JPH06226029A - Method for recovering solvent - Google Patents

Method for recovering solvent

Info

Publication number
JPH06226029A
JPH06226029A JP5041746A JP4174693A JPH06226029A JP H06226029 A JPH06226029 A JP H06226029A JP 5041746 A JP5041746 A JP 5041746A JP 4174693 A JP4174693 A JP 4174693A JP H06226029 A JPH06226029 A JP H06226029A
Authority
JP
Japan
Prior art keywords
adsorption
gas
solvent
inert gas
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5041746A
Other languages
Japanese (ja)
Inventor
Shinsaku Maruyama
眞策 丸山
Mitsuo Kawaguchi
光夫 川口
Hiroaki Sato
広昭 佐藤
Kaori Murakoshi
加居 村越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP5041746A priority Critical patent/JPH06226029A/en
Publication of JPH06226029A publication Critical patent/JPH06226029A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the method for recovering a decomposable org. solvent by adsorption and desorption which improves the purity, solvent recovery rate and safety of the equipment suitable for treatment of the low-concn. solvent. CONSTITUTION:This method for recovering the solvent consists in subjecting one column of adsorption columns to desorption by the following stage sequence: (a) The stage of executing, >=1 times, the operation of reducing the pressure in the adsorption column 1 to be desorbed and replacing the inside of the column with an inert gas 17 and (b) the stage for heating 8 the replaced inert gas in circulation lines 1 22 6 32 27 8 1 including the adsorption column 1 and heating up the adsorption layer in the column are provided. Further, (c) the stage for stopping the circulation, reducing the pressure in the adsorption column 1 and desorbing the adsorption layer while heating up the inert gas 17 of <=1/10 the flow rate of the gas to be treated, then condensing and recovering 11 the solvent from the desorbing gas, (d) the stage for purging and cooling the adsorption layer while passing the inert gas 17 at a flow rate of <=1/10 the flow rate of the gas to be treated to the adsorption column 1 after the desorption and (e) the stage for introducing the treating gas of the adsorption column 2 under another adsorption operation into the adsorption column 1 with which the stage (d) ends and cooling the adsorption layer, then returning the treating gas used for the cooling to the side of the gas to be treated are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶剤の回収方法に係り、
特に分解性有機溶剤(ケトン類、エステル類、ハロゲン
化炭化水素等)を含む希薄な溶剤含有ガスから、吸着剤
を有する吸着塔を用いて溶剤成分を分離する溶剤の回収
方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for recovering a solvent,
In particular, the present invention relates to a solvent recovery method for separating a solvent component from a dilute solvent-containing gas containing a decomposable organic solvent (ketones, esters, halogenated hydrocarbons, etc.) using an adsorption tower having an adsorbent.

【0002】[0002]

【従来の技術】従来の技術は、例えば「公害と対策 vo
l.26 NO.12 (1990) P25〜P38 」に詳細に記載されてお
り、以下、これを参照にしながら説明する。排ガスから
の有機溶剤の除去・回収技術には冷却法、圧縮法、吸着
・脱離法の3つがある。冷却法は、冷却温度を0℃以上
とするか0℃以下とするかで2分される。一般に多く用
いられている5℃以上で冷却する装置は比較的安いが、
低沸点のものの回収率が低くなる。0℃以下に冷却する
装置は回収率は高いが、水が凍結するので、これを防ぐ
ために間欠的に氷を溶かすデフロスト方式、あるいは塩
化カルシウムや塩化リチウムで水を吸収するエアシャワ
ー方式による対策をとる必要がある。
2. Description of the Related Art The conventional technology is, for example, "pollution and measures vo
L.26 NO.12 (1990) P25 to P38 ”, and the description will be given below with reference to this. There are three technologies for removing and recovering organic solvents from exhaust gas: cooling, compression, and adsorption / desorption. The cooling method is divided into two depending on whether the cooling temperature is 0 ° C. or higher or 0 ° C. or lower. The equipment that cools at 5 ℃ or higher, which is commonly used, is relatively cheap,
The recovery rate of low boiling point compounds becomes low. A device that cools below 0 ° C has a high recovery rate, but water freezes. To prevent this, a defrost method that intermittently melts ice or an air shower method that absorbs water with calcium chloride or lithium chloride is used. Need to take.

