馬力制限のブロック図である。FIG. 12 is a block diagram for limiting the horsepower of the hydraulic pump according to the third comparative example. 図13は、本発明の実施の形態2に係る馬力制限装置のブロック図である。FIG. 13 is a block diagram of a horsepower limiting device according to Embodiment 2 of the present invention.
 本発明の実施の形態について、図面を参照しつつ説明する。以下では、全ての図面を通じて同一又は相当する要素には同じ符号を付して、重複する説明は省略する。 Embodiments of the present invention will be described with reference to the drawings. Below, the same code | symbol is attached | subjected to the element which is the same or it corresponds through all the drawings, and the overlapping description is abbreviate | omitted.
 (実施の形態1)
 図1は、本発明の実施の形態1に係る馬力制限装置を用いた油圧駆動システムの概略的な構成を示すブロック図である。油圧駆動システム100は、油圧ポンプ1、油圧ポンプ1の動力源としてのモータ2、油圧アクチュエータ3、制御弁4、圧力センサ5、操作器6、馬力制限コントローラ7、レギュレータ8を備える。ここで、圧力センサ5及び馬力制限コントローラ7が馬力制限装置101を構成する。また、油圧ポンプ1、モータ2、及びレギュレータ8が油圧ポンプユニット102を構成する。なお、以下では、馬力制限された流量指令値を含んだ指令信号がレギュレータ8に入力されることによって油圧ポンプ1の吐出流量が制御される構成を例示するが、例えば、当該指令信号がモータ2に入力されることによって油圧ポンプ1の吐出流量が制御されるよう構成されてもよい(その他の実施の形態参照)。
(Embodiment 1)
FIG. 1 is a block diagram showing a schematic configuration of a hydraulic drive system using a horsepower limiting device according to Embodiment 1 of the present invention. The hydraulic drive system 100 includes a hydraulic pump 1, a motor 2 as a power source of the hydraulic pump 1, a hydraulic actuator 3, a control valve 4, a pressure sensor 5, an operating device 6, a horsepower limit controller 7, and a regulator 8. Here, the pressure sensor 5 and the horsepower limiting controller 7 constitute a horsepower limiting device 101. Further, the hydraulic pump 1, the motor 2, and the regulator 8 constitute a hydraulic pump unit 102. In the following, a configuration in which the discharge flow rate of the hydraulic pump 1 is controlled by inputting a command signal including a flow rate command value limited in horsepower to the regulator 8 is exemplified. May be configured to control the discharge flow rate of the hydraulic pump 1 (see other embodiments).
 油圧ポンプ1は、例えば、モータ2を動力源として、回転運動で作動油を吐出する。吐出油は制御弁4を経由して、油圧アクチュエータ3に供給される。油圧ポンプ1として、公知のものを用いることができる。本実施の形態では、油圧ポンプ1は、例えば、モータ2により一定回転で駆動され、斜板傾角の調整により油圧ポンプ1の吐出流量(以下、単に流量と呼ぶ場合がある)を変化できる可変容量ポンプである。動力源は、モータ2には限定されず、例えば、内燃エンジンであってもよい。 The hydraulic pump 1 discharges hydraulic oil by a rotational motion using, for example, a motor 2 as a power source. The discharged oil is supplied to the hydraulic actuator 3 via the control valve 4. A known pump can be used as the hydraulic pump 1. In the present embodiment, the hydraulic pump 1 is driven at a constant rotation by, for example, the motor 2 and can change the discharge flow rate of the hydraulic pump 1 (hereinafter sometimes simply referred to as a flow rate) by adjusting the swash plate tilt angle. It is a pump. The power source is not limited to the motor 2 and may be, for example, an internal combustion engine.
 油圧アクチュエータ3は、油圧ポンプ1から吐出される吐出油により、図示しない負荷を駆動する。油圧アクチュエータ3としては、例えば、油圧シリンダが例示される。 The hydraulic actuator 3 drives a load (not shown) by the discharge oil discharged from the hydraulic pump 1. An example of the hydraulic actuator 3 is a hydraulic cylinder.
 制御弁4は、油圧アクチュエータ3に対する吐出油の給排を制御し、それによって、油圧アクチュエータ3の動作を制御する。制御弁4は、図示されない制御器がユーザの操作入力(アクチュエータ3の動作を指令する操作入力)に従って出力する制御信号に従って動作する。なお、制御弁4がアクチュエータ3から作動油を排出する場合、当該排出する作動油はリリーフ油として制御弁4から図示されない油路を介して油圧ポンプ1に戻る。 The control valve 4 controls the supply and discharge of the discharged oil to and from the hydraulic actuator 3, thereby controlling the operation of the hydraulic actuator 3. The control valve 4 operates in accordance with a control signal output by a controller (not shown) according to a user operation input (operation input for commanding the operation of the actuator 3). When the control valve 4 discharges the hydraulic oil from the actuator 3, the discharged hydraulic oil returns to the hydraulic pump 1 from the control valve 4 through an oil passage (not shown) as relief oil.
 圧力センサ5は、油圧ポンプ1の吐出圧力(以下、単に圧力と呼ぶ場合がある)を検出する。ここでは、圧力センサ5は、油圧ポンプ1から油圧アクチュエータ3に吐出油を供給する油路20に設置され、油路20を通って供給される吐出油の圧力を検出し、この検出した吐出圧力を馬力制限コントローラ7に出力する。 The pressure sensor 5 detects the discharge pressure of the hydraulic pump 1 (hereinafter sometimes simply referred to as pressure). Here, the pressure sensor 5 is installed in the oil passage 20 that supplies the discharge oil from the hydraulic pump 1 to the hydraulic actuator 3, detects the pressure of the discharge oil supplied through the oil passage 20, and the detected discharge pressure. Is output to the horsepower limit controller 7.
 操作器6は、油圧ポンプ1に吐出流量を指令するためにユーザにより操作される。ここでは、操作器6は、当該操作器6の操作量に応じた油圧ポンプ1の吐出流量の指令信号を生成し、馬力制限コントローラ7に出力する。 The operating device 6 is operated by the user in order to command the discharge flow rate to the hydraulic pump 1. Here, the operation device 6 generates a command signal for the discharge flow rate of the hydraulic pump 1 in accordance with the operation amount of the operation device 6, and outputs the command signal to the horsepower limit controller 7.
 馬力制限コントローラ7は、圧力センサ5により検出された油圧ポンプ1の吐出圧力及び操作器6により入力された油圧ポンプ1の吐出流量の指令信号に基づいて、馬力制限された流量指令値を含んだ指令信号を生成し、これをレギュレータ8に出力する。ここでは、流量指令値は、油圧ポンプ1の斜板を制御するための傾転角指令値である。 The horsepower limit controller 7 includes a flow rate command value limited in horsepower based on the discharge pressure of the hydraulic pump 1 detected by the pressure sensor 5 and the discharge flow rate command signal of the hydraulic pump 1 input by the operating device 6. A command signal is generated and output to the regulator 8. Here, the flow rate command value is a tilt angle command value for controlling the swash plate of the hydraulic pump 1.
 レギュレータ8は、吐出流量の指令信号に含まれる傾転角指令値に応じて油圧ポンプ1の斜板の傾角を調整し、駆動中の油圧ポンプ1の吐出流量を変化させる。 The regulator 8 adjusts the tilt angle of the swash plate of the hydraulic pump 1 in accordance with the tilt angle command value included in the discharge flow rate command signal, and changes the discharge flow rate of the hydraulic pump 1 being driven.
 次に、馬力制限コントローラ7の構成について図2を用いて具体的に説明する。図2は、馬力制限装置101の構成例を示すブロック図である。図2に示すように、馬力制限装置101は、圧力センサ5及び馬力制限コントローラ7により構成される。 Next, the configuration of the horsepower limiting controller 7 will be specifically described with reference to FIG. FIG. 2 is a block diagram illustrating a configuration example of the horsepower limiting device 101. As shown in FIG. 2, the horsepower limiting device 101 includes a pressure sensor 5 and a horsepower limiting controller 7.
 馬力制限コントローラ7は、並列フィードフォワード補償器(Parallel Feed forward Compensator、以下PFCと称する)9と、加算器10と、流量制限値演算部11と、流量制限部12と、を備える。馬力制限コントローラ7は、例えば、マイクロコントローラ、PLC(Programmable Logic Controller)等の演算器で構成される。PFC9、加算器10、流量制限値演算部11及び流量制限部12は、演算器が、その内蔵する動作プログラムを実行することにより実現される。 The horsepower limit controller 7 includes a parallel feedforward compensator (hereinafter referred to as PFC) 9, an adder 10, a flow rate limit value calculation unit 11, and a flow rate limiter 12. The horsepower limiting controller 7 is composed of a computing unit such as a microcontroller or PLC (Programmable Logic Controller), for example. The PFC 9, the adder 10, the flow rate limit value calculation unit 11, and the flow rate limit unit 12 are realized by the calculation unit executing the built-in operation program.
