JP3202566B2 - Method and apparatus for separating and concentrating volatile substances in water - Google Patents

Method and apparatus for separating and concentrating volatile substances in water

Info

Publication number
JP3202566B2
JP3202566B2 JP31486595A JP31486595A JP3202566B2 JP 3202566 B2 JP3202566 B2 JP 3202566B2 JP 31486595 A JP31486595 A JP 31486595A JP 31486595 A JP31486595 A JP 31486595A JP 3202566 B2 JP3202566 B2 JP 3202566B2
Authority
JP
Japan
Prior art keywords
concentration
separation
water
separating
volatile substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31486595A
Other languages
Japanese (ja)
Other versions
JPH09131582A (en
Inventor
隆幸 鈴木
紀夫 山田
芳郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP31486595A priority Critical patent/JP3202566B2/en
Publication of JPH09131582A publication Critical patent/JPH09131582A/en
Application granted granted Critical
Publication of JP3202566B2 publication Critical patent/JP3202566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水中の揮発性物質
の分離濃縮に係り、特に、有機溶剤、アルコール、有機
塩素化合物、アンモニア、塩化水素等の揮発性物質を含
有する廃水から該揮発性物質を分離濃縮する方法及びそ
の設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the separation and concentration of volatile substances in water, and more particularly to the removal of volatile substances from waste water containing volatile substances such as organic solvents, alcohols, organic chlorine compounds, ammonia and hydrogen chloride. The present invention relates to a method for separating and concentrating a substance and a facility thereof.

【0002】[0002]

【従来の技術】複数の揮発成分の混合液から低沸点の揮
発成分を分留する方法として、直接加熱蒸留、水蒸気蒸
留、減圧蒸留法がある。また低濃度の揮発成分を水中か
ら除去する場合は、例えば、水中の塩素系有機化合物、
アンモニアなどを空気あるいは水蒸気と向流接触して放
散し、回収する方法が水の浄化方法の一つとして適用さ
れている(特開平7−31966号公報)。
2. Description of the Related Art Direct heating distillation, steam distillation, and vacuum distillation are known as methods for fractionating low boiling volatile components from a mixture of a plurality of volatile components. When removing low-concentration volatile components from water, for example, chlorine-based organic compounds in water,
A method in which ammonia or the like is diffused by being brought into countercurrent contact with air or water vapor to recover the same is applied as one of the water purification methods (Japanese Patent Application Laid-Open No. 7-31966).

【0003】水中の揮発分の放散に際しては、揮発成分
は必ず水蒸気とともに蒸発するが、揮発分の蒸気圧が水
の蒸気圧に比較して著しく低い溶存濃度では、放散ガス
を凝縮して揮発成分を回収しても凝縮水中の揮発成分濃
度が高くならないため、その利用、処理が容易でない。
凝縮水の揮発成分濃度を上げるためには、繰り返し蒸留
(放散)が必要であり、多くのエネルギーと操作が必要
となる。比較的高濃度の揮発成分の混合物の分離濃縮に
は精留塔が利用され、例えば、多段式精留塔の中間部に
原液を注入する揮発成分の分離濃縮法では、濃縮液の濃
縮率を上げるために、濃縮部の蒸気を凝縮して還流する
が、還流の繰り返し回数が多いため、加温のためのエネ
ルギーを多量に消費する。
[0003] When evaporating volatiles in water, the volatile components evaporate together with water vapor. However, when the vapor pressure of the volatiles is significantly lower than the vapor pressure of water, the evaporating gas is condensed and the volatile components are condensed. The use and treatment are not easy because the concentration of volatile components in the condensed water does not increase even if the water is recovered.
In order to increase the concentration of the volatile components in the condensed water, repeated distillation (emission) is required, and much energy and operation are required. A rectification column is used for separating and concentrating a mixture of relatively high-concentration volatile components.For example, in a method for separating and concentrating a volatile component in which an undiluted solution is injected into an intermediate portion of a multi-stage rectification column, the concentration ratio of the concentrated solution is reduced. In order to raise the temperature, the steam in the enrichment section is condensed and refluxed. However, since the number of times of reflux is large, a large amount of energy for heating is consumed.