【0003】圧縮法は有機溶剤の蒸気を加圧し、溶剤の
飽和蒸気圧以上に分圧を上げて液化する方法であるが、
圧縮熱によって温度が上がるので回収率を高くするため
には放熱や冷却が必要となる。たとえばジクロロメタン
を5kg/cm2 に圧縮して5℃に冷却すれば1気圧で約−
30℃に冷却した場合と同じになる。すなわちジクロロ
メタンなどは、冷却を併用すれば回収率を高くできる。
ただし、低濃度の排ガスには適用できないので、今のと
ころ使用例はあまり多くない。吸着・脱離法は、有機溶
剤を活性炭等に吸着し、水蒸気又は熱風で脱離し、脱離
した高濃度の有機溶剤蒸気を冷却法で液化して回収する
方法である。
The compression method is a method of pressurizing the vapor of an organic solvent and increasing the partial pressure above the saturated vapor pressure of the solvent to liquefy.
Since the temperature rises due to the compression heat, heat dissipation and cooling are required to increase the recovery rate. For example, if dichloromethane is compressed to 5 kg / cm 2 and cooled to 5 ° C, it will be about -at 1 atm.
It is the same as when cooled to 30 ° C. That is, the recovery rate of dichloromethane or the like can be increased by using cooling together.
However, it is not applicable to low-concentration exhaust gas, so there are not many examples of use so far. The adsorption / desorption method is a method in which an organic solvent is adsorbed on activated carbon or the like, desorbed by steam or hot air, and the desorbed high-concentration organic solvent vapor is liquefied and collected by a cooling method.

【0004】以下にこの吸着・脱離法の種類と特徴を示
す。 (1)ハニカム型活性炭ドラムを使用した予備濃縮方法 一般の吸着・脱離装置では、数十ppm 以下の低濃度で多
量の排ガスを処理すると、装置が大きくなって不利とな
る。そこでこのような場合には、あらかじめ簡易な吸着
・脱離装置で予備濃縮を行ってから本格的な除去・回収
装置を使用する。ハニカム型活性炭ドラムは、上記のよ
うな予備濃縮に用いる装置であり、ハニカム型の活性炭
ドラムを回転させて吸着と脱離を短時間に繰り返させる
装置が使用されている。
The types and characteristics of this adsorption / desorption method are shown below. (1) Preconcentration method using a honeycomb-type activated carbon drum In a general adsorption / desorption device, if a large amount of exhaust gas is treated at a low concentration of several tens of ppm or less, the device becomes large, which is disadvantageous. Therefore, in such a case, pre-concentration is performed in advance by a simple adsorption / desorption device, and then a full-scale removal / recovery device is used. The honeycomb-type activated carbon drum is an apparatus used for the above-described preconcentration, and an apparatus that rotates the honeycomb-type activated carbon drum to repeat adsorption and desorption in a short time is used.

【0005】(2)粒状活性炭を使用した方法 有機溶剤蒸気の吸着・脱離に、5〜10mmの円筒形など
に成形した活性炭又は破砕状活性炭を充填した大きな固
定床に排ガスを送って吸着し、数時間から数日ごとにス
チースを送って脱離し、脱離ガス中の有機溶剤を冷却法
で回収する装置が多く使用されてきた。このような装置
の小型のものはドライクリーニング機内に設置された
り、ドライクリーニングの排ガスの処理にも使用されて
いる。
(2) Method using granular activated carbon For adsorption and desorption of organic solvent vapor, exhaust gas is sent to a large fixed bed filled with activated carbon formed into a cylindrical shape of 5 to 10 mm or crushed activated carbon for adsorption. In many cases, a device has been used in which a steath is sent every few hours to several days to desorb the organic solvent, and the organic solvent in the desorbed gas is recovered by a cooling method. Such a small device is installed in a dry cleaning machine and is also used for treating exhaust gas of dry cleaning.

【0006】(3)繊維状活性炭を使用した方法 繊維状活性炭を使用した方法であり、小型の固定床装置
が知られている。その装置は、中空円筒状に成形した繊
維状活性炭を1筒又は2筒つけたもので10〜20分ご
とに交互に吸着とスチーム脱離を繰り返す。また、マッ
ト状に成形した繊維状活性炭を2段つけ、10〜20分
ごとに吸着とスチーム又は熱風による脱離を繰り返すも
のもある。
(3) Method using fibrous activated carbon This is a method using fibrous activated carbon, and a small fixed bed apparatus is known. The apparatus is one in which fibrous activated carbon molded into a hollow cylinder is attached to one or two cylinders, and adsorption and steam desorption are alternately repeated every 10 to 20 minutes. There is also one in which fibrous activated carbon formed in a mat shape is provided in two stages and adsorption and desorption by steam or hot air are repeated every 10 to 20 minutes.

