JPH07246309A - Separation - Google Patents

Separation

Info

Publication number
JPH07246309A
JPH07246309A JP6039484A JP3948494A JPH07246309A JP H07246309 A JPH07246309 A JP H07246309A JP 6039484 A JP6039484 A JP 6039484A JP 3948494 A JP3948494 A JP 3948494A JP H07246309 A JPH07246309 A JP H07246309A
Authority
JP
Japan
Prior art keywords
soluble substance
reverse osmosis
osmosis membrane
tank
distillation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6039484A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoshikawa
浩志 吉川
Kenichi Inoue
賢一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP6039484A priority Critical patent/JPH07246309A/en
Publication of JPH07246309A publication Critical patent/JPH07246309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To prevent he quantity of drainage contg. insoluble materials from increasing, after cooling and condensing insoluble material distilled vapor, by recovering the insoluble materials in a separation tank, returning a water phase to a distillation device, and on the other hand, treating the drainage by a reverse osmosis membrane to discharge the permeated liquid, and returning the concrete to the separation tank or the distillation device. CONSTITUTION:A desorbed gas (d) discharged from an adsorption tank 1 or 2 is conducted to a distillation device 3, where it is separated into (e) insoluble material distilled vapor in which insoluble materials are concentrated and (i) diluted drainage. The insoluble material distilled vapor (e) is condensed and liquefied in a cooling condenser 4, and the condensate is separated by differential specific gravity in a separation tank 5, and an insoluble material phase (h) is discharged to outside the system as a recovered solvent and a water phase (g) is timely transferred to the distillation device 3. On the other hand, after the drainage (i) in the distillation device 3 is cooled by a cooler 6, it is fed to a reverse osmosis membrane 9 through a circulating tank 7. At this time, the insoluble materials contained in a reverse osmosis membrane feeding liquid (i) is very small and is cooled, allowing the load to the reverse osmosis membrane 9 to be decreased. A permeated liquid (m) is discharged to outside the system, and a concentrate (k) is returned to the separation tank 5 or the distillation device 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸着剤に吸着された難
溶性の被吸着物質を水蒸気脱着法で脱着処理して吸着剤
を再生し、脱着した難溶性物質を分離回収する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of desorbing a hardly soluble substance to be adsorbed by an adsorbent by a steam desorption method to regenerate the adsorbent and separating and recovering the desorbed hardly soluble substance.

【0002】[0002]

【従来の技術】各種工場や処理場から発生する難溶性物
質蒸気を含む排ガスの分離方式は、従来より吸収法、凝
縮法、吸着法などが一般的に用いられ、難溶性物質蒸気
の濃度や処理量などの大小により、処理設備の経済性の
見地から最適な方式が選定される。
2. Description of the Related Art Conventionally, an absorption method, a condensation method, an adsorption method or the like has been generally used as a method for separating exhaust gas containing a hardly soluble substance vapor generated from various factories or treatment plants. The optimal method is selected from the economical point of view of the processing equipment depending on the amount of processing.

【0003】即ち、大処理量の分離には吸収法や吸着法
が、小処理量には凝縮法が各々適しており、高濃度蒸気
には吸収法、凝縮法が、低濃度蒸気には吸着法が適して
いる。従って、大処理量・低濃度蒸気分離を対象とする
場合は、吸着法が最も適した方式として選定される。例
えば塗装工場等の溶剤取扱工場から発生する低濃度溶剤
蒸気含有空気の脱臭などに従来から吸着法が用いられ
る。また、難溶性物質を吸着した吸着剤の再生には水蒸
気脱着法、加熱空気脱着法、窒素ガス脱着法などが用い
られるが、設備費、運転費、安全性などから、従来より
水蒸気脱着法が用いられる。
That is, the absorption method and the adsorption method are suitable for separating a large amount of treatment, and the condensation method is suitable for a small amount of treatment. The absorption method and the condensation method are suitable for high concentration vapor, and the adsorption method is suitable for low concentration vapor. The law is suitable. Therefore, the adsorption method is selected as the most suitable method when a large throughput / low concentration vapor separation is targeted. For example, the adsorption method has been conventionally used for deodorizing air containing low-concentration solvent vapor generated from a solvent handling factory such as a coating factory. Also, steam desorption method, heated air desorption method, nitrogen gas desorption method, etc. are used to regenerate the adsorbent that has adsorbed the hardly soluble substance. Used.