【0004】一方、非揮発成分含有水を蒸発し、非揮発
分を濃縮する方法として多重効用缶を利用した方法が汎
用されている。この方法は前段の液を次段に移送すると
ともに、前段で発生した蒸気で次段の液を加温するもの
であり、缶数が多くなるほどエネルギー効率が向上す
る。しかし、この方法は蒸気が加熱に利用された時点で
凝縮し、系外に排出されるため、蒸発によって揮発成分
が凝縮水中に移動しても、その濃度を上昇せしめること
は、装置構成から自ずと限界がある。またこのような装
置構成では、最終の蒸発管の蒸発ガスは凝縮器で凝縮し
ても、真空ポンプ(減圧装置)が後続しているので、凝
縮水中の揮発成分が減圧下で蒸発してしまうため揮発成
分の濃縮液を得ることは不可能である。また効率的に凝
縮水を得る方法として多段フラッシュ蒸発法が実用化さ
れているが、この方法も凝縮水中に揮発成分を濃縮する
ことができない。
On the other hand, as a method for evaporating water containing non-volatile components and concentrating non-volatile components, a method using a multi-effect can is widely used. In this method, the liquid in the previous stage is transferred to the next stage, and the liquid in the next stage is heated by the vapor generated in the previous stage. As the number of cans increases, the energy efficiency improves. However, in this method, the vapor condenses when it is used for heating and is discharged out of the system.Therefore, even if volatile components move into condensed water due to evaporation, it is naturally necessary to increase the concentration of the volatile components depending on the device configuration. There is a limit. Further, in such a device configuration, even if the vaporized gas in the final evaporating tube is condensed in the condenser, the volatile component in the condensed water evaporates under reduced pressure because the vacuum pump (decompression device) follows. Therefore, it is impossible to obtain a concentrated solution of volatile components. As a method for efficiently obtaining condensed water, a multi-stage flash evaporation method has been put to practical use, but this method also cannot concentrate volatile components in the condensed water.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術に鑑み、比較的低濃度の揮発成分含有水から、省エネ
ルギーで効率的に揮発成分を除去して浄化された水を得
るとともに、揮発成分を濃縮してその利用、処理を容易
にすることができる水中の揮発性物質の分離濃縮方法及
びその設備を提供することを課題とする。
DISCLOSURE OF THE INVENTION In view of the above-mentioned prior art, the present invention provides an energy-saving and efficient removal of volatile components from relatively low-concentration volatile component-containing water to obtain purified water. It is an object of the present invention to provide a method and an apparatus for separating and concentrating volatile substances in water, in which components can be concentrated to facilitate their use and treatment.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、揮発性物質含有水を蒸発工程に導入
し、減圧下で発生する水蒸気及び揮発性物質を含有する
ガスを、分離濃縮工程で減圧下で部分凝縮せしめたの
ち、未凝縮分を次の凝縮工程で凝縮する揮発性物質の分
離濃縮方法において、分離濃縮工程内液の一部を前段の
工程に移送することとしたものである。前記分離濃縮方
法において、前段工程の加熱源は、後段工程からヒート
ポンプを用いて供給するのがよい。
In order to solve the above problems, the present invention introduces water containing a volatile substance into an evaporation step, and separates water vapor generated under reduced pressure and a gas containing a volatile substance. After partially condensing under reduced pressure in the concentration step, in the method of separating and concentrating the volatile substance in which the uncondensed matter is condensed in the next condensation step, a part of the liquid in the separation and concentration step is transferred to the previous step. Things. In the separation and concentration method, the heat source prior stage process, it is preferable to provide with a heat pump from the latter step.

