JP2000051606A - Gas permeation membrane apparatus - Google Patents

Gas permeation membrane apparatus

Info

Publication number
JP2000051606A
JP2000051606A JP10223837A JP22383798A JP2000051606A JP 2000051606 A JP2000051606 A JP 2000051606A JP 10223837 A JP10223837 A JP 10223837A JP 22383798 A JP22383798 A JP 22383798A JP 2000051606 A JP2000051606 A JP 2000051606A
Authority
JP
Japan
Prior art keywords
gas
chamber
permeable membrane
liquid
gas permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10223837A
Other languages
Japanese (ja)
Inventor
Hiroshi Sugawara
広 菅原
Kofuku Yamashita
幸福 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP10223837A priority Critical patent/JP2000051606A/en
Publication of JP2000051606A publication Critical patent/JP2000051606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas permeation membrane apparatus whose treatment efficiency is not deteriorated for a long duration. SOLUTION: This gas permeation membrane apparatus 10 is a degassing apparatus for an objective liquid to be treated and is provided with a gas permeation membrane module 18 comprising a liquid chamber 14 and a gas chamber 16 connected to each other through a gas permeation membrane 12, a heating apparatus 20 for heating the gas to be sent to the gas permeation membrane module 18, a vacuum pump 22 for keeping the gas chamber 16 in decreased pressure state, and a gas source 24 for supplying nitrogen gas to the gas chamber 16. When a gas is sent to the gas chamber 16, the gas is so heated by the heating apparatus as to keep the temperature of nitrogen gas measured by a thermometer 36 higher than that of the objective liquid measured by a thermometer 38.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気体透過膜装置に
関し、更に詳細には、長時間にわたり効率良く被処理液
を脱気したり、気体を被処理液に溶解させたりすること
ができる気体透過膜装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas permeable membrane device, and more particularly, to a gas capable of efficiently degassing a liquid to be treated or dissolving a gas in the liquid to be treated over a long period of time. The present invention relates to a permeable membrane device.

【0002】[0002]

【従来の技術】気体透過膜装置は、気体透過膜と、気体
透過膜により区画された液体室と気体室とを有する気体
透過膜モジュールを備えて、気体透過膜を介して気体を
気体室から液体室に、又は気体を液体室から気体室に移
動させる装置である。気体透過膜により区画された2室
のうちの一方の液体室は、被処理液が流れる流路であ
り、他方の気体室は、被処理液に溶解させる導入ガス、
あるいは被処理液から脱気されたガス、水蒸気等の気体
の流路となっている。気体透過膜には、一般に、疎水性
の中空糸膜からなる気体透過膜が多用されていて、近年
は、液体の通水差圧が小さく、モジュールの大型化が容
易であるという理由から、気体が中空糸膜の内側中空部
を、被処理液が中空糸膜の外側を流れる、いわゆる外圧
型のモジュールが、通常、使用されている。
2. Description of the Related Art A gas permeable membrane device includes a gas permeable membrane, a gas permeable membrane module having a liquid chamber and a gas chamber defined by the gas permeable membrane, and allows gas to flow from the gas chamber through the gas permeable membrane. It is a device for moving gas to the liquid chamber or gas from the liquid chamber to the gas chamber. One of the two chambers defined by the gas permeable membrane is a flow path through which the liquid to be processed flows, and the other gas chamber is an introduction gas to be dissolved in the liquid to be processed.
Alternatively, it is a flow path for a gas such as a gas or water vapor degassed from the liquid to be processed. Generally, a gas permeable membrane composed of a hydrophobic hollow fiber membrane is frequently used as a gas permeable membrane. In recent years, a gas pressure permeable differential pressure of a liquid is small, and it is easy to increase the size of a module. In general, a so-called external pressure type module is used, in which the liquid to be treated flows outside the hollow fiber membrane inside the hollow fiber membrane.

【0003】ここで、図3を参照しながら、外圧型の気
体透過膜モジュールの構成を説明する。図3は外圧型の
気体透過膜モジュールの構成の一例を示す斜視図であ
る。気体透過膜モジュール50は、外圧型の気体透過膜
モジュールの例であって、図3に示すように、円筒形の
ハウジング52と、ハウジング52のほぼ長手方向中間
点でハウジング52を仕切り板54により仕切ってそれ
ぞれ区画された第1室56及び第2室58と、ハウジン
グ52の一方の端部60(以下、第1端部60と言う)
と他方の端部62(以下、第2端部62と言う)との間
でハウジング52の中央部を長手方向に延在し、仕切り
板54により仕切られた配液管64及び集液管66と、
配液管64と集液管66の周りに配置され、仕切り板5
4を貫通して第1端部60と第2端部62との間に延在
する多数本の中空糸膜68とを備えている。
Here, the configuration of an external pressure type gas permeable membrane module will be described with reference to FIG. FIG. 3 is a perspective view showing an example of the configuration of the external pressure type gas permeable membrane module. The gas permeable membrane module 50 is an example of an external pressure type gas permeable membrane module. As shown in FIG. 3, a housing 52 having a cylindrical shape and a partition plate 54 are provided at the midpoint in the longitudinal direction of the housing 52 by a partition plate 54. A first chamber 56 and a second chamber 58 that are partitioned and partitioned, respectively, and one end 60 of the housing 52 (hereinafter, referred to as a first end 60).
A liquid distribution pipe 64 and a liquid collection pipe 66 that extend in the longitudinal direction at the center of the housing 52 between the liquid supply pipe 64 and the other end 62 (hereinafter, referred to as a second end 62). When,
The partition plate 5 is disposed around the liquid distribution pipe 64 and the liquid collection pipe 66.
4 and a number of hollow fiber membranes 68 extending between the first end 60 and the second end 62.

【0004】配液管64及び集液管66は、それぞれ、
多数の貫通孔70を管壁に備え、貫通孔70を介して液
体を第1室56内に配液し、また第2室58内から液体
を集液する。仕切り板54は、ハウジング52の内径よ
り僅かに小さな直径を有する円板状の板であって、配液
管64から第1室56に流出した液体は、多数本の中空
糸膜68の間を縫うようにして流れ、次いで、ハウジン
グ52と仕切り板54との間の間隙72を介して第1室
56から第2室58に流入し、再び多数本の中空糸膜6
8の間を縫うようにして流れた後に集液管66に流入す
る。中空糸膜68は、例えば、多孔質ポリプロピレン・
フィルム製で、膜厚が30μm 、有効孔径が0.05μ
m 、空孔率が30%の中空糸膜である。
The liquid distribution pipe 64 and the liquid collection pipe 66 are respectively
A large number of through holes 70 are provided in the tube wall, and the liquid is distributed into the first chamber 56 through the through holes 70, and the liquid is collected from inside the second chamber 58. The partition plate 54 is a disk-shaped plate having a diameter slightly smaller than the inner diameter of the housing 52, and the liquid flowing out of the liquid distribution pipe 64 into the first chamber 56 passes between a number of hollow fiber membranes 68. It flows in a sewn manner, and then flows from the first chamber 56 to the second chamber 58 through the gap 72 between the housing 52 and the partition plate 54, and again returns to the plurality of hollow fiber membranes 6.
Then, the water flows into the liquid collecting pipe 66 after being sewn through the gap 8. The hollow fiber membrane 68 is made of, for example, porous polypropylene.
Made of film, thickness 30μm, effective pore size 0.05μ
m, a hollow fiber membrane having a porosity of 30%.