【0004】[0004]

【発明が解決しようとする課題】しかし、この水蒸気脱
着法では、脱着後の工程である凝縮液化時に水蒸気が液
化して難溶性物質を含む排水となるため、排水による公
害を引き起こす問題またはそれを避けるための排水処理
施設の新設もしくは規模拡大などの設備の問題がある。
However, in this steam desorption method, steam is liquefied during the condensation liquefaction which is a step after desorption and becomes waste water containing a hardly soluble substance. There is a problem of equipment such as new construction or expansion of wastewater treatment facilities to avoid.

【0005】上記の問題を解決する方法として、凝縮液
化した排水を浸透気化(パーベーパレーション)法で処
理する方法や凝縮液化前に蒸気分離(ベーパーパーミエ
ーション)法で難溶性物質蒸気と水蒸気とを分離する方
法が知られているが、これらの膜分離方法は、運転費で
ある動力費が高くつくこと、現状の分離膜では耐熱性や
耐溶剤性に対する信頼性に欠けるので実用的ではないと
いう欠点を持っている。また、凝縮液化した排水を蒸留
器に導くことなく逆浸透膜で直接処理する方法も提案さ
れているが、逆浸透膜の耐溶剤性が乏しい現状の技術水
準では、高濃度の溶剤を含む排水を逆浸透膜で直接処理
する方法は困難である。
As a method for solving the above problems, a method of treating condensed liquefied wastewater by a pervaporation method or a vapor separation (vapor permeation) method before condensation and liquefaction is used to form a sparingly soluble substance vapor and steam. However, these membrane separation methods are not practical because the operation cost is high and the current separation membrane lacks reliability in heat resistance and solvent resistance. Has the drawback. A method has also been proposed in which condensed liquefied wastewater is directly treated with a reverse osmosis membrane without introducing it to a distiller, but at the current technical level where the reverse osmosis membrane has poor solvent resistance, wastewater containing a high concentration of solvent is proposed. It is difficult to directly treat the lactic acid with a reverse osmosis membrane.

【0006】本発明は、上記従来技術の問題を解決する
ためになされたものであって、難溶性物質を含む排水の
量が増大するというような排水処理の問題が生じること
がなく、運転費用の増大にならない吸着剤再生工程を含
む分離方法であって、脱着した難溶性物質の分離回収を
行うことができる分離方法を提供することを目的とす
る。
The present invention has been made to solve the above-mentioned problems of the prior art, and does not cause a problem of wastewater treatment such as an increase in the amount of wastewater containing a hardly soluble substance, and the operating cost. It is an object of the present invention to provide a separation method that includes an adsorbent regeneration step that does not increase the amount of adsorbent, and that can separate and collect desorbed hardly soluble substances.

【0007】[0007]

【課題を解決するための手段】本発明の吸着剤の脱着処
理方法は、吸着槽内の吸着剤に吸着している難溶性の被
吸着物質を水蒸気で脱着させる工程を含む分離方法にお
いて、脱着時に吸着槽から排出される難溶性物質蒸気と
水蒸気の混合物である脱着ガスを蒸留器に導いて、濃縮
した難溶性物質蒸留気と希釈した排水とに分離し、上記
難溶性物質蒸留気は冷却凝縮した後、分離槽に導いて難
溶性物質相と水相とに分離して難溶性物質を回収しつつ
水相を再度蒸留器に戻し、一方、上記排水は逆浸透膜で
処理して透過液を排出し、濃縮液を分離槽または蒸留器
に戻すことを特徴とする構成である。
The method for desorbing an adsorbent of the present invention is a desorption method comprising a step of desorbing a hardly soluble substance to be adsorbed on an adsorbent in an adsorption tank with water vapor. The desorption gas, which is a mixture of the sparingly soluble substance vapor and steam sometimes discharged from the adsorption tank, is introduced into a distiller and separated into a concentrated sparingly soluble substance distilled gas and a diluted wastewater, and the sparingly soluble substance distilled gas is cooled. After condensing, it is introduced into a separation tank and separated into a hardly soluble substance phase and an aqueous phase to recover the hardly soluble substance, and the aqueous phase is returned to the distiller again. The liquid is discharged and the concentrated liquid is returned to the separation tank or the distiller.