 PFC9は、レギュレータ8に対して馬力制限された吐出流量を指令する馬力制限後の流量指令値Qc[L/min]に基づいて、圧力センサ5により検出された吐出圧力の実績値(出力された吐出圧力)を補償するための補償値Pf[MPa]を出力する。 The PFC 9 is based on the flow rate command value Qc [L / min] after the horsepower limit commanding the regulator 8 for the discharge flow rate limited to the horsepower, and the actual value (output) of the discharge pressure detected by the pressure sensor 5 A compensation value Pf [MPa] for compensating the discharge pressure) is output.
 加算器10は、PFC9により出力された補償値Pf[MPa]と圧力センサ5により検出されて出力される吐出圧力の実績値P[MPa]とを加算し、補償後の吐出圧力値P’[MPa]を出力する。 The adder 10 adds the compensation value Pf [MPa] outputted by the PFC 9 and the actual value P [MPa] of the discharge pressure detected and outputted by the pressure sensor 5, and the compensated discharge pressure value P ′ [ MPa] is output.
 流量制限値演算部11は、加算器10により出力された補償後の吐出圧力値P’ [MPa]及び予め設定された油圧ポンプ1の馬力制限値Wm[kW]に基づいて、油圧ポンプ1の吐出流量の制限値Qm[L/min]を演算する。流量制限値Qm[L/min]は、以下の式(1)に基づいて演算される。 Based on the compensated discharge pressure value P ′ [MPa] output from the adder 10 and the preset horsepower limit value Wm [kW] of the hydraulic pump 1, the flow rate limit value calculation unit 11 The discharge flow rate limit value Qm [L / min] is calculated. The flow rate limit value Qm [L / min] is calculated based on the following equation (1).
 Qm=(60η)・Wm/P’・・・(1)
 ここでηはポンプの効率であり、馬力制限値Wm[kW]は、例えば予め馬力制限コントローラ7内部の図示しない記憶部に記憶されている。
Qm = (60η) · Wm / P ′ (1)
Here, η is the efficiency of the pump, and the horsepower limit value Wm [kW] is stored in a storage unit (not shown) in the horsepower limit controller 7 in advance, for example.
 流量制限部12は、流量制限値演算部11により演算された流量制限値Qm[L/min]及び油圧ポンプ1の吐出流量を指令する流量指令値Qd[L/min]に基づいて、馬力制限後の流量指令値Qc[L/min]を油圧ポンプ1に出力する。具体的には、流量制限部12は、流量指令値Qdと流量制限値Qmを比較し、流量指令値Qdが流量制限値Qmより小さい場合は、油圧ポンプ1に出力する流量指令値Qcを流量指令値Qdとし、流量指令値Qdが流量制限値Qmより大きい場合は、油圧ポンプに出力する流量指令値Qcを流量制限値Qmとする。ここで流量指令値Qd[L/min]は、図1の操作器6から指令され、馬力制限コントローラ7内部の図示しない記憶部に一時的に記憶されている。尚、馬力制限値Wm及び流量指令値Qdが記憶される記憶部は、演算器の内部のメモリ、若しくはハードディスクドライブ等の外部メモリ、その他、ネットワークを介して接続されたコンピュータによりアクセス可能な記憶装置であってもよい。 The flow restriction unit 12 is based on the flow restriction value Qm [L / min] calculated by the flow restriction value calculator 11 and the flow command value Qd [L / min] that instructs the discharge flow rate of the hydraulic pump 1. The subsequent flow rate command value Qc [L / min] is output to the hydraulic pump 1. Specifically, the flow restriction unit 12 compares the flow command value Qd with the flow restriction value Qm, and when the flow command value Qd is smaller than the flow restriction value Qm, the flow command value Qc output to the hydraulic pump 1 is flowed. When the command value Qd is set and the flow rate command value Qd is larger than the flow rate limit value Qm, the flow rate command value Qc output to the hydraulic pump is set as the flow rate limit value Qm. Here, the flow rate command value Qd [L / min] is commanded from the operating device 6 in FIG. 1 and temporarily stored in a storage unit (not shown) inside the horsepower limiting controller 7. The storage unit for storing the horsepower limit value Wm and the flow rate command value Qd is a memory inside the arithmetic unit, an external memory such as a hard disk drive, or any other storage device accessible by a computer connected via a network. It may be.
 次に、PFC9の構成について説明する。PFC9は、馬力制限後の流量指令値Qcを入力として、油圧ポンプの吐出圧力を補償するための補償値Pfを出力するものであって、本実施の形態では、例えば、定数ゲインと、2次ハイパスフィルタ及び1次ローパスフィルタを有する帯域通過フィルタとで構成される。PFC9の伝達関数Gf(s)は次式(2)で示される。 Next, the configuration of the PFC 9 will be described. The PFC 9 receives the flow rate command value Qc after the horsepower limit and outputs a compensation value Pf for compensating the discharge pressure of the hydraulic pump. In this embodiment, for example, a constant gain and a secondary A band-pass filter having a high-pass filter and a first-order low-pass filter. The transfer function Gf (s) of the PFC 9 is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、ωH1、ωH2は2次ハイパスフィルタのカットオフ周波数、ωは一次ローパスフィルタのカットオフ周波数、Kfは定数ゲインである。 Here, ω H1 and ω H2 are cutoff frequencies of the secondary high-pass filter, ω L is the cutoff frequency of the primary low-pass filter, and Kf is a constant gain.
 図3は、PFC9による補償後の吐出圧力の応答波形を示したグラフである。縦軸は圧力、横軸は時間を示している。実線はPFC補償後の圧力P’、破線は圧力実績値P、一点鎖線はPFC補償値Pfをそれぞれ示している。ここではある負荷条件下で流量指令値がステップ状に変化した場合の圧力の応答波形を示している。 FIG. 3 is a graph showing the response waveform of the discharge pressure after compensation by PFC9. The vertical axis represents pressure, and the horizontal axis represents time. The solid line indicates the pressure P ′ after PFC compensation, the broken line indicates the actual pressure value P, and the alternate long and short dash line indicates the PFC compensation value Pf. Here, the response waveform of the pressure when the flow rate command value changes stepwise under a certain load condition is shown.
 圧力実績値Pは、流量指令値の変化に対して応答の立ち上がりが遅れている(図中の期間td)。これに対し、PFC補償値Pfは、圧力実績値Pが変化するまでの期間tdに擬似的な出力を発生させる。これにより、PFC補償後の圧力P’は、応答遅れがないように見える。 The actual pressure value P is delayed in response to a change in the flow rate command value (period td in the figure). On the other hand, the PFC compensation value Pf generates a pseudo output during a period td until the actual pressure value P changes. As a result, the pressure P ′ after PFC compensation does not appear to have a response delay.
 このように、PFC9により、流量指令値が変化してから圧力実績値が変化するまでのタイムラグの間、擬似的な出力を発生させることができるので、圧力実績値の応答遅れを補うことができる。 In this way, the PFC 9 can generate a pseudo output during the time lag from when the flow rate command value changes until the actual pressure value changes, so that the response delay of the actual pressure value can be compensated. .
 次に、馬力制限コントローラ7における具体的な馬力制限処理について説明する。まず、式(2)で示したPFC9の連続時間伝達関数Gf(s)は、双一次変換などの手法を用いて次式(3)のような離散時間伝達関数Gf(z)に変換される。 Next, a specific horsepower restriction process in the horsepower restriction controller 7 will be described. First, the continuous-time transfer function Gf (s) of the PFC 9 shown in Expression (2) is converted into a discrete-time transfer function Gf (z) like the following Expression (3) using a technique such as bilinear conversion. .
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 このとき、時刻kにおけるPFC9の出力Pf(k)は、以下のように計算される。 At this time, the output Pf (k) of the PFC 9 at time k is calculated as follows.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 次に、流量制限値演算部11により、時刻kにおける流量制限値Qm(k)は、時刻kにおける圧力実績値P(k)、PFC9の出力Pf(k)を用いて以下のように演算される。ここで、ηはポンプの効率を考慮したもので、圧力や流量に応じて可変にすることでより正確に馬力制限することが可能となる。 Next, the flow rate limit value calculation unit 11 calculates the flow rate limit value Qm (k) at time k using the actual pressure value P (k) at time k and the output Pf (k) of PFC 9 as follows. The Here, η takes into account the efficiency of the pump, and it is possible to limit the horsepower more accurately by making it variable according to the pressure and flow rate.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
ここで、時刻kにおいて流量指令値Qd(k)よりも流量制限値Qm(k)が小さくなり、流量が制限されると仮定すると、Qc(k)=Qm(k)となる。よって、時刻kにおける流量制限値Qm(k)は、次式(6)により算出される。 Here, assuming that the flow rate limit value Qm (k) is smaller than the flow rate command value Qd (k) at time k and the flow rate is limited, Qc (k) = Qm (k). Therefore, the flow rate limit value Qm (k) at time k is calculated by the following equation (6).
Figure JPOXMLDOC01-appb-M000006
   