【0005】液体は、第1端部60に設けられた液体入
口ノズル74から配液管64に流入し、集液管66を経
て第2端部62に設けられた液体出口ノズル76から外
部に流出する。気体と液体とが向流で流れる方式では、
気体分配室78が第2端部62に、気体集気室80が第
1端部60に、それぞれ、設けられ、中空糸膜68は気
体分配室78から気体集気室80まで延在している。気
体は、第2端部62に設けられた気体入口ノズル82か
ら気体分配室78を経て中空糸膜68内に流入し、次い
で第1端部60に設けられた気体集気室80を経て気体
出口ノズル84から外部に流出する。尚、この例では、
気体室は中空糸膜68の内側中空部及び気体分配室78
であり、場合によっては気体集気室80も含める。液体
室は中空糸膜68の外側の第1室56及び第2室58で
ある。また、この例では、気体と液体とが向流で流れる
方式であるが、これに代えて、気体と液体とが並流で流
れる方式としても差し支えない。気体透過膜モジュール
は、市販されていて、例えば、セルガード株式会社から
商品名リキ・セル(商標登録)エクストラフローとして
販売されている。
The liquid flows into a liquid distribution pipe 64 from a liquid inlet nozzle 74 provided at the first end 60, and flows out of a liquid outlet nozzle 76 provided at the second end 62 via a liquid collecting pipe 66. leak. In a method in which gas and liquid flow in countercurrent,
A gas distribution chamber 78 is provided at the second end 62 and a gas collection chamber 80 is provided at the first end 60, respectively, and the hollow fiber membrane 68 extends from the gas distribution chamber 78 to the gas collection chamber 80. I have. The gas flows into the hollow fiber membrane 68 from the gas inlet nozzle 82 provided at the second end 62 through the gas distribution chamber 78, and then flows through the gas collection chamber 80 provided at the first end 60. It flows out from the outlet nozzle 84 to the outside. In this example,
The gas chamber is a hollow portion inside the hollow fiber membrane 68 and the gas distribution chamber 78.
In some cases, the gas collecting chamber 80 is also included. The liquid chambers are the first chamber 56 and the second chamber 58 outside the hollow fiber membrane 68. In this example, the gas and the liquid flow in countercurrent, but instead, the gas and liquid may flow in parallel. The gas permeable membrane module is commercially available, for example, sold by Celgard Co., Ltd. under the trade name Riki Cell (trademark) Extra Flow.

【0006】気体透過膜装置は、可動部分が無く、保守
点検が容易なことから、被処理液を脱気して気体を殆ど
溶解していないか、或いは特定の気体が除去された処理
液を得る脱気処理、又は被処理液にガスを溶解させてガ
スを溶解した処理液を得るガス溶解処理の装置として、
盛んに使用されている。例えば、第1の適用分野は、気
体透過膜装置の液体室側に純水等の水を、気体室側に窒
素ガス等の不活性気体を流し、水中の酸素、炭酸ガス等
を液体室から気体室に気体透過膜を介して透過させ、水
を脱酸素、脱炭酸する分野である。第2の適用分野は、
気体透過膜装置の液体室側に水を、気体室側に空気を流
し、水中の炭酸ガスを液体室から気体室に気体透過膜を
介して透過させて、水を脱炭酸する脱炭酸処理、また、
逆に、空気中の炭酸ガスを液体室に気体透過膜を介して
透過させ、炭酸ガスを水に溶解する炭酸溶解処理の分野
である。第3の適用分野は、気体透過膜装置の液体室側
に水を、気体室側に炭酸ガス、水素、オゾン、酸素等の
活性気体を流し、気体透過膜を介して活性気体を液体室
に透過させて、活性気体を水に溶解する気体溶解処理の
分野である。第4の適用分野は、気体透過膜装置の液体
室側に水を、気体室側に減圧下で窒素ガス等の不活性気
体を流し、水に溶存した酸素、炭酸ガスを気体透過膜を
介して気体室に透過させて、水を脱酸素、脱炭酸する分
野である。第5の適用分野は、気体透過膜装置の液体室
側に水を、気体室側を減圧にして、水に溶存している殆
どの気体を気体透過膜を介して気体室に透過させて、水
を脱気(ガスフリー)にする脱気処理の分野である。
The gas permeable membrane device has no moving parts and is easy to maintain and inspect. Therefore, the gas to be treated is hardly dissolved by degassing the liquid to be treated, or the treatment liquid from which a specific gas has been removed is used. As an apparatus for the deaeration process to be obtained, or a gas dissolution process for dissolving a gas in a liquid to be processed to obtain a processing solution in which a gas is dissolved,
It is actively used. For example, the first field of application is to flow water such as pure water to the liquid chamber side of the gas permeable membrane device, and to flow an inert gas such as nitrogen gas to the gas chamber side so that oxygen, carbon dioxide gas, and the like in the water flow from the liquid chamber. This is a field in which water is deoxygenated and decarbonated by allowing the gas to pass through a gas chamber through a gas permeable membrane. The second area of application is:
A decarbonation treatment in which water is supplied to the liquid chamber side of the gas permeable membrane device, air is supplied to the gas chamber side, and carbon dioxide gas in the water is transmitted from the liquid chamber to the gas chamber through the gas permeable membrane to decarbonate water. Also,
Conversely, this is the field of carbonic acid dissolving treatment in which carbon dioxide gas in air is transmitted through a gas permeable membrane into a liquid chamber, and the carbon dioxide gas is dissolved in water. A third application field is to flow water to the liquid chamber side of the gas permeable membrane device and to flow an active gas such as carbon dioxide, hydrogen, ozone, or oxygen to the gas chamber side, and to transfer the active gas to the liquid chamber through the gas permeable membrane. It is the field of gas dissolving treatment in which active gas is dissolved in water by permeation. A fourth field of application is to flow water to the liquid chamber side of the gas permeable membrane device, and to flow an inert gas such as nitrogen gas under reduced pressure to the gas chamber side, and to allow oxygen and carbon dioxide dissolved in the water to pass through the gas permeable membrane. This is a field in which water is deoxygenated and decarbonated by allowing the water to pass through a gas chamber. A fifth application field is that water is supplied to the liquid chamber side of the gas permeable membrane device, the pressure in the gas chamber side is reduced, and most of the gas dissolved in the water is transmitted to the gas chamber through the gas permeable membrane. This is the field of degassing treatment for degassing (gas-free) water.

【0007】特に、半導体装置の製造工場に洗浄水等と
して供給する超純水の製造工程では、水から酸素を除去
する脱酸素処理、また炭酸ガスを除去する脱炭酸処理等
の脱気或いはガスフリー処理が必要であって、脱気効率
が高く、設置スペースが小さく、設備・運転コストの低
い等の点から、第1又は第2の適用分野、特に第4の適
用分野で、気体透過膜装置が盛んに使用されている。ま
た、第3のガス溶解の適用分野としては、超純水に水素
ガスを溶解した水(還元性水)や、オゾンガスを溶解し
た水(酸化性水)の製造用装置として使用されている。
[0007] In particular, in the production process of ultrapure water supplied as washing water or the like to a semiconductor device manufacturing plant, deaeration or gas removal such as deoxidation for removing oxygen from water or decarbonation for removing carbon dioxide gas. In the first or second application field, particularly in the fourth application field, the gas permeable membrane is required because free treatment is required, degassing efficiency is high, installation space is small, and equipment and operation costs are low. The equipment is used extensively. As a third field of application of gas dissolution, it is used as an apparatus for producing water (reducing water) in which hydrogen gas is dissolved in ultrapure water or water (oxidizing water) in which ozone gas is dissolved.