【0008】[0008]

【実施例】以下、本発明の実施例を参照しつつ説明す
る。図1は、本発明の実施例において使用する分離方法
の一例を示す説明図である。図1において、aは難溶性
物質含有ガスであり、吸着ガスブロワー11により吸着槽
1あるいは2にこの難溶性物質含有ガスaが供給され、
難溶性物質ガスが吸着剤に吸着され、難溶性物質を含ま
ないガスとして吸着排ガスbが吸着槽1あるいは2から
排出される。上記難溶性とは水に溶解しにくい性質を言
い、例えば難溶性物質としてトルエン、キシレン、ヘキ
サン、ヘプタン、シクロヘキサン、ジエチルエーテル、
ベンゼンなどが挙げられる。
Embodiments will be described below with reference to embodiments of the present invention. FIG. 1 is an explanatory diagram showing an example of a separation method used in the embodiment of the present invention. In FIG. 1, a is a hardly soluble substance-containing gas, and the hardly soluble substance-containing gas a is supplied to the adsorption tank 1 or 2 by the adsorption gas blower 11.
The hardly soluble substance gas is adsorbed by the adsorbent, and the adsorbed exhaust gas b is discharged from the adsorption tank 1 or 2 as a gas containing no hardly soluble substance. The above-mentioned sparingly soluble refers to a property that is difficult to dissolve in water, and for example, as a sparingly soluble substance, toluene, xylene, hexane, heptane, cyclohexane, diethyl ether,
Examples include benzene.

【0009】上記吸着操作が一定時間実施された後、脱
着操作に移る。通常、吸着槽は難溶性物質含有ガスaを
常時受け入れて吸着処理が出来るように、即ち脱着操作
中であっても、同時に吸着操作が出来るように2槽以上
が設けられる。具体的には、2槽の場合、吸着槽1が吸
着操作中に吸着槽2が脱着再生操作を完了し、吸着槽2
が吸着操作の間には吸着槽1が脱着再生操作を完了す
る。
After the adsorption operation is carried out for a certain time, the desorption operation is started. Usually, the adsorption tank is provided with two or more tanks so that the gas a containing the hardly soluble substance can be constantly received and adsorbed, that is, even during the desorption operation, the adsorption operation can be performed simultaneously. Specifically, in the case of two tanks, the adsorption tank 2 completes the desorption / regeneration operation during the adsorption operation of the adsorption tank 1,
During the adsorption operation, the adsorption tank 1 completes the desorption regeneration operation.

【0010】脱着のプロセスは、脱着操作は吸着槽1あ
るいは2に水蒸気を注入して実施される。水蒸気を注入
すると吸着剤に吸着された難溶性物質が吸着剤より離脱
し、水蒸気と混合されて脱着ガスdとして吸着槽1ある
いは2より排出される。本発明で用いられる水蒸気は、
吸着剤の耐熱性や難溶性物質の物性や量によって適宜選
定されるが、通常圧力が7kgf/cm2 以下の水蒸気が用い
られる。
In the desorption process, the desorption operation is carried out by injecting steam into the adsorption tank 1 or 2. When water vapor is injected, the hardly soluble substance adsorbed by the adsorbent is desorbed from the adsorbent, mixed with the water vapor, and discharged as desorption gas d from the adsorption tank 1 or 2. The water vapor used in the present invention is
Although it is appropriately selected depending on the heat resistance of the adsorbent and the physical properties and amount of the hardly soluble substance, steam having a pressure of 7 kgf / cm 2 or less is usually used.