Figure JPOXMLDOC01-appb-M000006
   
 次に、流量制限部12により、流量制限値Qm(k)が、実際に流量指令値Qd(k)よりも小さければ、Qc(k)=Qm(k)とし、流量制限を行う。 Next, if the flow restriction value Qm (k) is actually smaller than the flow instruction value Qd (k), the flow restriction is performed by setting Qc (k) = Qm (k).
 このように、補償後の圧力を用いて流量制限値を計算することにより、必要以上に流量指令値を変化させることがなくなるので、馬力制限におけるハンチングを抑制することができる。 As described above, by calculating the flow rate limit value using the compensated pressure, the flow rate command value is not changed more than necessary, so that hunting in the horsepower limit can be suppressed.
 (第1比較例)
 次に、PFC9を用いた本実施の形態に係る馬力制限の効果を比較例と対比して説明する。まず、従来技術で採用される馬力制限を第1の比較例として説明する。
(First comparative example)
Next, the effect of the horsepower limitation according to the present embodiment using the PFC 9 will be described in comparison with a comparative example. First, the horsepower limitation employed in the prior art will be described as a first comparative example.
 第1の比較例に係る馬力制限では、(9)式に基づいて油圧ポンプの流量と油圧ポンプの吐出圧力とから馬力の実績値(出力された馬力)Wを算出する。また、予め設定された馬力制限値Wm[kW]に対して、油圧ポンプの流量を制限する流量制限値Qm[L/min]を次式により算出する。
Qm=(60・η) Wm/P・・・(7)
 そして、馬力実績値Wが馬力制限値Wmを超えると、油圧ポンプの吐出流量を指令する流量指令値を、流量制限値Qm[L/min]に制限して、油圧ポンプの吐出流量を制限し、それにより、油圧ポンプの馬力を制限する。
In the horsepower limitation according to the first comparative example, the actual value (output horsepower) W of horsepower is calculated from the flow rate of the hydraulic pump and the discharge pressure of the hydraulic pump based on the equation (9). In addition, a flow rate limit value Qm [L / min] for limiting the flow rate of the hydraulic pump is calculated from the following equation with respect to a preset horsepower limit value Wm [kW].
Qm = (60 · η) Wm / P (7)
When the actual horsepower value W exceeds the horsepower limit value Wm, the flow rate command value for commanding the discharge flow rate of the hydraulic pump is limited to the flow rate limit value Qm [L / min] to limit the discharge flow rate of the hydraulic pump. , Thereby limiting the horsepower of the hydraulic pump.
 図4は、第1比較例に係る馬力制限による油圧ポンプの特性を示したグラフである。縦軸は油圧ポンプの吐出流量、横軸は油圧ポンプの吐出圧力を示している。同グラフ中の曲線Wmは、馬力Wmとなる流量と圧力の点を結んだ馬力制限曲線を示している。実線で示した軌跡Pは、ある時刻における流量と圧力の位置を時系列で一定時間毎にプロットしたものである(図中の点a~点i)。第1比較例に係る馬力制限では、圧力が増加して点aで示す時刻で馬力がWmを超えた場合、流量指令値は点線で示すように、点aの圧力において馬力Wmとなる流量に制限される。同様に、次の時刻bにおいても、圧力が増加したならば、流量指令値は、点bの圧力において馬力Wmとなる流量に制限される。ここで、流量指令値の変化に対して圧力が応答遅れなく変化するならば、この操作による軌跡Pはすぐに馬力制限曲線Wm上に収束するはずである。しかし、実際には応答遅れがあるため、現在の圧力に基づいて馬力Wmとなる流量を指令すると、図4のように点b~点cにかけて流量を下げ過ぎて点dで馬力がWmを下回ったり、逆に、点d~点eにかけて流量を上げ過ぎて点fでまた馬力がWmを上回ったりと、馬力制限曲線を跨ぐようにして変動を繰り返す。すなわちハンチングが発生してしまう。 FIG. 4 is a graph showing characteristics of the hydraulic pump due to the horsepower limitation according to the first comparative example. The vertical axis represents the discharge flow rate of the hydraulic pump, and the horizontal axis represents the discharge pressure of the hydraulic pump. A curve Wm in the graph indicates a horsepower limit curve connecting the points of flow rate and pressure to be horsepower Wm. A trajectory P indicated by a solid line is a plot of the position of the flow rate and pressure at a certain time in a time series at regular intervals (points a to i in the figure). In the horsepower restriction according to the first comparative example, when the pressure increases and the horsepower exceeds Wm at the time indicated by the point a, the flow rate command value becomes a flow rate at which the horsepower Wm is obtained at the pressure at the point a as indicated by the dotted line. Limited. Similarly, at the next time b, if the pressure increases, the flow rate command value is limited to a flow rate at which the horsepower Wm is obtained at the pressure at the point b. Here, if the pressure changes without delay in response to the change in the flow rate command value, the locus P by this operation should immediately converge on the horsepower limit curve Wm. However, since there is actually a response delay, if a flow rate at which the horsepower is Wm is commanded based on the current pressure, the flow rate is excessively reduced from point b to point c as shown in FIG. 4, and the horsepower falls below Wm at point d. Or, conversely, when the flow rate is increased too much from point d to point e and the horsepower exceeds Wm at point f, the fluctuation is repeated across the horsepower limit curve. That is, hunting occurs.
 これに対し、図5は、本実施の形態1に係る馬力制限による油圧ポンプの特性を示したグラフである。ここでも縦軸は油圧ポンプの吐出流量、横軸は油圧ポンプの吐出圧力を示している。同グラフ中の曲線Wmは、馬力Wmとなる流量と圧力の点を結んだ馬力制限曲線を示している。破線で示した軌跡Pは、ある時刻における流量と圧力の位置を時系列で一定時間毎にプロットしたものである(図中の点a~点d)。実線で示して軌跡P’は、ある時刻における流量とPFCによる補償後の圧力の位置を時系列で一定時間毎にプロットしたものである(図中の点a’~点d’)。本実施の形態1に係る馬力制限では、圧力が増加して点aで示す時刻で馬力がWmを超えた場合、流量指令値は点線で示すように、点a(=点a’)の圧力において馬力Wmとなる流量に制限される。次に、次の時刻bにおいても、圧力が増加したならば、流量指令値は点線で示すように、点b’の補償後の圧力において馬力Wmとなる流量に制限される。ここで、補償後の圧力は、PFCにより流量指令値に対する応答遅れが補償されていて、その遅れは非常に小さいため、この操作による軌跡P’は、すぐに馬力制限曲線Wm上に収束する。さらに、補償後の圧力が収束すれば、実際の圧力の軌跡Pも馬力制限曲線Wmに収束する。すなわちハンチングが低減される。 