【0007】また、本発明では、揮発性物質含有水中の
揮発性物質を分離濃縮する設備において、該揮発性物質
含有水を蒸発する蒸発装置と、該蒸発装置からの蒸発ガ
スを部分凝縮する分離濃縮装置と、該分離濃縮装置から
の未凝縮ガスを凝縮する凝縮装置と、減圧装置とを設
け、前記各装置を前記した順に順次連結するガス通路
と、後段の分離濃縮装置の内液を前段の蒸発装置に移送
する移送手段とを有することとしたものである。前記分
離濃縮設備において、分離濃縮装置及び凝縮装置は、流
入するガスのガス通路の開口部を該装置の液面下に設け
るのがよい。
Further, according to the present invention, in a facility for separating and concentrating a volatile substance in a volatile substance-containing water, an evaporator for evaporating the volatile substance-containing water, and a separation apparatus for partially condensing an evaporative gas from the evaporator are provided. and concentrator, and the condenser for condensing uncondensed gases from the separation and concentration apparatus, and a pressure reducing device provided, a gas passage for sequentially connecting the respective devices in the order described above, front inner solution of the subsequent separation and concentration apparatus And a transfer means for transferring to an evaporator . In the separation / concentration equipment, the separation / concentration device and the condensing device are preferably provided with an opening of a gas passage of an inflowing gas below the liquid level of the device.

【0008】[0008]

【発明の実施の形態】本発明は、蒸発工程で蒸発した揮
発成分を、次段の分離濃縮工程で凝縮すると共に再度蒸
発することによって、蒸気中の揮発成分の濃度を高める
ものであるが、分離濃縮工程では流入蒸気の凝縮に流出
蒸気の蒸発潜熱を直接有効に利用せしめるものである。
また、間接的に凝縮熱を蒸発用の熱源として利用するこ
とも可能である。本発明では、蒸発工程と凝縮工程の間
に減圧装置を介するのがよく、これによって簡単に揮発
成分を濃縮することができる。従来技術のごとく、蒸発
工程と減圧装置の間に凝縮工程を介する方法では、凝縮
工程の凝縮水が減圧下に存在するため、折角凝縮水中に
濃縮された揮発成分が再蒸発して濃縮濃度を上げること
が難しい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is to increase the concentration of volatile components in steam by condensing and re-evaporating volatile components evaporated in an evaporation step in a subsequent separation and concentration step. In the separation and concentration step, the latent heat of vaporization of the outflow steam is directly and effectively used for the condensation of the inflow steam.
It is also possible to indirectly use the heat of condensation as a heat source for evaporation. In the present invention, it is preferable to pass a decompression device between the evaporation step and the condensation step, whereby the volatile components can be easily concentrated. In the method in which the condensation step is performed between the evaporation step and the decompression device as in the prior art, since the condensed water in the condensation step exists under reduced pressure, the volatile components concentrated in the condensed water are re-evaporated to reduce the concentration. Difficult to raise.

