JPH0938445A - Method for regenerating adsorption tower - Google Patents

Method for regenerating adsorption tower

Info

Publication number
JPH0938445A
JPH0938445A JP7210229A JP21022995A JPH0938445A JP H0938445 A JPH0938445 A JP H0938445A JP 7210229 A JP7210229 A JP 7210229A JP 21022995 A JP21022995 A JP 21022995A JP H0938445 A JPH0938445 A JP H0938445A
Authority
JP
Japan
Prior art keywords
gas
desorption
adsorption tower
adsorption
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7210229A
Other languages
Japanese (ja)
Inventor
Shinsaku Maruyama
眞策 丸山
Mitsuo Kawaguchi
光夫 川口
Toyoji Mizushima
豊史 水島
Hirobumi Inagawa
博文 稲川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP7210229A priority Critical patent/JPH0938445A/en
Publication of JPH0938445A publication Critical patent/JPH0938445A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for regenerating an adsorption tower by which a decomposable solvent is completely recovered in dry desorption, and the equipment cost and running cost are reduced when an inert gas is used as the desorption gas. SOLUTION: A solvent adsorbed on the fixed adsorption bed in an adsorption tower 1A is dry-desorbed to regenerate the adsorption tower. In this case, the inside of the adsorption tower 1A is evacuated by a vacuum pump 6 and desorbed, a solvent is condensed 7 from the desorption gas and recovered 8, and the uncondensed gas is returned to the tower 1A in the circulating line. A clarified gas 24 is then supplied to the adsorption tower, the gas passed through the adsorption bed is discharged outside the circulating line to purify the adsorption bed. Accordingly, the bed is heated 2A in the desorption and recovery stages, and the inert gas 24 is preferably used as the circulating gas or clarifying gas in the desorption and recovery stages.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸着塔の再生方法
に係り、特に、溶剤含有ガスを固定式吸着層に吸着さ
せ、この溶剤を乾式脱着して吸着塔を再生する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating an adsorption tower, and more particularly to a method for adsorbing a solvent-containing gas on a fixed adsorption layer and dry desorbing this solvent to regenerate the adsorption tower.

【0002】[0002]

【従来の技術】従来の技術は、例えば「公害と対策 vo
l.2, No,12(1990)p25〜p38」に詳細に
記載されており、抜すいしながら説明する。排ガスから
の有機溶剤の除去・回収技術には冷却法、圧縮法、吸着
・脱着法の3つがある。冷却法は、冷却温度を0℃以上
とするか、0℃以下とするかで2分される。一般に多く
用いられている5℃以下で冷却する装置は、比較的安い
が、低沸点のものの回収率が低くなる。0℃以下に冷却
する装置は、回収率は高いが、水が凍結するので、これ
を防ぐために、間欠的に氷を溶かすデフロスト方式、あ
るいは塩化カルシウムや塩化リチウムで水を吸収するエ
アシャワー方式による対策をとる必要がある。圧縮法
は、有機溶剤の蒸気を加圧し、溶剤の飽和蒸気圧以上に
分圧を上げて液化する方法であるが、圧縮熱によって温
度が上がるので、回収率を高くするためには放熱や冷却
が必要となる。たとえば、ジクロロメタンを5kg/c
2 に圧縮して5℃に冷却すれば、1気圧で約−30℃
に冷却した場合と同じになる。すなわち、ジクロロメタ
ンなどは、冷却を併用すれば回収率が高くできる。ただ
し、低濃度の排ガスには適用できないので、今のところ
使用例はあまり多くない。
2. Description of the Related Art The conventional technology is, for example, "pollution and measures vo
L.2, No. 12, (1990) p25 to p38 ", and will be described with reference to the drawings. There are three technologies for removing and recovering organic solvents from exhaust gas: cooling, compression, and adsorption / desorption. The cooling method is divided into 2 minutes depending on whether the cooling temperature is 0 ° C. or higher or 0 ° C. or lower. A device that cools at 5 ° C. or lower, which is commonly used, is relatively inexpensive, but the recovery rate of low-boiling substances is low. The equipment that cools below 0 ° C has a high recovery rate, but since water freezes, in order to prevent this, a defrost method that melts ice intermittently or an air shower method that absorbs water with calcium chloride or lithium chloride is used. It is necessary to take measures. The compression method is a method of pressurizing the vapor of the organic solvent and increasing the partial pressure above the saturated vapor pressure of the solvent to liquefy it.However, since the temperature rises due to the compression heat, heat dissipation and cooling are required to increase the recovery rate. Is required. For example, 5 kg / c of dichloromethane
If compressed to m 2 and cooled to 5 ° C, it will be about -30 ° C at 1 atm.
It becomes the same as when cooled to. That is, the recovery rate of dichloromethane and the like can be increased by using cooling together. However, it is not applicable to low-concentration exhaust gas, so there are not many examples of use so far.