【0007】(4)球形活性炭を使用した方法 球形活性炭を使用した流動床で、連続的に吸着・脱離を
行う。この装置には、吸着塔と脱離塔を縦につないだ方
式もある。この装置では、数段に分けた吸着塔の下部か
ら排ガスを通し、活性炭を流動させ、順次下段に落とし
ながら吸着していき、吸着した活性炭は脱離塔で加熱脱
離する。この場合、スチームを直接吹き込まず、熱交換
器を通して活性炭を加熱し、少量の空気で追い出して凝
縮部で冷却回収する。
(4) Method using spherical activated carbon Adsorption / desorption is continuously performed in a fluidized bed using spherical activated carbon. This device also has a system in which an adsorption tower and a desorption tower are vertically connected. In this apparatus, exhaust gas is passed from the lower part of the adsorption tower divided into several stages, activated carbon is made to flow, and it is adsorbed while being successively dropped to the lower stage, and the adsorbed activated carbon is desorbed by heating in the desorption tower. In this case, the steam is not directly blown in, but the activated carbon is heated through a heat exchanger, expelled with a small amount of air, and cooled and recovered in the condenser.

【0008】(5)ハニカム状活性炭を使用した方法 ハニカム状活性炭を使用した固定床で吸着し、減圧しな
がら電気加熱して脱離する。この装置は通気抵抗が小さ
く、吸着速度も速いので高流速で吸着でき、脱離にスチ
ームを使わないので、回収液中に水が入らないこと、排
水処理が容易になることなどの特徴がある。しかし、体
積あたりの吸着容量が小さく、また脱離にもやや時間が
かかる。なおこの装置には、水蒸気を直接導入して脱離
を行うタイプもある。
(5) Method using honeycomb-like activated carbon Adsorption is carried out on a fixed bed using honeycomb-like activated carbon, and desorption is carried out by electrically heating under reduced pressure. Since this device has a low ventilation resistance and a high adsorption speed, it can adsorb at a high flow rate, and because steam is not used for desorption, it has the features that water does not enter the collected liquid and wastewater treatment is easy. . However, the adsorption capacity per volume is small, and desorption takes some time. There is also a type of this apparatus in which water vapor is directly introduced for desorption.

【0009】[0009]

【発明が解決しようとする課題】本発明は、吸着・脱離
法を用いた溶剤の回収方法で、低濃度の分解性有機溶剤
を処理するのに適した設備の安全性、溶剤回収率、純度
の向上した減圧、温風不活性ガス(窒素等)を用いる脱
着方式に特徴を有する溶剤の回収方法を提供することを
課題とする。
DISCLOSURE OF THE INVENTION The present invention is a solvent recovery method using an adsorption / desorption method, which is suitable for treating low-concentration decomposable organic solvents, such as equipment safety, solvent recovery rate, An object of the present invention is to provide a method for recovering a solvent, which is characterized by a desorption method using reduced pressure and hot air inert gas (nitrogen, etc.) with improved purity.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、複数個の吸着塔を用いて溶剤を回収す
る方法において、吸着操作終了後の吸着塔の一塔を、下
記工程(a)〜(e)の順序で脱着することを特徴とす
る溶剤の回収方法としたものである。 (a)脱着する吸着塔内を減圧し、該塔内を不活性ガス
で置換する操作を1回以上行う工程。 (b)置換した不活性ガスを、該吸着塔を含む循環ライ
ン中で循環させながら加温し、該塔内の吸着層を昇温す
る工程。 (c)循環を止め、該吸着塔内を減圧し、被処理ガスの
1/10以下の流量の不活性ガスを加温しながら吸着層
の脱着を行った後、脱着ガスから溶剤を凝縮回収する工
程。 (d)脱着後の吸着塔に、不活性ガスを被処理ガスの1
/10以下の流量で流しながら吸着層のパージと冷却を
行う工程。 (e)別の吸着運転中の吸着塔の処理ガスを、工程
(d)を終了した吸着塔に導入して吸着層を冷却し、冷
却に用いた処理ガスを被処理ガス側に戻す工程。
In order to solve the above problems, in the present invention, in a method of recovering a solvent using a plurality of adsorption towers, one of the adsorption towers after the adsorption operation is (A) to (e) are desorbed in this order, which is a method for recovering a solvent. (A) A step of reducing the pressure in the adsorption column to be desorbed and replacing the inside of the column with an inert gas at least once. (B) A step of heating the substituted inert gas while circulating it in a circulation line including the adsorption tower to raise the temperature of the adsorption layer in the tower. (C) The circulation is stopped, the pressure inside the adsorption tower is reduced, and the adsorption layer is desorbed while heating the inert gas at a flow rate of 1/10 or less of the gas to be treated, and then the solvent is condensed and recovered from the desorption gas. The process of doing. (D) In the adsorption tower after desorption, an inert gas is added to the gas to be treated 1
A step of purging and cooling the adsorption layer while flowing at a flow rate of / 10 or less. (E) A step of introducing the treatment gas of the adsorption tower in another adsorption operation into the adsorption tower after the step (d) to cool the adsorption layer and returning the treatment gas used for cooling to the gas to be treated side.