【0009】次に、本発明の一例を図面を用いて詳細に
説明する。図1、2に本発明のフローの全体構成図を示
し、図3、4に分離濃縮工程(装置)の部分拡大図を示
す。図1において、揮発性物質として、例えば、アンモ
ニアを含有した原水1は熱交換器2を経由し、加温され
て蒸発工程3に導入され、減圧下で減圧蒸発され、温度
が蒸発工程3よりも低い分離濃縮工程4に導入され、凝
縮されるとともに減圧蒸留され、減圧装置5を経由して
温度が、分離濃縮工程4より低い凝縮工程6で凝縮され
る。凝縮水7には揮発成分が濃縮されており、濃縮水8
として搬出される。分離濃縮工程4は流入蒸気量が流出
蒸気量よりも多くなり、液量が増加するので、その分は
返送水9として蒸発工程3に導入される。蒸発工程流出
水10は、熱交換器2を経由して原水1に熱を供給した
のち、非揮発成分を処理され、放流あるいは再利用され
る。蒸発工程3、分離濃縮工程4は減圧装置5によって
大気圧以下に減圧される。
Next, an example of the present invention will be described in detail with reference to the drawings. 1 and 2 show the overall configuration of the flow of the present invention, and FIGS. 3 and 4 show partially enlarged views of the separation and concentration step (apparatus). In FIG. 1, raw water 1 containing, for example, ammonia as a volatile substance is heated via a heat exchanger 2 and introduced into an evaporation step 3 where it is evaporated under reduced pressure under reduced pressure. , Is condensed and distilled under reduced pressure, and is condensed via a decompression device 5 in a condensation step 6 whose temperature is lower than that of the separation and concentration step 4. Volatile components are concentrated in the condensed water 7 and the concentrated water 8
It is carried out as. In the separation and concentration step 4, the amount of inflow steam becomes larger than the amount of outflow steam, and the amount of liquid increases, and the amount is introduced into the evaporation step 3 as return water 9. After supplying heat to the raw water 1 via the heat exchanger 2, the non-volatile components are treated and the effluent 10 from the evaporation step is discharged and reused. In the evaporation step 3 and the separation / concentration step 4, the pressure is reduced by the pressure reducing device 5 to the atmospheric pressure or less.

【0010】蒸発工程3、分離濃縮工程4には蒸発潜熱
による温度低下を防止するため、それぞれ次段の工程か
らヒートポンプ11、12によって熱を供給される。即
ち、蒸発工程3は分離濃縮工程4からヒートポンプ11
によって熱が供給されるが、その分分離濃縮工程4の温
度が低下するため流入する蒸気を円滑に凝縮することが
できる。一方、分離濃縮工程4でも蒸発による温度低下
を防止するため、凝縮工程6の凝縮熱をヒートポンプ1
2によって分離濃縮工程4に移動する。凝縮工程6の温
度は、これによって流入蒸気の凝縮に必要な温度に維持
することができる。各工程3、4、6における加温は当
然他の熱源として、蒸気等公知の技術が利用でき、また
冷却も冷却水等の公知技術を利用できるので、安価で有
効な熱源、冷却源が存在する場合にはヒートポンプは不
要である。しかしながら、そのような熱源、冷却源が存
在しない場合は、システム内で冷却と加温を同時に行う
ことのできるヒートポンプを利用することが経済的に有
利である。
Heat is supplied to the evaporation step 3 and the separation / concentration step 4 by the heat pumps 11 and 12 from the next step in order to prevent the temperature from being lowered by the latent heat of evaporation. That is, the evaporating step 3 is different from the separating and concentrating step 4 from the heat pump 11
However, the temperature of the separation / concentration step 4 is reduced by that amount, so that the inflowing steam can be smoothly condensed. On the other hand, in the separation and concentration step 4 as well, the heat of condensation in the condensation step 6
The process moves to the separation / concentration step 4 according to 2. The temperature of the condensation step 6 can thereby be maintained at the temperature required for the condensation of the incoming steam. Heating in each of the steps 3, 4, and 6 can be performed by using a known technique such as steam as another heat source, and a known technique such as cooling water can be used for cooling. Therefore, there is an inexpensive and effective heat source and cooling source. If so, no heat pump is required. However, when such a heat source or a cooling source does not exist, it is economically advantageous to use a heat pump capable of simultaneously performing cooling and heating in the system.