On the other hand, FIG. 5 is a graph showing the characteristics of the hydraulic pump due to the horsepower limitation according to the first embodiment. Here, the vertical axis represents the discharge flow rate of the hydraulic pump, and the horizontal axis represents the discharge pressure of the hydraulic pump. A curve Wm in the graph indicates a horsepower limit curve connecting the points of flow rate and pressure to be horsepower Wm. A trajectory P indicated by a broken line is a plot of the flow rate and pressure position at a certain time in a time series at regular intervals (points a to d in the figure). A trajectory P ′ indicated by a solid line is a plot of the flow rate at a certain time and the position of the pressure after compensation by the PFC at a certain time interval (points a ′ to d ′ in the figure). In the horsepower limitation according to the first embodiment, when the pressure increases and the horsepower exceeds Wm at the time indicated by point a, the flow rate command value is the pressure at point a (= point a ′) as indicated by the dotted line. The flow rate is limited to a horsepower Wm. Next, at the next time b, if the pressure increases, the flow rate command value is limited to a flow rate at which the horsepower Wm is obtained at the pressure after compensation at the point b ', as indicated by the dotted line. Here, in the compensated pressure, the response delay with respect to the flow rate command value is compensated by the PFC, and the delay is very small. Therefore, the locus P ′ due to this operation immediately converges on the horsepower limit curve Wm. Furthermore, if the compensated pressure converges, the actual pressure locus P also converges to the horsepower limit curve Wm. That is, hunting is reduced.
 次に、実施の形態1と第1の比較例のそれぞれのシミュレーション結果を比較する。シミュレーション条件は、流量指令値Qdを800[L/min]、馬力制限値Wmを200[kW]、油圧シリンダの容積を10[L]とし、リリーフ流量を800[L/min]から250[L/min]まで30秒で変化させた場合を想定する。 Next, the simulation results of the first embodiment and the first comparative example are compared. The simulation condition is that the flow rate command value Qd is 800 [L / min], the horsepower limit value Wm is 200 [kW], the volume of the hydraulic cylinder is 10 [L], and the relief flow rate is 800 [L / min] to 250 [L]. / Min] is assumed to be changed in 30 seconds.
 図6は、第1比較例に係る馬力制限によるシミュレーション結果を示したグラフである。
図6(a)は、馬力実績値の時間応答波形を示し、図6(b)は、馬力制限による油圧ポンプの特性を示している。シミュレーション結果より、第1比較例では開始から15秒を経過してから20秒付近において大幅なハンチングが発生している。
FIG. 6 is a graph showing a simulation result by the horsepower limitation according to the first comparative example.
FIG. 6A shows a time response waveform of the actual horsepower value, and FIG. 6B shows the characteristics of the hydraulic pump due to the horsepower limitation. From the simulation result, in the first comparative example, significant hunting occurs in the vicinity of 20 seconds after 15 seconds from the start.
 これに対し、図7は、実施の形態1に係る馬力制限によるシミュレーション結果を示したグラフである。図7(a)は、馬力実績値の時間応答波形を示し、図7(b)は、馬力制限による油圧ポンプの特性を示している。シミュレーション結果より、本実施の形態では、第1比較例と比べハンチングが低減されている。
(第2比較例)
 次に、PFC9を用いた本実施の形態に係る馬力制限の効果を第2の比較例と対比して説明する。第2の比較例は、第1の比較例において補償回路を備えるよう構成されている。
On the other hand, FIG. 7 is a graph showing a simulation result by the horsepower limitation according to the first embodiment. FIG. 7A shows the time response waveform of the horsepower actual value, and FIG. 7B shows the characteristics of the hydraulic pump due to the horsepower limitation. From the simulation result, in this embodiment, hunting is reduced as compared with the first comparative example.
(Second comparative example)
Next, the effect of the horsepower limitation according to the present embodiment using the PFC 9 will be described in comparison with the second comparative example. The second comparative example is configured to include a compensation circuit in the first comparative example.
 図8は、第2比較例における補償回路のブロック図である。図8において、Gは制御対象(油圧ポンプ等)、uは操作量(流量指令値)、yは出力(補償後の圧力(圧力実績))、Fは補償要素としての直列フィルタ(位相進みフィルタ)である。第2の比較例は、応答遅れを補償するために制御対象(油圧ポンプ)に対し直列にフィルタを備える。 FIG. 8 is a block diagram of a compensation circuit in the second comparative example. In FIG. 8, G is a control target (hydraulic pump or the like), u is an operation amount (flow command value), y is an output (pressure after compensation (actual pressure)), and F is a series filter (phase advance filter) as a compensation element. ). The second comparative example includes a filter in series with the controlled object (hydraulic pump) in order to compensate for the response delay.
 これに対し、図9は、実施の形態1における補償回路のブロック図である。Gは制御対象(油圧ポンプ等)、uは操作量(流量指令値)、yは出力(補償後の圧力)、Hは並列フィルタ(PFC)である。図9(a)に示すように、本実施形態では、応答遅れを補償するために油圧ポンプに対し並列フィルタを備える。ここで、図9(a)のブロック図を等価変換すると、図9(b)の直列フィルタとして表現される。したがって、第2比較例の直列フィルタをF=1+G-1Hとすれば、本実施形態の並列フィルタ(PFC)と同様の効果が得られることになる。しかしながら、G-1は一般に高次の微分項が含まれるため、現実的にはこのようなフィルタを利用することは不可能である。したがって、補償要素として直列フィルタを用いる第2比較例と補償要素として並列フィルタを適用する本実施の形態とは構成に本質的な相違がある。 On the other hand, FIG. 9 is a block diagram of the compensation circuit in the first embodiment. G is a control target (hydraulic pump or the like), u is an operation amount (flow rate command value), y is an output (pressure after compensation), and H is a parallel filter (PFC). As shown to Fig.9 (a), in this embodiment, in order to compensate a response delay, a parallel filter is provided with respect to a hydraulic pump. Here, when equivalently converting the block diagram of FIG. 9A, it is expressed as a series filter of FIG. 9B. Therefore, if the series filter of the second comparative example is F = 1 + G −1 H, the same effect as the parallel filter (PFC) of this embodiment can be obtained. However, since G -1 generally includes higher-order differential terms, it is impossible to use such a filter in practice. Accordingly, there is an essential difference in configuration between the second comparative example using a series filter as a compensation element and the present embodiment in which a parallel filter is applied as a compensation element.
