JP2898080B2 - Operation method of degassing membrane device - Google Patents

Operation method of degassing membrane device

Info

Publication number
JP2898080B2
JP2898080B2 JP29785890A JP29785890A JP2898080B2 JP 2898080 B2 JP2898080 B2 JP 2898080B2 JP 29785890 A JP29785890 A JP 29785890A JP 29785890 A JP29785890 A JP 29785890A JP 2898080 B2 JP2898080 B2 JP 2898080B2
Authority
JP
Japan
Prior art keywords
degassing
degassing membrane
membrane module
water
permeate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29785890A
Other languages
Japanese (ja)
Other versions
JPH04171005A (en
Inventor
修美 戸沢
武 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP29785890A priority Critical patent/JP2898080B2/en
Publication of JPH04171005A publication Critical patent/JPH04171005A/en
Application granted granted Critical
Publication of JP2898080B2 publication Critical patent/JP2898080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液体中に溶存しているガス(気体)あるい
は液体中の低沸点揮発性有機物を分離する脱気膜装置の
運転方法に関し、詳しくは運転中に脱気膜モジュールの
透過側に蓄積する原液の蒸発成分の凝縮物(主に溶媒)
を、運転停止後及び/又は運転再開前に取り除き、透過
側の凝縮物がない状態で常に運転を開始する運転方法に
関する。
Description: TECHNICAL FIELD The present invention relates to an operation method of a degassing membrane device for separating a gas (gas) dissolved in a liquid or a low-boiling volatile organic substance in a liquid, Specifically, condensate (mainly solvent) of the evaporation component of the stock solution accumulated on the permeate side of the degassing membrane module during operation
Is removed after the operation is stopped and / or before the operation is restarted, and the operation is always started in a state where there is no condensate on the permeation side.

〔従来の技術及び発明が解決しようとする課題〕[Problems to be solved by conventional technology and invention]

液体中に溶存しているガス(気体)あるいは液体中の
低沸点揮発性有機物を分離するためには、透過側の被分
離物質の圧力を供給液(原液)中の該被分離物質の濃度
と平衡な圧力(ヘンリー法則)よりも低くする必要があ
り、具体的な方法として、透過側を真空ポンプで減圧状
態にする、あるいは透過側に被分離物質と異なるガスを
送る(スウィープする)方法等が提案されている。しか
し、かかる原理に基づく脱気膜装置を実際に運転する
と、脱気膜モジュールの透過側において、供給側で蒸発
した蒸発成分(主に溶媒)が一部凝縮し、結果として被
分離物質の膜透過の抵抗となり分離速度が徐々に低下す
る、即ち膜性能が徐々に低下するという問題があった。
In order to separate the gas (gas) dissolved in the liquid or the low-boiling volatile organic substance in the liquid, the pressure of the substance to be separated on the permeation side is adjusted to the concentration of the substance to be separated in the feed liquid (stock solution). It is necessary to make the pressure lower than the equilibrium pressure (Henry's law). As a specific method, a method of reducing the pressure on the permeate side with a vacuum pump, or sending (sweeping) a gas different from the substance to be separated to the permeate side, etc. Has been proposed. However, when a degassing membrane device based on such a principle is actually operated, on the permeate side of the degassing membrane module, some of the evaporated components (mainly a solvent) evaporated on the supply side are condensed, and as a result, the membrane of the substance to be separated is condensed. There is a problem that the resistance of permeation is caused and the separation speed gradually decreases, that is, the membrane performance gradually decreases.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、前記問題点を解決するために鋭意研究
した結果、膜脱気装置を間欠的に運転する場合、特定の
運転方法を採用することにより、溶存ガスあるいは溶解
している低沸点揮発性有機物を効率よく分離できること
を見い出して、本発明に至ったものである。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, when the membrane deaerator is operated intermittently, by adopting a specific operation method, the dissolved gas or dissolved low boiling point The inventors have found that volatile organic substances can be efficiently separated, and have reached the present invention.