【0011】凝縮工程7では、内圧を大気圧に調整する
ための圧力調整装置13が配備され、内圧が所定値より
も減圧になった場合には、空気等のガスが供給され、昇
圧した場合には、内部のガスはガス処理工程14を経由
して放出され、凝縮工程6の圧力が調整される。減圧装
置5の配置は、図2に示したように凝縮工程6の後段で
も良い。また図示していないが、分離濃縮工程4と凝縮
工程6の間に一つと、凝縮工程6の後段に一つと、合わ
せて二つ(複数)の減圧装置を配備しても良い。蒸発工
程3は単段の蒸発缶、多段式の蒸留塔等公知の蒸発装
置、蒸留装置を利用することができる。分離濃縮工程4
は、蒸発と凝縮を同時に行うための図3、4に示す装置
を用いる。
In the condensing step 7, a pressure adjusting device 13 for adjusting the internal pressure to the atmospheric pressure is provided. When the internal pressure becomes lower than a predetermined value, a gas such as air is supplied and the pressure is increased. In the meantime, the gas inside is discharged via the gas treatment step 14 and the pressure in the condensation step 6 is adjusted. The arrangement of the pressure reducing device 5 may be after the condensing step 6 as shown in FIG. Although not shown, two (plural) decompression devices may be provided, one each between the separation / concentration step 4 and the condensation step 6 and the one after the condensation step 6. In the evaporating step 3, a well-known evaporator or distillation apparatus such as a single-stage evaporator or a multi-stage distillation tower can be used. Separation and concentration step 4
Uses an apparatus shown in FIGS. 3 and 4 for simultaneously performing evaporation and condensation.

【0012】図3において、流入蒸気17は分離濃縮工
程内水19水面下に配備された多孔管20の多孔を通過
して、該内水19に接触して凝縮する。内水19は減圧
下で蒸発し、流出蒸気18として凝縮工程7に移動す
る。分離濃縮工程内水19水面下には、ヒートポンプ1
2の加熱側熱交換器21とヒートポンプ11の冷却側熱
交換器22が配備されている。分離濃縮工程4で流入蒸
気17が凝縮したのち、凝縮水は再度蒸気18として流
出する。図4は、分離濃縮工程4の塔式の装置構成であ
る。図4において、分離濃縮工程内水19は、熱交換器
23を経由して塔頂から気液接触用充填材の充填層24
に散布される。流入蒸気17は塔内を通過して凝縮する
と共に、再度蒸気18として流出する。アンモニアは水
中でガス体(遊離アンモニア)とイオンの平衡状態で存
在しているが、水中から放散されるアンモニアはガス体
である。従って、ガス体の存在量を多くするために、昇
温、あるいはアルカリ剤を添加してpHを上昇すること
は、放散効率を上げるための有効な手段となる。
In FIG. 3, the inflow steam 17 passes through the pores of a perforated pipe 20 provided below the surface of the water 19 in the separation / concentration step, and comes into contact with the water 19 to be condensed. The internal water 19 evaporates under reduced pressure and moves to the condensation step 7 as outflow steam 18. In the separation / concentration process water 19, the heat pump 1
Two heat-side heat exchangers 21 and a heat-side heat exchanger 22 of the heat pump 11 are provided. After the inflow steam 17 is condensed in the separation and concentration step 4, the condensed water flows out again as steam 18. FIG. 4 shows a tower-type apparatus configuration of the separation / concentration step 4. In FIG. 4, the water 19 in the separation / concentration step is transferred from the top of the tower via the heat exchanger 23 to the packed bed 24 of the gas-liquid contacting packing material.
Sprayed on. The inflow steam 17 passes through the column and condenses, and again flows out as steam 18. Ammonia exists in water in a state of equilibrium with a gas (free ammonia) and ions, but ammonia released from water is a gas. Therefore, raising the temperature or increasing the pH by adding an alkali agent to increase the amount of the gaseous substance is an effective means for increasing the emission efficiency.