 さらに、第2比較例の直列フィルタと本実施形態の並列フィルタの効果について説明する。図10は、第2比較例に係る直列フィルタの周波数特性を示したボード線図である。図10(a)は、ゲイン線図を示し、図10(b)は、位相線図をそれぞれ示している。実線は補償後の特性、H(s)は直列フィルタの特性、G(s)は制御対象の特性をそれぞれ示している。高周波領域では、制御対象G(s)の遅れが大きく、位相遅れはほとんど改善できないことを示している。 Further, the effects of the series filter of the second comparative example and the parallel filter of this embodiment will be described. FIG. 10 is a Bode diagram showing the frequency characteristics of the series filter according to the second comparative example. FIG. 10A shows a gain diagram, and FIG. 10B shows a phase diagram. The solid line indicates the characteristic after compensation, H (s) indicates the characteristic of the series filter, and G (s) indicates the characteristic to be controlled. In the high frequency region, the delay of the control object G (s) is large, indicating that the phase delay can hardly be improved.
 これに対し、図11は、実施の形態1に係る並列フィルタの周波数特性を示したボード線図である。図11(a)は、ゲイン線図を示し、図11(b)は、位相線図をそれぞれ示している。実線は補償後の特性、H(s)は直列フィルタの特性、G(s)は制御対象の特性をそれぞれ示している。図11において低周波数領域では、補償後の特性が制御対象の特性G(s)とほぼ等しくなる、一方で、高周波領域では、補償後の特性が並列フィルタの特性H(s)とほぼ等しくなり、位相遅れをなくすことができる。 On the other hand, FIG. 11 is a Bode diagram showing the frequency characteristics of the parallel filter according to the first embodiment. FIG. 11A shows a gain diagram, and FIG. 11B shows a phase diagram. The solid line indicates the characteristic after compensation, H (s) indicates the characteristic of the series filter, and G (s) indicates the characteristic to be controlled. In FIG. 11, in the low frequency region, the compensated characteristic is substantially equal to the control target characteristic G (s), while in the high frequency region, the compensated characteristic is substantially equal to the parallel filter characteristic H (s). The phase delay can be eliminated.
 ところで、馬力制限では、式(7)のように、馬力制限値Wmを圧力Pで割って流量制限値Qmを求めているが、この式(7)を動作点(圧力P0)のまわりで線形化すると、次式(8)のように表現できる。 Meanwhile, the horsepower limits, as in Equation (7), but by dividing the horsepower limit value Wm at the pressure P seeking flow restriction value Qm, around the operating point of the equation (7) (the pressure P 0) When linearized, it can be expressed as the following equation (8).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式(8)を圧力のフィードバック制御と見なせば、(60η)Wm/P0 2はフィードバックゲインに相当し、動作点の圧力P0が低い場合は非常に大きなゲインとなることがわかる。フィードバック制御の理論では、位相遅れ180度以上の応答遅れとなる周波数領域があれば、一定以上の大きさのゲインでフィードバックを行ったとき不安定になる。 If equation (8) is regarded as pressure feedback control, it can be seen that (60η) Wm / P 0 2 corresponds to the feedback gain, and that the gain becomes very large when the pressure P 0 at the operating point is low. In the theory of feedback control, if there is a frequency region in which a response delay is 180 degrees or more in phase delay, it becomes unstable when feedback is performed with a gain larger than a certain level.
 第2比較例の直列フィルタによる補償では、高周波領域で位相遅れが180度以上となることは避けられないため、ハンチングが発生する可能性がある。一方、本実施の形態のPFCによる補償では、全周波数領域にわたって位相遅れを小さくできるため、ハンチングを発生しにくくすることができる。 In the compensation using the series filter of the second comparative example, it is inevitable that the phase lag becomes 180 degrees or more in the high frequency region, so that hunting may occur. On the other hand, in the compensation by the PFC of the present embodiment, the phase lag can be reduced over the entire frequency region, so that hunting can be made difficult to occur.
 (第3比較例)
 次に、PFC9を用いた本実施の形態に係る馬力制限の効果を第3比較例と対比して説明する。第3比較例は、PFCを馬力のフィードバック制御に適用した馬力制限の構成について説明する。
(Third comparative example)
Next, the effect of the horsepower limitation according to the present embodiment using the PFC 9 will be described in comparison with the third comparative example. In the third comparative example, a configuration of horsepower limitation in which PFC is applied to feedback control of horsepower will be described.
 通常、PFCは、制御量(出力)をその位相を反転させてフィードバックする(負帰還)ような制御に適用される。このPFCを単純に適用した場合の馬力制限の構成は図12のブロック図のようになる。 Normally, PFC is applied to control such that a control amount (output) is fed back by inverting its phase (negative feedback). The configuration of the horsepower limit when this PFC is simply applied is as shown in the block diagram of FIG.
 しかしながら、一般に油圧ポンプの馬力は吐出流量と吐出圧力との積となるため、図12のブロック図の制御対象(流量→馬力)は非線形な特性となるため、PFCで応答遅れを補償する考え方をそのまま適用することはできない。 However, since the horsepower of a hydraulic pump is generally the product of the discharge flow rate and the discharge pressure, the control target (flow rate → horsepower) in the block diagram of FIG. 12 has a non-linear characteristic. It cannot be applied as it is.
 そこで、本実施の形態では、油圧ポンプでは、流量を操作して圧力を変化させることができるとともに、その変化させた圧力を計測できることを利用し、図2のブロック図のような構成としている。 Therefore, in the present embodiment, the hydraulic pump is configured as shown in the block diagram of FIG. 2 by utilizing the fact that the pressure can be changed by manipulating the flow rate and the changed pressure can be measured.