【0008】[0008]

【発明が解決しようとする課題】ところで、従来の気体
透過膜装置を使って、上述の第1から第5の適用分野の
処理、例えば超純水にガス溶解処理を施して還元性水、
或いは酸化性水を製造したり、また純水に脱気処理を施
して脱気超純水を製造したりしていると、処理時間の経
過に伴い処理効率が低下し、所定のガス濃度の還元性水
或いは酸化性水を得たり、また所定の脱気率に脱気され
た超純水を得ることが難しかった。そこで、従来から、
処理時間の経過に伴い処理効率が低下することがないよ
うな気体透過膜装置の実現が要望されていた。よって、
本発明の目的は、長時間にわたり処理効率の低下しない
気体透過膜装置を提供することである。
By the way, using a conventional gas permeable membrane device, a treatment in the above-described first to fifth fields of application, for example, a gas dissolving treatment of ultrapure water to reduce water,
Alternatively, if oxidizing water is produced, or if deaerated ultrapure water is produced by subjecting deionized water to deionized water, the treatment efficiency decreases as the treatment time elapses, and a predetermined gas concentration decreases. It has been difficult to obtain reducing water or oxidizing water or to obtain ultrapure water degassed to a predetermined degassing rate. So, conventionally,
There has been a demand for the realization of a gas permeable membrane device in which the processing efficiency does not decrease as the processing time elapses. Therefore,
An object of the present invention is to provide a gas permeable membrane device in which the processing efficiency does not decrease for a long time.

【0009】[0009]

【課題を解決するための手段】本発明者は、従来の気体
透過膜装置で、処理時間の経過と共に処理効率が低下す
る原因を研究し、以下のことを見い出した。気体透過膜
は、選択的にガスを透過させる膜であって、気体透過膜
を透過する流体は気体分子であるものの、液体室を流れ
る水溶液から微量の水と、大量の水蒸気(ガス)が気体
透過膜を透過して気体室側に移動して来る。従来の気体
透過膜装置では、気体透過膜モジュールの気体室に送入
する気体の温度は特に制御されておらず、水蒸気として
気体室に移動して来た水分子は、外気温度の低下などの
外的要因によって容易に凝縮して水(液体)に変化す
る。このようにして気体室に生じた水(液体)は、気体
透過膜の膜面に付着して膜面を覆うために、脱気及び/
又はガス溶解に供される膜面の面積を減少させる。その
結果、処理時間の経過と共に気体透過膜の脱気及び/又
はガス溶解効率が低下する。特に、気体透過膜として中
空糸膜を使っている装置では、中空糸膜が凝縮水で閉塞
されるために、効率の低下が顕著であることが判った。
また、従来は、気体室の大気露出部分で透過ガス成分
(水蒸気)が凝縮して気体室の壁面に付着したり、ある
いは気体送入管や気体排出管の中で凝縮水が発生したり
し、これらの凝縮水が中空糸の端面に流れ込んで気体透
過膜を覆ったり、中空糸膜を閉塞させたりしていた。そ
こで、本発明者は、気体室を流れる気体の温度が、水蒸
気の露点以上の温度であれば、気体室中の水蒸気が凝縮
することはないと考え、実験を重ねて、本発明を完成す
るに到った。
Means for Solving the Problems The present inventor has studied the cause of the decrease in processing efficiency with the lapse of processing time in the conventional gas permeable membrane apparatus, and found the following. The gas permeable membrane is a membrane that selectively allows gas to permeate, and although the fluid that permeates the gas permeable membrane is gas molecules, a small amount of water and a large amount of water vapor (gas) are converted from the aqueous solution flowing through the liquid chamber to the gas. It passes through the permeable membrane and moves to the gas chamber side. In the conventional gas permeable membrane device, the temperature of the gas fed into the gas chamber of the gas permeable membrane module is not particularly controlled, and water molecules that have moved to the gas chamber as water vapor are likely to decrease the outside air temperature. It easily condenses into water (liquid) due to external factors. The water (liquid) generated in the gas chamber in this way adheres to the membrane surface of the gas permeable membrane and covers the membrane surface, so that it is degassed and / or degassed.
Alternatively, the area of the film surface provided for gas dissolution is reduced. As a result, the degassing and / or gas dissolving efficiency of the gas permeable membrane decreases as the processing time elapses. In particular, it has been found that in a device using a hollow fiber membrane as a gas permeable membrane, the hollow fiber membrane is blocked by condensed water, so that the efficiency is significantly reduced.
Conventionally, a permeated gas component (water vapor) is condensed on the exposed portion of the gas chamber and adheres to the wall of the gas chamber, or condensed water is generated in a gas inlet pipe or a gas discharge pipe. However, such condensed water flows into the end face of the hollow fiber to cover the gas permeable membrane or close the hollow fiber membrane. Therefore, the present inventor considers that if the temperature of the gas flowing through the gas chamber is equal to or higher than the dew point of water vapor, the water vapor in the gas chamber will not condense, and repeats the experiment to complete the present invention. Reached.

【0010】上記目的を達成するために、本発明に係る
脱気用の気体透過膜装置(以下、第1の発明と言う)
は、気体透過膜と、気体透過膜により区画された液体室
と気体室とを有する気体透過膜モジュールを備え、第1
の気体を溶存した被処理液を液体室に流し、かつ第1の
気体とは異なる第2の気体を気体室に流し、気体透過膜
を介して第1の気体を液体室から気体室に透過させて被
処理液を脱気する気体透過膜装置において、気体透過膜
モジュールの気体室に流入させる第2の気体を加熱する
加熱手段を備えていることを特徴としている。第1の発
明において、第2の気体を常圧下又は加圧下の気体室に
流してもよいが、気体室を減圧し、この減圧下の気体室
に第2の気体を流す方がより効果的な脱気処理を行うこ
とができるので、通常は減圧下で行う。また、減圧下の
場合の方が、気体透過膜を透過する水蒸気の量が多くな
って気体室側に凝縮水が生じ易くなるので、本発明の効
果がより一層発揮される。
In order to achieve the above object, a gas permeable membrane device for degassing according to the present invention (hereinafter referred to as a first invention).
Comprises a gas permeable membrane, a gas permeable membrane module having a liquid chamber and a gas chamber partitioned by the gas permeable membrane,
The liquid to be treated in which the gas is dissolved flows into the liquid chamber, and the second gas different from the first gas flows into the gas chamber, and the first gas permeates from the liquid chamber to the gas chamber through the gas permeable membrane. The gas permeable membrane device for degassing the liquid to be treated is characterized by comprising a heating means for heating the second gas flowing into the gas chamber of the gas permeable membrane module. In the first invention, the second gas may flow into the gas chamber under normal pressure or under pressure, but it is more effective to reduce the pressure in the gas chamber and to flow the second gas into the gas chamber under reduced pressure. Since the deaeration process can be performed, it is usually performed under reduced pressure. Further, under reduced pressure, the amount of water vapor passing through the gas permeable membrane is increased, and condensed water is more likely to be generated on the gas chamber side, so that the effect of the present invention is further exhibited.