【0013】[0013]

【実施例】次に図1、3のフロー、装置を用いた実施例
について述べる。 実施例1 揮発成分含有水としてアンモニア性窒素濃度1000m
g/リットルのアンモニア水を用い、次の装置、条件で
アンモニアを分離濃縮した。その結果、アンモニア水の
アンモニア性窒素を340mg/リットルに低減すると
共に、アンモニア性窒素5.3%(53000mg/リ
ットル)の濃縮液を得ることができた。
Next, an embodiment using the flow and the apparatus shown in FIGS. Example 1 As a volatile component-containing water, an ammonia nitrogen concentration was 1000 m.
Using g / liter of ammonia water, ammonia was separated and concentrated under the following apparatus and conditions. As a result, while reducing the ammonia nitrogen in the ammonia water to 340 mg / l, a concentrated liquid of 5.3% (53000 mg / l) of the ammonia nitrogen could be obtained.

【0014】 装置の容積、 蒸発缶容積: 0.70m3 、 分離濃縮缶容積: 0.15m3 、 運転条件、 揮発成分含有水量: 10m3 /日、 濃縮水量: 0.0125m3 /日、 蒸発缶蒸発水分量: 0.5m3 /日、 分離濃縮缶蒸発水分量: 0.125m3 /日、 分離濃縮缶流出水量: 0.375m3 /日、[0014] volume of the device, evaporator volume: 0.70 m 3, separation and concentration can volume: 0.15 m 3, the operating conditions, the volatile component-containing water: 10 m 3 / day, concentrated water: 0.0125 m 3 / day, evaporated Can evaporating water amount: 0.5 m 3 / day, separating and concentrating can evaporating water amount: 0.125 m 3 / day, separating and concentrating can effluent amount: 0.375 m 3 / day,

【0015】 蒸発缶水温: 67℃、 分離濃縮蒸発缶水温: 48℃、 凝縮缶水温: 20℃、 ヒートポンプ11電力消費量: 83kWh/日、 ヒートポンプ12電力消費量: 22kWh/日、 (ヒートポンプは水温を検知してオンオフ制御した) 減圧装置: 真空ポンプ、Evaporator water temperature: 67 ° C., separation / concentration evaporator water temperature: 48 ° C., condenser water temperature: 20 ° C., power consumption of heat pump 11: 83 kWh / day, power consumption of heat pump 12: 22 kWh / day, (heat pump water temperature On / off control was detected) Pressure reducing device: vacuum pump,

【0016】[0016]

【発明の効果】本発明によれば、次のような効果を奏す
ることができる。 (a)簡単な装置構成で液中の揮発成分を分離、濃縮す
ることができる。 (b)水中から有害な揮発成分を除去することができ、
しかも高濃度に濃縮できるので処理処分、例えば焼却処
理等が容易となる。 (c)水中の有用揮発成分を分離濃縮できるので再利用
が容易になる。 (d)濃縮した揮発成分を液状で保存できるので、ガス
のように保存に大容量のタンクが不必要で、貯留が容易
である。従って、濃縮揮発成分の処理、処分、有効利用
等の操作に時間的制約を受けることが少ない。 (e)原水に溶存して同伴する微量ガス、例えば窒素ガ
ス以外に蒸気成分中に非凝縮ガスが存在しないので、排
ガス処理がほとんど不要である。
According to the present invention, the following effects can be obtained. (A) Volatile components in a liquid can be separated and concentrated with a simple device configuration. (B) harmful volatile components can be removed from water,
In addition, since it can be concentrated to a high concentration, processing disposal, for example, incineration processing becomes easy. (C) Reuse is facilitated because useful volatile components in water can be separated and concentrated. (D) Since a concentrated volatile component can be stored in a liquid state, a large-capacity tank is not required for storage like gas, and storage is easy. Therefore, there is little time restriction on operations such as treatment, disposal, and effective use of the concentrated volatile components. (E) Since there is no non-condensable gas in the vapor component other than the trace gas dissolved and accompanying the raw water, for example, nitrogen gas, exhaust gas treatment is almost unnecessary.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のフローの一例を示す全体構成図。FIG. 1 is an overall configuration diagram showing an example of a flow of the present invention.

