JPH07265642A - Solvent recovery method - Google Patents

Solvent recovery method

Info

Publication number
JPH07265642A
JPH07265642A JP6194603A JP19460394A JPH07265642A JP H07265642 A JPH07265642 A JP H07265642A JP 6194603 A JP6194603 A JP 6194603A JP 19460394 A JP19460394 A JP 19460394A JP H07265642 A JPH07265642 A JP H07265642A
Authority
JP
Japan
Prior art keywords
tower
adsorption
solvent
gas
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6194603A
Other languages
Japanese (ja)
Inventor
Shinsaku Maruyama
眞策 丸山
Mitsuo Kawaguchi
光夫 川口
Toyoji Mizushima
豊史 水島
Takeshi Ishikawa
武 石川
Hirobumi Inagawa
博文 稲川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP6194603A priority Critical patent/JPH07265642A/en
Publication of JPH07265642A publication Critical patent/JPH07265642A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a solvent recovery method capable of sufficiently heating a desorption tower and cooling the tower in various manners after desorption and capable of conducting efficient desorption. CONSTITUTION:A solvent is recovered by an adsorption tower. The adsorption tower after finishing adsorption is successively used in stages (a)...(d) to desorb the solvent. (a) The gas in the adsorption tower 1A is circulated through the circulating lines 5, 18A, 15A, 2A, 1A and 19A including the tower and heated to heat the adsorption bed in the tower. (b) The circulation is stopped, the tower is evacuated 6, air or an inert gas at the flow rate of <=1/5 of that of the gas to be treated is heated 2A and supplied into the tower to desorb the adsorbed solvent, and the solvent is condensed 7 and recovered 8 from the desorbed gas. (c) The heating is stopped, air or an inert gas is passed through the tower still evacuated at the flow rate of <=1/5 of that of the gas to be treated to perform cooling and desorption in the tower. (d) The tower is returned to normal pressure, and the air as such or the cooled air is supplied 20 to the high-temp. adsorption bed to cool the bed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸着塔を用いる溶剤の
回収方法に係り、特に、分解性有機溶剤(ケトン類、エ
ステル類、ハロゲン化炭化水素等)を含む希薄な溶剤含
有ガスからの溶剤回収方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering a solvent using an adsorption tower, and more particularly to a method for recovering a solvent containing a decomposable organic solvent (ketones, esters, halogenated hydrocarbons, etc.) from a dilute solvent-containing gas. The present invention relates to a solvent recovery method.

【0002】[0002]

【従来の技術】従来の技術は、例えば「公害と対策 vo
l.2, No.12(1990)P25〜P38」に詳細に
記載されており、抜すいしながら説明する。排ガスから
の有機溶剤の除去・回収技術には冷却法、圧縮法、吸着
・脱着法の3つがある。冷却法は、冷却温度を0℃以上
とするか、0℃以下とするかで2分される。一般に多く
用いられている5℃以上で冷却する装置は、比較的安い
が、低沸点のものの回収率が低くなる。0℃以下に冷却
する装置は、回収率は高いが、水が凍結するので、これ
を防ぐために、間欠的に氷を溶かすデフロスト方式、あ
るいは塩化カルシウムや塩化リチウムで水を吸収するエ
アシャワー方式による対策をとる必要がある。圧縮法
は、有機溶剤の蒸気を加圧し、溶剤の飽和蒸気圧以上に
分圧を上げて液化する方法であるが、圧縮熱によって温
度が上がるので、回収率を高くするためには放熱や冷却
が必要となる。たとえば、ジクロロメタンを5kg/cm2
に圧縮して5℃に冷却すれば、1気圧で約−30℃に冷
却した場合と同じになる。すなわち、ジクロロメタンな
どは、冷却を併用すれば回収率を高くできる。ただし、
低濃度の排ガスには適用できないので、今のところ使用
例はあまり多くない。
2. Description of the Related Art The conventional technology is, for example, "pollution and measures vo
L.2, No. 12 (1990) P25 to P38 ", and will be explained while pulling out. There are three technologies for removing and recovering organic solvents from exhaust gas: cooling, compression, and adsorption / desorption. The cooling method is divided into 2 minutes depending on whether the cooling temperature is 0 ° C. or higher or 0 ° C. or lower. A device that cools at 5 ° C. or higher, which is commonly used, is relatively cheap, but the recovery rate of low boiling point compounds is low. The equipment that cools below 0 ° C has a high recovery rate, but since water freezes, in order to prevent this, a defrost method that melts ice intermittently or an air shower method that absorbs water with calcium chloride or lithium chloride is used. It is necessary to take measures. The compression method is a method of pressurizing the vapor of the organic solvent and increasing the partial pressure above the saturated vapor pressure of the solvent to liquefy it.However, since the temperature rises due to the compression heat, heat dissipation and cooling are required to increase the recovery rate. Is required. For example, 5 kg / cm 2 of dichloromethane
If compressed to 5 ° C. and cooled to about −30 ° C. at 1 atm, it is the same. That is, the recovery rate of dichloromethane or the like can be increased by using cooling together. However,
Since it is not applicable to low-concentration exhaust gas, there are not many examples of use so far.