【0011】本発明に係るガス溶解用の気体透過膜装置
(以下、第2の発明と言う)は、気体透過膜と、気体透
過膜により区画された液体室と気体室とを有する気体透
過膜モジュールを備え、被処理液を液体室に流し、かつ
気体を気体室に流し、気体透過膜を介して気体を気体室
から液体室に透過させて気体を被処理液に溶解させる気
体透過膜装置において、気体透過膜モジュールの気体室
に流入させる気体を加熱する加熱手段を備えていること
を特徴としている。第2の発明で、気体室の圧力は特に
限定されないが、一般的には、常圧、或いはそれより高
い圧力であることが好ましい。
A gas permeable membrane device for dissolving gas according to the present invention (hereinafter referred to as a second invention) is a gas permeable membrane having a gas permeable membrane, and a liquid chamber and a gas chamber partitioned by the gas permeable membrane. A gas permeable membrane device, comprising a module, for flowing a liquid to be processed into a liquid chamber, flowing a gas to a gas chamber, and transmitting gas from the gas chamber to the liquid chamber through a gas permeable membrane to dissolve the gas in the liquid to be processed. Is characterized in that a heating means is provided for heating the gas flowing into the gas chamber of the gas permeable membrane module. In the second invention, the pressure of the gas chamber is not particularly limited, but generally, it is preferably normal pressure or a higher pressure.

【0012】第1及び第2の発明で使用する気体透過膜
は、気体を透過でき、液体を透過しにくいものである限
り、その構造、材料、形式には制約はなく、例えば平膜
でも、中空糸膜でも、スパイラル膜でも良いが、好適に
は、単位体積当たりの膜面積が高く、装置を小型化でき
る中空糸膜が好ましい。また、加熱手段は、その構成、
形式に制約はなく、例えば温水、スチーム等と気体とを
熱交換して、気体を加熱する熱交換器、燃焼炉形式の加
熱器、電熱線を発熱体とした加熱器等がある。第1及び
第2の発明では、被処理液の組成には制約はなく、例え
ば水、油等に適用できる。被処理液から気体側に透過し
て凝縮する虞のある透過気体は、水蒸気に限らず、溶媒
であれば溶媒の気化ガスでも良い。気体の加熱温度は、
理論的には、気体中の透過ガス成分の露点、例えば水蒸
気の露点温度以上にすれば良いが、気体中の透過ガス成
分の露点温度は気体透過膜の透過ガスの透過率、気体の
圧力、透過ガスの蒸気圧曲線、被処理液の組成等に複雑
に関係するので、実用的には被処理液の温度以上にする
ことが望ましい。しかしながら、それ以下の温度であっ
ても、気体を加熱することによって被処理液との温度差
を極力少なくすることにより、凝縮液の発生を極力防止
することができる。気体の温度は高いほど、本発明の目
的に適うものの、気体透過膜、ハウジング、封止剤、パ
ッキン等の耐熱温度以下、すなわちモジュールの耐熱温
度以下にする。
The gas permeable membrane used in the first and second inventions is not limited in its structure, material and form as long as it is permeable to gas and difficult to permeate liquid. A hollow fiber membrane or a spiral membrane may be used, but a hollow fiber membrane having a large membrane area per unit volume and capable of miniaturizing the apparatus is preferable. Further, the heating means has its configuration,
There is no limitation on the type, and there are, for example, a heat exchanger for exchanging heat with gas such as hot water or steam to heat the gas, a heater of a combustion furnace type, a heater using a heating wire as a heating element, and the like. In the first and second inventions, the composition of the liquid to be treated is not limited, and can be applied to, for example, water and oil. The permeated gas that is likely to be condensed by passing from the liquid to be treated to the gas side is not limited to water vapor, but may be a vaporized gas of the solvent as long as it is a solvent. The heating temperature of the gas is
Theoretically, the dew point of the permeated gas component in the gas may be higher than the dew point temperature of water vapor, for example.However, the dew point temperature of the permeated gas component in the gas is the permeability of the permeated gas through the gas permeable membrane, the gas pressure, Since it is complicatedly related to the vapor pressure curve of the permeated gas, the composition of the liquid to be treated, and the like, it is practically desirable that the temperature be equal to or higher than the temperature of the liquid to be treated. However, even when the temperature is lower than that, the generation of the condensed liquid can be prevented as much as possible by heating the gas to minimize the temperature difference from the liquid to be treated. The higher the temperature of the gas, the better the temperature of the gas permeable membrane, the housing, the sealant, the packing, etc., that is, the lower the heat resistance of the module, although the purpose of the present invention is met.

【0013】好適には、気体透過膜モジュールの気体室
に気体を送入する送入管及び/又は気体室の大気露出部
分が、保温又は加熱されていることが望ましい。例えば
図3に示す例では、送入管とは、第2端部62に設けら
れた気体入口ノズル82及び気体出口ノズル84に接続
された気体配管を言い、気体室の大気露出部分とは、第
2端部62に設けられた気体分配室78を言う。尚、気
体集気室80の外壁もこれに含めても良い。送入管及び
/又は気体室の大気露出部分を保温又は加熱することに
より、気体が大気によって急激に冷却され、気体室内の
透過ガス成分、例えば水蒸気が凝縮することを防止する
ことができる。
Preferably, the inlet pipe for feeding gas into the gas chamber of the gas permeable membrane module and / or the air-exposed portion of the gas chamber is preferably kept warm or heated. For example, in the example illustrated in FIG. 3, the inlet pipe refers to a gas pipe connected to the gas inlet nozzle 82 and the gas outlet nozzle 84 provided at the second end 62, and the atmosphere-exposed portion of the gas chamber refers to: It refers to the gas distribution chamber 78 provided at the second end 62. Note that the outer wall of the gas collection chamber 80 may be included in this. By keeping the temperature of the inlet pipe and / or the air-exposed portion of the gas chamber warm or heated, the gas is rapidly cooled by the atmosphere, and condensed gas components in the gas chamber, for example, water vapor can be prevented from condensing.

【0014】[0014]

【発明の実施の形態】以下に、添付図面を参照し、実施
形態例を挙げて本発明の実施の形態を具体的かつ詳細に
説明する。実施形態例1 本実施形態例は、本発明に係る気体透過膜装置を被処理
液の脱気、本例では水の脱気装置に適用した実施形態の
一例であって、図1は本実施形態例の気体透過膜装置の
構成を示すフローシートである。本実施形態例の気体透
過膜装置10は、図1に示すように、気体透過膜12を
介して液体室14と気体室16とを有する気体透過膜モ
ジュール18と、気体透過膜モジュール18に送入する
気体を加熱する加熱器20と、気体室16を減圧状態に
維持する真空ポンプ22と、気体室16に気体を供給す
るガス源24とを備えている。気体透過膜モジュール1
8は、図3で説明した気体透過膜モジュール50と基本
的には同様な構成を有し、図1に示すように、気体入口
ノズルが上部に、気体出口ノズルが下部になって中空糸
膜が垂直方向に配置されるように、配置されている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Embodiment 1 This embodiment is an example of an embodiment in which the gas permeable membrane device according to the present invention is applied to the deaeration of a liquid to be treated, in this example, to a water deaerator. FIG. 3 is a flow sheet showing a configuration of a gas permeable membrane device of an embodiment. As shown in FIG. 1, the gas permeable membrane device 10 of the present embodiment sends a gas permeable membrane module 18 having a liquid chamber 14 and a gas chamber 16 via a gas permeable membrane 12 to a gas permeable membrane module 18. The apparatus includes a heater 20 for heating gas to be supplied, a vacuum pump 22 for maintaining the gas chamber 16 in a reduced pressure state, and a gas source 24 for supplying gas to the gas chamber 16. Gas permeable membrane module 1
8 has basically the same configuration as the gas permeable membrane module 50 described in FIG. 3, and as shown in FIG. 1, the hollow fiber membrane has a gas inlet nozzle at the upper part and a gas outlet nozzle at the lower part. Are arranged in the vertical direction.