【図2】本発明のフローの他の例を示す全体構成図。FIG. 2 is an overall configuration diagram showing another example of the flow of the present invention.

【図3】本発明に用いる分離濃縮装置の部分拡大図。FIG. 3 is a partially enlarged view of a separation and concentration device used in the present invention.

【図4】本発明に用いる他の分離濃縮装置の部分拡大
図。
FIG. 4 is a partially enlarged view of another separation and concentration device used in the present invention.

【符号の説明】 1:原水、2:熱交換器、3:蒸発工程、4:分離濃縮
工程、5:減圧装置、6:凝縮工程、7:凝縮液、8:
濃縮水、9:返送水、10:蒸発工程流出水、11、1
2:ヒートポンプ、13:圧力調整装置、14:ガス処
理工程、17:流入蒸気、18:流出蒸気、19:工程
内水、20:多孔管、21:加熱側熱交換器、22:冷
却側熱交換器、23:熱交換器、24:充填層、
[Description of Signs] 1: Raw water, 2: heat exchanger, 3: evaporation step, 4: separation and concentration step, 5: decompression device, 6: condensation step, 7: condensate, 8:
Concentrated water, 9: return water, 10: effluent from evaporation process, 11, 1
2: heat pump, 13: pressure regulator, 14: gas treatment step, 17: inflow steam, 18: outflow steam, 19: in-process water, 20: perforated tube, 21: heating-side heat exchanger, 22: cooling-side heat Exchanger, 23: heat exchanger, 24: packed bed,

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C02F 1/58 C02F 1/58 A H (56)参考文献 特開 昭52−148962(JP,A) 特開 昭61−54274(JP,A) 特開 平6−31265(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/20 B01B 1/00 - 1/08 B01D 1/00 - 8/00 B01D 19/00 ────────────────────────────────────────────────── (5) Continuation of the front page (51) Int.Cl. 7 Identification symbol FI C02F 1/58 C02F 1/58 AH (56) References JP-A-52-148962 (JP, A) JP-A-61-54274 (JP, A) JP-A-6-31265 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/20 B01B 1/00-1/08 B01D 1/00-8 / 00 B01D 19/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 揮発性物質含有水を蒸発工程に導入し、
減圧下で発生する水蒸気及び揮発性物質を含有するガス
を、分離濃縮工程で減圧下で部分凝縮せしめたのち、未
凝縮分を次の凝縮工程で凝縮する揮発性物質の分離濃縮
方法において、分離濃縮工程内液の一部を前段の工程に
移送することを特徴とする水中の揮発性物質の分離濃縮
方法。
1. Introducing volatile substance-containing water into an evaporation step,
In the method for separating and concentrating volatile substances, in which the gas containing water vapor and volatile substances generated under reduced pressure is partially condensed under reduced pressure in the separation and concentration step, the uncondensed matter is condensed in the next condensation step. A method for separating and concentrating volatile substances in water, comprising transferring a part of a liquid in a concentration step to a preceding step.
【請求項2】 前記分離濃縮方法において、前段工程の
加熱源を後段工程からヒートポンプを用いて供給するこ
とを特徴とする請求項1記載の水中の揮発性物質の分離
濃縮方法。
2. A said separation concentration method, a method of separation and concentration volatiles in water according to claim 1 Symbol mounting and supplying with a heat pump the heat source of the previous step from the latter step.
【請求項3】 揮発性物質含有水中の揮発性物質を分離
濃縮する設備において、該揮発性物質含有水を蒸発する
蒸発装置と、該蒸発装置からの蒸発ガスを部分凝縮する
分離濃縮装置と、該分離濃縮装置からの未凝縮ガスを凝
縮する凝縮装置と、減圧装置とを設け、前記各装置を前
記した順に順次連結するガス通路と、後段の分離濃縮
置の内液を前段の蒸発装置に移送する移送手段とを有す
ることを特徴とする水中の揮発性物質の分離濃縮設備。
3. An apparatus for separating and concentrating volatile substances in volatile substance-containing water, comprising: an evaporator for evaporating the volatile substance-containing water; a separation and concentrator for partially condensing evaporative gas from the evaporator; It provided a condenser for condensing uncondensed gases from the separation and concentration apparatus, and a pressure reducing device, before the respective devices
A gas passage connected sequentially in the order described, and a transfer means for transferring an inner liquid of a subsequent separation / concentration device to a preceding evaporator , wherein the separation / concentration facility for volatile substances in water is provided. .
【請求項4】 前記分離濃縮装置及び凝縮装置は、流入
するガスのガス通路の開口部を該装置の液面下に設けた
ことを特徴とする請求項記載の水中の揮発性物質の分
離濃縮設備。
4. The separation of volatile substances in water according to claim 3, wherein the separating and concentrating device and the condensing device are provided with an opening of a gas passage of an inflowing gas below a liquid level of the device. Concentration equipment.
JP31486595A 1995-11-09 1995-11-09 Method and apparatus for separating and concentrating volatile substances in water Expired - Fee Related JP3202566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31486595A JP3202566B2 (en) 1995-11-09 1995-11-09 Method and apparatus for separating and concentrating volatile substances in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31486595A JP3202566B2 (en) 1995-11-09 1995-11-09 Method and apparatus for separating and concentrating volatile substances in water