【0003】吸着・脱着法は、有機溶剤を活性炭等に吸
着し、水蒸気又は熱風で脱離し、脱離した高濃度の有機
溶剤蒸気を冷却法で液化して回収する方法である。以下
にこの吸着・脱離法の種類と特徴を示す。 1)ハニカム型活性炭ドラムを使用した予備濃縮方式 一般の吸着・脱離装置では、数十 ppm以下の低濃度で多
量の排ガスを処理すると、装置が大きくなって不利とな
る。そこでこのような場合には、あらかじめ簡易な吸着
・脱離装置で予備濃縮を行ってから本格的な除去・回収
装置を使用する。簡易な予備濃縮装置としてはハニカム
型の活性炭ドラムを回転させて吸着と脱離を短時間に繰
り返させる装置が使用されている。 2)粒状活性炭を使用した方式 有機溶剤蒸気の吸着・脱離には5〜10mmの円筒形など
に成形した活性炭又は破砕状活性炭を充填した大きな固
定床に排ガスを送って吸着し、数時間から数日ごとにス
チームを送って脱離し、脱離ガス中の有機溶剤を冷却法
で回収する装置が多く使用されてきた。
The adsorption / desorption method is a method in which an organic solvent is adsorbed on activated carbon or the like, desorbed by steam or hot air, and the desorbed high-concentration organic solvent vapor is liquefied by a cooling method and recovered. The types and characteristics of this adsorption / desorption method are shown below. 1) Preconcentration method using honeycomb-type activated carbon drum In a general adsorption / desorption device, if a large amount of exhaust gas is treated at a low concentration of tens of ppm or less, the device becomes large, which is disadvantageous. Therefore, in such a case, pre-concentration is performed in advance by a simple adsorption / desorption device, and then a full-scale removal / recovery device is used. As a simple preconcentrating device, a device that rotates a honeycomb-type activated carbon drum to repeat adsorption and desorption in a short time is used. 2) Method using granular activated carbon For adsorption and desorption of organic solvent vapor, exhaust gas is sent to a large fixed bed filled with activated carbon molded into a cylindrical shape of 5 to 10 mm or crushed activated carbon to adsorb it, and from several hours A device that sends steam every few days to desorb it and recovers the organic solvent in the desorbed gas by a cooling method has been widely used.

【0004】3)繊維状活性炭を使用した方式 繊維状活性炭を使用した小型の固定床装置は、中空円筒
状に成形した繊維状活性炭を1筒又は2筒つけたもので
10〜20分ごとに交互に吸着とスチーム脱離を繰り返
す。また、マット状に成形した繊維状活性炭を2段つ
け、10〜20分ごとに吸着とスチーム又は熱風による
脱離を繰り返すものである。 4)球形活性炭を使用した方式 球形活性炭を使用した流動床で、連続的に吸着・脱離を
行う装置には、吸着塔と脱離塔を縦につないだ方式もあ
る。この装置では、数段に分けた吸着塔の下部から排ガ
スを通し、活性炭を流動させ、順次下段に落としながら
吸着していき、吸着した活性炭を脱離塔で加熱脱離す
る。この場合、スチームを直接吹き込まず、熱交換器を
通して活性炭を加熱し、少量の空気で追い出して凝縮部
で冷却回収する。 5)ハニカム状活性炭を使用した方式 ハニカム状活性炭を使用した固定床で吸着し、減圧しな
がら電気加熱して脱離する装置は通気抵抗が小さく、吸
着速度も速いので高流速で吸着でき、脱離にスチームを
使わないので、回収液中に水が入らないこと、排水処理
が容易になることなどの特徴がある。しかし、体積あた
りの吸着容量が小さく、また脱離にもやや時間がかか
る。なおこの装置には、水蒸気を直接導入して脱離を行
うタイプもある。
3) Method using fibrous activated carbon A small fixed bed apparatus using fibrous activated carbon is one in which one or two fibrous activated carbons formed into a hollow cylinder are attached and every 10 to 20 minutes. Adsorption and steam desorption are repeated alternately. Further, two stages of fibrous activated carbon formed into a mat shape are provided, and adsorption and desorption with steam or hot air are repeated every 10 to 20 minutes. 4) Method using spherical activated carbon There is also a system in which an adsorption tower and a desorption tower are vertically connected to each other in a device for continuously adsorbing / desorbing in a fluidized bed using spherical activated carbon. In this apparatus, exhaust gas is passed from the lower part of the adsorption tower divided into several stages, activated carbon is made to flow, and it is adsorbed while being successively dropped to the lower stage, and the adsorbed activated carbon is desorbed by heating in the desorption tower. In this case, the steam is not directly blown in, but the activated carbon is heated through a heat exchanger, expelled with a small amount of air, and cooled and recovered in the condenser. 5) Method using honeycomb-like activated carbon A device that adsorbs on a fixed bed using honeycomb-like activated carbon and desorbs it by heating it electrically while depressurizing it has a small ventilation resistance and a fast adsorption rate, so it can adsorb at a high flow rate. Since steam is not used for separation, there are features such as no water entering the recovered liquid and easy wastewater treatment. However, the adsorption capacity per volume is small, and desorption takes some time. There is also a type of this apparatus in which water vapor is directly introduced for desorption.

【0005】上記のように、従来から種々の吸着・脱離
法が知られているが、活性炭に通常使用される水蒸気脱
離を行う場合、冷却凝縮させて溶剤と水とを分離するこ
とになるが、実際は分離水中にもわずかに溶剤が溶け込
み、ばっ気法のような簡単な付帯設備だけでは溶剤を十
分除去しにくく、厳しくなる環境規制に対応するため
に、排水処理にかかる費用はますます増大していくと思
われる。そのための対応策として、脱着にガスを用いる
TPSA(温度圧力スイング方式)があり、脱着に蒸気
を使う湿式脱着法に比べ下記の特徴を有する。 脱着に蒸気を使わないため、回収溶剤の水処理の負
担が小さい。 吸着層からの溶剤脱離は、減圧、加熱を行うこと
で、減圧しない時に比べて脱着温度を下げることがで
き、安全性が向上する。 効率よく脱着を行うため、脱着ガス流量を被処理ガ
ス流量の1/5以下(0℃、1気圧基準)とすること
で、高濃度の脱着ガスを得ることができ、回収が有利に
なる。
As described above, various adsorption / desorption methods have been conventionally known, but when steam desorption commonly used for activated carbon is carried out, cooling and condensation are performed to separate the solvent and water. However, in reality, the solvent slightly dissolves in the separated water, and it is difficult to remove the solvent sufficiently with simple auxiliary equipment such as the aeration method, and the cost of wastewater treatment is high to comply with strict environmental regulations. It is expected to increase more and more. As a countermeasure for that, there is TPSA (temperature pressure swing method) that uses gas for desorption, and has the following features compared to the wet desorption method that uses steam for desorption. Since steam is not used for desorption, the burden of water treatment of the recovered solvent is small. For desorption of the solvent from the adsorption layer, desorption temperature can be lowered by performing depressurization and heating, as compared with the case where depressurization is not performed, and safety is improved. In order to perform desorption efficiently, by setting the desorption gas flow rate to 1/5 or less of the flow rate of the gas to be processed (0 ° C., 1 atm standard), a high concentration desorption gas can be obtained, and recovery is advantageous.

【0006】しかし乾式のTPSA法は、特に吸着材と
して粒状、又は球状の吸着材を充てんして使用した場
合、熱容量が繊維状活性炭等に比べて大きく、溶剤吸着
量も多いため、脱着ガスを通す前にも十分な昇温を行っ
ておく必要がある。また、減圧加熱脱着から即冷却工程
に移行すると、吸着材のもつ熱容量の大きさから、しば
らくは冷却ガスの温度が上昇する。昇温ガスは、2塔以
上の吸着塔を用いた連続運転の場合には、吸着運転中の
吸着塔の上流に合流させるのが普通であるが、合流後は
ガス温度が上昇し、吸着に悪影響を与える等の問題点が
あった。
However, the dry TPSA method has a large heat capacity as compared with fibrous activated carbon and the like, and has a large solvent adsorption amount, especially when a granular or spherical adsorbent is used as the adsorbent, so that the desorption gas is removed. It is necessary to raise the temperature sufficiently before passing it through. In addition, when the heating / desorption under reduced pressure shifts to the immediate cooling step, the temperature of the cooling gas rises for a while due to the heat capacity of the adsorbent. In the case of continuous operation using two or more adsorption towers, the temperature-rising gas is usually merged with the upstream of the adsorption tower during the adsorption operation, but after the merging, the gas temperature rises to cause adsorption. There were problems such as adverse effects.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解消し、吸着塔の昇温が十分に行え、脱着
後には種々の冷却ができ、効率のよい脱着操作ができる
溶剤の回収方法を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, can sufficiently raise the temperature of the adsorption tower, can perform various cooling after desorption, and can perform an efficient desorption operation. It is an object to provide a recovery method of.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、吸着塔を用いて溶剤を回収する方法に
おいて、吸着操作を終了した吸着塔を、下記(a)〜
(d)の工程で順次処理して溶剤を脱着させることを特
徴とする溶剤の回収方法としたものである。(a)吸着
塔内を、該吸着塔を含む循環ライン中で循環させながら
加温し、該塔内の吸着層を昇温する工程、(b)循環を
止め、該吸着塔内を減圧し、被処理ガスの1/5以下の
流量の空気又は不活性ガスを加温しながら該塔内に供給
し、吸着した溶剤の脱着を行った後、脱着ガスから溶剤
を凝縮回収する工程、(c)加温を止め、吸着塔に空気
又は不活性ガスを被処理ガスの1/5以下の流量で減圧
のまま流しながら吸着塔の冷却脱着を行う工程、(d)
吸着塔内を常圧にした後、温度の高い状態の吸着層に、
空気(雰囲気空気や圧縮空気)を供給して冷却する工
程。
In order to solve the above problems, in the present invention, in a method for recovering a solvent using an adsorption tower, the adsorption tower after the adsorption operation is
This is a method for recovering a solvent, characterized in that the solvent is desorbed by sequentially treating in the step (d). (A) a step of heating the inside of the adsorption tower while circulating it in a circulation line including the adsorption tower to raise the temperature of the adsorption layer in the tower; (b) stopping the circulation and depressurizing the inside of the adsorption tower. A step of supplying air or an inert gas at a flow rate of ⅕ or less of the gas to be treated into the tower while heating, desorbing the adsorbed solvent, and then condensing and recovering the solvent from the desorbed gas, ( c) A step of cooling and desorbing the adsorption tower while stopping heating and flowing air or an inert gas into the adsorption tower at a flow rate of ⅕ or less of the gas to be treated while keeping the pressure reduced.
After making the pressure inside the adsorption tower normal, in the adsorption layer at high temperature,
The process of cooling by supplying air (ambient air or compressed air).

【0009】上記回収方法において、前記工程(a)と
工程(b)を、工程(b)の後に空気又は不活性ガスで
常圧に戻す工程を加えて繰り返すことができ、また、前
記工程(d)の吸着層の冷却は、空気を供給するライン
に冷却器を設けるか、又は吸着塔を含む循環ライン中に
冷却器を設け循環冷却することができる。前記方法にお
いて、吸着塔を複数塔を用いて順次吸着、脱着処理を繰
り返して処理することもでき、この場合、工程(d)の
吸着層の冷却は、空気に代えて、他の吸着塔での処理ガ
スの一部を冷却器を介するか、又は介さないで用いても
よい。
In the above recovery method, the steps (a) and (b) can be repeated by adding a step of returning to normal pressure with air or an inert gas after the step (b). For cooling the adsorption layer in d), a cooler may be provided in a line for supplying air, or a cooler may be provided in a circulation line including an adsorption tower for circulation cooling. In the above method, the adsorption tower can be treated by sequentially repeating adsorption and desorption treatments using a plurality of adsorption towers. In this case, cooling of the adsorption layer in step (d) is performed by another adsorption tower instead of air. A part of the processing gas may be used with or without a cooler.

【0010】[0010]

【作用】本発明においては、吸着塔内のガスを該吸着塔
を含む循環ライン中で循環させながら加温し、該塔内の
吸着層を昇温し、時間短縮をはかっており、また次工程
の加熱減圧脱着時に吸着層温度が下降する場合は圧力開
放後、再び循環昇温し、加熱減圧脱着を行っているた
め、十分な吸着層の昇温がはかれる。次に、減圧加熱脱
着後は加熱だけを止め、冷却脱着を行い、所定温度まで
吸着層の温度を下げた後、吸着層を冷却するが、前記の
冷却脱着期間は、熱容量の大きい粒状(球状)吸着材を
充てんした吸着層の予冷に効果が大きく、吸着層冷却時
に冷却用空気を吸着運転中のガスに合流する際の被処理
ガスの温度上昇をおさえることができる。そして、脱着
の最終工程である冷却方法については、プラント事情を
考慮して種々の冷却方法を採用できることとしている。
また、一般に、減圧加熱脱着ガス流量と冷却脱着ガス流
量は、大きく設定すると脱着率は向上するものの脱着ガ
ス中の溶剤濃度は低下して凝縮回収に対しては不利であ
り、また凝縮回収できない分はそのまま大気放出はでき
ず、例えば連続運転の場合は運転中の吸着塔の被処理ガ
スと合流させる。そこで、本発明では、脱着ガス流量は
被処理ガス流量の1/5以下(0℃、1気圧基準)と限
定した。
In the present invention, the gas in the adsorption tower is heated while being circulated in the circulation line including the adsorption tower to raise the temperature of the adsorption layer in the tower to shorten the time. When the temperature of the adsorption layer decreases during the heating under reduced pressure desorption, the pressure is released, and then the temperature of the adsorption layer is circulated again to perform the heating under reduced pressure desorption, so that the temperature of the adsorption layer can be sufficiently increased. Next, after heating and desorption under reduced pressure, only heating is stopped, cooling and desorption are performed, and after the temperature of the adsorption layer is lowered to a predetermined temperature, the adsorption layer is cooled. ) It has a great effect on the pre-cooling of the adsorbent layer filled with the adsorbent, and can suppress the temperature rise of the gas to be treated when the cooling air joins the gas during the adsorbing operation at the time of cooling the adsorbent layer. As for the cooling method which is the final step of desorption, various cooling methods can be adopted in consideration of plant circumstances.
Further, generally, if the depressurization heating desorption gas flow rate and the cooling desorption gas flow rate are set to a large value, the desorption rate improves, but the solvent concentration in the desorption gas decreases, which is disadvantageous for the condensation recovery, and the amount which cannot be condensed and recovered. Cannot be released into the atmosphere as it is, and, for example, in the case of continuous operation, it is combined with the gas to be treated in the adsorbing tower during operation. Therefore, in the present invention, the desorption gas flow rate is limited to ⅕ or less (0 ° C., 1 atm standard) of the gas flow rate to be treated.

【0011】[0011]

【実施例】以下、本発明を図面を用いて具体的に説明す
るが、本発明はこれに限定されるものではない。 実施例1 図1は、本発明の溶剤回収方法に従う溶剤回収フローの
説明図である。この図は吸着塔が2塔の例であり、より
多くても同様に行うことができる。図1において、1
A、1Bは吸着塔、2A、2Bはヒーターであり、3は
排ガスクーラー、4は排ガスブロア、5は循環ブロア、
6は真空ポンプである。そして、7は脱離した溶剤の凝
縮器で、8は水分離器、9は溶剤回収タンクで10が溶
剤移送ポンプであり、11〜13はフィルタ、14A〜
23はそれぞれ弁を表わしている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings, but the present invention is not limited thereto. Example 1 FIG. 1 is an explanatory diagram of a solvent recovery flow according to the solvent recovery method of the present invention. This figure shows an example of two adsorption towers, and the same can be done with more adsorption towers. In FIG. 1, 1
A and 1B are adsorption towers, 2A and 2B are heaters, 3 is an exhaust gas cooler, 4 is an exhaust gas blower, 5 is a circulation blower,
6 is a vacuum pump. Further, 7 is a condenser of the desorbed solvent, 8 is a water separator, 9 is a solvent recovery tank, 10 is a solvent transfer pump, 11-13 are filters, and 14A-
Reference numerals 23 and 23 respectively represent valves.

【0012】次に図1の溶剤回収フローに基づいて運転
方法を説明する。 溶剤を含むガスは、排ガスブロア4により、排ガス
クーラー3、フィルタ11を介して20〜25℃に冷
却、ダスト分を除去後、吸着塔1Aの吸着層で溶剤が除
かれ、処理ガスは大気中に放出される。(開の弁は排ガ
ス入口弁14A、大流量弁15A、排ガス出口弁17
A) 処理を終了して吸着塔1Bに通ガスを切りかえる
(弁14Aを閉とし、弁14Bを開とする)。切り替え
の判断は、処理ガス中の溶媒濃度が基準値を超えるか、
タイマによるか、あるいは両者の併用で行う。吸着塔1
Aは通気ラインから隔離される。(弁17A閉とし、弁
17B開とする) 循環ブロア5を用い、ヒーター2Aを生かし、吸着
塔1Aの吸着層を昇温する。(循環加熱工程、(a)) この時、吸着層温度を基準値(100℃付近)まで循環
加熱する方法と、基準値の手前(60〜80℃)まで循
環加熱する方式がある。(開の弁は循環ブロア出口弁1
8A、大流量弁15A、循環ブロア入口弁19A)
Next, the operation method will be described based on the solvent recovery flow chart of FIG. The gas containing the solvent is cooled to 20 to 25 ° C. by the exhaust gas blower 4 through the exhaust gas cooler 3 and the filter 11 to remove dust, and then the solvent is removed in the adsorption layer of the adsorption tower 1A, and the treated gas is in the atmosphere. Is released to. (Open valves are exhaust gas inlet valve 14A, large flow valve 15A, exhaust gas outlet valve 17
A) After finishing the treatment, the gas passing through the adsorption tower 1B is switched (the valve 14A is closed and the valve 14B is opened). Whether the solvent concentration in the processing gas exceeds the standard value is determined by the switch.
Use a timer or use both. Adsorption tower 1
A is isolated from the ventilation line. (The valve 17A is closed and the valve 17B is opened) Using the circulation blower 5, the heater 2A is utilized and the temperature of the adsorption layer of the adsorption tower 1A is raised. (Circulation heating step, (a)) At this time, there are a method of circulating heating the adsorption layer temperature to a reference value (around 100 ° C) and a method of circulating heating to a value before the reference value (60 to 80 ° C). (The open valve is the circulation blower outlet valve 1
8A, large flow valve 15A, circulating blower inlet valve 19A)

【0013】 循環を止め、吸着塔1A内を真空ポン
プ6によって減圧し(0.1〜0.5kg/cm2 abs.程
度)、被処理ガスを、被処理ガスの1/5以下の流量
(大流量弁15Aは閉で脱着弁16A側を通す)でヒー
ター2Aで加熱しながら吸着層を脱着する。(脱着工
程、(b)) 脱着ガスはフィルタ12を介して真空ポンプ6より凝縮
器7(0〜5℃)に導かれ、溶剤分を凝縮後、非凝縮性
ガス(空気)は上流の被処理ガス側に戻す(開の弁は排
ガス出口弁17A、真空ポンプ入口弁21A、真空ポン
プ出口弁23)。水分離器8で回収溶剤中の水分を除
き、溶剤分は溶剤回収タンク9に貯蔵する。所定液位に
達したら溶剤移送ポンプ10を起動して回収する。脱着
終了の判断は、凝縮器7後の溶剤濃度が基準値を下回る
か、タイマによるか、あるいは両者の併用で行う。 ヒーター2Aによる加熱を止め、その他の動作は
と同じである。吸着層の温度が50〜80℃位になるま
で行う。(冷却脱着工程、(c))
The circulation is stopped, the pressure inside the adsorption tower 1A is reduced by the vacuum pump 6 (about 0.1 to 0.5 kg / cm 2 abs.), And the gas to be treated is flowed at a flow rate of ⅕ or less of the gas to be treated ( The large flow valve 15A is closed and passed through the desorption valve 16A side), and the adsorption layer is desorbed while being heated by the heater 2A. (Desorption process, (b)) The desorption gas is introduced from the vacuum pump 6 through the filter 12 to the condenser 7 (0 to 5 ° C) to condense the solvent component, and then the non-condensable gas (air) is discharged to the upstream target. It is returned to the process gas side (open valves are exhaust gas outlet valve 17A, vacuum pump inlet valve 21A, vacuum pump outlet valve 23). Water in the recovered solvent is removed by the water separator 8 and the solvent content is stored in the solvent recovery tank 9. When the predetermined liquid level is reached, the solvent transfer pump 10 is activated to collect the liquid. The determination of the end of desorption is made by whether the solvent concentration after the condenser 7 falls below a reference value, by a timer, or by using both of them. The heating by the heater 2A is stopped, and other operations are the same. It is performed until the temperature of the adsorption layer reaches about 50 to 80 ° C. (Cooling desorption process, (c))

【0014】 真空ポンプ6は止め、循環ブロア5を
生かし、外部からの空気(雰囲気空気や圧縮空気)を冷
却用として利用し、吸着塔1Aの吸着層を冷却して昇温
したガスは再び被処理ガス側に戻す。(冷却工程、
(d))冷却は、吸着層温度が40℃以下になるまで行
う。(開の弁は空気導入弁20、循環ブロア出口弁18
A、大流量弁15A、排ガス入口弁14A) 完了後、吸着塔1Bの処理が終了するまで待機する。吸
着塔1Bの処理が終了後、通気は再び吸着塔1A側に切
替る。外部からの空気の取り入れライン中には除湿器を
置くことが望ましい。しかし、水溶性の溶剤の除去が主
体の時は、図1のフローの様に、必ずしも除湿器は要し
ない。蒸気圧が高く、沸点の低い溶剤(例えば塩化メチ
レン)は、0〜5℃の凝縮器7だけでは不十分であり、
さらに後段に−40℃程度の深冷装置が必要になる。ま
た、脱着しにくい溶剤に対しては、一度減圧加熱脱着し
た後、再び吸着塔内を常圧に戻し、再び減圧脱着する操
作を繰り返す(1回以上)ことで脱着効率を上げること
ができる。脱着の最終工程の冷却方法について、プラン
ト事情により、表1の様に整理できる。(大まかな目
安)
The vacuum pump 6 is stopped, the circulation blower 5 is utilized, the air (atmosphere air or compressed air) from the outside is used for cooling, and the gas heated by cooling the adsorption layer of the adsorption tower 1A is again covered. Return to the process gas side. (Cooling process,
(D)) Cooling is performed until the temperature of the adsorption layer becomes 40 ° C. or lower. (The open valve is the air introduction valve 20, the circulation blower outlet valve 18
A, large flow valve 15A, exhaust gas inlet valve 14A) After completion, wait until the processing of the adsorption tower 1B is completed. After the treatment of the adsorption tower 1B is completed, ventilation is switched to the adsorption tower 1A side again. It is desirable to place a dehumidifier in the air intake line from the outside. However, when the removal of the water-soluble solvent is the main constituent, the dehumidifier is not necessarily required as in the flow of FIG. For a solvent having a high vapor pressure and a low boiling point (for example, methylene chloride), the condenser 7 having a temperature of 0 to 5 ° C alone is insufficient,
Furthermore, a chiller of about -40 ° C is required in the subsequent stage. Further, for a solvent that is difficult to desorb, the desorption efficiency can be increased by repeating the operation of desorbing under reduced pressure and then returning the pressure inside the adsorption column to normal pressure and again depressurizing and desorbing again (one or more times). The cooling method in the final step of desorption can be arranged as shown in Table 1 depending on the plant circumstances. (Rough standard)

【0015】[0015]

【表1】 注)プラントの事情中のガスは、冷却用のガスを示す。[Table 1] Note: The gas in the plant situation is for cooling.

【0016】また分解性溶剤の回収の場合、空気を用い
た脱着を行うと過酸化物が生成し、吸着層内が昇温し、
着火の危険が生じる。安全対策として吸着層が高温にな
る脱着操作、冷却脱着操作時に不活性ガス(窒素等)を
用いることにより、装置の安全性が向上する。不活性ガ
スを使用する場合は、本発明の(a)工程に入る前に不
活性ガス置換を行うが、こうした補助的な操作は、記載
がなくても本発明に入る。
Further, in the case of recovering the decomposable solvent, when desorption using air is carried out, peroxide is generated and the temperature in the adsorption layer rises,
Risk of ignition. As a safety measure, the safety of the device is improved by using an inert gas (nitrogen or the like) during the desorption operation or the cooling desorption operation where the temperature of the adsorption layer becomes high. When an inert gas is used, the inert gas replacement is carried out before starting the step (a) of the present invention, but such an auxiliary operation is included in the present invention even if there is no description.

【0017】[0017]

【発明の効果】本発明によれば、次のような効果を奏す
ることができる。 脱着に蒸気を使わないため、回収溶剤の水処理の負
担が小さい。 吸着層からの溶剤脱離は、減圧、加温を行うこと
で、減圧をしない時(TSA法)に比べ、脱着温度を下
げることができ、溶剤に対する安全性が高まる。 TPSA法で効率よく脱着できるため、脱着用空気
装置を被処理ガス流量の1/5以下とすることで、高濃
度の脱着ガスを得ることができ、回収が有利になる。 特に粒状(球状)吸着材を充てんした吸着層の場
合、脱着効率が向上する。 吸着塔内のガスを該吸着塔を含む循環ライン中で循
環させながら加温するため、該塔内の吸着層を昇温する
ための時間短縮がはかられる。 減圧加熱、脱着後は加熱だけを止め、冷却脱着を行
うことにより、熱容量の大きい粒状(球状)吸着材を充
てんした吸着層、冷却ライン中の加熱器の予冷にも効果
がある。
According to the present invention, the following effects can be obtained. Since steam is not used for desorption, the burden of water treatment of the recovered solvent is small. Desorption of the solvent from the adsorption layer can be performed by depressurizing and heating, so that the desorption temperature can be lowered as compared with the case where the depressurization is not performed (TSA method), and the safety against the solvent is enhanced. Since desorption can be efficiently performed by the TPSA method, a desorption gas having a high concentration can be obtained by setting the desorption air device at 1/5 or less of the flow rate of the gas to be treated, and recovery is advantageous. Especially in the case of an adsorption layer filled with a granular (spherical) adsorbent, the desorption efficiency is improved. Since the gas in the adsorption tower is heated while being circulated in the circulation line including the adsorption tower, the time for raising the temperature of the adsorption layer in the tower can be shortened. After heating under reduced pressure and desorption, only heating is stopped and cooling desorption is performed, which is also effective for pre-cooling the adsorption layer filled with a granular (spherical) adsorbent having a large heat capacity and the heater in the cooling line.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の溶剤回収フローの説明図。FIG. 1 is an explanatory view of a solvent recovery flow of the present invention.

【符号の説明】[Explanation of symbols]

1A,1B…吸着塔、2A,2B…ヒーター、3…排ガ
スクーラー、4…排ガスブロア、5…循環ブロア、6…
真空ポンプ、7…凝縮器、8…水分離器、9…溶剤回収
タンク、10…溶剤移送ポンプ、11…フィルタ、12
…フィルタ、13…フィルタ、14A,14B…排ガス
入口弁、15A,15B…大流量弁、16A,16B…
脱着弁(小流量、常時開)、17A,17B…排ガス出
口弁、18A,18B…循環ブロア出口弁、19A,1
9B…循環ブロア入口弁、20…空気導入弁、21A,
21B…真空ポンプ入口弁、22…真空ポンプ循環弁、
23…真空ポンプ出口弁
1A, 1B ... Adsorption tower, 2A, 2B ... Heater, 3 ... Exhaust gas cooler, 4 ... Exhaust gas blower, 5 ... Circulation blower, 6 ...
Vacuum pump, 7 ... Condenser, 8 ... Water separator, 9 ... Solvent recovery tank, 10 ... Solvent transfer pump, 11 ... Filter, 12
... filter, 13 ... filter, 14A, 14B ... exhaust gas inlet valve, 15A, 15B ... large flow valve, 16A, 16B ...
Desorption valve (small flow rate, normally open), 17A, 17B ... Exhaust gas outlet valve, 18A, 18B ... Circulation blower outlet valve, 19A, 1
9B ... Circulation blower inlet valve, 20 ... Air introduction valve, 21A,
21B ... vacuum pump inlet valve, 22 ... vacuum pump circulation valve,
23 ... Vacuum pump outlet valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 武 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 稲川 博文 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Ishikawa 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Inside the EBARA CORPORATION (72) Inventor Hirofumi Inagawa 11-11 Haneda-Asahi-cho, Ota-ku, Tokyo Inside the EBARA CORPORATION