 これにより、制御対象(流量→圧力)は基本的には線形近似できるような特性となり、PFCの補償の考え方を適用できる。さらに、PID制御器などの補償要素も不要となり、非常に簡単な構成で馬力制限を実現することができる。 Thus, the control target (flow rate → pressure) basically has a characteristic that can be linearly approximated, and the concept of PFC compensation can be applied. Further, no compensation element such as a PID controller is required, and the horsepower limit can be realized with a very simple configuration.
 さらに、本実施の形態に係る馬力制限の構成は、図2のブロック図に示すように、フィードバックされる圧力実績値と指令値(馬力)の次元が異なっており、且つフィードバックされる圧力実績値の位相は反転されない。そして、このような圧力実績値を割り算の形でフィードバックすることで、PFCを利用できるように工夫してある。このような点で、本実施の形態の馬力制限の制御は、通常のフィードバック制御とは本質的に相違しており、かつ「馬力=流量×圧力」で表現できる油圧ポンプならではの独創的な構成である。 Further, as shown in the block diagram of FIG. 2, the configuration of the horsepower restriction according to the present embodiment is different in the dimension of the feedback actual pressure value and the command value (horsepower), and the actual feedback pressure value is fed back. The phase of is not reversed. And it is devised so that PFC can be used by feeding back such pressure actual value in the form of division. In this respect, the horsepower limit control according to the present embodiment is essentially different from normal feedback control, and an original configuration unique to a hydraulic pump that can be expressed by “horsepower = flow rate × pressure”. It is.
 (実施の形態2)
 次に、本発明の実施の形態2について、図13を用いて説明する。尚、実施の形態1と共通する構成の説明は省略し、相違する構成についてのみ説明する。
(Embodiment 2)
Next, Embodiment 2 of the present invention will be described with reference to FIG. The description of the configuration common to the first embodiment is omitted, and only the configuration that is different will be described.
 図13は、本発明の実施の形態2に係る馬力制限装置のブロック図である。本実施の形態は、実施の形態1と比較すると、馬力制限コントローラ7が、加減算器13を更に備え、加減算器13により、馬力制限後の流量指令値Qcから流量指令値Qdを減算した値をPFC9の入力とした点が相違する。 FIG. 13 is a block diagram of a horsepower limiting device according to Embodiment 2 of the present invention. Compared with Embodiment 1, this embodiment further includes an adder / subtractor 13 in which the horsepower limit controller 7 subtracts a value obtained by subtracting the flow rate command value Qd from the flow rate command value Qc after the horsepower limit. The difference is that the input is PFC9.
 ここで、PFC9は基本的に高周波領域の応答を補正するので、流量指令値Qdの変動がそのような高周波領域にない場合(典型的には流量指令値Qdが一定の場合)には、PFC9への入力から流量指令値Qdの成分を差し引いてもPFC9の効果が損なわれることはない。このような構成としたことで、例えば油圧ポンプ1の起動時などに負荷がない状態で流量指令値を0から規定値までステップ状に上げた際、実際の圧力は上がらないが、PFC9の補償値が大きくなり、馬力制限が働いてしまうことを防ぐことができる。 Here, since the PFC 9 basically corrects the response in the high frequency region, when there is no fluctuation in the flow rate command value Qd in such a high frequency region (typically when the flow rate command value Qd is constant), the PFC 9 Even if the component of the flow rate command value Qd is subtracted from the input to, the effect of the PFC 9 is not impaired. With this configuration, for example, when the flow rate command value is raised in steps from 0 to a specified value when there is no load when the hydraulic pump 1 is started, the actual pressure does not increase, but the compensation of the PFC 9 It can prevent the value from increasing and the horsepower limit from working.
 (その他の実施の形態)
 上記各実施の形態においては、PFC9は、定数ゲインと、2次ハイパスフィルタ及び1次ローパスフィルタを有する帯域通過フィルタとで構成されたが、これに限られるものではない。流量指令に対する油圧ポンプの吐出圧力の応答遅れを補償することができる構成であれば、PFC9は、例えば定数ゲインと、その他の帯域通過フィルタにより構成されてもよいし、定数ゲインのみで構成されてもよい。
(Other embodiments)
In each of the above embodiments, the PFC 9 is composed of a constant gain and a bandpass filter having a secondary high-pass filter and a primary low-pass filter, but is not limited to this. As long as the response delay of the discharge pressure of the hydraulic pump with respect to the flow rate command can be compensated, the PFC 9 may be configured by, for example, a constant gain and other band pass filters, or may be configured only by the constant gain. Also good.
 また、上記各実施の形態においては、油圧ポンプ1においてモータ2の回転数は一定とし、油圧ポンプ1への指令は、流量指令値をポンプの傾転角の指令に変換して行われたが、これに限られるものではなく、油圧ポンプの傾転角を一定とし、油圧ポンプへの指令は、流量指令値をモータの回転数の指令に変換して行われるようにしてもよい。 In each of the above embodiments, the rotational speed of the motor 2 in the hydraulic pump 1 is constant, and the command to the hydraulic pump 1 is performed by converting the flow rate command value into a command for the tilt angle of the pump. However, the present invention is not limited to this, and the tilt angle of the hydraulic pump may be fixed, and the command to the hydraulic pump may be performed by converting the flow rate command value into a command for the rotational speed of the motor.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
 本発明は、油圧ポンプの吐出圧力に基づいてポンプの吐出流量を制限する油圧ポンプの分野に用いることができる。 The present invention can be used in the field of hydraulic pumps that restrict the discharge flow rate of a pump based on the discharge pressure of the hydraulic pump.
1 油圧ポンプ
2 モータ
3 油圧アクチュエータ
4 制御弁
5 圧力センサ
6 操作器
7、70 馬力制限コントローラ
8 レギュレータ
9 PFC(並列フィードフォワード補償器)
10 加算器
11 流量制限値演算部
12 流量制限部
13 加減算器
20 油路
100 油圧駆動システム
101 馬力制限装置
102 油圧ポンプユニット
DESCRIPTION OF SYMBOLS 1 Hydraulic pump 2 Motor 3 Hydraulic actuator 4 Control valve 5 Pressure sensor 6 Actuator 7, 70 Horsepower limit controller 8 Regulator 9 PFC (parallel feedforward compensator)
10 Adder 11 Flow Limit Value Calculation Unit 12 Flow Limit Unit 13 Adder / Subtractor 20 Oil Path 100 Hydraulic Drive System 101 Horse Power Limiting Device 102 Hydraulic Pump Unit