即ち本発明は、溶存ガスあるいは低沸点揮発性有機物
を含む液体を、透過膜に接触させてこれらを選択的に透
過させて分離する脱気膜モジュールを搭載した脱気膜装
置において、運転停止中に脱気膜モジュールの供給側の
原液を抜いた後、供給側を大気圧空気に開放し、かつ脱
気運転停止後及び/又は脱気運転再開前に、脱気膜モジ
ュールの透過側を乾燥して透過側の凝縮物を除去し、脱
気膜モジュールの性能を回復した上で運転を再開するこ
とを特徴とする脱気膜装置の運転方法を提供する。
That is, the present invention relates to a degassing membrane device equipped with a degassing membrane module for bringing a dissolved gas or a liquid containing a low-boiling volatile organic substance into contact with a permeable membrane and selectively permeating and separating them. After the stock solution on the supply side of the degassing membrane module is drained, the supply side is opened to atmospheric pressure air, and the permeate side of the degassing membrane module is dried after the degassing operation is stopped and / or before the degassing operation is restarted. And removing the condensate on the permeate side to recover the performance of the degassing membrane module, and then restarting the operation of the degassing membrane device.

本発明において脱気膜モジュールの透過側を乾燥し透
過側の凝縮物を除去する方法は、脱気膜モジュールの性
能を回復できれば特に限定されないが、好ましくは以下
の方法を採用することができる。
In the present invention, the method for drying the permeate side of the degassing membrane module and removing the condensate on the permeate side is not particularly limited as long as the performance of the degassing membrane module can be recovered, but preferably the following method can be adopted.

第一の方法は、透過側を真空ポンプで減圧にして、室
温あるいは加温された大気圧空気の全量膜透過を行うこ
とにより、透過側の凝縮物を蒸発させて除去する方法で
ある。この際の運転条件は、通常、透過側圧力を5〜30
0mmHgとし、室温〜80℃の大気圧空気を0.5〜5時間全量
膜透過させればよい。
The first method is a method in which the permeate side is reduced in pressure by a vacuum pump and the entire amount of room temperature or heated atmospheric pressure air is permeated through the membrane, thereby evaporating and removing the condensate on the permeate side. The operating conditions at this time are generally such that the pressure on the permeate side is 5 to 30.
The pressure may be 0 mmHg and atmospheric pressure air at room temperature to 80 ° C. may be completely permeated through the membrane for 0.5 to 5 hours.

第二の方法は、供給側の一方から他方に室温あるいは
加温された大気空気を送ることにより、透過側の凝縮物
を蒸発させて除去する方法である。
The second method is a method in which condensate on the permeate side is removed by evaporation by sending room temperature or heated atmospheric air from one side of the supply side to the other side.

この際の運転条件は、通常、室温〜80℃の大気空気を
流速40Nl/min以上で0.5〜6時間送風すればよい。
The operating condition at this time may be that air at room temperature to 80 ° C. is normally blown at a flow rate of 40 Nl / min or more for 0.5 to 6 hours.

第三の方法は、透過側を大気圧空気に開放した後、供
給側に室温あるいは加温された加圧空気を送り、全量膜
透過を行うことにより、透過側の凝縮物を蒸発させて除
去する方法である。この際の運転条件は、通常、室温〜
80℃、圧力1kgf/cm2以上の加圧空気を0.5〜5時間全量
膜透過させればよい。
The third method is to open the permeate side to atmospheric pressure air, send room temperature or heated pressurized air to the supply side, and perform permeation through the entire membrane to evaporate and remove condensate on the permeate side. How to The operating conditions at this time are usually from room temperature to
Pressurized air at 80 ° C. and a pressure of 1 kgf / cm 2 or more may be permeated through the membrane for 0.5 to 5 hours.

その他の方法としては、所定時間自然放置することに
より透過側の凝縮物を蒸発させて除去する方法を用いる
こともできる。
As another method, a method of evaporating and removing the condensate on the permeation side by leaving it to stand naturally for a predetermined time can be used.

本発明の運転方法が適用される液体は、その中に気体
が溶存している液体もしくは低沸点揮発性有機物が溶解
している液体であれば、特に限定されない。例えば、液
体クロマトグラフィー、自動臨床化学分析、医用分光光
度計等の分析機器関連、イオン交換水プロセス、半導体
製造用の超純水システム、発電用、一般産業用、船舶用
ボイラー等に用いられるボイラー用水、原発用水、ター
ビン用水等の工業用途関連に用いられる液体及び排水等
が挙げられる。これらの液体は通常、河川水、井水、水
道水、工業用水、局方常水等を含み、一般にCa、Mg、N
a、K等の陽イオン、塩素イオン、硫酸イオン、炭酸水
素イオン等の陰イオン、生物が腐敗分解した有機物を含
有している液体である。また、コロイド粒子、懸濁粒子
等の水に対して溶解性を示さない物質を含有している液
体も含まれる。
The liquid to which the operation method of the present invention is applied is not particularly limited as long as the liquid in which gas is dissolved or the liquid in which low-boiling volatile organic substances are dissolved. For example, boilers used for liquid chromatography, automated clinical chemistry analysis, analytical instruments such as medical spectrophotometers, ion-exchanged water processes, ultrapure water systems for semiconductor production, power generation, general industry, marine boilers, etc. Liquids and wastewaters used in connection with industrial uses such as water for use, nuclear power, water for turbines, and the like can be given. These liquids usually include river water, well water, tap water, industrial water, local water, etc., and are generally Ca, Mg, N
It is a liquid containing cations such as a and K, anions such as chlorine ions, sulfate ions and hydrogen carbonate ions, and organic substances decomposed and decomposed by living organisms. Further, a liquid containing a substance that does not dissolve in water, such as colloid particles and suspended particles, is also included.

また本発明は一般家庭用水道配管、ビル給水管、クー
リングタワー、循環水配管等の内部を流れる飲料水やビ
ル給水にも適用できる。
The present invention can also be applied to drinking water and building water flowing inside general household water pipes, building water supply pipes, cooling towers, circulating water pipes, and the like.

また本発明は醤油等の製造用水、ビール、酒、ジュー
ス、コーヒー等の飲料の製造に使用する原料水や製造工
程で使用する水にも適用できる。
The present invention can also be applied to raw water used in the production of beverages such as soy sauce, beer, sake, juice, coffee and the like and water used in the production process.

上記の種々の水溶液に溶解している気体とは、酸素、
炭酸ガス、窒素、塩素、アンモニア等である。
The gases dissolved in the various aqueous solutions described above include oxygen,
Carbon dioxide, nitrogen, chlorine, ammonia and the like.

また、低沸点揮発性有機物とは、水より沸点が低い物
質であり、その蒸気圧が同温度で大きいものを指す。例
えば、メタノール、エタノール、ブタノール、プロパノ
ール等の低級アルコール、四塩化炭素、クロロホルム、
フロン等のハロゲン炭化水素、その他メチルエーテル、
エチルエーテル等のエーテル類、メチルエチルケトン、
アセトン等のケトン類等が挙げられる。
In addition, a low-boiling volatile organic substance is a substance having a boiling point lower than that of water and having a high vapor pressure at the same temperature. For example, methanol, ethanol, butanol, lower alcohols such as propanol, carbon tetrachloride, chloroform,
Halogen hydrocarbons such as Freon, other methyl ethers
Ethers such as ethyl ether, methyl ethyl ketone,
And ketones such as acetone.

本発明による運転方法は、いかなる形式の脱気膜モジ
ュールを搭載した脱気膜装置にも適用でき、その形式に
何ら限定されない。
The operation method according to the present invention can be applied to any type of degassing membrane device equipped with a degassing membrane module, and is not limited to any particular type.

〔発明の効果〕〔The invention's effect〕

本発明の方法によれば、間欠的に運転される脱気膜装
置において、運転中に脱気膜モジュールの透過側に蒸発
成分(主に溶媒)の凝縮物が蓄積して被分離物質の膜透
過の抵抗となり、結果として脱気膜装置の性能が低下し
ても、運転停止中に該凝縮物を前記蒸発操作によって取
り除くことができるので、常に所定の範囲の性能を維持
した運転が可能となる利点がある。
According to the method of the present invention, in an intermittently operated degassing membrane device, during operation, a condensate of an evaporating component (mainly a solvent) accumulates on the permeate side of the degassing membrane module, and a film of the substance to be separated is formed. Even if the performance of the degassing membrane device deteriorates as a result of permeation resistance, the condensate can be removed by the evaporating operation while the operation is stopped, so that operation in which the performance in a predetermined range is always maintained is possible. There are advantages.

〔実施例〕〔Example〕

以下に実施例により本発明を説明するが、本発明はこ
れら実施例に何ら限定されるものではない。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

実施例1 不織布上に形成された芳香族ポリスルホン多孔質膜上
に、厚さ約1.5μm架橋性シリコーン樹脂からなる活性
薄膜を有する選択透過性複合膜を得た。かかる複合膜の
25℃における酸素透過速度は、1.1Nm3/m2・h・atmであ
った。この膜を用いて、原水側スペーサー0.35mm厚、透
過側スペーサー0.3mm厚で、エレメント径60mm、長さ1
m、膜面積3.2m2のスパイラルモジュールを成型した。か
かるモジュールを搭載した脱気膜装置を第1図に示す。
Example 1 A permselective composite membrane having an active thin film of about 1.5 μm thick crosslinkable silicone resin on an aromatic polysulfone porous membrane formed on a nonwoven fabric was obtained. Of such composite membrane
The oxygen transmission rate at 25 ° C. was 1.1 Nm 3 / m 2 · h · atm. Using this membrane, the raw water side spacer is 0.35 mm thick, the transmission side spacer is 0.3 mm thick, the element diameter is 60 mm, and the length is 1
m, a spiral module having a membrane area of 3.2 m 2 was molded. FIG. 1 shows a degassing membrane device equipped with such a module.

かかる脱気膜装置に、25℃の市水(溶存酸素濃度(DD
値)が7.9ppm)を流速0.35m3/hで通水し、かつ透過側圧
力を15±2mmHgに保持して20時間脱気運転(運転1)を
行った。
In this degassing membrane device, city water (dissolved oxygen concentration (DD
7.9 ppm) at a flow rate of 0.35 m 3 / h, and the deaeration operation (operation 1) was performed for 20 hours while maintaining the permeate pressure at 15 ± 2 mmHg.

運転終了後、バルブ6、9を閉じ、そしてバルブ7、
8を開いて脱気膜モジュール5の供給側に入っている原
水を抜き、モジュールの供給側を大気圧空気に開放し
た。3時間経過後、ヒーター11、12をオンにし、かつ真
空ポンプ4を50mmHgの圧力で作動して60℃の空気の全量
膜透過を1時間行った。その後、上記運転1と同様の条
件で20時間脱気運転し(運転2))。
At the end of operation, valves 6, 9 are closed and valves 7,
8 was opened to remove raw water from the supply side of the degassing membrane module 5, and the supply side of the module was opened to atmospheric pressure air. After a lapse of 3 hours, the heaters 11 and 12 were turned on, and the vacuum pump 4 was operated at a pressure of 50 mmHg to allow the entire amount of air at 60 ° C. to pass through the membrane for 1 hour. Thereafter, a degassing operation was performed for 20 hours under the same conditions as in Operation 1 (Operation 2).

運転1及び運転2の初期、最終段階における処理水溶
存酸素濃度(DO値)を第1表に示す。
Table 1 shows the concentration (DO value) of the dissolved oxygen in the treated water in the initial and final stages of Runs 1 and 2.

比較例 実施例1と同様のスパイラル型脱気膜モジュールを搭
載した脱気膜装置に、25℃の市水(溶存酸素濃度(DO
値)が7.9ppm)を流速0.35m3/hで通水し、かつ透過側圧
力を15±2mmHgに保持して20時間脱気運転(運転1)を
行った。
COMPARATIVE EXAMPLE A degassing membrane device equipped with the same spiral type degassing membrane module as in Example 1 was supplied with city water (dissolved oxygen concentration (DO
7.9 ppm) at a flow rate of 0.35 m 3 / h, and the deaeration operation (operation 1) was performed for 20 hours while maintaining the permeate pressure at 15 ± 2 mmHg.

運転終了後、脱気膜モジュールの供給側に原水を入れ
たまま4時間放置した。その後、上記運転1と同様の条
件で20時間脱気運転した(運転2)。運転1及び運転2
の初期、最終段階における処理水DO値を第1表に示す。
After the operation, the raw water was left on the supply side of the degassing membrane module for 4 hours. Thereafter, a degassing operation was performed for 20 hours under the same conditions as in Operation 1 (Operation 2). Operation 1 and Operation 2
Table 1 shows the treated water DO values in the initial and final stages of the process.

実施例2 実施例1と同様のスパイラル型脱気膜モジュールを搭
載した脱気膜装置(第2図)に、26℃の市水(溶存酸素
濃度(DO値)が7.9ppm)を流速0.35m3/hで通水し、かつ
透過側圧力を15±2mmHgに保持して20時間脱気運転(運
転1)を行った。
Example 2 City air at 26 ° C (dissolved oxygen concentration (DO value) is 7.9 ppm) was flowed at a flow rate of 0.35 m into a degassing membrane device equipped with the same spiral type degassing membrane module as in Example 1 (Fig. 2). Dewatering operation (operation 1) was performed for 20 hours while passing water at 3 / h and maintaining the permeate pressure at 15 ± 2 mmHg.

運転終了後、バルブ6、9を閉じ、そしてバルブ7、
8、10を開いて脱気膜モジュールの供給側に入っている
原水を抜き、モジュールの供給側を大気圧空気に開放し
た。2時間経過後、バルブ10を閉じ、ヒーター11及び送
風機13をオンにして50℃の空気を流速150Nl/minで2時
間送風した。
At the end of operation, valves 6, 9 are closed and valves 7,
By opening 8 and 10, the raw water entering the supply side of the degassing membrane module was drained, and the supply side of the module was opened to atmospheric pressure air. After 2 hours, the valve 10 was closed, the heater 11 and the blower 13 were turned on, and air at 50 ° C. was blown at a flow rate of 150 Nl / min for 2 hours.

その後、上記運転1と同様の条件で20時間、脱気運転
した(運転2)。運転1及び運転2の初期、最終段階に
おける処理水DO値を第1表に示す。
Thereafter, a degassing operation was performed for 20 hours under the same conditions as in Operation 1 (Operation 2). Table 1 shows the DO values of the treated water in the initial and final stages of the operation 1 and the operation 2.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は本発明による脱気膜装置の運転方法
を実施するための装置概略図である。 1……原液供給部、2……処理液流出部、3……送液ポ
ンプ、4……真空ポンプ、5……脱気膜モジュール、6
〜10……バルブ、11〜12……ヒーター、13……送風機
FIG. 1 and FIG. 2 are schematic views of an apparatus for carrying out an operation method of a degassing membrane apparatus according to the present invention. DESCRIPTION OF SYMBOLS 1 ... Undiluted solution supply part, 2 ... Processing liquid outflow part, 3 ... Liquid supply pump, 4 ... Vacuum pump, 5 ... Degassing membrane module, 6
… 10 …… Valve, 11 ~ 12 …… Heater, 13 …… Blower