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 吸着塔を用いて溶剤を回収する方法にお
いて、吸着操作を終了した吸着塔を、下記(a)〜
(d)の工程で順次処理して溶剤を脱着させることを特
徴とする溶剤の回収方法。(a)吸着塔内を、該吸着塔
を含む循環ライン中で循環させながら加温し、該塔内の
吸着層を昇温する工程、(b)循環を止め、該吸着塔内
を減圧し、被処理ガスの1/5以下の流量の空気又は不
活性ガスを加温しながら該塔内に供給し、吸着した溶剤
の脱着を行った後、脱着ガスから溶剤を凝縮回収する工
程、(c)加温を止め、吸着塔に空気又は不活性ガスを
被処理ガスの1/5以下の流量で減圧のまま流しながら
吸着塔の冷却脱着を行う工程、(d)吸着塔内を常圧に
した後、温度の高い状態の吸着層に、空気を供給して冷
却する工程。
1. A method for recovering a solvent using an adsorption tower, wherein the adsorption tower after the adsorption operation is
A method for recovering a solvent, characterized in that the solvent is desorbed by sequentially performing the treatment in the step (d). (A) a step of heating the inside of the adsorption tower while circulating it in a circulation line including the adsorption tower to raise the temperature of the adsorption layer in the tower; (b) stopping the circulation and depressurizing the inside of the adsorption tower. A step of supplying air or an inert gas at a flow rate of ⅕ or less of the gas to be treated into the tower while heating, desorbing the adsorbed solvent, and then condensing and recovering the solvent from the desorbed gas, ( c) a step of cooling and desorbing the adsorption tower while stopping heating and flowing air or an inert gas into the adsorption tower at a flow rate of 1/5 or less of the gas to be treated while keeping the pressure reduced, (d) atmospheric pressure in the adsorption tower After that, a step of supplying air to the adsorption layer having a high temperature to cool it.
【請求項2】 前記工程(a)と工程(b)を、工程
(b)の後に空気又は不活性ガスで常圧に戻す工程を加
えて繰り返すことを特徴とする請求項1記載の溶剤の回
収方法。
2. The solvent according to claim 1, wherein the step (a) and the step (b) are repeated by adding a step of returning to normal pressure with air or an inert gas after the step (b). Recovery method.
【請求項3】 前記工程(d)の吸着層の冷却は、空気
を供給するラインに冷却器を設けるか、又は吸着塔を含
む循環ライン中に冷却器を設け循環冷却することを特徴
とする請求項1又は2記載の溶剤の回収方法。
3. The cooling of the adsorption layer in the step (d) is characterized in that a cooler is provided in a line for supplying air, or a cooler is provided in a circulation line including an adsorption tower for circulation cooling. The method for recovering a solvent according to claim 1 or 2.
【請求項4】 前記吸着塔は、複数塔を用いて順次吸
着、脱着処理を繰り返すことを特徴とする請求項1、2
又は3記載の溶剤の回収方法。
4. The adsorption tower is characterized in that a plurality of towers are used to sequentially repeat the adsorption and desorption processes.
Alternatively, the method for recovering a solvent according to 3 above.
【請求項5】 前記工程(d)の吸着層の冷却は、空気
に代えて、他の吸着塔での処理ガスの一部を冷却器を介
するか、又は介さないで用いることを特徴とする請求項
4記載の溶剤の回収方法。
5. The cooling of the adsorption layer in the step (d) is characterized in that instead of air, a part of the processing gas in another adsorption tower is used with or without a cooler. The method for recovering a solvent according to claim 4.
JP6194603A 1994-02-08 1994-07-28 Solvent recovery method Pending JPH07265642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6194603A JPH07265642A (en) 1994-02-08 1994-07-28 Solvent recovery method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3425694 1994-02-08
JP6-34256 1994-02-08
JP6194603A JPH07265642A (en) 1994-02-08 1994-07-28 Solvent recovery method

Publications (1)

Publication Number Publication Date
JPH07265642A true JPH07265642A (en) 1995-10-17

Family

ID=26373041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6194603A Pending JPH07265642A (en) 1994-02-08 1994-07-28 Solvent recovery method

Country Status (1)

Country Link
JP (1) JPH07265642A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240967A (en) * 2008-03-31 2009-10-22 Environment Technology Ventures Kk Adsorption recovery apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240967A (en) * 2008-03-31 2009-10-22 Environment Technology Ventures Kk Adsorption recovery apparatus

Similar Documents

Publication Publication Date Title
JP3492018B2 (en) Recovery method of volatile organic matter
JPH06226029A (en) Method for recovering solvent
JPS596924A (en) Recovery of organic solvent
JPH0768127A (en) Hot-air desorption type solvent recovering device
JP4523146B2 (en) Organic solvent vapor processing equipment
JP2004243279A (en) Method and device for cleaning gas containing organic contaminant
JPH07265642A (en) Solvent recovery method
JPH0938445A (en) Method for regenerating adsorption tower
JPH1157372A (en) Method of recovering hydrocarbon vapor using cooling condensation
CN115006963A (en) System and process for recycling cryogenic solvent from waste gas in pharmaceutical industry
JPH0584417A (en) Method and equipment for recovering solvent
JP2001137646A (en) Device and method for adsorption treating waste gas
JP3363986B2 (en) Solvent recovery method
JPH03135410A (en) Pressure swing method for separating and recovering volatile organic matter
JP3922449B2 (en) Organic solvent recovery system
JP3631073B2 (en) Organic solvent recovery method
JPH08281044A (en) Method for recovering solvent
JPH0663350A (en) Method for recovering solvent
JPH06198119A (en) Method for recovering volatile matter
JP2001137647A (en) Multistage adsorption treating device for waste gas and method
JP2002035541A (en) Method for recovering alcohols, etc., from waste gas
JPH03270710A (en) Solvent recovery apparatus
JP3788814B2 (en) Solvent recovery method
JP3223253B2 (en) CFC regeneration method and apparatus
JPH0230728B2 (en) HAIGASUNOSHORIHOHO