Claims (6)

  1.  油圧ポンプユニットの吐出圧力を検出する圧力検出器と、
     前記油圧ポンプユニットに対して馬力制限された吐出流量を指令する馬力制限後流量指令に基づいて、前記圧力検出器により検出された吐出圧力を補償するための補償値を出力する並列フィードフォワード補償器と、
     前記並列フィードフォワード補償器により出力された補償値による補償後の吐出圧力及び予め設定された前記油圧ポンプユニットの馬力制限値に基づいて、前記油圧ポンプユニットの吐出流量の制限値を演算する流量制限値演算部と、
     前記流量制限値演算部により演算された流量制限値及び前記油圧ポンプユニットの吐出流量を指令する流量指令に基づいて、前記馬力制限後流量指令を前記油圧ポンプユニットに出力する流量制限部と、
    を備える馬力制限装置。
    A pressure detector for detecting the discharge pressure of the hydraulic pump unit;
    A parallel feedforward compensator that outputs a compensation value for compensating the discharge pressure detected by the pressure detector based on a post-horsepower limited flow command that commands a discharge flow limited in horsepower to the hydraulic pump unit When,
    A flow rate limit for calculating a discharge flow rate limit value of the hydraulic pump unit based on the compensated discharge pressure by the compensation value output by the parallel feedforward compensator and a preset horsepower limit value of the hydraulic pump unit A value calculator,
    Based on the flow rate limit value calculated by the flow rate limit value calculation unit and the flow rate command that commands the discharge flow rate of the hydraulic pump unit, the flow rate limiting unit that outputs the post-horsepower limited flow rate command to the hydraulic pump unit;
    A horsepower limiting device comprising:
  2.  前記並列フィードフォワード補償器は、定数ゲインと帯域通過フィルタのいずれか一方又はその両方により構成される、請求項1に記載の馬力制限装置。 The horsepower limiting device according to claim 1, wherein the parallel feedforward compensator is configured by one or both of a constant gain and a band pass filter.
  3.  前記並列フィードフォワード補償器への入力は、前記油圧ポンプユニットに対する流量指令から、操作器からの流量指令値を減算することにより構成される請求項1又は請求項2に記載の馬力制限装置。 The horsepower limiting device according to claim 1 or 2, wherein the input to the parallel feedforward compensator is configured by subtracting a flow rate command value from an operating unit from a flow rate command to the hydraulic pump unit.
  4.  油圧ポンプユニットの吐出圧力を検出することと、
     前記油圧ポンプユニットに対して馬力制限された吐出流量を指令する馬力制限後流量指令に基づいて、前記検出された吐出圧力を補償するための補償値を出力することと、
     前記出力された補償値による補償後の吐出圧力及び予め設定された前記油圧ポンプユニットの馬力制限値に基づいて、前記油圧ポンプユニットの吐出流量の制限値を演算することと、
     前記演算された流量制限値及び前記油圧ポンプユニットの吐出流量を指令する流量指令に基づいて、前記馬力制限後流量指令を前記油圧ポンプユニットに出力することと、
    を備える馬力制限方法。
    Detecting the discharge pressure of the hydraulic pump unit;
    Outputting a compensation value for compensating the detected discharge pressure on the basis of a post-horsepower limited flow command that commands a horsepower-limited discharge flow rate to the hydraulic pump unit;
    Calculating a discharge flow rate limit value of the hydraulic pump unit based on a discharge pressure after compensation by the output compensation value and a preset horsepower limit value of the hydraulic pump unit;
    Based on the calculated flow rate limit value and a flow rate command that commands the discharge flow rate of the hydraulic pump unit, outputting the post-horsepower limited flow rate command to the hydraulic pump unit;
    A horsepower limiting method comprising:
  5.  前記補償値を出力することは、定数ゲインと帯域通過フィルタのいずれか一方又はその両方により構成された並列フィードフォワード補償器により出力することである、請求項4に記載の馬力制限方法。 The horsepower limiting method according to claim 4, wherein outputting the compensation value is outputting by a parallel feedforward compensator configured by one or both of a constant gain and a band pass filter.
  6.  前記並列フィードフォワード補償器への入力は、油圧ポンプユニットに対する流量指令から、操作器からの流量指令値を減算することである、請求項4又は請求項5に記載の馬力制限方法。 The horsepower limiting method according to claim 4 or 5, wherein the input to the parallel feedforward compensator is to subtract a flow command value from an operating device from a flow command to the hydraulic pump unit.
PCT/JP2013/003825 2012-06-28 2013-06-19 Horsepower limiting device and horsepower limiting method WO2014002435A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147018501A KR101567446B1 (en) 2012-06-28 2013-06-19 Horsepower limiting device and horsepower limiting method
CN201380022689.1A CN104271950B (en) 2012-06-28 2013-06-19 Horsepower restricting means and horsepower method for limiting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-145684 2012-06-28
JP2012145684A JP5948165B2 (en) 2012-06-28 2012-06-28 Horsepower limiting device and horsepower limiting method