【0003】吸着・脱着法は、有機溶剤を活性炭などに
吸着し、水蒸気又は熱風で脱離し、脱離した高濃度の有
機溶剤蒸気を冷却法で液化して回収する方法である。以
下にこの吸着・脱離法の種類と特徴を示す。 1)ハニカム型活性炭ドラムを使用した予備濃縮方式 一般の吸着・脱離装置では、数十ppm以下の低濃度で
多量の排ガスを処理すると、装置が大きくなって不利と
なる。そこでこのような場合には、あらかじめ簡易な吸
着・脱離装置で予備濃縮を行ってから本格的な除去・回
収装置を使用する。簡易な予備濃縮装置としてはハニカ
ム型の活性炭ドラムを回転させて吸着と脱離を短時間に
繰り返させる装置が使用されている。 2)粒状活性炭を使用した方式 有機溶剤蒸気の吸着・脱離には5〜10mmの円筒形な
どに成形した活性炭又は破砕状活性炭を充填した大きな
固定床に排ガスを送って吸着し、数時間から数日ごとに
スチームを送って脱離し、脱離ガス中の有機溶剤を冷却
法で回収する装置が多く使用されてきた。
The adsorption / desorption method is a method in which an organic solvent is adsorbed on activated carbon or the like, desorbed by steam or hot air, and the desorbed high-concentration organic solvent vapor is liquefied by a cooling method and recovered. The types and characteristics of this adsorption / desorption method are shown below. 1) Preconcentration method using honeycomb-type activated carbon drum In a general adsorption / desorption apparatus, if a large amount of exhaust gas is treated at a low concentration of several tens of ppm or less, the apparatus becomes large, which is disadvantageous. Therefore, in such a case, pre-concentration is performed in advance by a simple adsorption / desorption device, and then a full-scale removal / recovery device is used. As a simple preconcentrating device, a device that rotates a honeycomb-type activated carbon drum to repeat adsorption and desorption in a short time is used. 2) Method using granular activated carbon For adsorption and desorption of organic solvent vapor, exhaust gas is sent to a large fixed bed filled with activated carbon molded into a cylindrical shape of 5 to 10 mm or crushed activated carbon to adsorb it, and from several hours A device that sends steam every few days to desorb it and recovers the organic solvent in the desorbed gas by a cooling method has been widely used.

【0004】3)繊維状活性炭を使用した方式 繊維状活性炭を使用した小型の固定床装置は、中空円筒
状に成形した繊維状活性炭を1筒又は2筒つけたもので
10〜20分ごとに交互に吸着とスチーム脱離を繰り返
す。また、マット状に成形した繊維状活性炭を2段つ
け、10〜20分ごとに吸着とスチーム又は熱風による
脱離を繰り返すものである。 4)球形活性炭を使用した方式 球形活性炭を使用した流動床で、連続的に吸着・脱離を
行う装置には、吸着塔と脱離塔を縦につないだ方式もあ
る。この装置では、数段に分けた吸着塔の下部から排ガ
スを通し、活性炭を流動させ、順次下段に落としながら
吸着していき、吸着した活性炭を脱離塔で加熱脱離す
る。この場合、スチームを直接吹き込まず、熱交換器を
通して活性炭を加熱し、少量の空気で追い出して凝縮部
で冷却回収する。 5)ハニカム状活性炭を使用した方式 ハニカム状活性炭を使用した固定床で吸着し、減圧しな
がら電気加熱して脱離する装置は通気抵抗が小さく、吸
着速度も速いので高流速で吸着でき、脱離にスチームを
使わないので、回収液中に水が入らないこと、排水処理
が容易になることなどの特徴がある。しかし、体積あた
りの吸着容量が小さく、また脱離にもやや時間がかか
る。なおこの装置には、水蒸気を直接導入して脱離を行
うタイプもある。
3) Method using fibrous activated carbon A small fixed bed apparatus using fibrous activated carbon is one in which one or two fibrous activated carbons formed into a hollow cylinder are attached and every 10 to 20 minutes. Adsorption and steam desorption are repeated alternately. Further, two stages of fibrous activated carbon formed into a mat shape are provided, and adsorption and desorption with steam or hot air are repeated every 10 to 20 minutes. 4) Method using spherical activated carbon There is also a system in which an adsorption tower and a desorption tower are vertically connected to each other in a device for continuously adsorbing / desorbing in a fluidized bed using spherical activated carbon. In this apparatus, exhaust gas is passed from the lower part of the adsorption tower divided into several stages, activated carbon is made to flow, and it is adsorbed while being successively dropped to the lower stage, and the adsorbed activated carbon is desorbed by heating in the desorption tower. In this case, the steam is not directly blown in, but the activated carbon is heated through a heat exchanger, expelled with a small amount of air, and cooled and recovered in the condenser. 5) Method using honeycomb-like activated carbon A device that adsorbs on a fixed bed using honeycomb-like activated carbon and desorbs it by heating it electrically while depressurizing it has a small ventilation resistance and a fast adsorption rate, so it can adsorb at a high flow rate. Since steam is not used for separation, there are features such as no water entering the recovered liquid and easy wastewater treatment. However, the adsorption capacity per volume is small, and desorption takes some time. There is also a type of this apparatus in which water vapor is directly introduced for desorption.

【0005】上記のように、従来から種々の吸着・脱離
法が知られているが、脱着に関しては、水蒸気を用いる
湿式法とガスを用いる乾式法がある。湿式法の方が同一
処理能力では装置は安いが、このシステムは回収溶剤量
の2〜8倍の蒸気を使用することになり、排水処理が問
題となる。例えば水を分離しても溶剤は水側にも多少溶
解し、表1でみられるように、代表的な塩素系有機溶剤
であるトリクロロエチレン、テトラクロロエチレンでは
水への溶解度に対し、排水基準はかなり低い。このよう
な、水は直接放出することはできず、ばっ気法などによ
り、濃度をさらに下げなければならない。
As described above, various adsorption / desorption methods have been conventionally known. Regarding desorption, there are a wet method using water vapor and a dry method using gas. Although the wet method is cheaper with the same treatment capacity, this system uses 2 to 8 times the amount of recovered solvent vapor, and waste water treatment becomes a problem. For example, even if water is separated, the solvent dissolves to some extent on the water side, and as seen in Table 1, the typical chlorine-based organic solvents, trichlorethylene and tetrachloroethylene, have a much lower drainage standard than the solubility in water. . Such water cannot be released directly, and the concentration must be further reduced by the aeration method or the like.

【表1】 [Table 1]

【0006】従って、水処理まで含めて考えると湿式法
の方が不利な場合もある。乾式法で問題になるのは、分
解性溶剤(ケトン類やエステル類)を回収する場合であ
り、安全対策上、吸着塔内を不活性ガス(窒素など)で
置換し、不活性ガスで脱着するのが望ましい。しかし、
窒素ガスを供給するためには、液体窒素やPSA方式
(圧力変動吸脱着方式)の窒素ガス供給装置を設けなけ
ればならず、設備費やランニングコストは増大してしま
う。この点を解決するために、本発明者らは脱着し凝縮
後の溶剤で飽和したガスを、別の吸着塔で浄化した清澄
ガスを再度吸着塔に送り脱着用ガスとして循環利用する
方法(特願平5−122114号)を提案した。この方
法は、吸着層の下流側(通気運転の二次側)がたえず清
澄なガスに触れるため、脱着の効率は非常に良いが、吸
着塔が3塔以上必要となり、制御もやや複雑になる。
Therefore, the wet method may be disadvantageous in consideration of water treatment. The problem with the dry method is when recovering decomposable solvents (ketones and esters). As a safety measure, replace the adsorption column with an inert gas (such as nitrogen) and desorb with an inert gas. It is desirable to do. But,
In order to supply the nitrogen gas, it is necessary to provide liquid nitrogen or a PSA method (pressure fluctuation adsorption / desorption method) nitrogen gas supply apparatus, which increases equipment costs and running costs. In order to solve this point, the present inventors have proposed a method in which a gas saturated with a solvent after desorption and condensation is clarified in another adsorption tower, sent again to the adsorption tower, and circulated as the desorption gas. No. 5-122114). This method has very good desorption efficiency because the downstream side of the adsorption layer (secondary side of aeration operation) constantly contacts the clear gas, but desorption efficiency is very good, but three or more adsorption towers are required, and control becomes rather complicated. .

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記問題点
を解消し、乾式方式の脱着処理において、分解性溶剤を
安全に回収すると共に、脱着ガスとして不活性ガスを用
いる場合の設備費、ランニングコストを低減できる吸着
塔の再生方法を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention solves the above problems and, in the dry desorption process, safely recovers the decomposable solvent, and the equipment cost when an inert gas is used as the desorption gas, An object is to provide a method for regenerating an adsorption tower that can reduce running costs.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、吸着塔の固定式吸着層に吸着した溶剤
を乾式脱着して吸着塔を再生する方法において、該吸着
塔内を真空ポンプで減圧脱着し、脱着ガスから溶剤を凝
縮回収して未凝縮ガスを前記吸着塔に戻す循環系で溶剤
を脱着回収する工程と、次いで清澄ガスを該吸着塔に供
給して吸着層通過後のガスを循環系外に放出して吸着層
を浄化する工程とで処理することを特徴とする吸着塔の
再生方法としたものである。前記吸着塔の再生方法にお
いて、脱着回収工程は、吸着層を加熱しながら行い、ま
た、脱着時の循環ガス又は清澄ガスとして不活性ガスを
用いるのが分解性溶剤を回収する場合、安全上の観点か
らよい。
In order to solve the above-mentioned problems, in the present invention, in a method for regenerating an adsorption tower by dry desorbing a solvent adsorbed in a fixed adsorption bed of the adsorption tower, A step of desorbing and decompressing with a vacuum pump, condensing and recovering the solvent from the desorbed gas and returning the uncondensed gas to the adsorption tower to desorb and recover the solvent with a circulation system, and then supplying a refining gas to the adsorption tower and passing through the adsorption layer This is a method for regenerating an adsorption tower, characterized in that it is treated in a step of purifying the adsorption layer by releasing the gas thereafter to the outside of the circulation system. In the method for regenerating the adsorption tower, the desorption recovery step is performed while heating the adsorption layer, and using an inert gas as the circulating gas or the refining gas during desorption recovers the decomposable solvent, which is a safety measure. Good from a perspective.

【0009】[0009]

【発明の実施の形態】図1に、本発明の吸着塔の再生方
法を説明するための再生フロー図の一例を示す。図1は
本発明の吸着層をヒーターで加熱しながら脱着を行う方
法の例で、温度圧力変動吸脱着法(TPSA法)に適用
したものであり、排ガスを連続処理するフローである。
図1において、1A、1Bは吸着塔、2A、2Bはヒー
ター、3は排ガスクーラー、4は排ガスブロア、5は循
環ブロア、6は真空ポンプ、7は凝縮器、8は回収タン
ク、9は溶剤移送ポンプであり、10、11はフィルタ
である。そして、これらの器機はそれぞれ、12〜21
の弁を有する配管で接続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of a regeneration flow chart for explaining a regeneration method for an adsorption tower of the present invention. FIG. 1 is an example of a method of desorbing while heating the adsorption layer of the present invention with a heater, which is applied to a temperature-pressure fluctuation adsorption / desorption method (TPSA method) and is a flow for continuously treating exhaust gas.
In FIG. 1, 1A and 1B are adsorption towers, 2A and 2B are heaters, 3 is an exhaust gas cooler, 4 is an exhaust gas blower, 5 is a circulation blower, 6 is a vacuum pump, 7 is a condenser, 8 is a recovery tank, and 9 is a solvent. Transfer pumps, and 10 and 11 are filters. And these devices are 12-21, respectively.
It is connected by a pipe having a valve.

【0010】次に、図1のフローに従った運転方法につ
いて説明する。 (1)溶剤を含むガス22は、排ガスブロア4により、
排ガスクーラー3、フィルタ10を介して20〜25℃
に冷却、ダスト分を除去後、吸着塔1Aの吸着層で溶剤
が除かれ、処理ガス23は大気中に放出される。(開の
弁は排ガス入口弁12A、排ガス出口弁13A) (2)処理を終了して吸着塔1Bに通ガスを切りかえ
る。(弁12A、13Aを閉とし、弁12B、13Bを
開とする) 切り替えの判断は、処理ガス中の溶剤濃度が基準値を超
えるか、タイマによるか、あるいは両者の併用で行う。
吸着塔1Aは通気ラインから隔離される。
Next, the operation method according to the flow of FIG. 1 will be described. (1) The gas 22 containing the solvent is discharged by the exhaust gas blower 4.
20 to 25 ° C through the exhaust gas cooler 3 and the filter 10
After cooling to remove the dust, the solvent is removed in the adsorption layer of the adsorption tower 1A, and the processing gas 23 is released into the atmosphere. (The open valves are the exhaust gas inlet valve 12A and the exhaust gas outlet valve 13A) (2) The process is completed and the passing gas is switched to the adsorption tower 1B. (The valves 12A and 13A are closed and the valves 12B and 13B are opened.) The switching is determined by whether the solvent concentration in the processing gas exceeds a reference value, by a timer, or by using both of them.
The adsorption tower 1A is isolated from the ventilation line.

【0011】(3)循環ブロア5を用い、ヒーター2A
を生かし、吸着塔1Aの吸着層を昇温する。(循環加熱
工程) この時、吸着層温度を基準値(100℃付近)まで循環
加熱する方法と、基準値の手前(60〜80℃)まで循
環加熱する方式がある。(開の弁は循環ブロア出口弁1
4A、循環ブロア入口弁15A) 対象溶剤の分解性が特に大きい場合には、循環加熱系内
の空気を不活性ガスに置換することも可能である。即
ち、真空ポンプ6を使用し(弁17、16Aを開)、系
内を減圧した後、弁17を閉じ、20Aより不活性ガス
24を系に導入する方法である。(弁21Aは常時一定
開度)。
(3) Using the circulation blower 5, the heater 2A
By utilizing the above, the temperature of the adsorption layer of the adsorption tower 1A is raised. (Circulation heating step) At this time, there are a method of circulating heating the adsorption layer temperature up to a reference value (around 100 ° C) and a method of circulating heating up to the reference value (60 to 80 ° C). (The open valve is the circulation blower outlet valve 1
4A, circulating blower inlet valve 15A) When the decomposability of the target solvent is particularly high, it is possible to replace the air in the circulating heating system with an inert gas. That is, the vacuum pump 6 is used (valves 17 and 16A are opened) to reduce the pressure in the system, then the valve 17 is closed and the inert gas 24 is introduced into the system from 20A. (Valve 21A is always constant opening).

【0012】(4)循環を止める。(3)で不活性ガス
に置換されている場合は工程(5)に進む。置換されて
いない場合は、吸着塔1A内のガスを真空ポンプ6によ
り、被処理ガス側に排気する。(開の弁は真空ポンプ入
口弁16A、真空ポンプ出口弁17) 吸着塔の脱着が進んだところで真空ポンプ6を停止し、
不活性ガス24を吸着塔1A内がほぼ常圧となるまで供
給する。(不活性ガス置換工程。開の弁は真空ポンプ入
口弁16A、真空ポンプ出口弁17、脱着用ガス入口弁
20A、脱着用ガス減圧弁21A(常時一定開度)) (5)脱着用ガス入口弁20Aを閉とし、吸着塔1A内
を真空ポンプ6によって0.1〜0.5kg/cm2
bs程度まで減圧し、通気中の被処理ガス側に排気す
る。(減圧工程。開の弁は真空ポンプ入口弁16A、真
空ポンプ出口弁17)。
(4) Stop circulation. When the inert gas is replaced in (3), the process proceeds to step (5). If the gas is not replaced, the gas in the adsorption tower 1A is exhausted to the gas to be processed side by the vacuum pump 6. (The open valves are the vacuum pump inlet valve 16A and the vacuum pump outlet valve 17) When the desorption of the adsorption tower progresses, the vacuum pump 6 is stopped,
The inert gas 24 is supplied until the pressure inside the adsorption tower 1A becomes almost normal pressure. (Inert gas replacement step. Open valves are vacuum pump inlet valve 16A, vacuum pump outlet valve 17, desorption gas inlet valve 20A, desorption gas pressure reducing valve 21A (always constant opening)) (5) Desorption gas inlet The valve 20A is closed, and the inside of the adsorption tower 1A is adjusted by the vacuum pump 6 to 0.1 to 0.5 kg / cm 2
The pressure is reduced to about bs, and the gas is exhausted to the side of the gas to be processed during aeration. (Decompression step. Open valves are vacuum pump inlet valve 16A and vacuum pump outlet valve 17).

【0013】(6)引き続き、吸着塔1Aをヒーター2
Aと真空ポンプ6を生かして加温減圧脱着をし、凝縮器
7で凝縮回収後の未凝縮ガスを真空ポンプ戻り弁18
A、真空ポンプ戻り減圧弁19Aを含むラインを介して
吸着塔1Aに戻し、循環しながら加温減圧脱着を行う。
(加温減圧脱着工程。開の弁は真空ポンプ入口弁16
A、真空ポンプ戻り弁18A、真空ポンプ戻り減圧弁1
9A(常時一定開度)) (7)ヒーター2Aによる加熱をやめ、引続き不活性ガ
ス24を供給し、吸着塔1Aを浄化、冷却しながら真空
ポンプ6により、通気中の被処理ガス側に排気する。
(浄化工程。開の弁は真空ポンプ入口弁16A、真空ポ
ンプ出口弁17、脱着用ガス入口弁20A、脱着用ガス
減圧弁21A(常時一定開度))
(6) Subsequently, the adsorption tower 1A is heated to the heater 2
A and vacuum pump 6 are used to perform depressurization by heating and decompression, and the condenser 7 collects uncondensed gas after recovery by vacuum pump return valve 18
A, returning to the adsorption tower 1A through a line including the vacuum pump return pressure reducing valve 19A, and performing heating, pressure reduction and desorption while circulating.
(Heating / decompression / desorption process. Open valve is vacuum pump inlet valve 16
A, vacuum pump return valve 18A, vacuum pump return pressure reducing valve 1
9A (always constant opening)) (7) Stop heating by the heater 2A, continuously supply the inert gas 24, purify and cool the adsorption tower 1A, and exhaust to the side of the gas being aerated by the vacuum pump 6 To do.
(Purification step: open valves are vacuum pump inlet valve 16A, vacuum pump outlet valve 17, desorption gas inlet valve 20A, desorption gas pressure reducing valve 21A (always constant opening))

【0014】本工程の供給ガスは循環使用しないため、
ユーティリティ費用節約の観点から空気(処理ガスの一
部使用など)を使用することができるが、若干の配管弁
の追加を伴なう。 (8)真空ポンプを停止し、吸着塔内を不活性ガスによ
り、常圧にもどす。(圧力復帰工程。開の弁は脱着用ガ
ス入口弁20A、脱着用ガス減圧弁21A(常時一定開
度))。常圧に戻す時、不活性ガスの代りに空気(被処
理ガスの一部使用など)を使用することができるが、次
の通気までの待機時間が長い場合には、吸着層内での分
解性溶剤の分解熱による着火の危険性をなくすため、不
活性ガスの使用が望ましい。 (9)1B塔の通気工程が終了するまで待機する。 本フローでは、(7)、(8)、(9)の工程で吸着塔
1Aは冷却されるが、十分ではなく、再びA側に通気が
移った時に被処理ガス自身によって冷却が進むことにな
る。脱着の途中、不活性ガスを吸着塔に常圧になるまで
供給し、再び循環加熱後、加温減圧脱着を循環しながら
行う(酸素分圧低下及び脱着効率アップのため)などの
変則運用があるが、脱着中に未凝縮ガスを循環使用する
点がポイントであるから、これらは本発明の範囲内であ
る。
Since the supply gas in this step is not circulated,
Air (such as partial use of process gas) can be used from the perspective of utility cost savings, but with the addition of some piping valves. (8) The vacuum pump is stopped, and the inside of the adsorption tower is returned to normal pressure with an inert gas. (Pressure return step. Opening valves are the desorption gas inlet valve 20A and the desorption gas pressure reducing valve 21A (always constant opening)). When returning to normal pressure, it is possible to use air (partial use of the gas to be treated, etc.) instead of the inert gas, but if the waiting time until the next ventilation is long, decompose in the adsorption layer. The use of an inert gas is desirable to eliminate the risk of ignition due to the heat of decomposition of the organic solvent. (9) Wait until the aeration process of the 1B tower is completed. In this flow, the adsorption tower 1A is cooled in the steps (7), (8), and (9), but it is not sufficient, and when the aeration is transferred to the A side again, cooling is promoted by the gas to be treated itself. Become. During desorption, inert gas is supplied to the adsorption tower until atmospheric pressure is reached, and after heating and circulating again, heating and decompression desorption are performed while circulating (to reduce oxygen partial pressure and improve desorption efficiency). However, these are within the scope of the present invention because the point is to recycle the uncondensed gas during desorption.

【0015】[0015]

【発明の効果】本発明によれば次のような効果を奏する
ことができる。 (a)ガスは循環再利用されるため、特に分解性溶剤対
策として不活性ガス(窒素)を脱着ガスとして用いる場
合に、ランニングコストの低減につながる。 (b)凝縮器での未凝縮ガスは循環されるため、凝縮器
の能力をやや落としてもいずれ凝縮器入口の溶剤濃度は
増加していき、凝縮が可能となる。すなわち、凝縮器の
凝縮能力の低減化、すなわち設備費の低減が可能とな
る。 (c)加熱減圧脱着後に、吸着層に清澄ガスを通して浄
化することにより、循環して加熱減圧脱着を行った吸着
層内に残留した有機溶剤分を、除去することができ、循
環脱着の不利を解消した。 (d)吸着層を加熱しながら脱着することで、加熱しな
い場合に比べ、脱着効率があがる。事実上この操作は重
要であり、減圧だけでは十分な脱着は期待しにくい。
According to the present invention, the following effects can be obtained. (A) Since the gas is circulated and reused, this leads to a reduction in running cost, especially when an inert gas (nitrogen) is used as a desorption gas as a measure against a decomposable solvent. (B) Since the uncondensed gas in the condenser is circulated, even if the capacity of the condenser is slightly reduced, the solvent concentration at the condenser inlet will eventually increase and the condensation will be possible. That is, it is possible to reduce the condensation capacity of the condenser, that is, the equipment cost. (C) After desorption by heating under reduced pressure, the adsorbent layer can be purified by passing it through a cleaning gas to remove the organic solvent content remaining in the adsorption layer that has been circulated and desorbed under reduced pressure by heating. Resolved. (D) By desorbing the adsorption layer while heating, the desorption efficiency is improved as compared with the case where the adsorption layer is not heated. In fact, this operation is important, and it is difficult to expect sufficient desorption by only reducing the pressure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の吸着塔の再生方法の一例を説明するた
めの再生フロー図。
FIG. 1 is a regeneration flow chart for explaining an example of a regeneration method for an adsorption tower of the present invention.

【符号の説明】[Explanation of symbols]

1A、1B:吸着塔、2A、2B:ヒーター、3:排ガ
スクーラー、4:排ガスブロア、5:循環ブロア、6:
真空ポンプ、7:凝縮器、8:回収タンク、9:溶剤移
送ポンプ、10:フィルタ、11:フィルタ、12A〜
18B、20A、20B:切換弁、19A、19B、2
1A、21B:減圧弁
1A, 1B: adsorption tower, 2A, 2B: heater, 3: exhaust gas cooler, 4: exhaust gas blower, 5: circulation blower, 6:
Vacuum pump, 7: condenser, 8: recovery tank, 9: solvent transfer pump, 10: filter, 11: filter, 12A to
18B, 20A, 20B: switching valve, 19A, 19B, 2
1A, 21B: Pressure reducing valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲川 博文 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirofumi Inagawa 11-1 Haneda-Asahicho, Ota-ku, Tokyo Inside EBARA CORPORATION

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 吸着塔の固定式吸着層に吸着した溶剤を
乾式脱着して吸着塔を再生する方法において、該吸着塔
内を真空ポンプで減圧脱着し、脱着ガスから溶剤を凝縮
回収して未凝縮ガスを前記吸着塔に戻す循環系で溶剤を
脱着回収する工程と、次いで清澄ガスを該吸着塔に供給
して吸着層通過後のガスを循環系外に放出して吸着層を
浄化する工程とで処理することを特徴とする吸着塔の再
生方法。
1. A method of regenerating an adsorption tower by dry desorption of a solvent adsorbed on a fixed adsorption layer of an adsorption tower, wherein the adsorption tower is depressurized and desorbed by a vacuum pump, and the solvent is condensed and recovered from the desorbed gas. A step of desorbing and collecting the solvent in a circulation system for returning the uncondensed gas to the adsorption tower, and then supplying a refining gas to the adsorption tower to release the gas after passing through the adsorption layer to the outside of the circulation system to purify the adsorption layer. A method for regenerating an adsorption tower, characterized in that treatment is carried out in steps.
【請求項2】 前記脱着回収工程は、吸着層を加熱しな
がら行うことを特徴とする請求項1記載の吸着塔の再生
方法。
2. The method for regenerating an adsorption tower according to claim 1, wherein the desorption recovery step is performed while heating the adsorption layer.
【請求項3】 前記脱着回収工程の循環ガスが、不活性
ガスであることを特徴とする請求項1又は2記載の吸着
塔の再生方法。
3. The method for regenerating an adsorption tower according to claim 1, wherein the circulating gas in the desorption / recovery step is an inert gas.
JP7210229A 1995-07-27 1995-07-27 Method for regenerating adsorption tower Pending JPH0938445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7210229A JPH0938445A (en) 1995-07-27 1995-07-27 Method for regenerating adsorption tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7210229A JPH0938445A (en) 1995-07-27 1995-07-27 Method for regenerating adsorption tower

Publications (1)

Publication Number Publication Date
JPH0938445A true JPH0938445A (en) 1997-02-10

Family

ID=16585927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7210229A Pending JPH0938445A (en) 1995-07-27 1995-07-27 Method for regenerating adsorption tower

Country Status (1)

Country Link
JP (1) JPH0938445A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364943B1 (en) 1999-08-04 2002-04-02 Taikisha Ltd. Gas treatment system
WO2003057349A1 (en) * 2001-12-28 2003-07-17 System Eng Service Co., Ltd. Method for treating exhaust gas containing volatile hydrocarbon, and apparatus for practicing said method
CN110075658A (en) * 2019-04-19 2019-08-02 同济大学 A kind of the VOCs processing system and its processing method of room temperature condensation auxiliary purification
CN114307531A (en) * 2021-12-30 2022-04-12 四川天采科技有限责任公司 Refinery VOCs tail gas fluidized moving bed temperature swing adsorption FMBTSA purification process and system
CN115770459A (en) * 2022-11-21 2023-03-10 广东工业大学 Adsorption and condensation mobile VOCs treatment device and treatment method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364943B1 (en) 1999-08-04 2002-04-02 Taikisha Ltd. Gas treatment system
WO2003057349A1 (en) * 2001-12-28 2003-07-17 System Eng Service Co., Ltd. Method for treating exhaust gas containing volatile hydrocarbon, and apparatus for practicing said method
CN110075658A (en) * 2019-04-19 2019-08-02 同济大学 A kind of the VOCs processing system and its processing method of room temperature condensation auxiliary purification
CN110075658B (en) * 2019-04-19 2023-12-22 同济大学 VOCs treatment system for normal temperature condensation auxiliary purification and treatment method thereof
CN114307531A (en) * 2021-12-30 2022-04-12 四川天采科技有限责任公司 Refinery VOCs tail gas fluidized moving bed temperature swing adsorption FMBTSA purification process and system
CN114307531B (en) * 2021-12-30 2022-11-29 四川天采科技有限责任公司 Refinery VOCs tail gas fluidized moving bed temperature swing adsorption FMBTSA purification process and system
CN115770459A (en) * 2022-11-21 2023-03-10 广东工业大学 Adsorption and condensation mobile VOCs treatment device and treatment method
CN115770459B (en) * 2022-11-21 2024-01-23 广东工业大学 Adsorption-condensation movable VOCs treatment device and treatment method

Similar Documents

Publication Publication Date Title
JP3841479B2 (en) Organic solvent recovery system and organic solvent recovery method
JP6897884B2 (en) Organic solvent recovery system
JP3084248B2 (en) Two-stage adsorption / separation equipment and method for recovering carbon dioxide from flue gas
JPH06226029A (en) Method for recovering solvent
JPH0938445A (en) Method for regenerating adsorption tower
JP6565357B2 (en) Concentrator and organic solvent recovery system
JPH0768127A (en) Hot-air desorption type solvent recovering device
JP2004243279A (en) Method and device for cleaning gas containing organic contaminant
JP3922449B2 (en) Organic solvent recovery system
JP2001137646A (en) Device and method for adsorption treating waste gas
JPH0584417A (en) Method and equipment for recovering solvent
JP3363986B2 (en) Solvent recovery method
JPH06312117A (en) Solvent recovery
JP2775789B2 (en) Wastewater treatment method
JP3631073B2 (en) Organic solvent recovery method
JPH03270710A (en) Solvent recovery apparatus
JP2001137647A (en) Multistage adsorption treating device for waste gas and method
JPH07265642A (en) Solvent recovery method
JPH08281044A (en) Method for recovering solvent
JP3223253B2 (en) CFC regeneration method and apparatus
JPH04118024A (en) Solvent recovering device
JPH0760050A (en) Device for treating methanol containing gas
JPH04102623U (en) Adsorption treatment equipment for gas containing low concentration solvent
JP3515901B2 (en) Pretreatment device in air separation unit
JPH0663350A (en) Method for recovering solvent