【0011】排出された脱着ガスdは、蒸留器3に導か
れ、ここで脱着に用いた水蒸気の熱を利用して難溶性物
質と水とが、気液平衡によって難溶性物質を濃縮した難
溶性物質蒸留気eと希釈した排水iとに分離される。な
お、上記難溶性物質が水より低沸点成分である場合は通
常の蒸留が、上記難溶性物質が水より高沸点成分である
場合は共沸点を超える領域即ち難溶性物質が希薄な濃度
での蒸留が行われ、分離される。難溶性物質蒸留気e
は、冷却凝縮器4で難溶性物質の飽和蒸気圧温度以下に
間接冷却され、凝縮液化され水と難溶性物質が混合した
凝縮液fとなり、分離槽5に流入する。分離槽5におい
て水と難溶性物質は比重差分離され、難溶性物質相hは
回収溶剤として系外に排出され、必要に応じて回収され
る。分離槽5内に溜まった水相gは、適宜蒸留器3に移
される。
The discharged desorbed gas d is guided to the distiller 3 where the heat of the steam used for desorption is used to cause the refractory substance and water to concentrate the refractory substance by vapor-liquid equilibrium. It is separated into soluble substance distilled gas e and diluted wastewater i. Incidentally, when the hardly soluble substance is a component having a lower boiling point than water, ordinary distillation is carried out, and when the hardly soluble substance is a component having a higher boiling point than water, the region exceeding the azeotropic point, that is, the hardly soluble substance is at a dilute concentration. Distillation is performed and separated. Insoluble substance distilled gas e
Is indirectly cooled to a temperature equal to or lower than the saturated vapor pressure temperature of the hardly soluble substance in the cooling condenser 4, and is condensed and liquefied to form a condensed liquid f in which water and the hardly soluble substance are mixed, and flows into the separation tank 5. In the separation tank 5, water and the sparingly soluble substance are separated by specific gravity difference, and the sparingly soluble substance phase h is discharged out of the system as a recovery solvent, and is recovered as necessary. The aqueous phase g accumulated in the separation tank 5 is appropriately transferred to the distiller 3.

【0012】一方、蒸留器3内の排水iは冷却器6で冷
却された後、循環タンク7に導かれ、循環ポンプ8によ
って逆浸透膜9に供給される。蒸留器3によって殆どの
難溶性物質が分離されているので、また冷却器6で冷却
されているので逆浸透膜9に供給される微量の難溶性物
質を含む逆浸透膜供給液jは、逆浸透膜9への負荷が低
減されている。逆浸透膜9の出口には調圧バルブ10が設
けられており、供給液を加圧することによって、透過液
mが得られる。透過液mは逆浸透膜供給液jよりも更に
難溶性物質濃度が低下した液として系外に排出され、濃
縮液k中の難溶性物質の濃度が分離槽5内に溜まった水
相g中の濃度より高い場合、濃縮液kは分離槽5に、低
い場合は蒸留器3に戻される。
On the other hand, the waste water i in the distiller 3 is cooled by the cooler 6, then guided to the circulation tank 7, and supplied to the reverse osmosis membrane 9 by the circulation pump 8. Since most hardly soluble substances are separated by the distiller 3 and cooled by the cooler 6, the reverse osmosis membrane feed liquid j containing a trace amount of hardly soluble substances supplied to the reverse osmosis membrane 9 is reversed. The load on the permeable membrane 9 is reduced. A pressure regulating valve 10 is provided at the outlet of the reverse osmosis membrane 9, and the permeated liquid m is obtained by pressurizing the supply liquid. The permeated liquid m is discharged out of the system as a liquid having a concentration of the hardly soluble substance lower than that of the reverse osmosis membrane supply liquid j, and the concentration of the hardly soluble substance in the concentrated liquid k is contained in the aqueous phase g accumulated in the separation tank 5. If the concentration is higher than that of the above, the concentrated liquid k is returned to the separation tank 5, and if it is lower than that, it is returned to the distiller 3.

【0013】本発明に用いる機器類は取り扱うガスの性
状に耐性があり、かつ効率よく操作できるものであれば
限定されないが、取扱ガス中への不純成分や第3成分の
混入をできるだけ避けるため、ブロワー11はドライ式
が、冷却凝縮器4や冷却器6は間接熱交換器が適してい
る。
The equipment used in the present invention is not limited as long as it is resistant to the properties of the gas to be handled and can be operated efficiently, but in order to avoid contamination of impure components and third component in the handled gas as much as possible, The blower 11 is a dry type, while the indirect heat exchanger is suitable for the cooling condenser 4 and the cooler 6.

【0014】本発明に用いる逆浸透膜9は、水にわずか
に溶解した難溶性物質に対する阻止率が高く、かつ効率
よく処理できるものであれば何ら限定されない。逆浸透
膜9のモジュール型式は何ら限定されず、スパイラル
型、中空糸型、プレート&フレーム型など様々なモジュ
ールを用いることができる。例えば日東電工 (株) 製の
スパイラル型ポリアミド系逆浸透膜モジュール(品名:
NTR−759HR)が適している。
The reverse osmosis membrane 9 used in the present invention is not limited as long as it has a high blocking rate for a slightly soluble substance slightly dissolved in water and can be efficiently treated. The module type of the reverse osmosis membrane 9 is not limited at all, and various modules such as spiral type, hollow fiber type, plate & frame type can be used. For example, spiral type polyamide reverse osmosis membrane module manufactured by Nitto Denko Corporation (Product name:
NTR-759HR) is suitable.

【0015】本発明に用いる吸着槽に充填する吸着剤
は、対象となる被吸着物質である難溶性物質が効率よく
吸着されること、供給される難溶性物質含有ガスaに対
する耐性、脱着処理時を含めた耐熱性などから適宜選定
される。例えば、吸着剤として粒状活性炭、繊維活性
炭、ゼオライトなどが挙げられる。
The adsorbent filled in the adsorption tank used in the present invention is capable of efficiently adsorbing a sparingly soluble substance as a target adsorbed substance, resistance to the supplied sparingly soluble substance-containing gas a, and desorption treatment. It is appropriately selected based on the heat resistance including. Examples of the adsorbent include granular activated carbon, fiber activated carbon, zeolite and the like.

【0016】以下、本発明の実施例に基づき、本発明を
さらに詳しく説明する。 実施例1 図1に示すシステム説明図に従って下記の如く実施し
た。本実施例は、粘着テープ製造工場の粘着剤塗工部か
らのトルエン含有排ガスである局所排気出口ガスを吸着
させる吸着槽を含む装置を組み立て、本発明の分離方法
を適用した例である。図1において、吸着槽1、2には
各々が内径500ミリ、有効高さ400ミリで活性炭充
填量20Kg/槽のSUS304製吸着槽を、蒸留器3には内径
300ミリ、高さ350ミリを、冷却凝縮器4には用役
の冷却水として冷却塔循環水32℃(水圧2Kg/cm2G )
を使用してSUS304製多管式間接熱交換器(伝熱面積;2
m2) を、分離槽5には横200ミリ、奥行き400ミ
リ、高さ400ミリの角槽を、冷却器6には用役の冷却
水として冷却塔循環水32℃(水圧2Kg/cm2G )を使用
してSUS304製多管式間接熱交換器(伝熱面積;2m2)
を、循環タンク7には内径250ミリ、高さ400ミリ
を、循環ポンプ8には0.75Kw渦巻きポンプを、逆浸透膜
9には日東電工 (株) 製分離膜であるポリアミド系複合
膜スパイラル型モジュールNTR−759HR−S2
(膜面積=1.8m2/本)1本で、逆浸透処理圧力は平均
10kgf/cm2 、逆浸透膜供給流量は5L/minを、吸着ガス
ブロワー11には0.75Kwターボ式ブロワーを使用し、吸着
槽1、2の吸脱着を繰り返すことにより、トルエン含有
排ガス中のトルエン回収を行った。
Hereinafter, the present invention will be described in more detail with reference to Examples of the present invention. Example 1 It was carried out as follows according to the system explanatory view shown in FIG. This example is an example in which an apparatus including an adsorption tank for adsorbing a local exhaust outlet gas which is a toluene-containing exhaust gas from an adhesive coating section of an adhesive tape manufacturing plant is assembled and the separation method of the present invention is applied. In FIG. 1, adsorption tanks 1 and 2 each have an inner diameter of 500 mm, an effective height of 400 mm, and an activated carbon filling amount of 20 kg / tank made of SUS304, and a distiller 3 has an inner diameter of 300 mm and a height of 350 mm. , Cooling condenser 4 has cooling tower circulating water 32 ° C (water pressure 2 Kg / cm 2 G) as utility cooling water.
SUS304 multi-tube type indirect heat exchanger (heat transfer area; 2
m 2 ), the separation tank 5 is a square tank having a width of 200 mm, a depth of 400 mm, and a height of 400 mm, and the cooler 6 serves as cooling water for the purpose of cooling water circulating in a cooling tower at 32 ° C. (water pressure 2 Kg / cm 2 G)) SUS304 multi-tube indirect heat exchanger (heat transfer area: 2 m 2 )
The circulation tank 7 has an inner diameter of 250 mm and a height of 400 mm, the circulation pump 8 is a 0.75 Kw centrifugal pump, and the reverse osmosis membrane 9 is a polyamide composite membrane spiral type which is a separation membrane manufactured by Nitto Denko Corporation. Module NTR-759HR-S2
(Membrane area = 1.8 m 2 / piece) One, reverse osmosis treatment pressure is 10 kgf / cm 2 on average, reverse osmosis membrane supply flow rate is 5 L / min, and adsorption gas blower 11 uses 0.75 Kw turbo blower Then, by repeating adsorption and desorption of the adsorption tanks 1 and 2, the toluene in the toluene-containing exhaust gas was recovered.