Publications (2)

Publication Number Publication Date
JPH09131582A JPH09131582A (en) 1997-05-20
JP3202566B2 true JP3202566B2 (en) 2001-08-27

Family

ID=18058558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31486595A Expired - Fee Related JP3202566B2 (en) 1995-11-09 1995-11-09 Method and apparatus for separating and concentrating volatile substances in water

Country Status (1)

Country Link
JP (1) JP3202566B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838826B2 (en) * 2008-05-27 2011-12-14 オルガノ株式会社 Fluorine and ammonia recovery device and recovery method
JP2013075262A (en) * 2011-09-30 2013-04-25 Japan Organo Co Ltd Removing system and removing method of volatile substance in underground water

Also Published As

Publication number Publication date
JPH09131582A (en) 1997-05-20

Similar Documents

Publication Publication Date Title
JP3448201B2 (en) Wastewater evaporative concentrator
US6638398B1 (en) Methods for the evaporation of an aqueous solution containing ammonia
JPH0753443A (en) Process and apparatus for recovering acetic acid from water-soluble stream
AU2014331471B2 (en) Solvent decontamination system and method
US8075741B2 (en) Water purification method, process and apparatus
JP3202566B2 (en) Method and apparatus for separating and concentrating volatile substances in water
JP3194123B2 (en) Ultrapure water production and wastewater treatment method for closed system
JPH04155924A (en) Vapor drying device
JP2003053328A (en) Waste water treating equipment
CN212050614U (en) Contain concentrated system of salt sewage
JP2952741B2 (en) Pure water production system for fuel cell power plant
JP2629576B2 (en) Organic exhaust treatment equipment
JP3736950B2 (en) Wastewater treatment method
JPH0263592A (en) Distillation device
JPH11244843A (en) Steam compression type pure water producing device
JP3106382B2 (en) Ultrapure water production and wastewater treatment method for closed system
CN221181741U (en) Purification system of electronic grade nitrous oxide
JPH0775642B2 (en) Method for evaporating and concentrating aqueous solution containing water-soluble organic matter
JPH1128301A (en) Apparatus and method for separating and recovering volatile component
JPH07246309A (en) Separation
JPH07241426A (en) Gas separating method
JP6718758B2 (en) Nitrogen-containing wastewater treatment apparatus and treatment method
JPH04190833A (en) Treating method for waster water mixed with organic solvent
JP4200470B2 (en) Separation and concentration method and system for recovering alcohol in water with high purity
JPH05200230A (en) Method and apparatus for washing semiconductor integrated circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees