JPH09131582A - Separating and concentrating method of volatile material in underwater and equipment therefor - Google Patents
Separating and concentrating method of volatile material in underwater and equipment thereforInfo
- Publication number
- JPH09131582A JPH09131582A JP31486595A JP31486595A JPH09131582A JP H09131582 A JPH09131582 A JP H09131582A JP 31486595 A JP31486595 A JP 31486595A JP 31486595 A JP31486595 A JP 31486595A JP H09131582 A JPH09131582 A JP H09131582A
- Authority
- JP
- Japan
- Prior art keywords
- water
- separating
- concentrating
- concentration
- separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Degasification And Air Bubble Elimination (AREA)
- Physical Water Treatments (AREA)
- Removal Of Specific Substances (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水中の揮発性物質
の分離濃縮に係り、特に、有機溶剤、アルコール、有機
塩素化合物、アンモニア、塩化水素等の揮発性物質を含
有する廃水から該揮発性物質を分離濃縮する方法及びそ
の設備に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to separation and concentration of volatile substances in water, and more particularly, to volatilization of waste water containing volatile substances such as organic solvents, alcohols, organic chlorine compounds, ammonia and hydrogen chloride. The present invention relates to a method for separating and concentrating a substance and its equipment.
【0002】[0002]
【従来の技術】複数の揮発成分の混合液から低沸点の揮
発成分を分留する方法として、直接加熱蒸留、水蒸気蒸
留、減圧蒸留法がある。また低濃度の揮発成分を水中か
ら除去する場合は、例えば、水中の塩素系有機化合物、
アンモニアなどを空気あるいは水蒸気と向流接触して放
散し、回収する方法が水の浄化方法の一つとして適用さ
れている(特開平7−31966号公報)。2. Description of the Related Art Direct distillation by heating, steam distillation, and vacuum distillation are known as methods for fractionally distilling low-boiling volatile components from a mixture of a plurality of volatile components. When removing low-concentration volatile components from water, for example, chlorine-based organic compounds in water,
A method in which ammonia or the like is countercurrently contacted with air or water vapor to be diffused and recovered is applied as one of water purification methods (JP-A-7-31966).
【0003】水中の揮発分の放散に際しては、揮発成分
は必ず水蒸気とともに蒸発するが、揮発分の蒸気圧が水
の蒸気圧に比較して著しく低い溶存濃度では、放散ガス
を凝縮して揮発成分を回収しても凝縮水中の揮発成分濃
度が高くならないため、その利用、処理が容易でない。
凝縮水の揮発成分濃度を上げるためには、繰り返し蒸留
(放散)が必要であり、多くのエネルギーと操作が必要
となる。比較的高濃度の揮発成分の混合物の分離濃縮に
は精留塔が利用され、例えば、多段式精留塔の中間部に
原液を注入する揮発成分の分離濃縮法では、濃縮液の濃
縮率を上げるために、濃縮部の蒸気を凝縮して還流する
が、還流の繰り返し回数が多いため、加温のためのエネ
ルギーを多量に消費する。When the volatile component in water is released, the volatile component always evaporates together with water vapor. However, when the vapor pressure of the volatile component is significantly lower than the vapor pressure of water, the volatile component is condensed by condensing the released gas. Even if recovered, the concentration of volatile components in the condensed water does not increase, so its use and treatment are not easy.
In order to increase the concentration of volatile components in the condensed water, repeated distillation (dissipation) is required, which requires a lot of energy and operation. A rectification column is used for separating and concentrating a mixture of relatively high-concentration volatile components.For example, in the method for separating and concentrating volatile components in which a stock solution is injected into the middle part of a multistage rectification column, the concentration ratio of the concentrated liquid is In order to raise the temperature, the vapor in the concentrating section is condensed and recirculated, but since the number of times of recirculation is repeated, a large amount of energy for heating is consumed.
【0004】一方、非揮発成分含有水を蒸発し、非揮発
分を濃縮する方法として多重効用缶を利用した方法が汎
用されている。この方法は前段の液を次段に移送すると
ともに、前段で発生した蒸気で次段の液を加温するもの
であり、缶数が多くなるほどエネルギー効率が向上す
る。しかし、この方法は蒸気が加熱に利用された時点で
凝縮し、系外に排出されるため、蒸発によって揮発成分
が凝縮水中に移動しても、その濃度を上昇せしめること
は、装置構成から自ずと限界がある。またこのような装
置構成では、最終の蒸発管の蒸発ガスは凝縮器で凝縮し
ても、真空ポンプ(減圧装置)が後続しているので、凝
縮水中の揮発成分が減圧下で蒸発してしまうため揮発成
分の濃縮液を得ることは不可能である。また効率的に凝
縮水を得る方法として多段フラッシュ蒸発法が実用化さ
れているが、この方法も凝縮水中に揮発成分を濃縮する
ことができない。On the other hand, a method using a multi-effect can is generally used as a method for evaporating water containing a non-volatile component and concentrating the non-volatile content. In this method, the liquid of the previous stage is transferred to the next stage, and the liquid of the next stage is heated by the steam generated in the previous stage, and the energy efficiency improves as the number of cans increases. However, in this method, the vapor is condensed when it is used for heating and is discharged to the outside of the system.Therefore, even if the volatile component moves to the condensed water due to evaporation, it is naturally possible to increase the concentration. There is a limit. Further, in such a device configuration, even if the evaporative gas in the final evaporating tube is condensed in the condenser, the volatile component in the condensed water evaporates under reduced pressure because the vacuum pump (pressure reducing device) follows. Therefore, it is impossible to obtain a concentrated solution of volatile components. A multi-stage flash evaporation method has been put into practical use as a method for efficiently obtaining condensed water, but this method also cannot concentrate volatile components in condensed water.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記従来技
術に鑑み、比較的低濃度の揮発成分含有水から、省エネ
ルギーで効率的に揮発成分を除去して浄化された水を得
るとともに、揮発成分を濃縮してその利用、処理を容易
にすることができる水中の揮発性物質の分離濃縮方法及
びその設備を提供することを課題とする。SUMMARY OF THE INVENTION In view of the above-mentioned prior art, the present invention provides water purified with a relatively low concentration of volatile component-containing water by efficiently removing volatile components and efficiently purifying the water. It is an object of the present invention to provide a method for separating and concentrating volatile substances in water, which is capable of concentrating components and facilitating their use and treatment, and equipment therefor.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
に、本発明では、揮発性物質含有水を蒸発工程に導入
し、減圧下で発生する水蒸気及び揮発性物質を含有する
ガスを、分離濃縮工程で減圧下で部分凝縮せしめたの
ち、未凝縮分を次の凝縮工程で凝縮する揮発性物質の分
離濃縮方法において、分離濃縮工程内液の一部を前段の
工程に移送することとしたものである。前記分離濃縮方
法において、分離濃縮工程が多段に設けられ、該工程の
内液を前段の分離濃縮工程に移送するのがよく、また、
前段工程の加熱源は、後段工程からヒートポンプを用い
て供給するのがよい。In order to solve the above-mentioned problems, in the present invention, volatile substance-containing water is introduced into an evaporation step to separate water vapor generated under reduced pressure and a gas containing volatile substances. After partially condensing under reduced pressure in the concentration step, in the method for separating and concentrating volatile substances in which the uncondensed portion is condensed in the next condensation step, part of the liquid in the separation and concentration step was transferred to the previous step. It is a thing. In the method for separating and concentrating, it is preferable that the separating and concentrating step is provided in multiple stages, and the inner solution of the step is transferred to the preceding separating and concentrating step.
The heat source in the first step is preferably supplied from the second step using a heat pump.
【0007】また、本発明では、揮発性物質含有水中の
揮発性物質を分離濃縮する設備において、該揮発性物質
含有水を蒸発する蒸発装置と、該蒸発装置からの蒸発ガ
スを部分凝縮する分離濃縮装置と、該分離濃縮装置から
の未凝縮ガスを凝縮する凝縮装置と、減圧装置とを設
け、これらの装置を順次連結するガス通路と、後段の装
置の内液を前段の装置に移送する移送手段とを有するこ
ととしたものである。前記分離濃縮設備において、分離
濃縮装置及び凝縮装置は、流入するガスのガス通路の開
口部を該装置の液面下に設けるのがよい。Further, in the present invention, in a facility for separating and concentrating volatile substances in volatile substance-containing water, an evaporator for evaporating the volatile substance-containing water and a separator for partially condensing the vaporized gas from the evaporator. A concentrating device, a condensing device for condensing uncondensed gas from the separating and concentrating device, and a decompression device are provided, and a gas passage for sequentially connecting these devices and a liquid inside the latter device are transferred to the former device. And a transfer means. In the separation-concentration facility, the separation-concentration device and the condensing device are preferably provided with an opening of a gas passage for the inflowing gas below the liquid surface of the device.
【0008】[0008]
【発明の実施の形態】本発明は、蒸発工程で蒸発した揮
発成分を、次段の分離濃縮工程で凝縮すると共に再度蒸
発することによって、蒸気中の揮発成分の濃度を高める
ものであるが、分離濃縮工程では流入蒸気の凝縮に流出
蒸気の蒸発潜熱を直接有効に利用せしめるものである。
また、間接的に凝縮熱を蒸発用の熱源として利用するこ
とも可能である。本発明では、蒸発工程と凝縮工程の間
に減圧装置を介するのがよく、これによって簡単に揮発
成分を濃縮することができる。従来技術のごとく、蒸発
工程と減圧装置の間に凝縮工程を介する方法では、凝縮
工程の凝縮水が減圧下に存在するため、折角凝縮水中に
濃縮された揮発成分が再蒸発して濃縮濃度を上げること
が難しい。BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, the concentration of volatile components in vapor is increased by condensing the volatile components evaporated in the evaporation process in the next separation and concentration process and re-evaporating. In the separation / concentration step, the latent heat of vaporization of the outflow vapor is directly and effectively utilized for the condensation of the inflow vapor.
It is also possible to indirectly use the heat of condensation as a heat source for evaporation. In the present invention, it is preferable to interpose a decompression device between the evaporation step and the condensation step, which allows the volatile components to be easily concentrated. As in the prior art, in the method involving the condensation process between the evaporation process and the decompression device, since the condensed water in the condensation process exists under reduced pressure, the volatile components concentrated in the condensed water are re-evaporated to reduce the concentrated concentration. Difficult to raise.
【0009】次に、本発明の一例を図面を用いて詳細に
説明する。図1、2に本発明のフローの全体構成図を示
し、図3、4に分離濃縮工程(装置)の部分拡大図を示
す。図1において、揮発性物質として、例えば、アンモ
ニアを含有した原水1は熱交換器2を経由し、加温され
て蒸発工程3に導入され、減圧下で減圧蒸発され、温度
が蒸発工程3よりも低い分離濃縮工程4に導入され、凝
縮されるとともに減圧蒸留され、減圧装置5を経由して
温度が、分離濃縮工程4より低い凝縮工程6で凝縮され
る。凝縮水7には揮発成分が濃縮されており、濃縮水8
として搬出される。分離濃縮工程4は流入蒸気量が流出
蒸気量よりも多くなり、液量が増加するので、その分は
返送水9として蒸発工程3に導入される。蒸発工程流出
水10は、熱交換器2を経由して原水1に熱を供給した
のち、非揮発成分を処理され、放流あるいは再利用され
る。蒸発工程3、分離濃縮工程4は減圧装置5によって
大気圧以下に減圧される。Next, an example of the present invention will be described in detail with reference to the drawings. 1 and 2 show an overall configuration diagram of the flow of the present invention, and FIGS. 3 and 4 show partially enlarged views of the separation and concentration step (apparatus). In FIG. 1, raw water 1 containing, for example, ammonia as a volatile substance is heated through a heat exchanger 2 and introduced into an evaporation step 3, and is evaporated under reduced pressure under reduced pressure. Is introduced into the separation / concentration step 4 having a lower temperature, is condensed and distilled under reduced pressure, and is condensed in the condensation step 6 whose temperature is lower than that of the separation / concentration step 4 via the decompression device 5. Volatile components are concentrated in the condensed water 7, and the condensed water 8
Be shipped as. In the separation / concentration step 4, the amount of inflow vapor becomes larger than the amount of outflow vapor and the amount of liquid increases, so that the amount is introduced to the evaporation step 3 as return water 9. The evaporative process runoff water 10 supplies heat to the raw water 1 via the heat exchanger 2, and then the non-volatile components are treated and discharged or reused. The evaporation step 3 and the separation / concentration step 4 are decompressed to atmospheric pressure or less by the decompression device 5.
【0010】蒸発工程3、分離濃縮工程4には蒸発潜熱
による温度低下を防止するため、それぞれ次段の工程か
らヒートポンプ11、12によって熱を供給される。即
ち、蒸発工程3は分離濃縮工程4からヒートポンプ11
によって熱が供給されるが、その分分離濃縮工程4の温
度が低下するため流入する蒸気を円滑に凝縮することが
できる。一方、分離濃縮工程4でも蒸発による温度低下
を防止するため、凝縮工程6の凝縮熱をヒートポンプ1
2によって分離濃縮工程4に移動する。凝縮工程6の温
度は、これによって流入蒸気の凝縮に必要な温度に維持
することができる。各工程3、4、6における加温は当
然他の熱源として、蒸気等公知の技術が利用でき、また
冷却も冷却水等の公知技術を利用できるので、安価で有
効な熱源、冷却源が存在する場合にはヒートポンプは不
要である。しかしながら、そのような熱源、冷却源が存
在しない場合は、システム内で冷却と加温を同時に行う
ことのできるヒートポンプを利用することが経済的に有
利である。Heat is supplied to the evaporation step 3 and the separation / concentration step 4 by the heat pumps 11 and 12 from the next step in order to prevent the temperature from lowering due to the latent heat of evaporation. That is, the evaporation process 3 is performed from the separation concentration process 4 to the heat pump 11
Although heat is supplied by the heat, the temperature of the separation / concentration step 4 is reduced by that much, so that the inflowing steam can be smoothly condensed. On the other hand, in the separation / concentration step 4 as well, in order to prevent a temperature decrease due to evaporation, the heat of condensation of the condensation step 6 is transferred to the heat pump 1.
2 moves to separation and concentration step 4. The temperature of the condensation step 6 can thereby be maintained at the temperature required for the condensation of the incoming vapor. The heating in each of the steps 3, 4, and 6 can of course be performed by using a known technique such as steam as another heat source, and a known technique such as cooling water can also be used for cooling, so that an inexpensive and effective heat source or cooling source exists. If so, no heat pump is needed. However, when such a heat source or a cooling source does not exist, it is economically advantageous to use a heat pump capable of simultaneously performing cooling and heating in the system.
【0011】凝縮工程7では、内圧を大気圧に調整する
ための圧力調整装置13が配備され、内圧が所定値より
も減圧になった場合には、空気等のガスが供給され、昇
圧した場合には、内部のガスはガス処理工程14を経由
して放出され、凝縮工程6の圧力が調整される。減圧装
置5の配置は、図2に示したように凝縮工程6の後段で
も良い。また図示していないが、分離濃縮工程4と凝縮
工程6の間に一つと、凝縮工程6の後段に一つと、合わ
せて二つ(複数)の減圧装置を配備しても良い。蒸発工
程3は単段の蒸発缶、多段式の蒸留塔等公知の蒸発装
置、蒸留装置を利用することができる。分離濃縮工程4
は、蒸発と凝縮を同時に行うための図3、4に示す装置
を用いる。In the condensation step 7, a pressure adjusting device 13 for adjusting the internal pressure to the atmospheric pressure is provided, and when the internal pressure becomes lower than a predetermined value, a gas such as air is supplied and when the internal pressure is increased. The internal gas is released via the gas treatment process 14, and the pressure of the condensation process 6 is adjusted. The decompression device 5 may be arranged after the condensing step 6 as shown in FIG. Although not shown, two (plural) pressure reducing devices may be provided in total, one between the separation and concentration step 4 and the condensation step 6 and one after the condensation step 6. In the evaporation step 3, a known evaporator or distillation apparatus such as a single-stage evaporator or a multi-stage distillation column can be used. Separation and concentration step 4
Uses the apparatus shown in FIGS. 3 and 4 for simultaneously performing evaporation and condensation.
【0012】図3において、流入蒸気17は分離濃縮工
程内水19水面下に配備された多孔管20の多孔を通過
して、該内水19に接触して凝縮する。内水19は減圧
下で蒸発し、流出蒸気18として凝縮工程7に移動す
る。分離濃縮工程内水19水面下には、ヒートポンプ1
2の加熱側熱交換器21とヒートポンプ11の冷却側熱
交換器22が配備されている。分離濃縮工程4で流入蒸
気17が凝縮したのち、凝縮水は再度蒸気18として流
出する。図4は、分離濃縮工程4の塔式の装置構成であ
る。図4において、分離濃縮工程内水19は、熱交換器
23を経由して塔頂から気液接触用充填材の充填層24
に散布される。流入蒸気17は塔内を通過して凝縮する
と共に、再度蒸気18として流出する。アンモニアは水
中でガス体(遊離アンモニア)とイオンの平衡状態で存
在しているが、水中から放散されるアンモニアはガス体
である。従って、ガス体の存在量を多くするために、昇
温、あるいはアルカリ剤を添加してpHを上昇すること
は、放散効率を上げるための有効な手段となる。In FIG. 3, the inflow steam 17 passes through the perforations of the perforated tube 20 provided below the water surface of the separation / concentration step internal water 19 and contacts the internal water 19 to be condensed. The internal water 19 evaporates under reduced pressure and moves to the condensation step 7 as the outflow steam 18. The heat pump 1
A heating side heat exchanger 21 and a cooling side heat exchanger 22 of the heat pump 11 are provided. After the inflow steam 17 is condensed in the separation and concentration step 4, the condensed water flows out again as the steam 18. FIG. 4 shows a tower type apparatus configuration in the separation and concentration step 4. In FIG. 4, the water 19 in the separation / concentration step is passed through the heat exchanger 23 from the top of the column to the packed bed 24 of the packing material for gas-liquid contact.
Sprayed on. The inflow steam 17 passes through the inside of the tower to be condensed, and again flows out as the steam 18. Ammonia exists in water in a state of equilibrium between a gas body (free ammonia) and ions, but ammonia emitted from water is a gas body. Therefore, in order to increase the existing amount of the gas body, raising the temperature or increasing the pH by adding an alkaline agent is an effective means for increasing the emission efficiency.
【0013】[0013]
【実施例】次に図1、3のフロー、装置を用いた実施例
について述べる。 実施例1 揮発成分含有水としてアンモニア性窒素濃度1000m
g/リットルのアンモニア水を用い、次の装置、条件で
アンモニアを分離濃縮した。その結果、アンモニア水の
アンモニア性窒素を340mg/リットルに低減すると
共に、アンモニア性窒素5.3%(53000mg/リ
ットル)の濃縮液を得ることができた。EXAMPLES Next, examples using the flow and apparatus of FIGS. 1 and 3 will be described. Example 1 Ammonia nitrogen concentration of 1000 m as volatile component-containing water
Ammonia water of g / liter was used to separate and concentrate ammonia under the following apparatus and conditions. As a result, it was possible to reduce the ammoniacal nitrogen of the ammonia water to 340 mg / liter and obtain a concentrated solution of 5.3% ammoniacal nitrogen (53000 mg / liter).
【0014】 装置の容積、 蒸発缶容積: 0.70m3 、 分離濃縮缶容積: 0.15m3 、 運転条件、 揮発成分含有水量: 10m3 /日、 濃縮水量: 0.0125m3 /日、 蒸発缶蒸発水分量: 0.5m3 /日、 分離濃縮缶蒸発水分量: 0.125m3 /日、 分離濃縮缶流出水量: 0.375m3 /日、Volume of equipment, Evaporator capacity: 0.70 m 3 , Separation and concentration can capacity: 0.15 m 3 , Operating conditions, Volatile water content: 10 m 3 / day, Concentrated water quantity: 0.0125 m 3 / day, Evaporation cans evaporate water content: 0.5 m 3 / day, separation and concentration can evaporate water content: 0.125 m 3 / day, separation and concentration can outflow water: 0.375 M 3 / day,
【0015】 蒸発缶水温: 67℃、 分離濃縮蒸発缶水温: 48℃、 凝縮缶水温: 20℃、 ヒートポンプ11電力消費量: 83kWh/日、 ヒートポンプ12電力消費量: 22kWh/日、 (ヒートポンプは水温を検知してオンオフ制御した) 減圧装置: 真空ポンプ、Evaporator water temperature: 67 ° C., Separation / concentration evaporator water temperature: 48 ° C., Condenser water temperature: 20 ° C., Heat pump 11 power consumption: 83 kWh / day, Heat pump 12 power consumption: 22 kWh / day, (heat pump water temperature Was detected and controlled on and off) Pressure reducing device: vacuum pump,
【0016】[0016]
【発明の効果】本発明によれば、次のような効果を奏す
ることができる。 (a)簡単な装置構成で液中の揮発成分を分離、濃縮す
ることができる。 (b)水中から有害な揮発成分を除去することができ、
しかも高濃度に濃縮できるので処理処分、例えば焼却処
理等が容易となる。 (c)水中の有用揮発成分を分離濃縮できるので再利用
が容易になる。 (d)濃縮した揮発成分を液状で保存できるので、ガス
のように保存に大容量のタンクが不必要で、貯留が容易
である。従って、濃縮揮発成分の処理、処分、有効利用
等の操作に時間的制約を受けることが少ない。 (e)原水に溶存して同伴する微量ガス、例えば窒素ガ
ス以外に蒸気成分中に非凝縮ガスが存在しないので、排
ガス処理がほとんど不要である。According to the present invention, the following effects can be obtained. (A) Volatile components in a liquid can be separated and concentrated with a simple device configuration. (B) It is possible to remove harmful volatile components from water,
Moreover, since it can be concentrated to a high concentration, it becomes easy to dispose of it, such as incineration. (C) Since useful volatile components in water can be separated and concentrated, they can be easily reused. (D) Since the concentrated volatile component can be stored in a liquid state, a large-capacity tank like gas is not required for storage, and storage is easy. Therefore, there are few time restrictions on operations such as treatment, disposal, and effective use of concentrated volatile components. (E) Since there is no non-condensable gas in the vapor component other than the trace gas dissolved in the raw water and accompanying it, for example, nitrogen gas, exhaust gas treatment is almost unnecessary.
【図1】本発明のフローの一例を示す全体構成図。FIG. 1 is an overall configuration diagram showing an example of a flow of the present invention.
【図2】本発明のフローの他の例を示す全体構成図。FIG. 2 is an overall configuration diagram showing another example of the flow of the present invention.
【図3】本発明に用いる分離濃縮装置の部分拡大図。FIG. 3 is a partially enlarged view of the separation and concentration device used in the present invention.
【図4】本発明に用いる他の分離濃縮装置の部分拡大
図。FIG. 4 is a partially enlarged view of another separation and concentration device used in the present invention.
1:原水、2:熱交換器、3:蒸発工程、4:分離濃縮
工程、5:減圧装置、6:凝縮工程、7:凝縮液、8:
濃縮水、9:返送水、10:蒸発工程流出水、11、1
2:ヒートポンプ、13:圧力調整装置、14:ガス処
理工程、17:流入蒸気、18:流出蒸気、19:工程
内水、20:多孔管、21:加熱側熱交換器、22:冷
却側熱交換器、23:熱交換器、24:充填層、1: Raw water, 2: Heat exchanger, 3: Evaporation step, 4: Separation and concentration step, 5: Decompression device, 6: Condensation step, 7: Condensate, 8:
Concentrated water, 9: Return water, 10: Evaporation process runoff water, 11, 1
2: Heat pump, 13: Pressure adjusting device, 14: Gas treatment process, 17: Inflow steam, 18: Outflow steam, 19: In-process water, 20: Perforated pipe, 21: Heating side heat exchanger, 22: Cooling side heat Exchanger, 23: heat exchanger, 24: packed bed,
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/58 C02F 1/58 A H Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C02F 1/58 C02F 1/58 A H
Claims (5)
減圧下で発生する水蒸気及び揮発性物質を含有するガス
を、分離濃縮工程で減圧下で部分凝縮せしめたのち、未
凝縮分を次の凝縮工程で凝縮する揮発性物質の分離濃縮
方法において、分離濃縮工程内液の一部を前段の工程に
移送することを特徴とする水中の揮発性物質の分離濃縮
方法。1. Introducing water containing volatile substances into the evaporation step,
The gas containing water vapor and volatile substances generated under reduced pressure is partially condensed under reduced pressure in the separation and concentration step, and then the uncondensed component is condensed in the next condensation step. A method for separating and concentrating volatile substances in water, characterized in that a part of the liquid in the concentration step is transferred to the previous step.
段の工程の内液を前段の分離濃縮工程に移送することを
特徴とする請求項1記載の水中の揮発性物質の分離濃縮
方法。2. The method for separating and concentrating volatile substances in water according to claim 1, wherein the separating and concentrating step is provided in multiple stages, and the inner liquid of the latter step is transferred to the former separating and concentrating step.
加熱源を後段工程からヒートポンプを用いて供給するこ
とを特徴とする請求項1又は2記載の水中の揮発性物質
の分離濃縮方法。3. The method for separating and concentrating volatile substances in water according to claim 1 or 2, wherein in the separating and concentrating method, the heat source of the former step is supplied from the latter step by using a heat pump.
濃縮する設備において、該揮発性物質含有水を蒸発する
蒸発装置と、該蒸発装置からの蒸発ガスを部分凝縮する
分離濃縮装置と、該分離濃縮装置からの未凝縮ガスを凝
縮する凝縮装置と、減圧装置とを設け、これらの装置を
順次連結するガス通路と、後段の装置の内液を前段の装
置に移送する移送手段とを有することを特徴とする水中
の揮発性物質の分離濃縮設備。4. A facility for separating and concentrating volatile substances in volatile substance-containing water, comprising: an evaporation device for evaporating the volatile substance-containing water; and a separation-concentration device for partially condensing evaporative gas from the evaporation device. A condensing device for condensing the uncondensed gas from the separation concentrating device and a decompression device are provided, a gas passage for sequentially connecting these devices, and a transfer means for transferring the liquid in the latter device to the former device. A facility for separating and concentrating volatile substances in water, which is characterized by having.
するガスのガス通路の開口部を該装置の液面下に設けた
ことを特徴とする請求項4記載の水中の揮発性物質の分
離濃縮設備。5. The separation / concentration device and the condensing device according to claim 4, wherein an opening of a gas passage for the inflowing gas is provided below the liquid surface of the device. Concentration equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31486595A JP3202566B2 (en) | 1995-11-09 | 1995-11-09 | Method and apparatus for separating and concentrating volatile substances in water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31486595A JP3202566B2 (en) | 1995-11-09 | 1995-11-09 | Method and apparatus for separating and concentrating volatile substances in water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09131582A true JPH09131582A (en) | 1997-05-20 |
JP3202566B2 JP3202566B2 (en) | 2001-08-27 |
Family
ID=18058558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31486595A Expired - Fee Related JP3202566B2 (en) | 1995-11-09 | 1995-11-09 | Method and apparatus for separating and concentrating volatile substances in water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3202566B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009285531A (en) * | 2008-05-27 | 2009-12-10 | Japan Organo Co Ltd | Recovery device for fluorine and ammonia, and recovery method therefor |
JP2013075262A (en) * | 2011-09-30 | 2013-04-25 | Japan Organo Co Ltd | Removing system and removing method of volatile substance in underground water |
-
1995
- 1995-11-09 JP JP31486595A patent/JP3202566B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009285531A (en) * | 2008-05-27 | 2009-12-10 | Japan Organo Co Ltd | Recovery device for fluorine and ammonia, and recovery method therefor |
JP2013075262A (en) * | 2011-09-30 | 2013-04-25 | Japan Organo Co Ltd | Removing system and removing method of volatile substance in underground water |
Also Published As
Publication number | Publication date |
---|---|
JP3202566B2 (en) | 2001-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0933331B1 (en) | Evaporative concentration apparatus for waste water | |
EP0226216B1 (en) | Distilling apparatus | |
EP1204594A1 (en) | Method for the evaporation of an aqueous solution containing ammonia | |
KR100407370B1 (en) | METHOD AND APPARATUS FOR RECOVERING INTEGRATED VAPOR CONDENSATE FROM URGENT VACUUM EVAPORATOR | |
JPH0753443A (en) | Process and apparatus for recovering acetic acid from water-soluble stream | |
JPH09507036A (en) | Evaporative concentrating and drying apparatus and method having vapor purification capability | |
CN113963831A (en) | Heat pump evaporation treatment system and method for radioactive waste liquid treatment | |
US8075741B2 (en) | Water purification method, process and apparatus | |
JPH09131582A (en) | Separating and concentrating method of volatile material in underwater and equipment therefor | |
KR20210067867A (en) | Apparatus and method for separating different substances | |
JP2004249226A (en) | Method and apparatus for treating leached water in landfill site | |
JP3703420B2 (en) | Organic waste treatment method and apparatus | |
JP4349656B2 (en) | Organic waste liquid processing apparatus and processing method | |
EP3627071A1 (en) | Aqua-ammonia absorption refrigeration system | |
JP3298106B2 (en) | Treatment method of exhaust gas containing water-soluble organic solvent | |
KR100449416B1 (en) | method of evaporatoring for vacuum evaporator | |
JPH04155924A (en) | Vapor drying device | |
JP3194123B2 (en) | Ultrapure water production and wastewater treatment method for closed system | |
JP2952741B2 (en) | Pure water production system for fuel cell power plant | |
JP2004267816A (en) | Method and apparatus for treating wastewater containing low boiling point organic matter | |
JPH0510964B2 (en) | ||
JP2002336841A (en) | Method for vaporizing and treating oily waste water | |
JP2003053328A (en) | Waste water treating equipment | |
KR100777420B1 (en) | Apparatus and method for multi separating pollutants in mixed wastewater | |
JPH0263592A (en) | Distillation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |