JP2015180500A - Gas dissolved water supply device and manufacturing method of gas dissolved water - Google Patents

Gas dissolved water supply device and manufacturing method of gas dissolved water Download PDF

Info

Publication number
JP2015180500A
JP2015180500A JP2015109867A JP2015109867A JP2015180500A JP 2015180500 A JP2015180500 A JP 2015180500A JP 2015109867 A JP2015109867 A JP 2015109867A JP 2015109867 A JP2015109867 A JP 2015109867A JP 2015180500 A JP2015180500 A JP 2015180500A
Authority
JP
Japan
Prior art keywords
gas
dissolved
water
phase chamber
dissolved water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015109867A
Other languages
Japanese (ja)
Other versions
JP5999222B2 (en
Inventor
裕人 床嶋
Hiroto Tokoshima
裕人 床嶋
啓太 瀬尾
Keita Seo
啓太 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2015109867A priority Critical patent/JP5999222B2/en
Publication of JP2015180500A publication Critical patent/JP2015180500A/en
Application granted granted Critical
Publication of JP5999222B2 publication Critical patent/JP5999222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Accessories For Mixers (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas dissolved water supply device capable of stably supplying gas dissolved water having low dissolved gas concentration (a low saturation degree), and to provide a manufacturing method of the gas dissolved water.SOLUTION: An oxygen gas is supplied from a gas supply pipe 31 to a gas phase chamber 13 and a vacuum pump 35 is operated to evacuate the gas phase chamber 13. Further, raw water is supplied from a raw water pipe 21 into a liquid phase chamber 12. A part of oxygen in the gas phase chamber 13 penetrates a gas transmission film 11 and dissolves in the raw water in the liquid phase chamber 12 to produce gas dissolved water. The other part of the oxygen in the gas phase chamber 13 is suctioned by the vacuum pump 35 with condensed water to be discharged from an exhaust pipe 33. Dissolved gas concentration of the gas dissolved water is measured by a dissolved gas concentration meter 23. Opening of a gas flow control valve 32 is adjusted so that the measured concentration becomes a target value.

Description

本発明はガス溶解水供給装置及びガス溶解水の製造方法に係り、詳しくは、気体透過膜によって気相室と液相室に区画された気体透過膜モジュールを有し、該液相室に被処理水を通水すると共に該気相室にガスを供給し、該ガスを該気相室から該気体透過膜を介して該液相室内の該被処理水に溶解させ、該被処理水をガス溶解水とするガス溶解水供給装置及びこのガス溶解水供給装置を用いたガス溶解水の製造方法に関する。   The present invention relates to a gas-dissolved water supply device and a method for producing gas-dissolved water. Specifically, the present invention has a gas-permeable membrane module partitioned into a gas phase chamber and a liquid phase chamber by a gas permeable membrane, and the liquid phase chamber is covered with the gas-permeable membrane module. Treated water is passed and gas is supplied to the gas phase chamber, and the gas is dissolved from the gas phase chamber through the gas permeable membrane into the water to be treated in the liquid phase chamber. The present invention relates to a gas-dissolved water supply device that uses gas-dissolved water and a method for producing gas-dissolved water using the gas-dissolved water supply device.

従来、半導体用シリコン基板、液晶用ガラス基板などの洗浄は、主として、過酸化水素水と硫酸の混合液、過酸化水素水と塩酸と水の混合液、過酸化水素水とアンモニア水と水の混合液など、過酸化水素をベースとする濃厚な薬液を用いて高温で洗浄した後に超純水で濯ぐ、いわゆるRCA洗浄法によって行われている。しかし、このRCA洗浄法では、過酸化水素水、高濃度の酸、アルカリなどを多量に使用するために薬液コストが高く、さらにリンス用の超純水のコスト、廃液処理コスト、薬品蒸気を排気し新たに清浄空気を調製する空調コストなど、多大なコストを要する。   Conventionally, cleaning of a silicon substrate for a semiconductor, a glass substrate for a liquid crystal, etc., mainly includes a mixed solution of hydrogen peroxide solution and sulfuric acid, a mixed solution of hydrogen peroxide solution, hydrochloric acid and water, hydrogen peroxide solution, ammonia solution and water. This is performed by a so-called RCA cleaning method in which a concentrated chemical solution based on hydrogen peroxide, such as a mixed solution, is washed at a high temperature and then rinsed with ultrapure water. However, this RCA cleaning method uses a large amount of hydrogen peroxide water, high-concentration acid, alkali, etc., so the cost of the chemical solution is high. In addition, the cost of rinsing ultrapure water, the cost of waste liquid treatment, and chemical vapor are exhausted. However, a large cost is required, such as an air conditioning cost for newly preparing clean air.

これに対し、洗浄工程におけるコストの低減や、環境への負荷の低減を目的とした様々な取り組みがなされ、成果を挙げている。その代表が、特定の気体を溶解した気体溶解水を用い、超音波洗浄等によって被処理物を洗浄する技術である。この特定気体としては、酸素ガス、オゾン、炭酸ガス、希ガス、不活性ガス、水素ガスなどが用いられる。   On the other hand, various efforts have been made to reduce costs in the cleaning process and reduce the burden on the environment. A typical example is a technique for cleaning an object to be processed by ultrasonic cleaning or the like using gas-dissolved water in which a specific gas is dissolved. As this specific gas, oxygen gas, ozone, carbon dioxide gas, rare gas, inert gas, hydrogen gas, or the like is used.

このような気体溶解水を製造する方法として、気体透過膜を内蔵した膜モジュールを用いる方法が知られている。この方法では、気体透過膜の液相側に水を供給すると共に気相側に特定気体を供給し、この気体透過膜を介して気相側のガスを液相側の水に溶解させることにより、気体溶解水を製造する。   As a method for producing such gas-dissolved water, a method using a membrane module incorporating a gas-permeable membrane is known. In this method, water is supplied to the liquid phase side of the gas permeable membrane, a specific gas is supplied to the gas phase side, and the gas on the gas phase side is dissolved in the water on the liquid phase side through the gas permeable membrane. Manufacturing gas-dissolved water.

例えば、特開平11−077023号には、超純水を脱気して溶存気体の飽和度を低下させたのち、この超純水に水素ガスを溶解させることが記載されている。   For example, Japanese Patent Application Laid-Open No. 11-077023 describes that after degassing ultrapure water to lower the saturation of dissolved gas, hydrogen gas is dissolved in this ultrapure water.

第2図は、同号公報の工程系統図である。超純水は、流量計1を経由して脱気膜モジュール2に送られる。脱気膜モジュール2は、ガス透過膜を介して超純水と接する気相側が真空ポンプ3により減圧状態に保たれ、超純水中に溶存している気体が脱気される。溶存気体が脱気された超純水は、次いで水素ガス溶解膜モジュール4に送られる。水素ガス溶解膜モジュール4においては、水素ガス供給器5から供給される水素ガスが気相側に送られ、ガス透過膜を介して超純水に供給される。溶存水素ガス濃度が所定の値に達した超純水に、薬液貯槽6から薬注ポンプ7によりアンモニア水などの薬液を添加し、所定のpH値に調整する。水素ガスを溶解し、アルカリ性となった水素含有超純水は、最後に精密濾過装置8に送られ、MFフィルターなどにより微粒子が除去される。   FIG. 2 is a process flow diagram of the publication. The ultrapure water is sent to the deaeration membrane module 2 via the flow meter 1. In the degassing membrane module 2, the gas phase in contact with the ultrapure water through the gas permeable membrane is kept in a reduced pressure state by the vacuum pump 3, and the gas dissolved in the ultrapure water is degassed. The ultrapure water from which the dissolved gas has been degassed is then sent to the hydrogen gas dissolving membrane module 4. In the hydrogen gas dissolving membrane module 4, the hydrogen gas supplied from the hydrogen gas supplier 5 is sent to the gas phase side and supplied to ultrapure water through the gas permeable membrane. A chemical solution such as ammonia water is added from the chemical solution storage tank 6 to the ultrapure water in which the dissolved hydrogen gas concentration has reached a predetermined value by the chemical injection pump 7 and adjusted to a predetermined pH value. The hydrogen-containing ultrapure water that has become alkaline due to the dissolution of hydrogen gas is finally sent to the microfiltration device 8 and fine particles are removed by an MF filter or the like.

脱気膜モジュール2の入口及び出口に設置した溶存気体測定センサ9により、超純水中の気体量を測定して飽和度を求め、信号を真空ポンプに送って超純水の飽和度と所望飽和度とを対比し、脱気量を調整する。脱気量の調整は、例えば、真空ポンプによる真空度を真空度調節弁の開度を調整して行う。脱気後の超純水の気体飽和度を溶存気体測定センサ9により測定し、水素ガス溶解膜モジュールから流出する水素含有超純水中の水素ガス濃度を溶存水素測定センサ9Aにより測定する。これらの測定信号を水素ガス供給器に送り、例えば、水素ガス供給路に設けた弁の開度などを調整することにより水素ガスの供給量を制御する。   The dissolved gas measurement sensors 9 installed at the inlet and outlet of the degassing membrane module 2 measure the amount of gas in the ultrapure water to determine the saturation, and send a signal to the vacuum pump to determine the saturation and the desired purity of the ultrapure water. The amount of deaeration is adjusted by comparing with the degree of saturation. The deaeration amount is adjusted, for example, by adjusting the degree of vacuum by the vacuum pump by adjusting the degree of opening of the vacuum degree adjusting valve. The gas saturation of the ultrapure water after deaeration is measured by the dissolved gas measuring sensor 9, and the hydrogen gas concentration in the hydrogen-containing ultrapure water flowing out from the hydrogen gas dissolving membrane module is measured by the dissolved hydrogen measuring sensor 9A. These measurement signals are sent to the hydrogen gas supply device, and the supply amount of the hydrogen gas is controlled by adjusting, for example, the opening degree of a valve provided in the hydrogen gas supply path.

特開平11−077023号JP-A-11-077023

上記特開平11−077023号において、水素ガス溶解膜モジュール4のガス透過膜は、気体のみを透過させ、液体を透過させない特性を有するものであり、水蒸気はこのガス透過膜を透過する。このため、ガス透過膜を透過して液相室から気相室へ水蒸気が拡散し、気相室で結露して凝縮水となり、気相室内に溜まる。   In the above-mentioned Japanese Patent Application Laid-Open No. 11-077023, the gas permeable membrane of the hydrogen gas dissolving membrane module 4 has a characteristic of allowing only gas to pass and not allowing liquid to pass through, and water vapor passes through this gas permeable membrane. For this reason, water vapor diffuses from the liquid phase chamber to the gas phase chamber through the gas permeable membrane, dew condensation in the gas phase chamber becomes condensed water, and accumulates in the gas phase chamber.

ここで、溶存ガス濃度がμg/L(ppb)オーダーの低濃度(低飽和度)のガス溶解水を製造する場合、各種条件の微小な変動の影響や、ガス溶解膜モジュール(第2図の水素ガス溶解膜モジュール4)の気相室内の凝縮水の影響のために、ガス溶解水中の溶存ガス濃度を安定化させることが困難であった。   Here, when producing gas-dissolved water having a low concentration (low saturation) with a dissolved gas concentration of the order of μg / L (ppb), the effects of minute fluctuations of various conditions, gas-dissolving membrane modules (FIG. 2) Due to the influence of the condensed water in the gas phase chamber of the hydrogen gas dissolving membrane module 4), it was difficult to stabilize the dissolved gas concentration in the gas dissolving water.

また、炭酸ガス溶解水などのように、溶存ガス濃度がmg/L(ppm)オーダーのガス溶解水を製造する場合にあっても、原水の脱気レベル(第2図の脱気膜モジュール2による脱気の程度)が高いと、ガス溶解膜モジュール(第2図の水素ガス溶解膜モジュール4)の気相室内に凝縮水が溜まり易く、凝縮水の影響が無視できないため、上記のppbオーダーのガス溶解水を製造する場合と同様に、ガス溶解水中の溶存ガス濃度を安定化させることが困難であった。   Further, even in the case of producing gas-dissolved water having a dissolved gas concentration of the order of mg / L (ppm), such as carbon dioxide-dissolved water, the degassing level of raw water (degassing membrane module 2 in FIG. 2). If the degree of degassing due to (2) is high, condensed water tends to accumulate in the gas phase chamber of the gas dissolving membrane module (hydrogen gas dissolving membrane module 4 in FIG. 2), and the influence of the condensed water cannot be ignored. As in the case of producing the gas-dissolved water, it was difficult to stabilize the dissolved gas concentration in the gas-dissolved water.

本発明は、溶存ガス濃度が低濃度(低飽和度)であるガス溶解水を安定して供給することが可能なガス溶解水供給装置及びガス溶解水の製造方法を提供することを目的とする。   An object of the present invention is to provide a gas-dissolved water supply apparatus and a gas-dissolved water production method capable of stably supplying gas-dissolved water having a low dissolved gas concentration (low saturation). .

本発明(請求項1)のガス溶解水供給装置は、気体透過膜によって気相室と液相室に区画された気体透過膜モジュールを有し、通水手段によって該液相室に被処理水を通水すると共に、ガス供給手段によって該気相室にガスを供給し、該ガスを該気相室から該気体透過膜を介して該液相室内の該被処理水に溶解させることにより、該被処理水をガス溶解水とするガス溶解水供給装置において、真空排気手段によって該気相室内を真空排気しながら、前記ガス供給手段によって該気相室内に該ガスを供給するように該真空排気手段を設けたことを特徴とするものである。   The gas-dissolved water supply device of the present invention (Claim 1) has a gas permeable membrane module partitioned into a gas phase chamber and a liquid phase chamber by a gas permeable membrane, and water to be treated is supplied to the liquid phase chamber by a water flow means. Passing water, supplying gas to the gas phase chamber by gas supply means, and dissolving the gas from the gas phase chamber through the gas permeable membrane into the water to be treated in the liquid phase chamber, In the gas-dissolved water supply apparatus in which the water to be treated is gas-dissolved water, the vacuum is provided so that the gas is supplied into the gas phase chamber by the gas supply means while the gas chamber is evacuated by vacuum exhaust means. An exhaust means is provided.

請求項2のガス溶解水供給装置は、請求項1において、該ガス溶解水の溶存ガス濃度の測定手段と、該測定手段の測定値に応じて該ガス供給手段からの該ガスの供給量を調整することにより、該溶存ガス濃度を制御する制御手段とを有することを特徴とする。   The gas-dissolved water supply device according to claim 2 is the gas-dissolved water supply device according to claim 1, wherein the dissolved gas concentration of the gas-dissolved water is measured, and the amount of gas supplied from the gas supply means is determined according to the measurement value of the measurement means. And control means for controlling the dissolved gas concentration by adjusting.

請求項3のガス溶解水供給装置は、請求項1又は2において、前記気相室の下部に、前記真空排気手段との接続口が設けられていることを特徴とする。   According to a third aspect of the present invention, there is provided the gas-dissolved water supply device according to the first or second aspect, wherein a connection port with the vacuum evacuation means is provided at a lower portion of the gas phase chamber.

請求項4のガス溶解水供給装置は、請求項1ないし3のいずれか1項において、前記ガスが酸素を含むことを特徴とする。   According to a fourth aspect of the present invention, there is provided the gas-dissolved water supply device according to any one of the first to third aspects, wherein the gas contains oxygen.

請求項5のガス溶解水供給装置は、請求項4において、該ガス溶解水の溶存ガス濃度が、該ガスの溶解度の1/400以下であることを特徴とする。   The gas-dissolved water supply device according to claim 5 is characterized in that, in claim 4, the dissolved gas concentration of the gas-dissolved water is 1/400 or less of the solubility of the gas.

請求項6のガス溶解水供給装置は、請求項1ないし3のいずれか1項において、前記ガスが炭酸ガスを含むことを特徴とする。   A gas-dissolved water supply device according to a sixth aspect is characterized in that the gas contains carbon dioxide in any one of the first to third aspects.

請求項7のガス溶解水供給装置は、請求項6において、該ガス溶解水の溶存ガス濃度が、該ガスの溶解度の1/50以下であることを特徴とする。   The gas-dissolved water supply device according to claim 7 is characterized in that, in claim 6, the dissolved gas concentration of the gas-dissolved water is 1/50 or less of the solubility of the gas.

請求項8のガス溶解水供給装置は、請求項1ないし3のいずれか1項において、前記ガスが、窒素、アルゴン、オゾン、水素、クリーンエア及び希ガスの少なくとも1つを含むことを特徴とする。   The gas-dissolved water supply device according to claim 8 is characterized in that in any one of claims 1 to 3, the gas includes at least one of nitrogen, argon, ozone, hydrogen, clean air, and a rare gas. To do.

本発明(請求項9)のガス溶解水の製造方法は、請求項1ないし8のいずれか1項に記載のガス溶解水供給装置を用いたガス溶解水の製造方法であって、前記液相室に被処理水を通水すると共に、該気相室内を真空排気しながら該気相室内にガスを供給し、該ガスを該気相室から前記気体透過膜を介して前記液相室内の該被処理水に溶解させることにより、該被処理水をガス溶解水とすることを特徴とするものである。   A method for producing gas-dissolved water according to the present invention (invention 9) is a method for producing gas-dissolved water using the gas-dissolved water supply device according to any one of claims 1 to 8, wherein the liquid phase Water to be treated is passed through the chamber and gas is supplied to the gas phase chamber while evacuating the gas phase chamber, and the gas is supplied from the gas phase chamber through the gas permeable membrane to the liquid phase chamber. The water to be treated is gas-dissolved water by being dissolved in the water to be treated.

本発明のガス溶解水供給装置(請求項1)及びガス溶解水の製造方法(請求項9)にあっては、真空排気手段によって該気相室内を真空排気しながら、該ガス供給手段によって該気相室内に該ガスを供給する。これにより、溶存ガス濃度が低濃度(低飽和度)であるガス溶解水を安定して供給することが可能である。   In the gas-dissolved water supply apparatus (claim 1) and the gas-dissolved water production method (claim 9) of the present invention, the gas supply chamber is evacuated by the evacuation means, and the gas supply means The gas is supplied into the gas phase chamber. Thereby, it is possible to stably supply gas-dissolved water having a low dissolved gas concentration (low saturation).

即ち、従来、気相室内に凝縮水が溜まったときに、該凝縮水の排出工程を実施しているが、この凝縮水排出工程時に気相室内に圧力変動が生じ、その結果ガス溶解水の溶存ガス濃度が変動する。本発明では、気相室内を真空排気しながら該気相室内に該ガスを供給しているため、この真空排気によって気相室内の凝縮水も常時排出される。従って、本発明では凝縮水排出工程を別途実施する必要がなく、この凝縮水排出工程に起因するガス溶解水の溶存ガス濃度の変動が回避されるため、所望の溶存ガス濃度のガス溶解水を安定して供給することが可能である。   That is, conventionally, when condensed water accumulates in the gas phase chamber, the condensate draining process is performed. During this condensate draining process, pressure fluctuations occur in the gas phase chamber, and as a result gas dissolved water is discharged. Dissolved gas concentration varies. In the present invention, since the gas is supplied into the gas phase chamber while evacuating the gas phase chamber, the condensed water in the gas phase chamber is always discharged by the evacuation. Therefore, in the present invention, it is not necessary to separately perform the condensed water discharge step, and fluctuations in the dissolved gas concentration of the gas dissolved water caused by this condensed water discharge step are avoided. It is possible to supply stably.

本発明は、低濃度のガス溶解水を安定的に供給するガス溶解水供給装置及びガス溶解水の製造方法に利用可能である。特に、半導体産業分野での洗浄工程に使用される、厳密に溶存ガス濃度が管理された低濃度のガス溶解水の製造や、溶存ガス濃度が厳密にコントロールされた超純水の製造のためのガス溶解水供給装置及びガス溶解水の製造方法に適用するのに好適である。   INDUSTRIAL APPLICABILITY The present invention can be used for a gas-dissolved water supply device that stably supplies low-concentration gas-dissolved water and a method for producing gas-dissolved water. Especially for the production of low concentration gas dissolved water with strictly controlled dissolved gas concentration and ultrapure water with strictly controlled dissolved gas concentration, which are used in cleaning processes in the semiconductor industry. It is suitable for application to a gas-dissolved water supply device and a method for producing gas-dissolved water.

請求項2のように、ガス溶解水の溶存ガス濃度の測定手段と、該測定手段の測定値に応じて該ガス供給手段からの該ガスの供給量を調整することにより、該溶存ガス濃度を制御する制御手段とを有することが好ましい。かかるフィードバック制御により、低濃度域(低飽和度域)においても、溶存ガス濃度の安定したガス溶解水を供給することが可能である。   The dissolved gas concentration is measured by adjusting the dissolved gas concentration of the gas-dissolved water and the supply amount of the gas from the gas supply unit according to the measurement value of the measurement unit. It is preferable to have control means for controlling. Such feedback control makes it possible to supply gas-dissolved water having a stable dissolved gas concentration even in a low concentration region (low saturation region).

請求項3のように、気相室の下部に真空排気手段との接続口が設けられていると、気相室内に溜まった凝縮水を効率よく排出することができる。   If the connection port with the vacuum exhaust means is provided in the lower part of the gas phase chamber as in claim 3, the condensed water accumulated in the gas phase chamber can be efficiently discharged.

請求項4のように、ガスは酸素を含むものであってもよい。この場合、請求項5のように、ガス溶解水の溶存ガス濃度は、該ガスの溶解度の1/400以下であることが好ましい。   As in claim 4, the gas may contain oxygen. In this case, as in claim 5, the dissolved gas concentration of the gas-dissolved water is preferably 1/400 or less of the solubility of the gas.

請求項6のように、ガスは炭酸ガスを含むものであってもよい。この場合、請求項7のように、ガス溶解水の溶存ガス濃度は、該ガスの溶解度の1/50以下であることが好ましい。   As in claim 6, the gas may contain carbon dioxide. In this case, as in claim 7, the dissolved gas concentration of the gas-dissolved water is preferably 1/50 or less of the solubility of the gas.

請求項8のように、ガスは、窒素、アルゴン、オゾン、水素、クリーンエア及び希ガスの少なくとも1つを含むものであってもよい。   The gas may include at least one of nitrogen, argon, ozone, hydrogen, clean air, and a rare gas.

実施の形態に係るガス溶解水供給装置の系統図である。It is a systematic diagram of the gas dissolution water supply device concerning an embodiment. 従来例に係る水素溶解水の製造工程系統図である。It is a manufacturing-process system diagram of the hydrogen-dissolved water which concerns on a prior art example.

以下、図面を参照して本発明の実施の形態を説明する。第1図は実施の形態に係るガス溶解水供給装置及びガス溶解水の製造方法を説明する系統図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram for explaining a gas-dissolved water supply device and a method for producing gas-dissolved water according to an embodiment.

原水配管21が、気体透過膜モジュール10の液相室11の下部に接続されている。   The raw water pipe 21 is connected to the lower part of the liquid phase chamber 11 of the gas permeable membrane module 10.

気体透過膜モジュール10内は、気体透過膜11によって上記液相室12と気相室13に区画されている。   The gas permeable membrane module 10 is partitioned into the liquid phase chamber 12 and the gas phase chamber 13 by a gas permeable membrane 11.

この液相室12の上部に、溶存ガス濃度計23を備えたガス溶解水供給配管22が接続されている。   A gas-dissolved water supply pipe 22 having a dissolved gas concentration meter 23 is connected to the upper part of the liquid phase chamber 12.

気相室13の上部に、ガス流量制御弁32を備えたガス供給配管31の一端が接続されている。ガス供給配管31の他端は、ガスボンベ等のガス源に接続されている。気相室13の下部に、圧力計34及び真空ポンプ35を備えた排気配管33が接続されている。上記溶存ガス濃度計23の検出信号が制御装置24に入力される。この制御装置24は、溶存ガス濃度計23の検出濃度が目標濃度となるように、ガス流量制御弁32を制御する。   One end of a gas supply pipe 31 having a gas flow rate control valve 32 is connected to the upper part of the gas phase chamber 13. The other end of the gas supply pipe 31 is connected to a gas source such as a gas cylinder. An exhaust pipe 33 including a pressure gauge 34 and a vacuum pump 35 is connected to the lower part of the gas phase chamber 13. The detection signal of the dissolved gas concentration meter 23 is input to the control device 24. The control device 24 controls the gas flow rate control valve 32 so that the detected concentration of the dissolved gas concentration meter 23 becomes the target concentration.

後述する通り、この原水配管21に通水される原水に対象ガスを溶解させて低濃度(低飽和度)のガス溶解水を製造する。このため、この原水としては、溶解させる対象ガスがほぼ溶存しておらず、かつ該対象ガス以外のガスで飽和しておらず、対象ガスを過飽和とならずに溶存させることができるものであることが好ましい。通常は、超純水等から溶存ガスを十分に脱気した脱気水を用いることができる。なお、脱気は、例えば前記第2図の脱気膜モジュール2などを用いて行うことができる。   As will be described later, the target gas is dissolved in the raw water passed through the raw water pipe 21 to produce a low-concentration (low saturation) gas-dissolved water. For this reason, as this raw water, the target gas to be dissolved is almost not dissolved and is not saturated with a gas other than the target gas, and the target gas can be dissolved without being oversaturated. It is preferable. Usually, deaerated water obtained by sufficiently degassing dissolved gas from ultrapure water or the like can be used. The deaeration can be performed using, for example, the deaeration membrane module 2 shown in FIG.

この気体透過膜10としては、水を透過させず、かつ水に溶解させるガスを透過させるものであれば特に制限はなく、例えば、ポリプロピレン、ポリジメチルシロキサン、ポリカーボネート−ポリジメチルシロキサンブロック共重合体、ポリビニルフェノール−ポリジメチルシロキサン−ポリスルホンブロック共重合体、ポリ(4−メチルペンテン−1)、ポリ(2,6−ジメチルフェニレンオキシド)、ポリテトラフルオロエチレンなどの高分子膜などを挙げることができる。   The gas permeable membrane 10 is not particularly limited as long as it does not permeate water and permeates gas dissolved in water. For example, polypropylene, polydimethylsiloxane, polycarbonate-polydimethylsiloxane block copolymer, Examples thereof include a polymer film such as polyvinylphenol-polydimethylsiloxane-polysulfone block copolymer, poly (4-methylpentene-1), poly (2,6-dimethylphenylene oxide), and polytetrafluoroethylene.

真空ポンプ35には制限はなく、水封式やスクロール式などが用いられる。但し、真空の発生のためにオイルを用いるものは、オイルが逆拡散して気体透過膜11を汚染することがあるので、オイルレスのものが望ましい。   There is no restriction | limiting in the vacuum pump 35, A water seal type, a scroll type, etc. are used. However, those using oil for generating a vacuum are preferably oil-less because the oil may reversely diffuse and contaminate the gas permeable membrane 11.

ガス供給配管31から供給されるガスとしては、酸素、炭酸ガス、窒素、アルゴン、オゾン、水素、クリーンエア、これらのガスの2種以上の混合ガスなどが用いられる。   As the gas supplied from the gas supply pipe 31, oxygen, carbon dioxide, nitrogen, argon, ozone, hydrogen, clean air, a mixed gas of two or more of these gases, and the like are used.

なお、これらのガスは、希釈ガスで希釈されていても良い。その場合、希釈ガスとしては、アルゴンやヘリウムなどの希ガス、窒素などの不活性ガス、炭酸ガス、クリーンエア、これらのガスの2種以上の混合ガスなどが用いられる。   These gases may be diluted with a dilution gas. In that case, as the dilution gas, a rare gas such as argon or helium, an inert gas such as nitrogen, carbon dioxide gas, clean air, or a mixed gas of two or more of these gases is used.

ガス流量制御弁32は、オイルレスのものが好ましい。   The gas flow rate control valve 32 is preferably oilless.

次に、第1図のガス溶解水供給装置を用いてガス溶解水を製造する方法の一例を説明する。   Next, an example of a method for producing gas-dissolved water using the gas-dissolved water supply device of FIG. 1 will be described.

本例では、ガスとして酸素を用い、水温を25℃としている。なお、25℃、1atmにおける酸素の水への溶解度は40.9mg/Lである。   In this example, oxygen is used as the gas, and the water temperature is 25 ° C. The solubility of oxygen in water at 25 ° C. and 1 atm is 40.9 mg / L.

ガス流量制御弁32を開とすることにより、ガス供給配管31から気相室13内に酸素ガスを供給すると共に、真空ポンプ35を作動させ、気相室13内を排気配管33を介して真空排気する。また、原水配管21から液相室12内に原水を供給する。   By opening the gas flow control valve 32, oxygen gas is supplied from the gas supply pipe 31 into the gas phase chamber 13, and the vacuum pump 35 is operated to evacuate the gas phase chamber 13 through the exhaust pipe 33. Exhaust. Further, raw water is supplied from the raw water pipe 21 into the liquid phase chamber 12.

ここで、気相室13内の真空度は、原水の脱気度よりも高くする必要がある。これにより、気相室13内のガス(酸素)の一部が気体透過膜11を通って液相室12内の原水に溶解する。この気相室13内の圧力は−90kPa以下が好ましく、−90〜−97kPaがより好ましく、−93〜−96kPaがとりわけ好ましい。−90kPa以下であると、気相質13内の凝縮水を良好に排出することができる。   Here, the degree of vacuum in the gas phase chamber 13 needs to be higher than the degree of degassing of the raw water. Thereby, a part of the gas (oxygen) in the gas phase chamber 13 passes through the gas permeable membrane 11 and is dissolved in the raw water in the liquid phase chamber 12. The pressure in the gas phase chamber 13 is preferably −90 kPa or less, more preferably −90 to −97 kPa, and particularly preferably −93 to −96 kPa. When it is −90 kPa or less, the condensed water in the gas phase 13 can be discharged well.

このガス供給配管31から気相室13内に供給された酸素の一部は、上記の通り気体透過膜11を透過して液相室12内の原水に溶解する。このようにして得られたガス溶解水が、ガス溶解水供給配管22から流出する。該気相室13内に供給された酸素の残部は、液相室12側から気体透過膜11を透過してきた水蒸気及び該水蒸気が凝縮してなる凝縮水と共に、真空ポンプ35で吸引されることにより、排気配管33から排出される。   Part of the oxygen supplied from the gas supply pipe 31 into the gas phase chamber 13 passes through the gas permeable membrane 11 as described above and dissolves in the raw water in the liquid phase chamber 12. The gas dissolved water thus obtained flows out from the gas dissolved water supply pipe 22. The remainder of the oxygen supplied into the gas phase chamber 13 is sucked by the vacuum pump 35 together with water vapor that has passed through the gas permeable membrane 11 from the liquid phase chamber 12 side and condensed water obtained by condensing the water vapor. Thus, the gas is discharged from the exhaust pipe 33.

上記のガス溶解水供給配管22内のガス溶解水は、溶存ガス濃度計23で溶存酸素濃度が測定され、測定信号が制御装置24に入力される。この制御装置24は、溶存ガス濃度計23の溶存酸素濃度が目標値(又は目標範囲)となるようにガス流量制御弁32の開度を調節し、ガス流量を制御する。このフィードバック制御により、所望の溶存ガス濃度のガス溶解水が製造される。   The dissolved gas concentration in the gas dissolved water supply pipe 22 is measured by a dissolved gas concentration meter 23, and a measurement signal is input to the control device 24. The control device 24 controls the gas flow rate by adjusting the opening of the gas flow control valve 32 so that the dissolved oxygen concentration of the dissolved gas concentration meter 23 becomes a target value (or target range). By this feedback control, gas-dissolved water having a desired dissolved gas concentration is produced.

このガス溶解水中の溶存酸素濃度は、当該ガス溶解水の用途等に応じて適宜決定されるが、例えば、半導体産業分野での洗浄工程で低濃度の酸素溶解水(洗浄水)として用いる場合には、溶存酸素濃度は1〜100μg/L特に10〜60μg/L程度が好ましい。   The dissolved oxygen concentration in the gas-dissolved water is determined as appropriate according to the use of the gas-dissolved water. For example, when used as a low-concentration oxygen-dissolved water (cleaning water) in a cleaning process in the semiconductor industry field. The dissolved oxygen concentration is preferably about 1 to 100 μg / L, particularly about 10 to 60 μg / L.

なお、原水配管21内の原水の流量は、例えば2〜10L/min程度であり、ガス供給配管31内の酸素の流量は、例えば0.1〜10mL/min程度である。   The flow rate of raw water in the raw water pipe 21 is, for example, about 2 to 10 L / min, and the flow rate of oxygen in the gas supply pipe 31 is, for example, about 0.1 to 10 mL / min.

本実施の形態では、気相室13内の凝縮水が真空ポンプ35で真空排出されているため、気相室13内に凝縮水が溜まることが防止される。従って、気相室13内に溜まった凝縮水を排出するときに生じる気相室13内の圧力変動に起因するガス溶解水の溶存ガス濃度の変動や、気相室13内の凝縮水で気体透過膜12の一部が浸水することによるガス溶解水の溶存ガス濃度の変動が防止される。特に、この実施の形態では、排水配管33が気相室13の下部に接続されているため、気相室13内に凝縮水が溜まることが十分に防止される。   In the present embodiment, the condensed water in the gas phase chamber 13 is discharged by the vacuum pump 35, so that the condensed water is prevented from accumulating in the gas phase chamber 13. Therefore, the dissolved gas concentration fluctuation caused by the pressure fluctuation in the gas phase chamber 13 generated when the condensed water accumulated in the gas phase chamber 13 is discharged, or the condensed water in the gas phase chamber 13 is gasified. Variations in the dissolved gas concentration of the gas-dissolved water due to the partial penetration of the permeable membrane 12 are prevented. In particular, in this embodiment, since the drain pipe 33 is connected to the lower part of the gas phase chamber 13, it is possible to sufficiently prevent the condensed water from accumulating in the gas phase chamber 13.

本実施の形態では、フィードバック制御により、溶存ガス濃度が低濃度域又は低飽和度域であるガス溶解水を安定して製造することができる。   In the present embodiment, the dissolved gas concentration in which the dissolved gas concentration is in the low concentration region or the low saturation region can be stably produced by feedback control.

上記実施の形態は本発明の一例であり、本発明は上記実施の形態に限定されない。ガスは酸素に限定されるものではなく、例えば、酸素に代えて炭酸ガスを原水に溶存させてもよい。この炭酸ガス溶解水を半導体産業分野での洗浄工程で用いる場合には、溶存炭酸ガス濃度は、例えば1〜100mg/L特に10〜60mg/L程度とすることが好ましい。   The above embodiment is an example of the present invention, and the present invention is not limited to the above embodiment. The gas is not limited to oxygen. For example, carbon dioxide may be dissolved in raw water instead of oxygen. When this carbon dioxide-dissolved water is used in a cleaning process in the semiconductor industry field, the dissolved carbon dioxide concentration is preferably about 1 to 100 mg / L, particularly about 10 to 60 mg / L.

また、原水に窒素を溶存させる場合には、例えば、溶存ガス濃度は1〜50μg/L特に5〜30μg/Lが好ましい。アルゴンの場合は溶存ガス濃度は1〜100μg/L特に10〜60μg/Lが好ましい。オゾンの場合は溶存ガス濃度は10〜1000μg/L特に50〜500μg/Lが好ましい。水素の場合は溶存ガス濃度は5〜500μg/L特に10〜100μg/Lが好ましい。クリーンエアの場合は溶存ガス濃度は1〜50μg/L特に5〜30μg/L程度が好ましい。   Further, when nitrogen is dissolved in the raw water, for example, the dissolved gas concentration is preferably 1 to 50 μg / L, particularly 5 to 30 μg / L. In the case of argon, the dissolved gas concentration is preferably 1 to 100 μg / L, particularly 10 to 60 μg / L. In the case of ozone, the dissolved gas concentration is preferably 10 to 1000 μg / L, particularly 50 to 500 μg / L. In the case of hydrogen, the dissolved gas concentration is preferably 5 to 500 μg / L, particularly 10 to 100 μg / L. In the case of clean air, the dissolved gas concentration is preferably about 1 to 50 μg / L, particularly about 5 to 30 μg / L.

以下、実施例及び比較例を参照して、本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

なお、ガス溶解水供給装置として、第1図の装置を用いた。また、気体透過膜モジュール10及び溶存ガス濃度計23の仕様及び運転条件は以下の通りである。   In addition, the apparatus of FIG. 1 was used as a gas dissolved water supply apparatus. The specifications and operating conditions of the gas permeable membrane module 10 and the dissolved gas concentration meter 23 are as follows.

気体透過膜モジュール:セルガード社製ガス溶解膜(商品名:リキセル)
溶存ガス濃度計:ハックウルトラアナリティクスジャパン社製溶存酸素計、
モデル3610
原水の送水量:5L/min
要求溶存酸素濃度:5μg/L
水温:25℃
Gas permeable membrane module: Gas dissolving membrane manufactured by Celgard (trade name: Liquicel)
Dissolved gas concentration meter: Dissolved oxygen meter manufactured by Hack Ultra Analytics Japan,
Model 3610
Volume of raw water delivered: 5L / min
Required dissolved oxygen concentration: 5 μg / L
Water temperature: 25 ° C

実施例1
ガス流量制御弁32により、ガス供給配管31から供給する酸素ガス量を0.5mL(標準状態)/minに制御した。また、気相室13内の圧力が−97kPaとなるように真空ポンプ35で気相室13内を真空排気した。
Example 1
The amount of oxygen gas supplied from the gas supply pipe 31 was controlled to 0.5 mL (standard state) / min by the gas flow rate control valve 32. Further, the gas phase chamber 13 was evacuated by the vacuum pump 35 so that the pressure in the gas phase chamber 13 became −97 kPa.

その結果、得られた酸素溶解水中の溶存酸素濃度は連続的に5μg/L±5%以下に制御された。また、気相室13内に凝縮水が溜まることがなく、凝縮水排出動作を別途実施する必要が無かった。   As a result, the dissolved oxygen concentration in the obtained oxygen-dissolved water was continuously controlled to 5 μg / L ± 5% or less. Further, the condensed water does not accumulate in the gas phase chamber 13, and it is not necessary to separately perform the condensed water discharge operation.

比較例1
実施例1において、通常時は真空ポンプ35を停止して気相室13内の真空排気を行わず、気相室13内に凝縮水が溜まったときに真空ポンプ35を作動して凝縮水の排出動作を行ったこと以外は同様にして酸素溶解水を製造した。
Comparative Example 1
In the first embodiment, the vacuum pump 35 is normally stopped and the gas phase chamber 13 is not evacuated. When the condensed water accumulates in the gas phase chamber 13, the vacuum pump 35 is operated to condense water. Oxygen-dissolved water was produced in the same manner except that the discharging operation was performed.

その結果、凝縮水の排出動作時に、酸素溶解水中の溶存酸素濃度に5μg/L±20%以上の濃度変動が生じ、酸素溶解水を安定的に供給することが困難であった。   As a result, a concentration fluctuation of 5 μg / L ± 20% or more occurred in the dissolved oxygen concentration in the oxygen-dissolved water during the operation of discharging the condensed water, and it was difficult to stably supply the oxygen-dissolved water.

10 脱気膜モジュール
11 気体透過膜
12 液相室
13 気相室
21 原水配管
22 ガス溶解水供給配管
23 溶存ガス濃度計
31 ガス供給配管
32 ガス流量制御弁
33 排気配管
34 圧力計
35 真空ポンプ
DESCRIPTION OF SYMBOLS 10 Deaeration membrane module 11 Gas permeable membrane 12 Liquid phase chamber 13 Gas phase chamber 21 Raw water piping 22 Gas dissolved water supply piping 23 Dissolved gas concentration meter 31 Gas supply piping 32 Gas flow control valve 33 Exhaust piping 34 Pressure gauge 35 Vacuum pump

本発明(請求項1)のガス溶解水供給装置は、溶存ガス濃度がppbオーダーの低濃度のガス溶解水を製造する装置であって、気体透過膜によって気相室と液相室に区画された気体透過膜モジュールを有し、通水手段によって該液相室に被処理水を通水すると共に、ガス供給手段によって該気相室にガスを供給し、該ガスを該気相室から該気体透過膜を介して該液相室内の該被処理水に溶解させることにより、該被処理水をガス溶解水とするガス溶解水供給装置において、真空排気手段によって該気相室内を真空排気しながら、前記ガス供給手段によって該気相室内に該ガスを供給することにより、該ガス供給中、該気相室内の凝縮水を常時排出するように該真空排気手段を設けたガス溶解水供給装置であって、前記気相室の下部に、前記真空排気手段との接続口が設けられていることを特徴とするものである。 The gas-dissolved water supply device of the present invention (Claim 1) is a device for producing a low-concentration gas-dissolved water having a dissolved gas concentration of the order of ppb, and is divided into a gas phase chamber and a liquid phase chamber by a gas permeable membrane. A gas permeable membrane module, water to be treated is passed to the liquid phase chamber by water passing means, gas is supplied to the gas phase chamber by gas supplying means, and the gas is supplied from the gas phase chamber to the gas phase chamber. The gas phase chamber is evacuated by vacuum evacuation means in a gas-dissolved water supply apparatus that uses the water to be treated as gas-dissolved water by dissolving in the water to be treated in the liquid-phase chamber through a gas permeable membrane. However , by supplying the gas into the gas phase chamber by the gas supply means, the gas-dissolved water supply device provided with the vacuum evacuation means so that the condensed water in the gas phase chamber is always discharged during the gas supply. In the lower part of the gas phase chamber. The connecting port between the exhaust means is provided and is characterized in.

請求項のガス溶解水供給装置は、請求項1又は2において、前記ガスが酸素を含むことを特徴とする。 According to a third aspect of the present invention, there is provided the gas-dissolved water supply device according to the first or second aspect , wherein the gas contains oxygen.

請求項のガス溶解水供給装置は、請求項において、該ガス溶解水の溶存ガス濃度が、該ガスの溶解度の1/400以下であることを特徴とする。 A gas-dissolved water supply device according to claim 4 is characterized in that, in claim 3 , the dissolved gas concentration of the gas-dissolved water is 1/400 or less of the solubility of the gas.

請求項のガス溶解水供給装置は、請求項1又は2において、前記ガスが炭酸ガスを含むことを特徴とする。 The gas-dissolved water supply device according to claim 5 is characterized in that, in claim 1 or 2 , the gas contains carbon dioxide gas.

請求項のガス溶解水供給装置は、請求項において、該ガス溶解水の溶存ガス濃度が、該ガスの溶解度の1/50以下であることを特徴とする。 The gas-dissolved water supply device according to claim 6 is characterized in that, in claim 5 , the dissolved gas concentration of the gas-dissolved water is 1/50 or less of the solubility of the gas.

請求項のガス溶解水供給装置は、請求項1又は2において、前記ガスが、窒素、アルゴン、オゾン、水素、クリーンエア及び希ガスの少なくとも1つを含むことを特徴とする。 Gas dissolved water supply system according to claim 7, in claim 1 or 2, wherein the gas is characterized nitrogen, argon, ozone, hydrogen, to include at least one of the clean air and a rare gas.

本発明(請求項)のガス溶解水の製造方法は、請求項1ないしのいずれか1項に記載のガス溶解水供給装置を用いたガス溶解水の製造方法であって、前記液相室に被処理水を通水すると共に、該気相室内を真空排気しながら該気相室内にガスを供給し、該ガスを該気相室から前記気体透過膜を介して前記液相室内の該被処理水に溶解させることにより、該ガス供給中、該気相室内の凝縮水を常時排出しながら、該被処理水をガス溶解水とすることを特徴とするものである。 A method for producing gas-dissolved water according to the present invention (invention 8 ) is a method for producing gas-dissolved water using the gas-dissolved water supply device according to any one of claims 1 to 7 , wherein the liquid phase Water to be treated is passed through the chamber and gas is supplied to the gas phase chamber while evacuating the gas phase chamber, and the gas is supplied from the gas phase chamber through the gas permeable membrane to the liquid phase chamber. By dissolving in the water to be treated, the water to be treated is used as gas-dissolved water while constantly discharging condensed water in the gas phase chamber during the gas supply .

本発明のガス溶解水供給装置(請求項1)及びガス溶解水の製造方法(請求項)にあっては、真空排気手段によって該気相室内を真空排気しながら、該ガス供給手段によって該気相室内に該ガスを供給する。これにより、溶存ガス濃度が低濃度(低飽和度)であるガス溶解水を安定して供給することが可能である。 In the gas-dissolved water supply device (Claim 1) and the gas-dissolved water production method (Claim 8 ) of the present invention, the gas supply chamber is evacuated by the evacuation means, and the gas supply means The gas is supplied into the gas phase chamber. Thereby, it is possible to stably supply gas-dissolved water having a low dissolved gas concentration (low saturation).

請求項のように、気相室の下部に真空排気手段との接続口が設けられていると、気相室内に溜まった凝縮水を効率よく排出することができる。 If the connection port with the vacuum exhaust means is provided in the lower part of the gas phase chamber as in claim 1 , the condensed water accumulated in the gas phase chamber can be efficiently discharged.

請求項のように、ガスは酸素を含むものであってもよい。この場合、請求項のように、ガス溶解水の溶存ガス濃度は、該ガスの溶解度の1/400以下であることが好ましい。 As in claim 3 , the gas may contain oxygen. In this case, as in claim 4 , the dissolved gas concentration of the gas-dissolved water is preferably 1/400 or less of the solubility of the gas.

請求項のように、ガスは炭酸ガスを含むものであってもよい。この場合、請求項のように、ガス溶解水の溶存ガス濃度は、該ガスの溶解度の1/50以下であることが好ましい。 As in claim 5, the gas may contain carbon dioxide. In this case, as in claim 6 , the dissolved gas concentration of the gas-dissolved water is preferably 1/50 or less of the solubility of the gas.

請求項のように、ガスは、窒素、アルゴン、オゾン、水素、クリーンエア及び希ガスの少なくとも1つを含むものであってもよい。 As in claim 7 , the gas may include at least one of nitrogen, argon, ozone, hydrogen, clean air, and a rare gas.

Claims (9)

気体透過膜によって気相室と液相室に区画された気体透過膜モジュールを有し、通水手段によって該液相室に被処理水を通水すると共に、ガス供給手段によって該気相室にガスを供給し、該ガスを該気相室から該気体透過膜を介して該液相室内の該被処理水に溶解させることにより、該被処理水をガス溶解水とするガス溶解水供給装置において、
真空排気手段によって該気相室内を真空排気しながら、前記ガス供給手段によって該気相室内に該ガスを供給するように該真空排気手段を設けたことを特徴とするガス溶解水供給装置。
It has a gas permeable membrane module divided into a gas phase chamber and a liquid phase chamber by a gas permeable membrane, and allows water to be treated to flow into the liquid phase chamber by water passing means, and to the gas phase chamber by a gas supply means. A gas-dissolved water supply device which supplies gas and dissolves the gas from the gas phase chamber through the gas-permeable membrane into the water to be treated in the liquid phase chamber, thereby using the water to be treated as gas-dissolved water. In
A gas-dissolved water supply apparatus comprising: the vacuum exhaust means so as to supply the gas into the gas phase chamber by the gas supply means while evacuating the gas phase chamber by a vacuum exhaust means.
請求項1において、該ガス溶解水の溶存ガス濃度の測定手段と、
該測定手段の測定値に応じて該ガス供給手段からの該ガスの供給量を調整することにより、該溶存ガス濃度を制御する制御手段と
を有することを特徴とするガス溶解水供給装置。
In Claim 1, the measurement means of the dissolved gas concentration of this gas dissolved water,
A gas-dissolved water supply apparatus, comprising: a control means for controlling the dissolved gas concentration by adjusting a supply amount of the gas from the gas supply means in accordance with a measurement value of the measurement means.
請求項1又は2において、前記気相室の下部に、前記真空排気手段との接続口が設けられていることを特徴とするガス溶解水供給装置。   3. The gas-dissolved water supply device according to claim 1, wherein a connection port with the vacuum evacuation means is provided in a lower part of the gas phase chamber. 請求項1ないし3のいずれか1項において、前記ガスが酸素を含むことを特徴とするガス溶解水供給装置。   4. The gas-dissolved water supply device according to claim 1, wherein the gas contains oxygen. 請求項4において、該ガス溶解水の溶存ガス濃度が、該ガスの溶解度の1/400以下であることを特徴とするガス溶解水供給装置。   The gas-dissolved water supply device according to claim 4, wherein the dissolved gas concentration of the gas-dissolved water is 1/400 or less of the solubility of the gas. 請求項1ないし3のいずれか1項において、前記ガスが炭酸ガスを含むことを特徴とするガス溶解水供給装置。   The gas-dissolved water supply device according to any one of claims 1 to 3, wherein the gas contains carbon dioxide gas. 請求項6において、該ガス溶解水の溶存ガス濃度が、該ガスの溶解度の1/50以下であることを特徴とするガス溶解水供給装置。   The gas-dissolved water supply device according to claim 6, wherein the dissolved gas concentration of the gas-dissolved water is 1/50 or less of the solubility of the gas. 請求項1ないし3のいずれか1項において、前記ガスが、窒素、アルゴン、オゾン、水素、クリーンエア及び希ガスの少なくとも1つを含むことを特徴とするガス溶解水供給装置。   4. The gas-dissolved water supply device according to claim 1, wherein the gas includes at least one of nitrogen, argon, ozone, hydrogen, clean air, and a rare gas. 請求項1ないし8のいずれか1項に記載のガス溶解水供給装置を用いたガス溶解水の製造方法であって、
前記液相室に被処理水を通水すると共に、該気相室内を真空排気しながら該気相室内にガスを供給し、該ガスを該気相室から前記気体透過膜を介して前記液相室内の該被処理水に溶解させることにより、該被処理水をガス溶解水とすることを特徴とするガス溶解水の製造方法。
A method for producing gas-dissolved water using the gas-dissolved water supply device according to any one of claims 1 to 8,
Water to be treated is passed through the liquid phase chamber, and a gas is supplied into the gas phase chamber while evacuating the gas phase chamber, and the gas is supplied from the gas phase chamber through the gas permeable membrane to the liquid. A method for producing gas-dissolved water, comprising dissolving the water to be treated in a phase chamber into gas-dissolved water.
JP2015109867A 2015-05-29 2015-05-29 Gas dissolved water supply apparatus and gas dissolved water manufacturing method Active JP5999222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015109867A JP5999222B2 (en) 2015-05-29 2015-05-29 Gas dissolved water supply apparatus and gas dissolved water manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015109867A JP5999222B2 (en) 2015-05-29 2015-05-29 Gas dissolved water supply apparatus and gas dissolved water manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009086343A Division JP2010234298A (en) 2009-03-31 2009-03-31 Device for supplying water containing dissolved gas and method for producing water containing dissolved gas

Publications (2)

Publication Number Publication Date
JP2015180500A true JP2015180500A (en) 2015-10-15
JP5999222B2 JP5999222B2 (en) 2016-09-28

Family

ID=54329030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015109867A Active JP5999222B2 (en) 2015-05-29 2015-05-29 Gas dissolved water supply apparatus and gas dissolved water manufacturing method

Country Status (1)

Country Link
JP (1) JP5999222B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131852A (en) * 2016-01-29 2017-08-03 野村マイクロ・サイエンス株式会社 Functional water production apparatus, and functional water production method
JP2020087999A (en) * 2018-11-16 2020-06-04 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP2020165824A (en) * 2019-03-29 2020-10-08 栗田工業株式会社 Dissolved gas concentration measuring device and measuring method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09150009A (en) * 1995-11-30 1997-06-10 Dainippon Screen Mfg Co Ltd Treating liquid supply device
JPH1177023A (en) * 1997-09-02 1999-03-23 Kurita Water Ind Ltd Preparation of hydrogen-containing ultrapure water
JP2000051606A (en) * 1998-08-07 2000-02-22 Japan Organo Co Ltd Gas permeation membrane apparatus
JP2000189742A (en) * 1998-12-28 2000-07-11 Kurita Water Ind Ltd Gas dissolving module
JP2003334433A (en) * 2002-05-16 2003-11-25 Kurita Water Ind Ltd Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water
JP2005270793A (en) * 2004-03-24 2005-10-06 Kurita Water Ind Ltd Apparatus for production of nitrogen-dissolved water
JP2006071340A (en) * 2004-08-31 2006-03-16 Kurita Water Ind Ltd Method of measuring concentration of dissolved gas in liquid, measuring device, and manufacture device of nitrogen gas-dissolved water
JP2007185559A (en) * 2006-01-11 2007-07-26 Japan Organo Co Ltd Method and device for dissolving gas
JP2007319843A (en) * 2006-06-05 2007-12-13 Kurita Water Ind Ltd Gas dissolving module
JP2009040656A (en) * 2007-08-10 2009-02-26 Kurita Water Ind Ltd Apparatus and method for producing carbonated water, and method of washing electronic member
JP2009113013A (en) * 2007-11-09 2009-05-28 Kurita Water Ind Ltd Production apparatus of gas dissolved water and production method
JP2009219997A (en) * 2008-03-14 2009-10-01 Kurita Water Ind Ltd Method and apparatus for manufacturing gas-dissolved water
JP2009219996A (en) * 2008-03-14 2009-10-01 Kurita Water Ind Ltd Method of detecting deterioration of gas permeable membrane, and method of operating gas permeable membrane module
JP2009254935A (en) * 2008-04-14 2009-11-05 Kurita Water Ind Ltd Gas dissolving membrane device and method of manufacturing gas-dissolved solution
JP2010023002A (en) * 2008-07-24 2010-02-04 Kurita Water Ind Ltd Apparatus for supplying gas-dissolved water and method for producing gas-dissolved water

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09150009A (en) * 1995-11-30 1997-06-10 Dainippon Screen Mfg Co Ltd Treating liquid supply device
JPH1177023A (en) * 1997-09-02 1999-03-23 Kurita Water Ind Ltd Preparation of hydrogen-containing ultrapure water
JP2000051606A (en) * 1998-08-07 2000-02-22 Japan Organo Co Ltd Gas permeation membrane apparatus
JP2000189742A (en) * 1998-12-28 2000-07-11 Kurita Water Ind Ltd Gas dissolving module
JP2003334433A (en) * 2002-05-16 2003-11-25 Kurita Water Ind Ltd Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water
JP2005270793A (en) * 2004-03-24 2005-10-06 Kurita Water Ind Ltd Apparatus for production of nitrogen-dissolved water
JP2006071340A (en) * 2004-08-31 2006-03-16 Kurita Water Ind Ltd Method of measuring concentration of dissolved gas in liquid, measuring device, and manufacture device of nitrogen gas-dissolved water
JP2007185559A (en) * 2006-01-11 2007-07-26 Japan Organo Co Ltd Method and device for dissolving gas
JP2007319843A (en) * 2006-06-05 2007-12-13 Kurita Water Ind Ltd Gas dissolving module
JP2009040656A (en) * 2007-08-10 2009-02-26 Kurita Water Ind Ltd Apparatus and method for producing carbonated water, and method of washing electronic member
JP2009113013A (en) * 2007-11-09 2009-05-28 Kurita Water Ind Ltd Production apparatus of gas dissolved water and production method
JP2009219997A (en) * 2008-03-14 2009-10-01 Kurita Water Ind Ltd Method and apparatus for manufacturing gas-dissolved water
JP2009219996A (en) * 2008-03-14 2009-10-01 Kurita Water Ind Ltd Method of detecting deterioration of gas permeable membrane, and method of operating gas permeable membrane module
JP2009254935A (en) * 2008-04-14 2009-11-05 Kurita Water Ind Ltd Gas dissolving membrane device and method of manufacturing gas-dissolved solution
JP2010023002A (en) * 2008-07-24 2010-02-04 Kurita Water Ind Ltd Apparatus for supplying gas-dissolved water and method for producing gas-dissolved water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131852A (en) * 2016-01-29 2017-08-03 野村マイクロ・サイエンス株式会社 Functional water production apparatus, and functional water production method
JP2020087999A (en) * 2018-11-16 2020-06-04 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP7170511B2 (en) 2018-11-16 2022-11-14 株式会社Screenホールディングス SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP2020165824A (en) * 2019-03-29 2020-10-08 栗田工業株式会社 Dissolved gas concentration measuring device and measuring method
WO2020203122A1 (en) * 2019-03-29 2020-10-08 栗田工業株式会社 Dissolved-gas concentration measurement apparatus and measurement method

Also Published As

Publication number Publication date
JP5999222B2 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2010113863A1 (en) Device for supplying water containing dissolved gas and process for producing water containing dissolved gas
US8999069B2 (en) Method for producing cleaning water for an electronic material
JP3765354B2 (en) Method for producing hydrogen-containing ultrapure water
JP5999222B2 (en) Gas dissolved water supply apparatus and gas dissolved water manufacturing method
JP2006071340A (en) Method of measuring concentration of dissolved gas in liquid, measuring device, and manufacture device of nitrogen gas-dissolved water
JP5380870B2 (en) Method and apparatus for producing gas-dissolved water
JP5320665B2 (en) Ultrapure water production apparatus and method
US9796603B2 (en) Pressure-less ozonated di-water (DIO3) recirculation reclaim system
JP2005218885A (en) Hydrogen water manufacturing apparatus, hydrogen water manufacturing method, and hydrogen water
JP2003062403A (en) Operating method for membrane degasifier
JP2012176360A (en) Production unit of gas dissolved water
JP5092968B2 (en) Gas dissolved water supply apparatus and gas dissolved water manufacturing method
JP4893592B2 (en) Gas dissolved water manufacturing apparatus and manufacturing method
JP5663410B2 (en) Ultrapure water production method and apparatus
JP2009254935A (en) Gas dissolving membrane device and method of manufacturing gas-dissolved solution
JP5029441B2 (en) Deterioration detection method of gas permeable membrane and operation method of gas permeable membrane module
JP4090361B2 (en) Method and apparatus for producing ozone-containing ultrapure water
JP5358910B2 (en) Carbonated water manufacturing apparatus and manufacturing method
JP5552792B2 (en) Gas dissolved water production apparatus and production method
JP2012139656A (en) Method and system for making nitrogen gas-dissolved water
JP4998200B2 (en) Gas-dissolved water production unit, production apparatus and production method
WO2020203122A1 (en) Dissolved-gas concentration measurement apparatus and measurement method
TW202106365A (en) Systems and methods for generating a dissolved ammonia solution with reduced dissolved carrier gas and oxygen content
JP2013008976A (en) Cleaning method of electronic material member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160815

R150 Certificate of patent or registration of utility model

Ref document number: 5999222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150