【0017】吸脱着の繰り返し時間は、4時間吸着と2
時間脱着として、4時間ごとに吸着槽1、2を切り換え
た。具体的には、吸着ガスブロワー11によって1000
ppmのトルエン蒸気と1.6vol% の水蒸気と空気の混合ガ
スである40℃のほぼ大気圧の難溶性物質含有ガスa
(トルエン含有排ガス)300m3/hを吸着槽1に供給
し、トルエン蒸気を吸着剤である活性炭に吸着させた。
4時間経過後、配管を切り換え、トルエン含有排ガス3
00m3/hを吸着槽2に供給し、吸着槽1は吸着操作から
脱着操作に切り換えた。脱着操作において、1吸着槽当
たり4.5 kgのトルエンの吸着量に対して水蒸気を30kg
/h供給し、上記のような順序で脱着を行うことにより、
トルエンの回収率は95%以上を達成し、逆浸透膜供給
液jのトルエン濃度は50ppm で、逆浸透膜透過液mの
トルエン濃度は5ppm であった。また、装置全体の消費
電力は平均1.5kw(200V, 3相)であった。
The repetition time of adsorption / desorption is 4 hours for adsorption and 2
For time desorption, the adsorption tanks 1 and 2 were switched every 4 hours. Specifically, the adsorption gas blower 11 makes 1000
Gas containing a sparingly soluble substance at about 40 ° C, which is a mixed gas of ppm toluene vapor and 1.6vol% steam and air a
(Toluene-containing exhaust gas) 300 m 3 / h was supplied to the adsorption tank 1, and toluene vapor was adsorbed on the activated carbon as an adsorbent.
After 4 hours, the piping was switched and the toluene-containing exhaust gas 3
00 m 3 / h was supplied to the adsorption tank 2, and the adsorption tank 1 was switched from the adsorption operation to the desorption operation. In the desorption operation, 30 kg of water vapor is added to the adsorption amount of toluene of 4.5 kg per adsorption tank.
By supplying / h and performing desorption in the above order,
The recovery rate of toluene was 95% or more, the toluene concentration of the reverse osmosis membrane feed liquid j was 50 ppm, and the toluene concentration of the reverse osmosis membrane permeate liquid m was 5 ppm. The average power consumption of the device was 1.5kw (200V, 3 phase).

【0018】[0018]

【発明の効果】本発明により、難溶性物質を含む排水の
量が増大するというような排水処理の問題が生じない、
運転費用の増大にならない方法で吸着剤再生と脱着した
難溶性物質の回収を行うことができる。
EFFECTS OF THE INVENTION According to the present invention, the problem of wastewater treatment such as increase in the amount of wastewater containing a hardly soluble substance does not occur.
It is possible to regenerate the adsorbent and recover the desorbed hardly soluble substance by a method that does not increase the operating cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において使用する分離方法の一例を示す
説明図である。
FIG. 1 is an explanatory diagram showing an example of a separation method used in the present invention.

【符合の説明】[Explanation of sign]

1 吸着槽 2 吸着槽 3 蒸留器 4 冷却凝縮器 5 分離槽 6 冷却器 7 循環タンク 8 循環ポンプ 9 逆浸透膜 10 調圧バルブ 11 吸着ガスブロワー a 難溶性物質含有ガス b 吸着排ガス c 水蒸気 d 脱着ガス e 難溶性物質蒸留気 f 凝縮液 g 水相 h 難溶性物質相 i 排水 j 逆浸透膜供給液 k 濃縮液 m 透過液 1 Adsorption tank 2 Adsorption tank 3 Distiller 4 Cooling condenser 5 Separation tank 6 Cooler 7 Circulation tank 8 Circulation pump 9 Reverse osmosis membrane 10 Pressure regulating valve 11 Adsorbed gas blower a Adsorbed gas containing gas b Adsorbed exhaust gas c Water vapor d Desorption Gas e Slightly soluble substance Distilled gas f Condensate g Water phase h Slightly soluble substance phase i Waste water j Reverse osmosis membrane feed liquid k Concentrate m Permeate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 吸着槽内の吸着剤に吸着している難溶性
の被吸着物質を水蒸気で脱着させる工程を含む分離方法
において、脱着時に吸着槽から排出される難溶性物質蒸
気と水蒸気の混合物である脱着ガスを蒸留器に導いて、
濃縮した難溶性物質蒸留気と希釈した排水とに分離し、
上記難溶性物質蒸留気は冷却凝縮した後、分離槽に導い
て難溶性物質相と水相とに分離して難溶性物質を回収し
つつ水相を再度蒸留器に戻し、一方、上記排水は逆浸透
膜で処理して透過液を排出し、濃縮液を分離槽または蒸
留器に戻すことを特徴とする分離方法。
1. A method of separation comprising a step of desorbing a sparingly soluble substance to be adsorbed on an adsorbent in an adsorption tank with water vapor, wherein a mixture of a sparingly soluble substance vapor and water vapor discharged from the adsorption tank during desorption. The desorption gas is introduced into the still,
Separated into concentrated insoluble substance distilled air and diluted wastewater,
The sparingly soluble substance distilled gas is cooled and condensed, then introduced into a separation tank and separated into a sparingly soluble substance phase and a water phase to return the sparingly soluble substance to the water phase again to the distiller, while the drainage is A separation method comprising treating with a reverse osmosis membrane to discharge the permeated liquid, and returning the concentrated liquid to a separation tank or a distiller.
JP6039484A 1994-03-10 1994-03-10 Separation Pending JPH07246309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6039484A JPH07246309A (en) 1994-03-10 1994-03-10 Separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6039484A JPH07246309A (en) 1994-03-10 1994-03-10 Separation

Publications (1)

Publication Number Publication Date
JPH07246309A true JPH07246309A (en) 1995-09-26

Family

ID=12554337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6039484A Pending JPH07246309A (en) 1994-03-10 1994-03-10 Separation

Country Status (1)

Country Link
JP (1) JPH07246309A (en)

Similar Documents

Publication Publication Date Title
US3625886A (en) Process for recovering organic material from aqueous streams
KR101188726B1 (en) System and method for eliminating ammonia nitrogen from wastewater
JPH11506431A (en) Dehydration and purification of isopropyl alcohol
JP2014144940A (en) NMP purification system
CN107055897A (en) The device and processing method of a kind of combined treatment high salt and high COD sewage
CN107198967A (en) Multiple-effect membrane regeneration plant and method for gas purification solvent reclamation
JPH07246309A (en) Separation
CN206417959U (en) A kind of device of combined treatment high salt and high COD sewage
US20160060151A1 (en) Method for treating industrial water by physical separation, adsorption on resin and reverse osmosis, and corresponding plant
CN212050614U (en) Contain concentrated system of salt sewage
JP2007136341A (en) Concentration method of carbon dioxide and apparatus
WO2019193951A1 (en) Organic solvent purification system and method
KR100593600B1 (en) Separation and removal device of contaminants in wastewater evaporation condensate
JP3202566B2 (en) Method and apparatus for separating and concentrating volatile substances in water
JPH07241426A (en) Gas separating method
JP2017074538A (en) Organic solvent recovery system
JPS6316030A (en) Recovery of solvent
JP2003053328A (en) Waste water treating equipment
KR102292770B1 (en) Hybrid seawater-desalination apparatus and method
JPH03270710A (en) Solvent recovery apparatus
JPH0938445A (en) Method for regenerating adsorption tower
JPH11244843A (en) Steam compression type pure water producing device
CN218901358U (en) Tail gas and filtrate treatment system
Lipnizki et al. Hydrophobic pervaporation for environmental applications: Process optimization and integration
US20240262731A1 (en) A System And Method For Recovering Ammonia From an Ammonia-Containing Liquid

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term