JPH0515486B2 - - Google Patents

Info

Publication number
JPH0515486B2
JPH0515486B2 JP62139782A JP13978287A JPH0515486B2 JP H0515486 B2 JPH0515486 B2 JP H0515486B2 JP 62139782 A JP62139782 A JP 62139782A JP 13978287 A JP13978287 A JP 13978287A JP H0515486 B2 JPH0515486 B2 JP H0515486B2
Authority
JP
Japan
Prior art keywords
water
raw water
ultrapure water
vapor
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62139782A
Other languages
Japanese (ja)
Other versions
JPS63305917A (en
Inventor
Hideaki Kurokawa
Akira Yamada
Yasuo Koseki
Harumi Matsuzaki
Katsuya Ebara
Sankichi Takahashi
Hiroaki Yoda
Nobuatsu Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62139782A priority Critical patent/JPS63305917A/en
Priority to EP88104672A priority patent/EP0284052B1/en
Priority to DE88104672T priority patent/DE3884435T2/en
Priority to US07/172,583 priority patent/US4879041A/en
Priority to KR1019880003177A priority patent/KR960003543B1/en
Publication of JPS63305917A publication Critical patent/JPS63305917A/en
Publication of JPH0515486B2 publication Critical patent/JPH0515486B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超純水の製造方法と製造装置及び製
造した超純水の使用方法に関する。本発明は、炭
酸成分や揮発性の有機物などの揮発性物質及び微
粒子や微生物などの非揮発性物質を含む原水から
超純水を製造する技術に係る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for producing ultrapure water, and a method for using the produced ultrapure water. The present invention relates to a technology for producing ultrapure water from raw water containing volatile substances such as carbonic acid components and volatile organic substances, and non-volatile substances such as fine particles and microorganisms.

〔従来の技術〕[Conventional technology]

半導体の製造工程や医薬品の製造には、含まれ
る不純物の量ができる限り少ない高純度の水すな
わち超純水が必要とされている。特に半導体集積
回路(LSI)の洗浄工程では大量の超純水を用い
ている。この超純水の純度が製品の歩留りに大き
な影響を与え、昨今の高レベルのLSI(1メガビ
ツト、4メガビツト等)の洗浄にはさらに高純度
の水が要求されている。
Semiconductor manufacturing processes and pharmaceutical manufacturing require highly purified water containing as few impurities as possible, that is, ultrapure water. In particular, large amounts of ultrapure water are used in the cleaning process of semiconductor integrated circuits (LSI). The purity of this ultrapure water has a major impact on product yield, and even higher purity water is required for cleaning today's high-level LSIs (1 megabit, 4 megabit, etc.).

従来の超純水製造装置は、「環境技術」vol14,
No.4,(1985)第353〜358頁に記載されているよ
うに、各種濾過膜、イオン交換樹脂、殺菌灯、脱
気装置等を含み、これらを組み合わせて装置全体
が構成されている。
Conventional ultrapure water production equipment is described in "Environmental Technology" vol.14,
No. 4, (1985), pages 353 to 358, the entire device is constructed by combining various filtration membranes, ion exchange resins, germicidal lamps, deaerators, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、各種濾過膜、イオン交換樹
脂、殺菌灯、などの多くの要素機器から成るの
で、生成超純水の水質向上には、各機器のレベル
アツプが必要である。また、要素機器の間を接続
する配管からの溶出の問題、要素機器自身からの
溶出の問題などがある。
Since the above-mentioned conventional technology consists of many elemental devices such as various filtration membranes, ion exchange resins, germicidal lamps, etc., it is necessary to improve the level of each device in order to improve the quality of the produced ultrapure water. In addition, there are problems such as elution from piping that connects elemental devices and elution from the elemental devices themselves.

このようなことから、従来技術では微生物及び
微粒子を含まない超高純度の純水を製造すること
は難しい。
For this reason, it is difficult to produce ultra-high purity water that is free of microorganisms and particulates using conventional techniques.

前記刊行物「環境技術」の第354頁の表1には、
超純水の水質の推移が示されているが、微生物を
含まない超純水は得られていない。
Table 1 on page 354 of the said publication "Environmental Technology" states:
Although changes in the quality of ultrapure water are shown, ultrapure water that does not contain microorganisms has not been obtained.

本発明の目的は、前記従来技術にくらべて高純
度の水を得ることができる超純水製造方法及び製
造装置を提供するにある。
An object of the present invention is to provide a method and apparatus for producing ultrapure water that can obtain water with a higher purity than that of the prior art.

本発明の他の目的は、かかる超純水の使用方法
を提供するにある。
Another object of the present invention is to provide a method for using such ultrapure water.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、揮発性成分及び非揮発性成分を含む
原水を沸騰させて揮発性成分を気化させて除去
し、揮発性成分を除去した原水から水蒸気を発生
させ該水蒸気を疎水性多孔質膜を透過させたのち
凝縮して超純水を製造することにある。
The present invention boils raw water containing volatile and non-volatile components to vaporize and remove the volatile components, generates water vapor from the raw water from which the volatile components have been removed, and transfers the water vapor to a hydrophobic porous membrane. The purpose is to produce ultrapure water by permeating it and condensing it.

疎水性多孔質膜としては、気体は透過させる
が、液体は透過させないものを用いる。詳しく
は、原水をまず、加熱もしくは減圧等の操作によ
り沸騰させ、原水中に含まれる揮発性不純物例え
ば、炭酸ガス成分(H2CO3,HCO3 -,CO3 2-)、
有機物を気化して除去させ、揮発性不純物の無く
なつた原水を再度加熱し蒸発させる。発生した蒸
気は、疎水性多孔質膜を通過する際、同伴するミ
ストと分離され、純度の高い水蒸気だけが凝縮さ
れ、生成水として取り出される。
The hydrophobic porous membrane used is one that allows gas to pass through but not liquid. Specifically, raw water is first boiled by heating or depressurizing operations, and volatile impurities contained in the raw water, such as carbon dioxide components (H 2 CO 3 , HCO 3 , CO 3 2− ),
The organic matter is vaporized and removed, and the raw water free of volatile impurities is heated again and evaporated. When the generated steam passes through a hydrophobic porous membrane, it is separated from the accompanying mist, and only highly pure steam is condensed and taken out as produced water.

なお水蒸気を凝縮する雰囲気を飽和水蒸気もし
くは不活性ガスの雰囲気に保持し、外気からの汚
染を防止することにより、より一層高い純度の超
純水を得ることができる。
Note that ultrapure water of even higher purity can be obtained by maintaining the atmosphere in which water vapor is condensed to be saturated water vapor or an inert gas atmosphere to prevent contamination from the outside air.

本発明によれば、微生物を全く含まない超純水
を製造することが可能である。このようなことか
ら、本発明は、今までに例のないきわめて高純度
の超純水製造方法と云える。従つて、以下では本
発明によつて得られる超純水を超々純水を呼ぶこ
とにする。
According to the present invention, it is possible to produce ultrapure water that does not contain any microorganisms. For these reasons, the present invention can be said to be an unprecedented method for producing ultrapure water of extremely high purity. Therefore, hereinafter, the ultrapure water obtained by the present invention will be referred to as ultra-superpure water.

本発明の超々純水製造装置は、揮発性成分およ
び非揮発性成分を含む原水を加熱する手段と該加
熱によつて気化した揮発性成分の排気手段を具備
した揮発性成分除去塔、揮発性成分除去後の水を
蒸発させる加熱手段と該加熱によつて発生した水
蒸気を透過させる疎水性多孔質膜及び該膜を透過
した水蒸気を凝縮させる冷却手段を具備した膜蒸
留塔を備える。更に好ましくは、疎水性多孔質膜
を透過した水蒸気を凝縮させる雰囲気を飽和水蒸
気又は不活性ガス雰囲気に保持するために該雰囲
気に水蒸気又は不活性ガスを供給する手段を有す
る。
The ultra-super pure water production apparatus of the present invention comprises a volatile component removal column equipped with a means for heating raw water containing volatile components and non-volatile components, and a means for exhausting volatile components vaporized by the heating; A membrane distillation column is equipped with a heating means for evaporating water after component removal, a hydrophobic porous membrane for transmitting water vapor generated by the heating, and a cooling means for condensing the water vapor that has passed through the membrane. More preferably, it has means for supplying water vapor or an inert gas to the atmosphere in order to maintain the atmosphere in which the water vapor that has permeated through the hydrophobic porous membrane is condensed to be a saturated water vapor or inert gas atmosphere.

本発明によれば、常温よりも高い温度に熱せら
れた超々純水が得られる。このため、LSIの洗浄
に有利である。
According to the present invention, ultra-ultra pure water heated to a temperature higher than room temperature can be obtained. Therefore, it is advantageous for cleaning LSI.

水の性質としては、高温になるほど、表面張力
が小さくなり基盤との親和性が向上する、静電気
による影響が少なくなる、などの利点がある。こ
のことから常温で得られた超純水を加熱して使用
したりしているが、本発明によれば特に加熱する
ことなく前述の利点を得ることができる。しかも
本発明によつて得られる水は、不純物がきわめて
少ないので、LSIの洗浄における諸問題たとえば
所望のLSIパターンが形成されない、pn接合のリ
ーク電流が増加する、ゲート酸化膜の耐圧が劣化
する等の問題を緩和でき、LSIの歩留及び特性を
向上することができる。
As for the properties of water, there are advantages such as the higher the temperature, the lower the surface tension, the better the affinity with the substrate, and the less affected by static electricity. For this reason, ultrapure water obtained at room temperature is heated before use, but according to the present invention, the above-mentioned advantages can be obtained without particular heating. Moreover, since the water obtained by the present invention has very few impurities, there are various problems in cleaning LSIs, such as not being able to form the desired LSI pattern, increasing leakage current of the pn junction, and deteriorating the withstand voltage of the gate oxide film. This problem can be alleviated, and the yield and characteristics of LSI can be improved.

更に本発明によれば微生物を全く含まないか或
は殆ど含まない高温超々純水が得られ、しかも微
生物が含まれていたとしても高温に保持されるこ
とによつて増殖が著しく抑制できるので、医療器
具の洗浄や医薬品の製造に用いるのにきわめて有
効である。
Furthermore, according to the present invention, high-temperature ultra-ultra pure water that does not contain any or almost no microorganisms can be obtained, and even if microorganisms are contained, their growth can be significantly suppressed by keeping them at a high temperature. It is extremely effective for cleaning medical instruments and manufacturing pharmaceuticals.

〔作用〕[Effect]

通常、水道水や逆浸透処理をした水中には、各
種無機物、イオン、有機物、微生物が多量に含ま
れている。これらの不純物を徐々に除去すること
で超純水を生成している。本発明では、蒸留法で
は除去できない揮発性の物質、炭酸ガス成分、揮
発性の有機物成分、無機成分、アンモニア、SO3
ガス等)だけを前段で、加熱、減圧、オゾン酸化
等の手法を用いて除去する。揮発性成分を除去さ
れた原水はさらに加熱され、水蒸気が発生する。
この水蒸気は、揮発性成分がすでに除去されてい
るため、かなりの高純度の水蒸気となつている。
水蒸気はさらに疎水性多孔質膜を透過する際、同
伴する水滴(ミスト)が除去され、水以外の不純
物を含まない高純度の水蒸気となる。その後、凝
縮し、超々純水となる。
Normally, tap water and water that has been subjected to reverse osmosis treatment contain large amounts of various inorganic substances, ions, organic substances, and microorganisms. Ultrapure water is produced by gradually removing these impurities. In the present invention, volatile substances that cannot be removed by distillation, carbon dioxide components, volatile organic components, inorganic components, ammonia, SO 3
gas, etc.) is removed in the first stage using methods such as heating, reduced pressure, and ozone oxidation. The raw water from which volatile components have been removed is further heated to generate steam.
Since volatile components have already been removed from this water vapor, it is highly pure water vapor.
When the water vapor further passes through the hydrophobic porous membrane, accompanying water droplets (mist) are removed, resulting in highly pure water vapor containing no impurities other than water. After that, it condenses and becomes ultra-ultra pure water.

したがつて、通常の蒸留装置において問題とな
る。同温度で揮発する成分(例えば、炭酸ガス成
分や低沸点有機物)については、前段の揮発性成
分除去段階で除去され、蒸留の際生じる蒸気に同
伴される微小な液滴(ミスト)の混入に対しては
疎水性多孔質膜による気(水蒸気)−液(ミスト)
分離により対処されるため、イオン性、有機物、
微粒子、生菌等の不純物を含まない、高純度の超
超純水の製造が可能となつた。
Therefore, this poses a problem in ordinary distillation equipment. Components that volatilize at the same temperature (e.g. carbon dioxide components and low-boiling point organic substances) are removed in the previous volatile component removal step, and are prevented from mixing with minute droplets (mist) that are entrained in the steam generated during distillation. On the other hand, air (water vapor) - liquid (mist) is formed by a hydrophobic porous membrane.
Ionic, organic,
It has become possible to produce highly pure ultra-pure water that does not contain impurities such as fine particles and viable bacteria.

又、疎水性多孔質を通過した水蒸気を凝縮させ
る雰囲気を水蒸気飽和状態もしくは不活性ガス雰
囲気とすることにより、空気からの汚染を防止
し、より一層高い純度の超々純水とすることが可
能となつた。
In addition, by making the atmosphere in which the water vapor that has passed through the hydrophobic porous material condenses into a water vapor-saturated state or an inert gas atmosphere, it is possible to prevent contamination from the air and obtain ultra-ultra pure water with even higher purity. Summer.

本発明者らは、膜蒸留法によつて得た生成水が
非揮発性成分を全く含まないか或は殆ど含まない
という事実を確認した。この事実に基づいて、膜
蒸留法では除去できない揮発性成分を別の工程で
除去することを検討し、本発明に到達した。
The present inventors have confirmed the fact that the produced water obtained by the membrane distillation method contains no or almost no non-volatile components. Based on this fact, we considered removing volatile components that cannot be removed by membrane distillation in a separate process, and arrived at the present invention.

本発明は、原水中の揮発性成分除去工程を膜蒸
留工程の前段に設けることにあるが、こうするこ
とにより後段に設ける場合にくらべて生成水の純
度を高めることができる。具体的に云うと、膜蒸
留後の純水は物を溶かし易い性質をもつており、
この純水を加熱して揮発性成分を除去するときに
容器の成分が溶出し、純度が下がるおそれがあ
る。又、膜蒸留工程後に加熱して揮発性成分を除
去することは生成水の一部をも排出してしまうこ
とになり不経済でもある。
The purpose of the present invention is to provide the step for removing volatile components in raw water before the membrane distillation step, and by doing so, the purity of the produced water can be increased compared to when the step is provided after the membrane distillation step. Specifically, pure water after membrane distillation has the property of easily dissolving substances.
When this pure water is heated to remove volatile components, the components in the container may be eluted and the purity may decrease. Further, heating to remove volatile components after the membrane distillation step also discharges a portion of the produced water, which is uneconomical.

膜蒸留工程の前段に揮発性成分除去工程を設け
ることにより、上述の問題を解消することができ
る。
The above-mentioned problem can be solved by providing a volatile component removal step before the membrane distillation step.

膜蒸留工程時に原水を加熱し水蒸気を発生させ
たときに、水蒸気にミストが同伴するが疎水性多
孔質膜を透過させることによりミストを分離する
ことができる。
When raw water is heated to generate water vapor during the membrane distillation process, mist accompanies the water vapor, but the mist can be separated by passing through a hydrophobic porous membrane.

疎水性多孔質膜としては、たとえば特開昭60−
118284号に記載されているようにポリエチレン、
ポリプロピレン等のポリオレフイン、ポリスルホ
ン、ポリエーテルスルホン、シリコーン樹脂、フ
ツ素樹脂等を用いることができる。疎水性多孔質
膜の疎水性についても特開昭60−118284号に記載
されている条件を満たすことが望ましい。
For example, as a hydrophobic porous membrane,
polyethylene, as described in No. 118284;
Polyolefins such as polypropylene, polysulfones, polyethersulfones, silicone resins, fluororesins, etc. can be used. It is desirable that the hydrophobicity of the hydrophobic porous membrane also satisfy the conditions described in JP-A-60-118284.

膜蒸留によつて純水を製造することは公知であ
り、たとえば特開昭61−230703号に示されてい
る。しかし、膜蒸留だけでは揮発性成分の除去効
果が不十分であり、超々純水を製造することがで
きない。具体的に云うと原水を蒸発させたときに
揮発性成分も気化するが、水蒸気を凝縮した際に
気化した揮発性成分の一部をとり込んでしまい、
生成された水は揮発性成分を含む純度の低いもの
となつてしまう。
It is known to produce pure water by membrane distillation, as shown, for example, in JP-A-61-230703. However, membrane distillation alone is insufficient to remove volatile components and cannot produce ultra-ultra pure water. Specifically, when raw water is evaporated, volatile components are also vaporized, but when water vapor is condensed, some of the volatile components that vaporized are taken in.
The produced water contains volatile components and has low purity.

本発明における揮発性成分除去手段としては、
原水を沸騰させ揮発性成分を気化させて除去する
ことが最も有効である。原水を沸騰させる手段と
しては、原水を大気中で沸点以上の温度に加熱す
ること或は原水を減圧して沸騰させることが可能
である。
As the volatile component removal means in the present invention,
The most effective method is to boil the raw water to vaporize and remove volatile components. As means for boiling the raw water, it is possible to heat the raw water in the atmosphere to a temperature higher than the boiling point, or to boil the raw water under reduced pressure.

原水を加熱して揮発性成分を気化させる際、原
水が沸騰する温度よりも低い温度に加熱したので
は揮発性成分の除去効果が乏しい。例えば80℃前
後の温度に加熱したのでは、本発明で得られるよ
うな超々純水は得られない。
When raw water is heated to vaporize volatile components, heating to a temperature lower than the boiling temperature of the raw water will not be effective in removing volatile components. For example, if the water is heated to a temperature of around 80°C, ultra-ultra pure water as obtained in the present invention cannot be obtained.

又、膜蒸留する際には原水の水蒸気のみを疎水
性多孔質膜と接触させることが望ましい。膜蒸留
技術における大きな欠点の一つは、膜の汚染であ
る。原水を疎水性多孔質に直接接触させると、原
水中の非揮発性成分による膜の汚染が生じ生成水
の純度が低下する。又、原水を膜に接触させた場
合、原水のもつ顕熱により水蒸気が発生し膜を透
過することになるが、この方法により水蒸気を多
量に発生させるには膜の面積を大にして原水との
接触面積を大きくすることが要求される。
Further, when carrying out membrane distillation, it is desirable that only the water vapor of the raw water is brought into contact with the hydrophobic porous membrane. One of the major drawbacks in membrane distillation technology is membrane fouling. When raw water is brought into direct contact with a hydrophobic porous material, the membrane is contaminated by non-volatile components in the raw water, reducing the purity of the produced water. Also, when raw water is brought into contact with the membrane, water vapor is generated due to the sensible heat of the raw water and passes through the membrane, but in order to generate a large amount of water vapor using this method, the area of the membrane must be large and the raw water must be It is required to increase the contact area of the

これに対し、揮発性成分を予め除去した原水か
ら発生させた水蒸気のみを疎水性多孔質膜と接触
させることにより、膜の汚染を防止し生成水の純
度を高めることが可能となる。又、膜の大きさも
原水を膜に接触させる方法にくらべて小さくする
ことが可能である。
On the other hand, by contacting only the water vapor generated from raw water from which volatile components have been removed in advance with the hydrophobic porous membrane, it is possible to prevent membrane contamination and increase the purity of the produced water. Furthermore, the size of the membrane can be made smaller compared to a method in which raw water is brought into contact with the membrane.

〔実施例〕 以下、本発明の実施例を、第1図〜第7図を用
いて説明する。但し、本発明は、これらの実施例
に限定されるものではない。
[Example] Hereinafter, an example of the present invention will be described using FIGS. 1 to 7. However, the present invention is not limited to these examples.

実施例 1 第1図に、本発明の基本的実施例を示す。本装
置は、原水加熱器110と蒸気排気口112を有
する揮発性成分除去塔2、原水加熱器108と疎
水性多孔質膜101と凝縮面113を有する膜蒸
留塔1、揮発性成分除去塔と膜蒸留塔との間を連
結する原水配管114及び該配管の途中に設けら
れた原水を送るポンプ106とから構成される。
処理される原水111は、揮発性成分除去塔2に
導入され、原水加熱器110によつて加温されて
沸騰し、原水中の炭酸ガスおよび揮発性有機物を
気化させ、蒸気出口112より、水蒸気とともに
系外に放出させる。溶存する炭酸ガスおよび揮発
性有機物が除去された原水は、送水ポンプ106
により、膜蒸留塔1に送られる。膜蒸留塔1に入
つた原水は、原水加熱器108により再度加熱さ
れ蒸発する。蒸発によつて生じた水蒸気105
は、疎水性多孔質膜101によつて濾過され、冷
却水103の流れる凝縮面113上すなわち冷却
水配管表面で凝縮し、生成水(超々純水)104
として取り出される。本実施例では符号103の
冷却水と113の凝縮面により冷却手段が構成さ
れている。なお、疎水性多孔質膜101を通つた
水蒸気の大部分は超々純水となるが、一部は系内
の非凝縮性ガス除去のために、弁102からブロ
ーされる。また、原水加熱器108,110への
スケール付着防止のため、原水もそれぞれのドレ
ンバルブ107,109よりブローされることが
望ましい。本装置によれば、原水中に含まれる炭
酸ガス成分や揮発性の有機物成分が膜蒸留塔の前
段で除去できることから、高純度の超々純水を製
造できる。
Embodiment 1 FIG. 1 shows a basic embodiment of the present invention. This device includes a volatile component removal column 2 having a raw water heater 110 and a steam exhaust port 112, a membrane distillation column 1 having a raw water heater 108, a hydrophobic porous membrane 101, and a condensation surface 113, and a volatile component removal column. It is composed of a raw water pipe 114 that connects the membrane distillation column and a pump 106 that sends the raw water and is provided in the middle of the pipe.
Raw water 111 to be treated is introduced into the volatile component removal tower 2, heated by the raw water heater 110 to boil, vaporizes carbon dioxide gas and volatile organic matter in the raw water, and releases water vapor from the steam outlet 112. It is also released outside the system. The raw water from which dissolved carbon dioxide and volatile organic matter have been removed is sent to the water pump 106.
is sent to the membrane distillation column 1. The raw water that has entered the membrane distillation column 1 is heated again by the raw water heater 108 and evaporated. Water vapor generated by evaporation 105
is filtered by the hydrophobic porous membrane 101 and condensed on the condensation surface 113 through which the cooling water 103 flows, that is, on the surface of the cooling water piping, resulting in produced water (ultra-ultra pure water) 104.
is extracted as. In this embodiment, cooling water 103 and a condensing surface 113 constitute a cooling means. Although most of the water vapor passing through the hydrophobic porous membrane 101 becomes ultra-ultra pure water, a portion is blown out from the valve 102 in order to remove non-condensable gas from the system. Furthermore, in order to prevent scale from adhering to the raw water heaters 108 and 110, it is desirable that the raw water is also blown through the respective drain valves 107 and 109. According to this apparatus, since carbon dioxide components and volatile organic components contained in raw water can be removed at the front stage of the membrane distillation column, highly pure ultra-superpure water can be produced.

次に、第2図、第3図を用いて本装置によつて
得られた超々純水の性質について説明する。第2
図は、本実施例と比較するために膜蒸留塔に直線
原水(逆浸透圧処理水使用)を送入した時の生成
水の比抵抗とPHを示す。第3図は、本実施例によ
るものである。第2図、第3図とも、図中に示す
の部分が、膜蒸留塔に水を供給し始めた点、
が供給を停止した点を示す。揮発性成分除去塔を
通つていない第2図では、水の供給を開始すると
同時に生成水の比抵抗が下がり、数MΩ・cmにな
つてしまう。この時、PHの値も同時に6.7から5.8
程度まで下がることから、生成水中に炭酸ガスが
混入し、炭酸イオンおよび重炭酸イオンとなつて
比抵抗の値を下げるものと考えられる。しかし、
揮発性成分除去塔を通つた水を供給している第3
図では、水を供給しても生成水の比抵抗、PHの値
に変化は見られず、純度の高い生成水が連続的に
得られていることがわかる。
Next, the properties of ultra-ultra pure water obtained by this apparatus will be explained using FIGS. 2 and 3. Second
The figure shows the specific resistance and pH of the produced water when straight raw water (reverse osmosis treated water was used) was fed into the membrane distillation column for comparison with this example. FIG. 3 is according to this embodiment. In both Figures 2 and 3, the part shown in the figure is the point where water has begun to be supplied to the membrane distillation column.
Indicates the point at which supply was stopped. In Figure 2, where the water does not pass through a volatile component removal column, the resistivity of the produced water drops as soon as the water supply starts, reaching several MΩ·cm. At this time, the pH value also changes from 6.7 to 5.8.
It is thought that carbon dioxide gas is mixed into the produced water and becomes carbonate ions and bicarbonate ions, which lowers the resistivity value. but,
The third tank supplies water that has passed through the volatile component removal tower.
The figure shows that even when water is supplied, there is no change in the specific resistance or PH values of the produced water, indicating that highly purified produced water is continuously obtained.

本実施例によつて得られた超々純水の水質を分
析した一例によれば、微生物は全く検出されなか
つた。又、生成水中の粒径0.1μm以上の微粒子は
1mm3中に10個以下、全有機炭素量(TOC)は
10ppbという結果が得られた。
According to an example in which the quality of the ultra-ultra pure water obtained in this example was analyzed, no microorganisms were detected. In addition, the number of fine particles with a particle size of 0.1 μm or more in the produced water is less than 10 per 1 mm3 , and the total organic carbon content (TOC) is
The result was 10ppb.

本実施例による生成水と第6図に示す従来の超
純水製造装置による生成水を用いて、夫々シリコ
ンウエハ上にウオータ・マークを作成し、両者を
比較した。ウオータ・マークとは、シリコンウエ
ハ上に一滴の水を滴下し、それを乾燥させた際に
生じるウエハ上の残留物のことである。常温19.5
℃で乾燥した際のウオータ・マークを比べてみた
ところ、本発明に係る装置からの生成水を滴下し
た方がかなり残留物量が少なく、高純度であるこ
とが確認できた。また、103℃で乾燥させた場合
には、さらに顕著に本装置の特長が明らかとなつ
た。すなわち高温乾燥すると、常温で発生するウ
オータ・マークが全て無くなり、シリコンウエハ
上には何も観察されなくなつた。それに比較し
て、従来の装置かに生成した水の場合は、多少少
なくなつてはいるものの、かなりの不純物が観察
された。これは、本装置から生成される水中に
は、たとえ不純物が混入しても、それは全て揮発
性のものであり、本実験にて行つたように、高温
で乾燥すれば、全て揮発し、ウエハ上には何の不
純物ものこらないことを示している。このことか
ら本発明による生成水はLSI製作に用いるうえで
きわめて有効である。
Water marks were created on silicon wafers using the water produced in this example and the water produced in the conventional ultrapure water production apparatus shown in FIG. 6, and the two were compared. A water mark is a residue on a silicon wafer that is created when a drop of water is placed on the wafer and allowed to dry. Normal temperature 19.5
When the water marks were compared when dried at ℃, it was confirmed that the amount of residue was considerably smaller and the purity was higher when the produced water from the apparatus according to the present invention was dropped. Furthermore, when drying at 103°C, the features of this device became even more apparent. That is, when the silicon wafer was dried at high temperature, all the water marks that would occur at room temperature disappeared, and nothing was observed on the silicon wafer. In comparison, a considerable amount of impurities were observed in the water produced by the conventional apparatus, although the amount was somewhat reduced. This means that even if impurities are mixed into the water produced by this device, they are all volatile, and if dried at high temperatures, as was done in this experiment, they will all evaporate and the wafer This shows that there are no impurities on top. For this reason, the water produced according to the present invention is extremely effective for use in LSI manufacturing.

実施例 2 第4図は本発明の他の実施例を示す。本装置
は、原水加熱器110を有する揮発性成分除去塔
2と、原水加熱用熱交換器202と、疎水性多孔
質膜101と凝縮面113を有する膜蒸留塔3及
びその間の原水の送水ポンプ106とから構成さ
れる。処理される原水111は、揮発性成分除去
塔2に導入され、原水加熱器110によつて加温
されて沸騰し、原水中の炭酸ガスおよび揮発性の
有機物を気化させ、蒸気出口203より系外に放
出される。溶存する炭酸ガス成分および揮発性有
機物が除去された原水は、送水ポンプ106によ
り、膜蒸留塔3に送られる。膜蒸留塔3に入つた
原水は、原水加熱用熱交換器202により再度加
熱され蒸発する。この際、原水加熱用熱交換器2
02中の加熱用媒体は、揮発性成分除去塔2より
発生した水蒸気であり、潜熱を放出し液体となつ
た水は、熱交換器出口201より系外に放出され
る。原水加熱用熱交換器202によつて加熱され
発生した水蒸気105は、疎水性多孔質膜101
を通過し、同伴するミストが除去された後、凝縮
面113上で凝縮し、生成水104すなわち超々
純水として系外に取り出される。本装置によれ
ば、実施例1同様に高純度の超々純水が得られる
とともに、揮発性成分除去塔2で用いた熱を回収
しているため、エネルギー量を低減することがで
きる。なお、原水加熱用熱交換器202のみでは
膜蒸留塔の原水加熱源として不足するときには、
第1図に示す原水加熱器108を併設するとよ
い。
Embodiment 2 FIG. 4 shows another embodiment of the present invention. This device includes a volatile component removal column 2 having a raw water heater 110, a heat exchanger 202 for heating raw water, a membrane distillation column 3 having a hydrophobic porous membrane 101 and a condensing surface 113, and a raw water supply pump therebetween. 106. The raw water 111 to be treated is introduced into the volatile component removal tower 2, heated by the raw water heater 110 to boil, vaporizes carbon dioxide gas and volatile organic matter in the raw water, and discharges the system from the steam outlet 203. released outside. The raw water from which dissolved carbon dioxide components and volatile organic substances have been removed is sent to the membrane distillation column 3 by a water pump 106. The raw water that has entered the membrane distillation column 3 is heated again by the raw water heating heat exchanger 202 and evaporated. At this time, the raw water heating heat exchanger 2
The heating medium in 02 is water vapor generated from the volatile component removal tower 2, and the water that has released latent heat and turned into a liquid is released from the heat exchanger outlet 201 to the outside of the system. Steam 105 heated and generated by the raw water heating heat exchanger 202 is transferred to the hydrophobic porous membrane 101.
After passing through and removing the accompanying mist, it condenses on the condensation surface 113 and is taken out of the system as produced water 104, that is, ultra-ultra pure water. According to this apparatus, high purity ultra-ultra pure water can be obtained as in Example 1, and since the heat used in the volatile component removal column 2 is recovered, the amount of energy can be reduced. Note that when the raw water heating heat exchanger 202 alone is insufficient as a raw water heating source for the membrane distillation column,
It is preferable to provide a raw water heater 108 shown in FIG. 1.

実施例 3 原水中の揮発性成分除去手段としてフラツシユ
蒸発を用いた実施例を第5図によつて説明する。
Example 3 An example using flash evaporation as a means for removing volatile components in raw water will be described with reference to FIG.

本装置は、スプレイ用ポンプ1、原水加熱器3
02、スプレイノズル303を有する揮発性成分
除去塔4と膜蒸留塔3とから構成される。処理さ
れる原水111はスプレイ用ポンプ301の吸込
み側に入り、ポンプで加圧された後、原水加熱器
302により揮発性成分除去塔における飽和温度
よりも数℃例えば5〜10℃高く過温され、スプレ
イノズル303より系内に放出される。ここでポ
ンプ301からスプレイノズル303の間は、原
水加熱器302によつて昇温された温度の飽和圧
力以上に加圧しておくことが必要で、配管内では
蒸発(沸騰)が起こらない様にする。スプレイノ
ズル303よりスプレイされた原水は、揮発性成
分除去塔4内の温度まで急激に蒸発が起こり、水
蒸気となる。この際、原水中に含まれる炭酸成分
や低沸点の有機物成分も同時にガス化され、気中
に放出される。蒸発せずに揮発性成分除去塔4内
に溜まつた液は、再びスプレイポンプ301に導
かれ、フラツシユ蒸発を行なう。ここで発生した
水蒸気および炭酸成分や低沸点の有機物成分は、
水蒸気出口203より系外に取り出され、膜蒸留
塔3の原水加熱用熱交換器202中に送られ、膜
蒸留のための熱源として利用される。揮発性成分
除去塔4で処理された原水は、送水ポンプ106
によつて膜蒸留塔3に送られる。これから先は前
記第4図における実施例と同様、高純度の生成水
が得られる。本実施例においては、原水の供給が
スプレイ用ポンプ301の吸込み側であり、揮発
性成分除去塔4内に送水される前に、原水加熱器
302によつて沸点以上に加熱され、スプレイノ
ズル303からフラツシユ蒸発する。したがつ
て、膜蒸留塔3への送水ポンプ106に導入され
る前に、少なくとも一度はフラツシユ蒸発過程を
通ることになり、未処理の原水が膜蒸留塔3へ送
入されることはなくなつた。
This device consists of a spray pump 1, a raw water heater 3
02, it is composed of a volatile component removal column 4 having a spray nozzle 303 and a membrane distillation column 3. The raw water 111 to be treated enters the suction side of the spray pump 301, is pressurized by the pump, and is then superheated by the raw water heater 302 to a temperature several degrees Celsius higher, for example, 5 to 10 degrees Celsius, than the saturation temperature in the volatile component removal tower. , is discharged into the system from the spray nozzle 303. Here, it is necessary to pressurize the space between the pump 301 and the spray nozzle 303 above the saturation pressure of the temperature raised by the raw water heater 302, so that evaporation (boiling) does not occur in the piping. do. The raw water sprayed from the spray nozzle 303 rapidly evaporates to the temperature inside the volatile component removal tower 4, and becomes water vapor. At this time, carbonic acid components and low-boiling point organic components contained in the raw water are also gasified and released into the air. The liquid that has accumulated in the volatile component removal tower 4 without being evaporated is led to the spray pump 301 again to perform flash evaporation. The water vapor, carbonic acid components, and low boiling point organic components generated here are
The steam is taken out of the system through the steam outlet 203, sent to the raw water heating heat exchanger 202 of the membrane distillation column 3, and used as a heat source for membrane distillation. The raw water treated in the volatile component removal tower 4 is sent to the water pump 106.
is sent to the membrane distillation column 3 by. From this point on, high-purity produced water can be obtained as in the embodiment shown in FIG. 4 above. In this embodiment, the raw water is supplied to the suction side of the spray pump 301, and before being sent into the volatile component removal tower 4, it is heated to a boiling point or higher by the raw water heater 302, and the spray nozzle 303 The flash evaporates from the liquid. Therefore, the raw water passes through the flash evaporation process at least once before being introduced into the water pump 106 to the membrane distillation column 3, and untreated raw water is no longer sent to the membrane distillation column 3. Ta.

実施例 4 第6図には、生成水のコストを考え、多段化し
た際の一例を示す。フラツシユ蒸発により、揮発
性成分除去塔4で炭酸成分および揮発性TOC成
分が除去された原水は、膜蒸留第一塔5に送られ
る。この際、膜蒸留第一塔5は揮発性成分除去塔
4よりも圧力・温度ともに低い飽和状態を形成し
ていることから、原水はバルブ414操作だけで
膜蒸留第一塔5に送られる。ここで、揮発性成分
除去塔4で発生した蒸気410の潜熱は、膜蒸留
第一塔5の原水の加熱に利用される。膜蒸留第一
塔で発生した水蒸気411は、疎水性多孔質膜1
05を通る際にミストと分離され、配管411を
通つて膜蒸留第二塔6の原水の加熱に用いられ
る。膜蒸留第二塔の加熱に用いられ潜熱を放出し
て液体となつた水は熱交換器出口413より系外
に放出される。この多段の操作の最終段では、単
なる凝縮器7が設置されており、発生した高純度
の蒸気を超純水に凝縮させている。又、生成水の
取り出しは、最終段を大気圧に近い状態で運転す
ることで、ポンプ等の摺動部からの発塵が混入し
ない様なシステムとした。但し、第7図に示すよ
うに、高性能な無発塵ポンプ401が開発されれ
ば、小さな生成水タンク402を設置し、系外に
送り出すことも可能となる。この際、最終段はか
なりの減圧下でも問題は無く、抽気位置としては
生成水タンク402より行なうことが可能であ
る。
Embodiment 4 FIG. 6 shows an example of multi-stage production considering the cost of produced water. The raw water from which carbonic acid components and volatile TOC components have been removed by flash evaporation in the volatile component removal column 4 is sent to the first membrane distillation column 5. At this time, since the first membrane distillation column 5 is in a saturated state with lower pressure and temperature than the volatile component removal column 4, the raw water is sent to the first membrane distillation column 5 only by operating the valve 414. Here, the latent heat of the steam 410 generated in the volatile component removal column 4 is used to heat the raw water in the first membrane distillation column 5. The water vapor 411 generated in the first membrane distillation column passes through the hydrophobic porous membrane 1
05, it is separated from the mist, and is used to heat the raw water in the second membrane distillation column 6 through a pipe 411. Water that is used to heat the second membrane distillation column, releases latent heat, and becomes liquid is released from the heat exchanger outlet 413 to the outside of the system. At the final stage of this multi-stage operation, a simple condenser 7 is installed to condense the generated high-purity steam into ultrapure water. In addition, the system was designed to remove generated water by operating the final stage at near atmospheric pressure to avoid contamination by dust from sliding parts such as pumps. However, as shown in FIG. 7, if a high-performance dust-free pump 401 is developed, it will be possible to install a small generated water tank 402 and send the generated water out of the system. At this time, there is no problem even if the final stage is under considerably reduced pressure, and the air can be extracted from the produced water tank 402 as the position.

従来例 第8図に従来型超純水製造装置の概要を示す。
原水は凝集沈殿−濾過−マイクロ濾過などの前処
理工程を経た後、逆浸透工程(RO)に送られ、
原水中に含まれる大部分の溶解有機成分と90%程
度の無機塩類が除去される。さらにこの透過水は
脱気塔を経て脱炭酸され、イオン交換樹脂工程に
送られる。
Conventional Example Figure 8 shows an outline of a conventional ultrapure water production device.
After the raw water undergoes pretreatment processes such as coagulation sedimentation, filtration, and microfiltration, it is sent to the reverse osmosis process (RO).
Most dissolved organic components and about 90% of inorganic salts contained in raw water are removed. Furthermore, this permeated water is decarboxylated through a degassing tower and sent to an ion exchange resin process.

通常この脱気装置には真空脱気塔が用いられて
いるが、疎水性多孔質膜を用いた脱気用のモジユ
ール等も考案され始めている。例えば特開昭60−
118284号公報参照。
Usually, a vacuum degassing tower is used in this degassing device, but degassing modules using hydrophobic porous membranes are also beginning to be devised. For example, JP-A-60-
See Publication No. 118284.

イオン交換塔は二床式および混床式の再生方式
で、本工程で完全に塩類が除去され、通常はここ
で比抵抗10MΩ・cm以上の一次純水が得られ、一
旦純水タンクに貯蔵される。一次純水はさらに、
混床式イオン交換樹脂塔(ポリシヤ)で処理さ
れ、さらに完全に不純物を除去した後、紫外線殺
菌工程で生菌を無くした後、限外濾過工程(UF)
で残存する微粒子や死菌を除去され、超純水が得
られる。
The ion exchange tower uses two-bed and mixed-bed regeneration systems, and salts are completely removed in this process, and primary pure water with a specific resistance of 10 MΩ・cm or higher is usually obtained, which is then temporarily stored in a pure water tank. be done. Primary pure water is further
After being processed in a mixed-bed ion exchange resin column (polyshear) and completely removing impurities, an ultraviolet sterilization process eliminates viable bacteria, and then an ultrafiltration process (UF).
Remaining particulates and dead bacteria are removed and ultrapure water is obtained.

この従来方法では、常温25℃前後の温度を有す
る超純水が得られる。
In this conventional method, ultrapure water having a temperature of around 25° C. is obtained.

この従来装置を用いて得た超純水の水質は最高
レベルでも微生物0.05個/ml、0.1μm以上の大き
さの微粒子50〜100個/ml、TOC100ppbであり、
電気抵抗は18メガΩ・cmであつた。
The quality of ultrapure water obtained using this conventional device is at the highest level, 0.05 microorganisms/ml, 50 to 100 particles/ml with a size of 0.1 μm or more, and TOC 100 ppb.
The electrical resistance was 18 megaΩcm.

〔発明の効果〕〔Effect of the invention〕

本発明は、水道水などのように揮発性成分及び
非揮発性成分を含む原水を沸騰させて揮発性成分
を気化して除去し、その後、原水から水蒸気を発
生させて該水蒸気を疎水性多孔質膜と接触させ透
過させて凝縮し、超々純水を製造することにあ
る。
The present invention boils raw water containing volatile and non-volatile components such as tap water to vaporize and remove the volatile components, then generates water vapor from the raw water and transfers the water vapor to hydrophobic porous The purpose is to produce ultra-ultra pure water by bringing it into contact with a membrane, allowing it to permeate, and condensing it.

本発明によれば、従来の各種濾過膜、イオン交
換樹脂、殺菌灯などを組合せて超純水を製造する
方法にくらべて不純物の少ない超々純水を製造す
ることができる。
According to the present invention, ultra-super pure water with fewer impurities can be produced compared to conventional methods of producing ultra-pure water by combining various filtration membranes, ion exchange resins, germicidal lamps, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超々純水製造装置の一実施例
を示す概略構成図、第2図は比較例による超純水
製造方法によつて得られた水質を示す特性図、第
3図は本発明の実施例によつて得られた超々純水
の水質を示す特性図、第4図〜第7図は本発明の
超々純水製造装置の別の実施例を示す概略構成
図、第8図は従来例を示す概略構成図である。 1……膜蒸留塔、2……揮発性成分除去塔、1
01……疎水性多孔質膜、111……原水、11
3……凝縮面。
Fig. 1 is a schematic configuration diagram showing one embodiment of the ultra-ultra pure water production apparatus of the present invention, Fig. 2 is a characteristic diagram showing the water quality obtained by the ultra-pure water production method according to a comparative example, and Fig. 3 is Characteristic diagrams showing the quality of ultra-ultra pure water obtained by the embodiments of the present invention, Figures 4 to 7 are schematic configuration diagrams showing other embodiments of the ultra-super pure water production apparatus of the present invention, The figure is a schematic configuration diagram showing a conventional example. 1... Membrane distillation column, 2... Volatile component removal column, 1
01...Hydrophobic porous membrane, 111...Raw water, 11
3... Condensation surface.

Claims (1)

【特許請求の範囲】 1 原水から水蒸気を発生させ、この水蒸気を気
体は透過させるが液体は透過させない疎水性多孔
質膜を透過させた後凝縮して超純水を製造する方
法において、 前記原水を沸騰させ該原水中の揮発性成分を気
化して除去した後水蒸気を発生させ、該水蒸気を
前記疎水性多孔質膜と接触させることを特徴とす
る超純水製造方法。 2 前記疎水性多孔質膜を透過させた後、飽和蒸
気又は不活性ガスの雰囲気中で凝縮させることを
特徴とする特許請求の範囲第1項記載の超純水製
造方法。 3 前記沸騰は、加熱して行なわれることを特徴
とする特許請求の範囲第1項記載の超純水製造方
法。 4 前記水蒸気を再加熱して発生させることを特
徴とする特許請求の範囲第3項記載の超純水製造
方法。 5 前記沸騰は、減圧下で行なわれることを特徴
とする特許請求の範囲第1項記載の超純水製造方
法。 6 前記気化した揮発性成分を含む蒸気を加熱源
として前記水蒸気を発生させることを特徴とする
特許請求の範囲第1項又は第2項記載の超純水製
造方法。 7 揮発性成分および非揮発性成分を含む原水の
蒸気を透過させる疎水性多孔質膜と該疎水性多孔
質膜を透過した水蒸気を凝縮させる冷却手段を具
備する膜蒸留塔を有する超純水製造装置におい
て、 前記膜蒸留塔の前段に前記原水を沸騰させる手
段と、前記原水の沸騰により気化した前記揮発性
成分を排出する手段を具備する揮発性成分除去塔
を備えたことを特徴とする超純水製造装置。 8 前記沸騰させる手段は加熱する手段でること
を特徴とする特許請求の範囲第7項記載の超純水
製造装置。 9 前記膜蒸留塔内の水蒸気を凝縮させる雰囲気
を飽和蒸気又は不活性ガスとするガス供給手段を
備えていることを特徴とする特許請求の範囲第7
項記載の超純水製造装置。 10 前記蒸気は加熱手段によつて発生すること
を特徴とする特許請求の範囲第7項記載の超純水
製造装置。 11 前記膜蒸留塔は前記揮発性成分除去塔で排
出された揮発性成分を含む蒸気を前記膜蒸留塔内
の原水と熱交換する手段を具備することを特徴と
する特許請求の範囲第7項記載の超純水製造装
置。
[Scope of Claims] 1. A method for producing ultrapure water by generating water vapor from raw water, passing the water vapor through a hydrophobic porous membrane that allows gas to pass through but not liquid, and then condensing it, comprising: A method for producing ultrapure water, which comprises boiling raw water to vaporize and remove volatile components in the raw water, generating steam, and bringing the steam into contact with the hydrophobic porous membrane. 2. The method for producing ultrapure water according to claim 1, wherein after passing through the hydrophobic porous membrane, the ultrapure water is condensed in an atmosphere of saturated steam or inert gas. 3. The method for producing ultrapure water according to claim 1, wherein the boiling is performed by heating. 4. The method for producing ultrapure water according to claim 3, wherein the water vapor is generated by reheating. 5. The method for producing ultrapure water according to claim 1, wherein the boiling is performed under reduced pressure. 6. The method for producing ultrapure water according to claim 1 or 2, characterized in that the water vapor is generated using steam containing the vaporized volatile components as a heating source. 7. Ultrapure water production having a membrane distillation column equipped with a hydrophobic porous membrane that allows vapor of raw water containing volatile components and non-volatile components to pass therethrough, and a cooling means that condenses the water vapor that has passed through the hydrophobic porous membrane. The apparatus is characterized in that a volatile component removal column is provided upstream of the membrane distillation column and includes means for boiling the raw water and means for discharging the volatile components vaporized by the boiling of the raw water. Pure water production equipment. 8. The ultrapure water production apparatus according to claim 7, wherein the boiling means is heating means. 9. Claim 7, further comprising a gas supply means for making the atmosphere in which water vapor in the membrane distillation column is condensed into saturated vapor or inert gas.
Ultrapure water production equipment as described in section. 10. The ultrapure water production apparatus according to claim 7, wherein the steam is generated by a heating means. 11. Claim 7, wherein the membrane distillation column is equipped with means for heat-exchanging the vapor containing volatile components discharged from the volatile component removal column with the raw water in the membrane distillation column. The ultrapure water production device described.
JP62139782A 1987-03-25 1987-06-05 Production of ultrapure water and equipment thereof and method for using ultrapure water Granted JPS63305917A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62139782A JPS63305917A (en) 1987-06-05 1987-06-05 Production of ultrapure water and equipment thereof and method for using ultrapure water
EP88104672A EP0284052B1 (en) 1987-03-25 1988-03-23 Process for producing ultra-pure water and process for using said ultra-pure water
DE88104672T DE3884435T2 (en) 1987-03-25 1988-03-23 Processes for producing high-purity water and process for using this water.
US07/172,583 US4879041A (en) 1987-03-25 1988-03-24 Process for producing ultra-pure water and process for using said ultra-pure water
KR1019880003177A KR960003543B1 (en) 1987-03-25 1988-03-24 Ultrapure-water producing method and the usage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139782A JPS63305917A (en) 1987-06-05 1987-06-05 Production of ultrapure water and equipment thereof and method for using ultrapure water

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4211238A Division JPH0757301B2 (en) 1992-08-07 1992-08-07 Semiconductor integrated circuit cleaning method and cleaning apparatus therefor

Publications (2)

Publication Number Publication Date
JPS63305917A JPS63305917A (en) 1988-12-13
JPH0515486B2 true JPH0515486B2 (en) 1993-03-01

Family

ID=15253296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139782A Granted JPS63305917A (en) 1987-03-25 1987-06-05 Production of ultrapure water and equipment thereof and method for using ultrapure water

Country Status (1)

Country Link
JP (1) JPS63305917A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380982A (en) * 1989-08-25 1991-04-05 Hitachi Zosen Corp Impurity removing apparatus in multiple-effect distiller for preparing ultrapure water
JPH05136114A (en) * 1991-11-08 1993-06-01 Tadahiro Omi Ultrapure water supplying device, substrate washing method, and device and method for manufacturing ultrapure water
JP2652301B2 (en) * 1992-05-28 1997-09-10 株式会社荏原製作所 Cleaning water production equipment
US7678235B2 (en) * 2005-10-19 2010-03-16 Sylvan Source, Inc. Water purification system
US7837877B2 (en) 2006-06-09 2010-11-23 Air Products And Chemicals, Inc. Process for separating components of a multi-component feed stream
WO2013094528A1 (en) * 2011-12-20 2013-06-27 オルガノ株式会社 Liquid management system and recovery and recycling device for cleaning liquid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855921U (en) * 1981-10-12 1983-04-15 日立化成工業株式会社 foam mold
JPS61293586A (en) * 1985-06-20 1986-12-24 オ−ワイ・サンタサロ・ゾ−ルベルグ・エイビ− Method and apparatus for removing volatile substance from water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855921U (en) * 1981-10-12 1983-04-15 日立化成工業株式会社 foam mold
JPS61293586A (en) * 1985-06-20 1986-12-24 オ−ワイ・サンタサロ・ゾ−ルベルグ・エイビ− Method and apparatus for removing volatile substance from water

Also Published As

Publication number Publication date
JPS63305917A (en) 1988-12-13

Similar Documents

Publication Publication Date Title
EP0284052B1 (en) Process for producing ultra-pure water and process for using said ultra-pure water
US20110180479A1 (en) Zero liquid discharge water treatment system and method
JPH02293003A (en) Heated and deaerated ultrapure water generator
WO1998054096A1 (en) System for recovering and treating waste water
TWM526569U (en) Recovery apparatus for sewage treatment
JP6636111B2 (en) Organic solvent purification system and method
JP2007275690A (en) Method for separating and recovering organic liquid from organic liquid aqueous solution
JPH0515486B2 (en)
JP3922935B2 (en) Water treatment system
JPH04155924A (en) Vapor drying device
JPH0757301B2 (en) Semiconductor integrated circuit cleaning method and cleaning apparatus therefor
JPH0510964B2 (en)
JPH08224572A (en) Ultra pure water production and wastewater treatment in closed system
JPS6193897A (en) Apparatus for making ultra-pure water
WO2019193951A1 (en) Organic solvent purification system and method
EP0254519A2 (en) Method for preparation of ultrapurified water
KR100593600B1 (en) Separation and removal device of contaminants in wastewater evaporation condensate
JPH0263592A (en) Distillation device
KR20190140270A (en) Vapor permeation membrane separation process for concentration of isopropyl alcohlol and treatment of wastewater from isopropyl alcohol-containing wastewater
JP2898080B2 (en) Operation method of degassing membrane device
JPH06182149A (en) Removal of ammonia from wastewater
JPS62191092A (en) Production of super pure water and system therefor
JP3202566B2 (en) Method and apparatus for separating and concentrating volatile substances in water
JPH07251157A (en) Ultrapure water heater
JPS63147515A (en) Production of ultra pure water