【0011】上記方法において、脱着率をより向上させ
るために、工程(b)と工程(c)を、工程(c)の後
に不活性ガスで常圧に戻す工程を付加して繰り返すこと
もできる。本発明において、上記工程(c)の脱着ガス
からの溶剤回収は、冷却器、除湿器、深冷器からなる冷
却装置を用いて行うのがよい。
In the above method, in order to further improve the desorption rate, the steps (b) and (c) can be repeated by adding a step of returning to normal pressure with an inert gas after the step (c). . In the present invention, the solvent recovery from the desorbed gas in the step (c) is preferably performed using a cooling device including a cooler, a dehumidifier, and a chiller.

【0012】[0012]

【作用】本発明によれば、上記のような構成を採用した
ことにより、次の作用を有する。 設備の安全性の向上 吸着層からの溶剤脱離時には、吸着塔内を不活性ガスで
置換後に吸着層の昇温を行うので安全性が高い。また、
その後の冷却時に、不活性ガスである程度、吸着層の温
度が下がるまで冷却、パージ後に運転中の処理ガスの一
部で冷却を行うため、安全性が高い。
According to the present invention, by adopting the above-mentioned structure, it has the following effects. Improvement of equipment safety When desorbing the solvent from the adsorption bed, the adsorption tower is heated after the inside of the adsorption tower is replaced with an inert gas, resulting in high safety. Also,
During the subsequent cooling, the inert gas is cooled to some extent until the temperature of the adsorption layer is lowered, and after the purge, a part of the processing gas in operation is cooled, so that the safety is high.

【0013】 溶剤回収率の向上 吸着層からの溶剤脱離は、減圧、加温を行い、脱着用不
活性ガスの流量を被処理ガス流量の1/10以下(ゼロ
を含む)とすることで高濃度の脱着ガスを得ることがで
きる。さらにこの脱着ガスの深冷を、深冷温度を対象溶
剤の融点よりは高いが可能な限り低く設定して行うこと
により、溶剤回収率を向上させることができる。
Improvement of solvent recovery rate The solvent is desorbed from the adsorption layer by depressurizing and heating, and the flow rate of the desorption inert gas is set to 1/10 or less (including zero) of the flow rate of the gas to be treated. A high concentration of desorption gas can be obtained. Further, by performing the deep cooling of the desorption gas by setting the deep cooling temperature higher than the melting point of the target solvent but as low as possible, the solvent recovery rate can be improved.

【0014】 処理ガスの純度の向上 吸着層からの溶剤脱離後の冷却で、冷却用の不活性ガ
ス、運転時の被処理ガスは循環せず、再び被処理ガス中
にもどすため、冷却時における溶剤の再付着は非常に少
ない。
Improvement of purity of processing gas During cooling after desorption of the solvent from the adsorption layer, the inert gas for cooling and the gas to be processed during operation are not circulated but are returned to the gas to be processed again. Very little redeposition of solvent in.

【0015】[0015]

【実施例】以下、本発明を図面を用いてより具体的に説
明するが、本発明はこれに限定されるものではない。 実施例1 図1は、本発明の溶剤回収方法の一例を示す工程図であ
る。図1において、1、2は吸着塔、3、4は吸着層内
に設けたヒータ、又はクーラ、5は排ガスブロア、6は
ブロア、7は真空ポンプ、8、9はガスヒータ、10は
冷却器、11は凝縮液タンク、12は除温器、13は深
冷器、14は排ガスクーラ、15、16はミストセパレ
ータ、17は不活性ガス供給装置を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below more specifically with reference to the drawings, but the present invention is not limited thereto. Example 1 FIG. 1 is a process diagram showing an example of the solvent recovery method of the present invention. In FIG. 1, 1 and 2 are adsorption towers, 3 and 4 are heaters or coolers provided in an adsorption layer, 5 is an exhaust gas blower, 6 is a blower, 7 is a vacuum pump, 8 and 9 are gas heaters, 10 is a cooler. , 11 is a condensate tank, 12 is a desuperheater, 13 is a chiller, 14 is an exhaust gas cooler, 15 and 16 are mist separators, and 17 is an inert gas supply device.

【0016】次に図1の工程図に基づいて、本発意の回
収方法を説明する。 溶剤を含む被処理ガスは、排ガスブロア5により冷
却器14、ミストセパレータ15を介して、20〜25
℃に冷却され、ミスト分を除去後に、吸着塔1の吸着層
で溶剤が除かれ、処理ガスは大気中に放出される。
Next, the intentional recovery method will be described with reference to the process diagram of FIG. The gas to be treated containing the solvent is passed through the cooler 14 and the mist separator 15 by the exhaust gas blower 5 to 20 to 25.
After cooling to 0 ° C. and removing the mist, the solvent is removed in the adsorption layer of the adsorption tower 1, and the processing gas is released into the atmosphere.

【0017】 吸着塔1での処理を終了して、吸着塔
2へ被処理ガスの通路を切り換える。切りかえの判断
は、処理ガス中の溶剤濃度が基準値を超えるか、タイマ
によるか、あるいは両者の併用で行う。吸着塔1は溶剤
ガス回収ラインから隔離され、真空ポンプ7によって吸
着塔内を減圧し、その後乾燥不活性ガス供給装置17か
ら、不活性ガスを吸着塔に供給して置換する。本置換操
作は1回以上行い、酸素濃度計により、酸素濃度が基準
値以下になることを確認し、高温時の着火の可能性を無
くす様にする。不活性ガスによるパージガスは、真空ポ
ンプ7のラインを通して被処理ガス側にもどす。
After the treatment in the adsorption tower 1 is completed, the passage of the gas to be treated is switched to the adsorption tower 2. The judgment of switching is made by whether the solvent concentration in the processing gas exceeds a reference value, by a timer, or by using both of them together. The adsorption tower 1 is isolated from the solvent gas recovery line, the inside of the adsorption tower is decompressed by the vacuum pump 7, and then the inert gas is supplied from the dry inert gas supply device 17 to the adsorption tower to be replaced. This replacement operation is performed once or more, and it is confirmed with an oxygen concentration meter that the oxygen concentration is below the reference value, and the possibility of ignition at high temperatures is eliminated. The purge gas of the inert gas is returned to the gas to be processed side through the line of the vacuum pump 7.

【0018】 ファン6を作動させて、ガスヒータ8
を通して置換した不活性ガスを吸着塔1を含むライン、
すなわち、1→弁22→ブロア6→弁32→弁27→ヒ
ータ8→1のライン中で循環加温し、吸着層を昇温す
る。この時、吸着層温度を基準値(100℃付近)まで
上げる方法と、基準値の手前(60〜80℃)まで循環
加温する方法がある。
The gas heater 8 is operated by operating the fan 6.
A line containing the adsorption tower 1 for the inert gas substituted through
That is, the temperature of the adsorption layer is raised by circulating heating in the line of 1 → valve 22 → blower 6 → valve 32 → valve 27 → heater 8 → 1. At this time, there are a method of raising the temperature of the adsorption layer to a reference value (around 100 ° C.) and a method of circulating and heating the temperature to a value before the reference value (60 to 80 ° C.).

【0019】 循環を止め、吸着塔1内を真空ポンプ
7によって減圧(0.1〜0.5kg/cm2 程度)し、乾
燥不活性ガス供給装置17より被処理ガスの1/10以
下の流量(0でもよい)で不活性ガスをガスヒータ8を
通して加温しながら吸着層の脱離を行う。循環を止めた
時の吸着層温度が基準値に満たない場合は、基準値まで
昇温しながら脱離する。脱離ガスは冷却器10(0〜5
℃)、除温器12、深冷器13(深冷温度を対象溶剤の
融点よりは高いが、可能な限り低く設定)により、大部
分凝縮して回収し、回収後のガスは被処理ガス側にもど
す。脱離終了の判断は、深冷後の溶剤濃度が基準値を下
回るか、タイマによるか、あるいは両者の併用で行う。
除湿器としては、モレキュラーシーブが通常用いられ、
回転式又はバッチ切替式が適用される。
The circulation is stopped, the pressure inside the adsorption tower 1 is reduced by the vacuum pump 7 (about 0.1 to 0.5 kg / cm 2 ), and the flow rate of the dry inert gas supply device 17 is 1/10 or less of the gas to be treated. (Although it may be 0), the adsorption layer is desorbed while heating the inert gas through the gas heater 8. When the temperature of the adsorption layer when the circulation is stopped does not reach the reference value, desorption is performed while raising the temperature to the reference value. The desorbed gas is cooled by the cooler 10 (0-5
C.), the dehumidifier 12, and the chiller 13 (the chilling temperature is set higher than the melting point of the target solvent, but set as low as possible) to largely condense and recover, and the recovered gas is the gas to be treated. Return to the side. The completion of desorption is determined by whether the solvent concentration after deep cooling falls below a reference value, a timer, or a combination of both.
As the dehumidifier, a molecular sieve is usually used,
A rotary type or a batch switching type is applied.

【0020】 脱離が終了したら、乾燥不活性ガス供
給装置17から不活性ガスを被処理ガスの1/10以下
の流量で流しながら吸着塔1の吸着層のパージ、冷却を
行う。本工程は、の脱着回収工程を補うため、に引
き続いて真空ポンプを起動しながら冷却し、終了時に乾
燥不活性ガスにより吸着塔1内を常圧にもどす方法、本
工程の途中で一定温度まで吸着温度が低下したら乾燥不
活性ガスにより吸着塔1内を常圧にもどした後、再び冷
却する方法、本工程の最初から乾燥不活性ガスによって
吸着塔1内の常圧にもどした後、冷却する方法がある。
真空ポンプを起動した減圧下の冷却中は、回収装置(冷
却器10、除湿器12、深冷器13)を生かして被処理
ガス側にもどすことが望ましい。常圧下での冷却は、乾
燥不活性ガス供給装置17の元圧により、回収装置をバ
イパスして被処理ガス側にもどすことができる。
After the desorption is completed, the adsorption layer of the adsorption tower 1 is purged and cooled while flowing the inert gas from the dry inert gas supply device 17 at a flow rate of 1/10 or less of the gas to be treated. In this step, in order to supplement the desorption and recovery step of, the vacuum pump is subsequently started while cooling, and at the end, the inside of the adsorption tower 1 is returned to normal pressure with a dry inert gas, up to a certain temperature in the middle of this step. When the adsorption temperature is lowered, the inside of the adsorption tower 1 is returned to normal pressure with dry inert gas, and then cooled again. From the beginning of this step, the inside of the adsorption tower 1 is returned to normal pressure with dry inert gas, and then cooled. There is a way to do it.
During cooling under reduced pressure when the vacuum pump is activated, it is desirable to utilize the recovery device (cooler 10, dehumidifier 12, chiller 13) to return the gas to the side of the gas to be treated. The cooling under normal pressure can be returned to the gas to be processed side by bypassing the recovery device by the original pressure of the dry inert gas supply device 17.

【0021】 吸着塔1の吸着層の温度が、処理ガス
で冷却しても安全な温度、例えば50〜80℃になった
時点で弁30のラインを用いて、弁27からヒータ8
(ヒータはoff)のラインを通し、ブロア6により処
理ガスを吸着塔1に導入して吸着層を冷却し、冷却後は
弁31から被処理ガス側に戻す。冷却は吸着層温度が3
0℃以下になるまで行う。上記の操作により吸着塔1は
脱着、再生され、吸着塔2の吸着処理が終了した段階で
吸着に供され、循環使用される。
When the temperature of the adsorption layer of the adsorption tower 1 reaches a temperature at which it is safe to cool with the processing gas, for example, 50 to 80 ° C., the line of the valve 30 is used to change the temperature from the valve 27 to the heater 8.
The processing gas is introduced into the adsorption tower 1 by the blower 6 through the line (heater is off) to cool the adsorption layer, and after cooling, it is returned from the valve 31 to the target gas side. Cooling has an adsorption layer temperature of 3
Perform until 0 ° C or lower. By the above operation, the adsorption tower 1 is desorbed and regenerated, and when the adsorption treatment of the adsorption tower 2 is completed, the adsorption tower 1 is used for adsorption and is recycled.

【0022】[0022]

【発明の効果】本発明により、分解性有機溶剤に対して
安全に吸着処理でき、かつ低濃度の溶剤を含んだガスに
対しても、脱着操作に減圧、加温、及び深冷装置を加え
たことで、溶剤の回収率を向上させることができる。ま
た、脱着後の吸着層の冷却時も、初期は不活性ガスによ
るパージ、冷却により吸着層の温度がある程度冷えた所
で処理ガスの一部を冷却用とすることで、吸着層の冷却
時の溶剤付着量をかなり低下できるため、吸着塔の処理
性能を向上することができた。
EFFECTS OF THE INVENTION According to the present invention, a decompression operation is performed by adding a decompression, heating, and chilling device to a gas capable of safely adsorbing a decomposable organic solvent and containing a low concentration solvent. As a result, the recovery rate of the solvent can be improved. Also, even when the adsorption layer is cooled after desorption, when the adsorption layer is cooled by initially purging with an inert gas and cooling the adsorption layer to some extent by cooling, the processing gas is partially cooled. Since the amount of solvent adhering to the column can be considerably reduced, the treatment performance of the adsorption tower could be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の溶剤の回収方法の一例を示す工程図FIG. 1 is a process diagram showing an example of a solvent recovery method of the present invention.

【符号の説明】[Explanation of symbols]

1、2…吸着塔、3、4…ヒータ、又はクーラ、5…排
ガスブロア、6…ブロア、7…真空ポンプ、8、9…ガ
スヒータ、10…冷却器、11…凝縮液タンク、12…
除湿器、13…深冷器、14…排ガスクーラ、15、1
6…ミストセパレータ、17…乾燥不活性ガス供給装
置、18〜37…弁、
1, 2 ... Adsorption tower, 3, 4 ... Heater or cooler, 5 ... Exhaust gas blower, 6 ... Blower, 7 ... Vacuum pump, 8, 9 ... Gas heater, 10 ... Cooler, 11 ... Condensate tank, 12 ...
Dehumidifier, 13 ... Chiller, 14 ... Exhaust gas cooler, 15, 1
6 ... Mist separator, 17 ... Dry inert gas supply device, 18-37 ... Valve,

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // F25J 3/08 8925−4D (72)発明者 村越 加居 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内Continuation of front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location // F25J 3/08 8925-4D (72) Inventor Kaoi Murakoshi 4-2-1 Motofujisawa, Fujisawa-shi, Kanagawa No. Stock Company Ebara Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数個の吸着塔を用いて溶剤を回収する
方法において、吸着操作終了後の吸着塔の一塔を、下記
工程(a)〜(e)の順序で脱着することを特徴とする
溶剤の回収方法。 (a)脱着する吸着塔内を減圧し、該塔内を不活性ガス
で置換する操作を1回以上行う工程。 (b)置換した不活性ガスを、該吸着塔を含む循環ライ
ン中で循環させながら加温し、該塔内の吸着層を昇温す
る工程。 (c)循環を止め、該吸着塔内を減圧し、被処理ガスの
1/10以下の流量の不活性ガスを加温しながら吸着層
の脱着を行った後、脱着ガスから溶剤を凝縮回収する工
程。 (d)脱着後の吸着塔に、不活性ガスを被処理ガスの1
/10以下の流量で流しながら吸着層のパージと冷却を
行う工程。 (e)別の吸着運転中の吸着塔の処理ガスを、工程
(d)を終了した吸着塔に導入して吸着層を冷却し、冷
却に用いた処理ガスを被処理ガス側に戻す工程。
1. A method for recovering a solvent using a plurality of adsorption towers, wherein one of the adsorption towers after the adsorption operation is completed is desorbed in the order of steps (a) to (e) below. Solvent recovery method. (A) A step of reducing the pressure in the adsorption column to be desorbed and replacing the inside of the column with an inert gas at least once. (B) A step of heating the substituted inert gas while circulating it in a circulation line including the adsorption tower to raise the temperature of the adsorption layer in the tower. (C) The circulation is stopped, the pressure inside the adsorption tower is reduced, and the adsorption layer is desorbed while heating the inert gas at a flow rate of 1/10 or less of the gas to be treated, and then the solvent is condensed and recovered from the desorption gas. The process of doing. (D) In the adsorption tower after desorption, an inert gas is added to the gas to be treated 1
A step of purging and cooling the adsorption layer while flowing at a flow rate of / 10 or less. (E) A step of introducing the treatment gas of the adsorption tower during another adsorption operation into the adsorption tower after the step (d) to cool the adsorption layer, and returning the treatment gas used for cooling to the gas to be treated side.
【請求項2】 前記工程(b)と工程(c)を、工程
(c)の後に不活性ガスで常圧に戻す工程を付加して繰
り返すことを特徴とする請求項1記載の溶剤の回収方
法。
2. The recovery of the solvent according to claim 1, wherein the step (b) and the step (c) are repeated after the step (c) by adding a step of returning to normal pressure with an inert gas. Method.
【請求項3】 工程(c)の脱着ガスからの溶剤回収
は、冷却器、除湿器、深冷器からなる冷却装置を用いて
行うことを特徴とする請求項1又は2記載の溶剤の回収
方法。
3. The solvent recovery from the desorbed gas in the step (c) is performed by using a cooling device including a cooler, a dehumidifier, and a chiller. Method.
JP5041746A 1993-02-08 1993-02-08 Method for recovering solvent Pending JPH06226029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5041746A JPH06226029A (en) 1993-02-08 1993-02-08 Method for recovering solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5041746A JPH06226029A (en) 1993-02-08 1993-02-08 Method for recovering solvent

Publications (1)

Publication Number Publication Date
JPH06226029A true JPH06226029A (en) 1994-08-16

Family

ID=12616995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5041746A Pending JPH06226029A (en) 1993-02-08 1993-02-08 Method for recovering solvent

Country Status (1)

Country Link
JP (1) JPH06226029A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364943B1 (en) 1999-08-04 2002-04-02 Taikisha Ltd. Gas treatment system
JP2003071235A (en) * 2001-08-30 2003-03-11 Sumitomo Chem Co Ltd Method for separating combustible organic solvent in gas to be treated
JP2007237141A (en) * 2006-03-13 2007-09-20 Matsushita Electric Ind Co Ltd Organic solvent concentration device
JP2009160583A (en) * 2009-04-20 2009-07-23 Toyobo Co Ltd Method for treating organic solvent gas
CN108465342A (en) * 2018-04-09 2018-08-31 苏州世华新材料科技股份有限公司 A kind of enhanced activated carbon fiber absorption-desorption organic exhaust gas device and processing method
KR102265745B1 (en) * 2020-08-27 2021-06-16 (주)제넥 Absorption type air dryer implemented in closed loop circuit and the method for drying
CN114929364A (en) * 2019-12-25 2022-08-19 东洋纺株式会社 Organic solvent recovery system
CN115193086A (en) * 2022-02-22 2022-10-18 山东蓝湾新材料有限公司 Methane chloride separation and recovery system and method
EP4082650A4 (en) * 2019-12-25 2024-03-20 Toyobo Mc Corp Organic solvent recovery system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364943B1 (en) 1999-08-04 2002-04-02 Taikisha Ltd. Gas treatment system
JP2003071235A (en) * 2001-08-30 2003-03-11 Sumitomo Chem Co Ltd Method for separating combustible organic solvent in gas to be treated
JP2007237141A (en) * 2006-03-13 2007-09-20 Matsushita Electric Ind Co Ltd Organic solvent concentration device
JP2009160583A (en) * 2009-04-20 2009-07-23 Toyobo Co Ltd Method for treating organic solvent gas
CN108465342A (en) * 2018-04-09 2018-08-31 苏州世华新材料科技股份有限公司 A kind of enhanced activated carbon fiber absorption-desorption organic exhaust gas device and processing method
CN114929364A (en) * 2019-12-25 2022-08-19 东洋纺株式会社 Organic solvent recovery system
EP4082651A4 (en) * 2019-12-25 2024-03-20 Toyobo Mc Corp Organic solvent recovery system
EP4082650A4 (en) * 2019-12-25 2024-03-20 Toyobo Mc Corp Organic solvent recovery system
KR102265745B1 (en) * 2020-08-27 2021-06-16 (주)제넥 Absorption type air dryer implemented in closed loop circuit and the method for drying
CN115193086A (en) * 2022-02-22 2022-10-18 山东蓝湾新材料有限公司 Methane chloride separation and recovery system and method

Similar Documents

Publication Publication Date Title
JP3492018B2 (en) Recovery method of volatile organic matter
US3534529A (en) Process for recovering organic vapors from airstream
JP2015000381A (en) Organic solvent recovery system
JP3841479B2 (en) Organic solvent recovery system and organic solvent recovery method
JPH06226029A (en) Method for recovering solvent
JPH0768127A (en) Hot-air desorption type solvent recovering device
KR20210045421A (en) Organic solvent recovery system
JP4548891B2 (en) Organic solvent recovery method
CN115006963A (en) System and process for recycling cryogenic solvent from waste gas in pharmaceutical industry
JP2001137646A (en) Device and method for adsorption treating waste gas
JP3922449B2 (en) Organic solvent recovery system
JPH06312117A (en) Solvent recovery
JPH0938445A (en) Method for regenerating adsorption tower
JPH03135410A (en) Pressure swing method for separating and recovering volatile organic matter
JPH08150319A (en) Method for recovering solvent and device therefor
JP3363986B2 (en) Solvent recovery method
JP3631073B2 (en) Organic solvent recovery method
JPH0663350A (en) Method for recovering solvent
JPH0760050A (en) Device for treating methanol containing gas
JPH07265642A (en) Solvent recovery method
JPH09164319A (en) Method for recovering solvent
JP5115279B2 (en) Adsorption recovery device
JPH08281044A (en) Method for recovering solvent
JPS63107729A (en) Method and apparatus for recovering solvent
CN108025247A (en) By means of the method and apparatus of enthalpy wheel and sorption wheel purification air