【0015】液体室14の下部端部及び上部端部には、
脱気処理を施す被処理液を流入させる被処理液流入管2
6、脱気処理を施した処理液を流出させる処理液流出管
28が、それぞれ、接続されている。また、気体室16
の上部端部には、ガス源24から気体を気体室16に送
入する気体送入管30、及び、気体室16の下部端部に
は、気体室16から気体を排出する気体排出管32がそ
れぞれ接続されている。加熱器20は気体送入管30の
途中に設けられ、加熱器20の上流、及び下流の気体送
入管30には、ガス流量計34及び温度計36が、それ
ぞれ取り付けてある。真空ポンプ22は気体排出管32
の末端に設けられており、また、気体室16には気体室
16の圧力を測定するために圧力計37が設けてある。
被処理液流入管26には水溶液の温度を測定するため
に、温度計38が設けてある。尚、真空ポンプ22を設
けずに、常圧又は加圧状態で窒素ガスを送入してもよ
い。
At the lower end and the upper end of the liquid chamber 14,
Liquid inflow pipe 2 into which liquid to be degassed flows
6. The treatment liquid outflow pipes 28 for letting out the treatment liquid subjected to the degassing treatment are respectively connected. The gas chamber 16
A gas inlet pipe 30 for feeding gas from the gas source 24 to the gas chamber 16 at an upper end thereof, and a gas discharge pipe 32 for discharging gas from the gas chamber 16 at a lower end of the gas chamber 16. Are connected respectively. The heater 20 is provided in the middle of the gas inlet pipe 30, and a gas flow meter 34 and a thermometer 36 are attached to the upstream and downstream of the heater 20. The vacuum pump 22 is a gas exhaust pipe 32
The gas chamber 16 is provided with a pressure gauge 37 for measuring the pressure of the gas chamber 16.
A thermometer 38 is provided in the to-be-treated liquid inflow pipe 26 to measure the temperature of the aqueous solution. Note that nitrogen gas may be supplied at normal pressure or in a pressurized state without providing the vacuum pump 22.

【0016】本実施形態例では、加熱器20は、熱交換
器であって、気体の設定昇温温度の高低に応じて、温
水、熱媒、スチーム等により気体を熱交換により加熱す
る。また、加熱器20による気体の加熱温度を制御する
ために、常用の温度制御装置を設けても良い。加熱器2
0より下流の気体送入管30、及び、気体室16の大気
露出領域(図3の気体分配室78の外壁に相当)は、保
温材39により保温されている。これにより、加熱器2
0より下流の気体送入管30及び気体室16内の気体
は、大気から断熱状態に維持されているので、大気によ
る気体の冷却効果は殆どない。なお、本実施形態例の気
体透過膜モジュールとは逆に、気体入口ノズルを下部
に、気体出口ノズルを上部にして気体透過膜モジュール
を垂直に配置したり、あるいは気体透過膜モジュールを
横置きに配置した場合は、気体排出管の内部に生じた凝
縮水が逆流して気体透過膜モジュール内に流れ込む虞が
あるので、このような場合は、気体排出管も保温又は加
熱することが好ましい。また、このことは後述の実施形
態例2のガス溶解の場合も同じである。
In the present embodiment, the heater 20 is a heat exchanger, and heats the gas by heat exchange with hot water, a heat medium, steam, or the like according to the set temperature rising temperature of the gas. In addition, a normal temperature control device may be provided to control the heating temperature of the gas by the heater 20. Heater 2
The gas inlet pipe 30 downstream from 0 and the air-exposed region of the gas chamber 16 (corresponding to the outer wall of the gas distribution chamber 78 in FIG. 3) are kept warm by the heat retaining material 39. Thereby, the heater 2
Since the gas in the gas inlet pipe 30 and the gas chamber 16 downstream from 0 is maintained in an adiabatic state from the atmosphere, there is almost no gas cooling effect by the atmosphere. Note that, in contrast to the gas permeable membrane module of the present embodiment, the gas permeable membrane module is vertically arranged with the gas inlet nozzle at the bottom and the gas outlet nozzle at the top, or the gas permeable membrane module is placed horizontally. When the gas discharge pipe is disposed, the condensed water generated inside the gas discharge pipe may flow backward and flow into the gas permeable membrane module. In such a case, it is preferable to keep the gas discharge pipe warm or heated. This is the same also in the case of gas dissolution of Embodiment 2 described later.

【0017】次に、図1を参照して、気体透過膜装置1
0の運転方法を説明する。先ず、加熱器20に温水を導
入して運転状態にし、次いで真空ポンプ22を起動し
て、気体透過膜モジュール18の気体室16を所定の減
圧状態に維持しつつ、流量計34で流量を計測しながら
所定流量でガス供給源24から例えば窒素ガスを気体室
16に導入する。その際、温度計36で測定した窒素ガ
スの温度が温度計38で測定した被処理液の温度より高
い温度にする。次いで、気体透過膜モジュール18の液
体室14に所定流量で被処理液流入管26によって被処
理液、本実施形態例では、水を流入させて、処理液流出
管28から処理液を流出させる。以上の操作により、被
処理液を所定通り脱気することができる。
Next, referring to FIG. 1, the gas permeable membrane device 1 will be described.
The operation method of 0 will be described. First, hot water is introduced into the heater 20 to make the heater into an operating state, and then the vacuum pump 22 is started to measure the flow rate with the flow meter 34 while maintaining the gas chamber 16 of the gas permeable membrane module 18 at a predetermined reduced pressure. At the same time, for example, nitrogen gas is introduced into the gas chamber 16 from the gas supply source 24 at a predetermined flow rate. At this time, the temperature of the nitrogen gas measured by the thermometer 36 is higher than the temperature of the liquid to be treated measured by the thermometer 38. Next, the liquid to be treated, in this embodiment, water is caused to flow into the liquid chamber 14 of the gas permeable membrane module 18 at a predetermined flow rate by the liquid to be treated inflow pipe 26, and the processing liquid is caused to flow out from the processing liquid outflow pipe 28. By the above operation, the liquid to be treated can be degassed as predetermined.