Publications (1)

Publication Number Publication Date
WO2014002435A1 true WO2014002435A1 (en) 2014-01-03

Family

ID=49782634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003825 WO2014002435A1 (en) 2012-06-28 2013-06-19 Horsepower limiting device and horsepower limiting method

Country Status (4)

Country Link
JP (1) JP5948165B2 (en)
KR (1) KR101567446B1 (en)
CN (1) CN104271950B (en)
WO (1) WO2014002435A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3524482A4 (en) * 2016-09-29 2020-08-19 Hitachi Construction Machinery Co., Ltd. Hybrid construction machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3190422B1 (en) * 2016-01-07 2018-10-17 Braun GmbH Electronic circuit for measuring currents during charging and discharging of a secondary battery
US10450726B2 (en) 2016-09-28 2019-10-22 Hitachi Construction Machinery Co., Ltd. Pump control system of work machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192200A (en) * 1984-10-09 1986-05-10 Mitsubishi Heavy Ind Ltd Controller of main shaft generator system
JPH10177402A (en) * 1996-12-16 1998-06-30 San Tesuto Kk Simple adaptive controller
JP2001065503A (en) * 1999-08-27 2001-03-16 Sumitomo Constr Mach Co Ltd Hydraulic pump control circuit for construction machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525043A (en) * 1993-12-23 1996-06-11 Caterpillar Inc. Hydraulic power control system
KR100212645B1 (en) * 1994-09-30 1999-08-02 토니헬샴 Discharge flow controlling unit in hydraulic pump
US20040062658A1 (en) * 2002-09-27 2004-04-01 Beck Thomas L. Control system for progressing cavity pumps
KR101648982B1 (en) * 2009-12-24 2016-08-18 두산인프라코어 주식회사 Hydraulic pump control apparatus for construction machinery and hydraulic pump control method for the same
CN103003498B (en) * 2010-07-19 2015-08-26 沃尔沃建造设备有限公司 For controlling the system of the hydraulic pump in construction machinery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192200A (en) * 1984-10-09 1986-05-10 Mitsubishi Heavy Ind Ltd Controller of main shaft generator system
JPH10177402A (en) * 1996-12-16 1998-06-30 San Tesuto Kk Simple adaptive controller
JP2001065503A (en) * 1999-08-27 2001-03-16 Sumitomo Constr Mach Co Ltd Hydraulic pump control circuit for construction machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3524482A4 (en) * 2016-09-29 2020-08-19 Hitachi Construction Machinery Co., Ltd. Hybrid construction machine

Also Published As

Publication number Publication date
JP5948165B2 (en) 2016-07-06
CN104271950B (en) 2016-04-20
CN104271950A (en) 2015-01-07
JP2014009607A (en) 2014-01-20
KR101567446B1 (en) 2015-11-11
KR20140100981A (en) 2014-08-18

Similar Documents

Publication Publication Date Title
JP5731933B2 (en) Adaptive control apparatus and adaptive control method, and control apparatus and control method for injection molding machine
US10584645B2 (en) Compressor control device, compressor control system, and compressor control method
KR101716943B1 (en) Hybrid construction machinery
EP2476910B1 (en) Method for preventing surge in a dynamic compressor using adaptive preventer control system and adaptive safety margin
JP5108644B2 (en) Boiler control device and boiler control method
DK3156646T3 (en) WIND ENERGY INSTALLATION WITH A SPEED AND GENERATOR REGULATOR
WO2015004885A1 (en) Control device for motor
JP2004211669A (en) Servo valve controlling device and abnormality detection device of servo valve control system
CN110080885B (en) Method and device for controlling gas turbine and storage medium
WO2012140944A1 (en) Water supply pump control device
WO2014002435A1 (en) Horsepower limiting device and horsepower limiting method
US8005554B2 (en) Device for controlling a regulated system, and an engine including such a device
US7265511B2 (en) Motor control device
JP2010020704A (en) Control device
WO2014087978A1 (en) Work machine
JP2008097334A (en) Servo controller and control method therefor
JP6282481B2 (en) Underwater vehicle control system
WO2020261649A1 (en) Parameter adjustment method
CN113027676B (en) Hydraulic variable pitch control method and device of wind generating set
JP4839992B2 (en) Digital hydropower control system
JP2004288012A (en) Position controller for motor
JP2012118785A (en) Tuning of double-degree-of-freedom control system
JP5457894B2 (en) Full closed position controller
KR101094988B1 (en) Anti-windup pid controller
JP2007285307A (en) Inverter-drive rotary compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380022689.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809389

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147018501

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13809389

Country of ref document: EP

Kind code of ref document: A1