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】溶存ガスあるいは低沸点揮発性有機物を含
む液体を、透過膜に接触させてこれらを選択的に透過さ
せて分離する脱気膜モジュールを搭載した脱気膜装置に
おいて、運転停止中に脱気膜モジュールの供給側の原液
を抜いた後、供給側を大気圧空気に開放し、かつ脱気運
転停止後及び/又は脱気運転再開前に、脱気膜モジュー
ルの透過側を乾燥して透過側の凝縮物を除去し、脱気膜
モジュールの性能を回復した上で運転を再開することを
特徴とする脱気膜装置の運転方法。
1. A degassing membrane device equipped with a degassing membrane module for contacting a liquid containing a dissolved gas or a volatile organic substance with a low boiling point with a permeable membrane to selectively permeate and separate them, and the operation is stopped. After the stock solution on the supply side of the degassing membrane module is drained, the supply side is opened to atmospheric pressure air, and the permeate side of the degassing membrane module is dried after the degassing operation is stopped and / or before the degassing operation is restarted. Removing the condensate on the permeate side to recover the performance of the degassing membrane module and restarting the operation of the degassing membrane module.
JP29785890A 1990-11-02 1990-11-02 Operation method of degassing membrane device Expired - Lifetime JP2898080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29785890A JP2898080B2 (en) 1990-11-02 1990-11-02 Operation method of degassing membrane device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29785890A JP2898080B2 (en) 1990-11-02 1990-11-02 Operation method of degassing membrane device

Publications (2)

Publication Number Publication Date
JPH04171005A JPH04171005A (en) 1992-06-18
JP2898080B2 true JP2898080B2 (en) 1999-05-31

Family

ID=17852060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29785890A Expired - Lifetime JP2898080B2 (en) 1990-11-02 1990-11-02 Operation method of degassing membrane device

Country Status (1)

Country Link
JP (1) JP2898080B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760005A (en) * 1993-08-31 1995-03-07 Miura Co Ltd Dearation of liquid product
DE4439962A1 (en) * 1994-11-09 1996-05-15 Lang Apparatebau Gmbh Dosing pump with venting device
US5762684A (en) * 1995-11-30 1998-06-09 Dainippon Screen Mfg. Co., Ltd. Treating liquid supplying method and apparatus

Also Published As

Publication number Publication date
JPH04171005A (en) 1992-06-18

Similar Documents

Publication Publication Date Title
AU587407B2 (en) Osmotic concentration by membrane
TWM526569U (en) Recovery apparatus for sewage treatment
Baker et al. Membrane separation
JP6394290B2 (en) Cleaning method for membrane distillation apparatus
JP2898080B2 (en) Operation method of degassing membrane device
JP3922935B2 (en) Water treatment system
JPH03169304A (en) Spiral type degassing membrane module
US20090120877A1 (en) Method for desalination
CN103420533B (en) A kind for the treatment of process of high concentrated organic wastewater
JPH0515486B2 (en)
JPH01115493A (en) Method for regenerating water from domestic waste water
KR20150091931A (en) Separation Membrame for Membrane Distillation
JP2954652B2 (en) Removal method of gas or low boiling volatile organic matter
JPH0347521A (en) Separation membrane and usage thereof
JP2954629B2 (en) Removal method of gas or low boiling volatile organic matter
WO2014077739A2 (en) Method for separating and concentrating organic substances from liquid mixtures and device for the implementation thereof
JP3001608B2 (en) Removal method of gas or low boiling volatile organic matter
JPH0568808A (en) Equipment and method for diaphragm vacuum deaeration
JPH03187A (en) Device for producing germfree water
JPH04171002A (en) Recovering method for performance of film module
Baker Separation of volatile organic compounds from water by pervaporation
AU2006251862B2 (en) Improved method for desalination
WO2020158049A1 (en) Method for cleaning hydrophobic porous membrane used in membrane distillation module
Pabby et al. Membrane Applications in Chemical, Biochemical, and Food Processing and Pharmaceutical Industries: Introduction
JPH04243527A (en) Operation of pervaporation membrane apparatus