【0018】気体透過膜モジュール18としてセルガー
ド社のリキセルを使用し、気体透過膜装置10と同じ構
成の実験装置を作製し、以下の実験を行った。実験例1 真空ポンプ22を起動して、気体透過膜モジュール18
の気体室16の圧力を50Torrに維持しつつ、温度計3
6で測定した温度が30℃になるように加熱器20で加
熱しながら1リットル(0℃、1atm 換算)/min の流
量の窒素ガスを気体室16に導入した。一方、溶存酸素
濃度(DO)50μg/リットルの純水からなる水温2
0℃の試料水を1.5m3 /hの流量で、気体透過膜モ
ジュール18の液体室14に導入して、試料水を脱気し
た。脱気処理を12時間継続した後でも、被処理液流出
管28から流出した脱気試料水の溶存酸素濃度(DO)
は、1.0μg/リットルで、脱気前の溶存酸素濃度
(DO)の50分の1であった。
An experiment apparatus having the same configuration as that of the gas permeable membrane device 10 was manufactured using Liqui-Cel manufactured by Celgard as the gas permeable membrane module 18, and the following experiments were performed. Experimental Example 1 The vacuum pump 22 was started and the gas permeable membrane module 18 was started.
While maintaining the pressure of the gas chamber 16 at 50 Torr, the thermometer 3
A nitrogen gas was introduced into the gas chamber 16 at a flow rate of 1 liter (0 ° C., 1 atm conversion) / min while heating with the heater 20 so that the temperature measured in Step 6 became 30 ° C. On the other hand, a water temperature of pure water having a dissolved oxygen concentration (DO) of 50 μg / liter 2
Sample water at 0 ° C. was introduced at a flow rate of 1.5 m 3 / h into the liquid chamber 14 of the gas permeable membrane module 18 to degas the sample water. Even after the degassing process is continued for 12 hours, the dissolved oxygen concentration (DO) of the degassed sample water flowing out of the liquid discharge pipe 28 to be processed.
Was 1.0 μg / liter, which was 1/50 of the dissolved oxygen concentration (DO) before degassing.

【0019】比較実験例1 窒素ガスの加熱温度を試料水の水温より低い10℃に設
定したことを除いて、実験例1と同様にして、脱気実験
を行ったところ、脱気試料水の溶存酸素濃度(DO)
は、3.2μg/リットルで、脱気前の溶存酸素濃度
(DO)の15.6分の1であった。
Comparative Experimental Example 1 A degassing experiment was performed in the same manner as in Experimental Example 1 except that the heating temperature of the nitrogen gas was set at 10 ° C. lower than the water temperature of the sample water. Dissolved oxygen concentration (DO)
Was 3.2 μg / liter, which was 15.6 times lower than the dissolved oxygen concentration (DO) before degassing.

【0020】以上の実験結果から、窒素ガスの温度を脱
気すべき試料水の温度より高くすることにより、長時間
にわたり高い脱気効率を維持することができることが判
ったので、本発明の効果が高いと評価できる。
From the above experimental results, it has been found that by setting the temperature of the nitrogen gas higher than the temperature of the sample water to be degassed, a high degassing efficiency can be maintained for a long time. Can be evaluated as high.

【0021】実施形態例2 本実施形態例は、本発明に係る気体透過膜装置を被処理
液にガスを溶解する装置、本例では純水に水素ガスを溶
解する装置に適用した実施形態の一例であって、図2は
本実施形態例の気体透過膜装置の構成を示すフローシー
トである。本実施形態例の気体透過膜装置40は、図2
に示すように、真空ポンプ22に代えて、気体排出管3
2に開閉弁42とブロア44とを備えていること、及
び、気体室16が常圧又は加圧状態になることを除い
て、実施形態例1の気体透過膜装置10の構成と同じ構
成を備えている。
Embodiment 2 This embodiment is an embodiment in which the gas permeable membrane device according to the present invention is applied to an apparatus for dissolving a gas in a liquid to be treated, in this embodiment, an apparatus for dissolving a hydrogen gas in pure water. As an example, FIG. 2 is a flow sheet showing the configuration of the gas permeable membrane device of the present embodiment. The gas permeable membrane device 40 of the present embodiment is shown in FIG.
As shown in FIG.
2 has the same configuration as the configuration of the gas permeable membrane device 10 of the first embodiment except that the on-off valve 42 and the blower 44 are provided, and that the gas chamber 16 is in a normal pressure or a pressurized state. Have.

【0022】次に、図2を参照して、気体透過膜装置4
0の運転方法を説明する。先ず、開閉弁42を閉止し、
かつ加熱器20に温水を導入して運転状態にし、次いで
圧力計37で気体室16の圧力を所定圧力になるよう
に、あるいはガス流量計34で所定のガス流量になるよ
うにガス供給源24から例えば水素ガスを気体室16に
導入する。その際、温度計36で測定した水素ガスの温
度が温度計38で測定した被処理液の温度より高い温度
にする。次いで、気体透過膜モジュール18の液体室1
4に所定流量で被処理液流入管26によって被処理液、
本実施形態例では純水を流入させて、処理液流出管28
から処理液を流出させる。以上の操作により、純水に所
定通り水素ガスを溶解させることができる。なお、気体
排出管32から排出される排ガス中には余剰の水素ガス
が含まれているので、この排ガスをブロア44で吸引し
て不図示の水素分解触媒と接触させ、水素を分解してか
ら大気中に放出するとよい。
Next, referring to FIG.
The operation method of 0 will be described. First, the on-off valve 42 is closed,
In addition, hot water is introduced into the heater 20 to bring the heater into an operating state, and then the gas supply source 24 is adjusted so that the pressure in the gas chamber 16 is adjusted to a predetermined pressure by a pressure gauge 37 or to a predetermined gas flow rate by a gas flow meter 34. For example, hydrogen gas is introduced into the gas chamber 16. At this time, the temperature of the hydrogen gas measured by the thermometer 36 is higher than the temperature of the liquid to be treated measured by the thermometer 38. Next, the liquid chamber 1 of the gas permeable membrane module 18
4, a liquid to be treated is supplied at a predetermined flow rate by a liquid to be treated inflow pipe 26;
In this embodiment, pure water is allowed to flow in and the processing liquid
Out of the processing solution. By the above operation, hydrogen gas can be dissolved in pure water as predetermined. Since the exhaust gas discharged from the gas discharge pipe 32 contains excess hydrogen gas, the exhaust gas is sucked by the blower 44 and brought into contact with a hydrogen decomposition catalyst (not shown) to decompose hydrogen. Good release to the atmosphere.

【0023】気体透過膜モジュール18としてヘキスト
社のリキセルを使用し、気体透過膜装置40と同じ構成
の実験装置を作製し、以下の実験を行った。実験例2 温度計36で測定した温度が30℃になるように加熱器
20で加熱しながら0.5リットル(0℃、1atm 換
算)/min の流量の水素ガスを気体透過膜モジュール1
8の気体室16に導入した。一方、溶存水素濃度(D
H)が殆ど0μg/リットル(計測下限値以下)の純水
からなる水温20℃の試料水を1.5m3 /hの流量
で、気体透過膜モジュール18の液体室14に導入し
て、試料水に水素ガスを溶解させた。その際、気体室1
6の圧力を1kgf /cm2 に維持するように、開閉弁42
の開度を調整した。水素ガス溶解処理を8時間継続した
後でも、被処理液流出管28から流出した試料水の溶存
水素濃度(DH)は、2.1μg/リットルであった。
An experiment apparatus having the same configuration as the gas permeable membrane device 40 was manufactured by using Liqui-Cel of Hoechst as the gas permeable membrane module 18, and the following experiments were performed. EXPERIMENTAL EXAMPLE 2 A gas permeable membrane module 1 was supplied with hydrogen gas at a flow rate of 0.5 liter (0 ° C., 1 atm conversion) / min while heating with the heater 20 so that the temperature measured by the thermometer 36 became 30 ° C.
8 into the gas chamber 16. On the other hand, the dissolved hydrogen concentration (D
H) Sample water having a water temperature of 20 ° C. consisting of pure water having almost 0 μg / liter (less than the lower limit of measurement) was introduced into the liquid chamber 14 of the gas permeable membrane module 18 at a flow rate of 1.5 m 3 / h. Hydrogen gas was dissolved in water. At that time, the gas chamber 1
6 so as to maintain the pressure of 1 kgf / cm 2 at 1 kgf / cm 2.
Was adjusted. Even after the hydrogen gas dissolution treatment was continued for 8 hours, the dissolved hydrogen concentration (DH) of the sample water flowing out of the liquid to be treated outlet pipe 28 was 2.1 μg / liter.

【0024】比較実験例2 水素ガスの加熱温度を試料水の水温より低い10℃に設
定したことを除いて、実験例2と同様にして、水素ガス
溶解実験を行ったところ、試料水の溶存水素濃度(D
H)は、1.5μg/リットルであった。
Comparative Experimental Example 2 A hydrogen gas dissolution experiment was performed in the same manner as in Experimental Example 2 except that the heating temperature of the hydrogen gas was set at 10 ° C. lower than the water temperature of the sample water. Hydrogen concentration (D
H) was 1.5 μg / liter.

【0025】以上の実験結果から、水素ガスの温度を試
料水の温度より高くすることにより、長時間にわたり高
いガス溶解効率を維持することができることが判ったの
で、本発明の効果が高いと評価できる。
From the above experimental results, it has been found that by setting the temperature of the hydrogen gas higher than the temperature of the sample water, a high gas dissolving efficiency can be maintained for a long period of time. it can.

【0026】[0026]

【発明の効果】本第1及び第2の発明によれば、気体透
過膜装置の気体室に流入させる気体を加熱する加熱手段
を備え、流入させる気体を加熱、好ましくは気体の温度
が被処理液の温度以上になるように気体を加熱すること
により、長時間にわたり高効率で被処理液を脱気した
り、又は被処理液にガスを溶解させる気体透過膜装置を
実現している。
According to the first and second aspects of the present invention, a heating means is provided for heating the gas flowing into the gas chamber of the gas permeable membrane device, and the gas to be flowed is heated. By heating a gas to a temperature equal to or higher than the temperature of a liquid, a gas permeable membrane device that degass a liquid to be treated with high efficiency for a long time or dissolves a gas in the liquid to be treated is realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1の気体透過膜装置の構成を示すフ
ローシートである。
FIG. 1 is a flow sheet showing a configuration of a gas permeable membrane device according to a first embodiment.

【図2】実施形態例2の気体透過膜装置の構成を示すフ
ローシートである。
FIG. 2 is a flow sheet showing a configuration of a gas permeable membrane device according to a second embodiment.

【図3】気体透過膜モジュールの構成を示す斜視図であ
る。
FIG. 3 is a perspective view illustrating a configuration of a gas permeable membrane module.

【符号の説明】[Explanation of symbols]

10 実施形態例1の気体透過膜装置 12 気体透過膜 14 液体室 16 気体室 18 気体透過膜モジュール 20 加熱器 22 真空ポンプ 24 ガス源 26 被処理液流入管 28 処理液流出管 30 気体送入管 32 気体排出管 34 ガス流量計 36 温度計 37 圧力計 38 温度計 39 保温材 40 実施形態例2の気体透過膜装置 42 開閉弁 44 ブロア 50 気体透過膜モジュール 52 ハウジング 54 仕切り板 56 第1室 58 第2室 60 第1端部 62 第2端部 64 配液管 66 集液管 68 中空糸膜 70 貫通孔 72 間隙 74 液体入口ノズル 76 液体出口ノズル 78 気体分配室 80 気体集気室 82 気体入口ノズル 84 気体出口ノズル Reference Signs List 10 Gas permeable membrane device of first embodiment 12 Gas permeable membrane 14 Liquid chamber 16 Gas chamber 18 Gas permeable membrane module 20 Heater 22 Vacuum pump 24 Gas source 26 Liquid to be treated inlet pipe 28 Treatment liquid outlet pipe 30 Gas inlet pipe Reference Signs List 32 gas discharge pipe 34 gas flow meter 36 thermometer 37 pressure gauge 38 thermometer 39 heat insulating material 40 gas permeable membrane device of Embodiment 2 42 on-off valve 44 blower 50 gas permeable membrane module 52 housing 54 partition plate 56 first chamber 58 Second chamber 60 First end 62 Second end 64 Liquid distribution pipe 66 Liquid collection pipe 68 Hollow fiber membrane 70 Through hole 72 Gap 74 Liquid inlet nozzle 76 Liquid outlet nozzle 78 Gas distribution chamber 80 Gas collection chamber 82 Gas inlet Nozzle 84 Gas outlet nozzle

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 気体透過膜と、気体透過膜により区画さ
れた液体室と気体室とを有する気体透過膜モジュールを
備え、第1の気体を溶存した被処理液を液体室に流し、
かつ第1の気体とは異なる第2の気体を気体室に流し、
気体透過膜を介して第1の気体を液体室から気体室に透
過させて被処理液を脱気する気体透過膜装置において、 気体透過膜モジュールの気体室に流入させる第2の気体
を加熱する加熱手段を備えていることを特徴とする気体
透過膜装置。
A gas permeable membrane module comprising a gas permeable membrane, a liquid chamber partitioned by the gas permeable membrane, and a gas chamber, wherein a liquid to be treated in which a first gas is dissolved flows into the liquid chamber;
And flowing a second gas different from the first gas into the gas chamber,
In a gas permeable membrane device for degassing a liquid to be processed by passing a first gas from a liquid chamber to a gas chamber through a gas permeable membrane, heating a second gas flowing into the gas chamber of the gas permeable membrane module. A gas permeable membrane device comprising heating means.
【請求項2】 気体透過膜と、気体透過膜により区画さ
れた液体室と気体室とを有する気体透過膜モジュールを
備え、被処理液を液体室に流し、かつ気体を気体室に流
し、気体透過膜を介して気体を気体室から液体室に透過
させて気体を被処理液に溶解させる気体透過膜装置にお
いて、 気体透過膜モジュールの気体室に流入させる気体を加熱
する加熱手段を備えていることを特徴とする気体透過膜
装置。
2. A gas permeable membrane module comprising a gas permeable membrane, a liquid chamber partitioned by the gas permeable membrane, and a gas chamber, wherein the liquid to be treated flows into the liquid chamber and the gas flows into the gas chamber. A gas permeable membrane device for allowing a gas to permeate from a gas chamber to a liquid chamber through a permeable membrane and dissolving the gas in the liquid to be treated, comprising a heating means for heating the gas flowing into the gas chamber of the gas permeable membrane module. A gas permeable membrane device characterized by the above-mentioned.
【請求項3】 加熱手段が、気体透過膜モジュールの気
体室に流入させる第2の気体を被処理液の温度以上に加
熱するものであることを特徴とする請求項1に記載の気
体透過膜装置。
3. The gas permeable membrane according to claim 1, wherein the heating means heats the second gas flowing into the gas chamber of the gas permeable membrane module to a temperature equal to or higher than the temperature of the liquid to be treated. apparatus.
【請求項4】 気体透過膜モジュールの気体室に気体を
送入する送入管及び/又は気体室の大気露出部分が、保
温又は加熱されていることを特徴とする請求項1から3
のいずれか1項に記載の気体透過膜装置。
4. The gas-permeable membrane module according to claim 1, wherein the inlet pipe for feeding gas into the gas chamber and / or the air-exposed portion of the gas chamber is kept warm or heated.
The gas permeable membrane device according to any one of the above.
JP10223837A 1998-08-07 1998-08-07 Gas permeation membrane apparatus Pending JP2000051606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10223837A JP2000051606A (en) 1998-08-07 1998-08-07 Gas permeation membrane apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10223837A JP2000051606A (en) 1998-08-07 1998-08-07 Gas permeation membrane apparatus

Publications (1)

Publication Number Publication Date
JP2000051606A true JP2000051606A (en) 2000-02-22

Family

ID=16804508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10223837A Pending JP2000051606A (en) 1998-08-07 1998-08-07 Gas permeation membrane apparatus

Country Status (1)

Country Link
JP (1) JP2000051606A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307059A (en) * 2001-04-12 2002-10-22 Kurita Water Ind Ltd Decarbonation method and pure water producing method
JP2003290645A (en) * 2002-01-22 2003-10-14 Hewlett Packard Co <Hp> Fuel cartridge and reaction chamber
JP2006245573A (en) * 2005-02-28 2006-09-14 Asml Netherlands Bv Lithography apparatus, device manufacturing method, and apparatus for degassing liquid
US7377112B2 (en) 2005-06-22 2008-05-27 United Technologies Corporation Fuel deoxygenation for improved combustion performance
US7393388B2 (en) 2005-05-13 2008-07-01 United Technologies Corporation Spiral wound fuel stabilization unit for fuel de-oxygenation
US7435283B2 (en) 2005-05-18 2008-10-14 United Technologies Corporation Modular fuel stabilization system
US7465336B2 (en) 2005-06-09 2008-12-16 United Technologies Corporation Fuel deoxygenation system with non-planar plate members
WO2009066766A1 (en) * 2007-11-22 2009-05-28 Bio Research Inc. Process for producing hydrogen-containing drinking water
US7569099B2 (en) 2006-01-18 2009-08-04 United Technologies Corporation Fuel deoxygenation system with non-metallic fuel plate assembly
US7582137B2 (en) 2006-01-18 2009-09-01 United Technologies Corporation Fuel deoxygenator with non-planar fuel channel and oxygen permeable membrane
US7615104B2 (en) 2005-11-03 2009-11-10 United Technologies Corporation Fuel deoxygenation system with multi-layer oxygen permeable membrane
US7824470B2 (en) 2006-01-18 2010-11-02 United Technologies Corporation Method for enhancing mass transport in fuel deoxygenation systems
JP2015180500A (en) * 2015-05-29 2015-10-15 栗田工業株式会社 Gas dissolved water supply device and manufacturing method of gas dissolved water
CN111263649A (en) * 2018-10-01 2020-06-09 日本多宁股份有限公司 Preparation device of dialysate
JP2020165824A (en) * 2019-03-29 2020-10-08 栗田工業株式会社 Dissolved gas concentration measuring device and measuring method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307059A (en) * 2001-04-12 2002-10-22 Kurita Water Ind Ltd Decarbonation method and pure water producing method
JP2003290645A (en) * 2002-01-22 2003-10-14 Hewlett Packard Co <Hp> Fuel cartridge and reaction chamber
JP2006245573A (en) * 2005-02-28 2006-09-14 Asml Netherlands Bv Lithography apparatus, device manufacturing method, and apparatus for degassing liquid
US8958051B2 (en) 2005-02-28 2015-02-17 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and apparatus for de-gassing a liquid
US20120097034A1 (en) * 2005-02-28 2012-04-26 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and apparatus for de-gassing a liquid
JP2009260381A (en) * 2005-02-28 2009-11-05 Asml Netherlands Bv Apparatus and method for de-gassing liquid
US7393388B2 (en) 2005-05-13 2008-07-01 United Technologies Corporation Spiral wound fuel stabilization unit for fuel de-oxygenation
US7435283B2 (en) 2005-05-18 2008-10-14 United Technologies Corporation Modular fuel stabilization system
US7465336B2 (en) 2005-06-09 2008-12-16 United Technologies Corporation Fuel deoxygenation system with non-planar plate members
US7377112B2 (en) 2005-06-22 2008-05-27 United Technologies Corporation Fuel deoxygenation for improved combustion performance
US7615104B2 (en) 2005-11-03 2009-11-10 United Technologies Corporation Fuel deoxygenation system with multi-layer oxygen permeable membrane
US7569099B2 (en) 2006-01-18 2009-08-04 United Technologies Corporation Fuel deoxygenation system with non-metallic fuel plate assembly
US7824470B2 (en) 2006-01-18 2010-11-02 United Technologies Corporation Method for enhancing mass transport in fuel deoxygenation systems
US7582137B2 (en) 2006-01-18 2009-09-01 United Technologies Corporation Fuel deoxygenator with non-planar fuel channel and oxygen permeable membrane
WO2009066766A1 (en) * 2007-11-22 2009-05-28 Bio Research Inc. Process for producing hydrogen-containing drinking water
JP2015180500A (en) * 2015-05-29 2015-10-15 栗田工業株式会社 Gas dissolved water supply device and manufacturing method of gas dissolved water
CN111263649A (en) * 2018-10-01 2020-06-09 日本多宁股份有限公司 Preparation device of dialysate
JP2020165824A (en) * 2019-03-29 2020-10-08 栗田工業株式会社 Dissolved gas concentration measuring device and measuring method
WO2020203122A1 (en) * 2019-03-29 2020-10-08 栗田工業株式会社 Dissolved-gas concentration measurement apparatus and measurement method

Similar Documents

Publication Publication Date Title
JP2000051606A (en) Gas permeation membrane apparatus
KR101049989B1 (en) Hollow fiber membrane contact device and process
JP4996925B2 (en) Apparatus and method for osmotic membrane distillation
JP5010109B2 (en) Hydrogen production apparatus and hydrogen production method
JP2512937B2 (en) Membrane type gas-liquid contactor
JP2008253982A (en) Dehydrating device, dehydration system, and dehydration method
JP2008200589A (en) Method and apparatus for separation of gas
JP2008104953A (en) Gas separation method and gas separator
US11458437B2 (en) Universal planar membrane device for mass transfer
US11306009B2 (en) Membrane distillation device with bubble column dehumidifier
Al-Saffar et al. USING A GAS/LIQUID HOLLOW FIBRE MODULE
JPH06134446A (en) Method for manufacturing deaerated water and module for manufacture of deaerated water
JP3009789B2 (en) Removal of dissolved oxygen in water
JPS62227492A (en) Method and apparatus for making pure water
JP2898080B2 (en) Operation method of degassing membrane device
JP2022184754A (en) Gas separation method
JPH04156903A (en) Degasification membrane device
JPS62221489A (en) Method for making pure water
JP4998200B2 (en) Gas-dissolved water production unit, production apparatus and production method
KR200416636Y1 (en) A purifying apparatus for producing oxygen-water and oxygen-ice
JPS62216695A (en) Method and apparatus for producing pure water
WO2020158049A1 (en) Method for cleaning hydrophobic porous membrane used in membrane distillation module
TW202423522A (en) A system and method for removing acidic gas from a post combustion process stream
JP2024532051A (en) Gas block for removing multiple impurities from the gas stream from an electrolyzer
JPS60241906A (en) Concentrating method of nonaqueous solution containing oil-soluble substance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050308