JP2009254935A - Gas dissolving membrane device and method of manufacturing gas-dissolved solution - Google Patents

Gas dissolving membrane device and method of manufacturing gas-dissolved solution Download PDF

Info

Publication number
JP2009254935A
JP2009254935A JP2008104819A JP2008104819A JP2009254935A JP 2009254935 A JP2009254935 A JP 2009254935A JP 2008104819 A JP2008104819 A JP 2008104819A JP 2008104819 A JP2008104819 A JP 2008104819A JP 2009254935 A JP2009254935 A JP 2009254935A
Authority
JP
Japan
Prior art keywords
gas
valve
condensed water
phase chamber
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008104819A
Other languages
Japanese (ja)
Inventor
Hiroto Tokoshima
裕人 床嶋
Shigeji Kametani
茂二 亀谷
Hiroshi Morita
博志 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008104819A priority Critical patent/JP2009254935A/en
Publication of JP2009254935A publication Critical patent/JP2009254935A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas dissolving membrane device which can be stably operated continuously for a long time and a method of manufacturing a gas-dissolved solution. <P>SOLUTION: A first valve 31 is opened during operation of manufacturing a gas-dissolved water, and a condensate water obtained by condensing process in a gas phase chamber 13 is stored in a reservoir 34 passing through a first valve 31 (a process for reserving condensate water). Next, when the amount of the condensate water measured by a condensate water detection means 35 exceeds a predetermined value, the first valve 31 is closed, and a second valve 32, a third valve 33 and a valve 42 are opened. Further, a sweep gas is supplied to upstream of the reservoir 34 through piping 41, and the condensate water is drained from an outflow part of the reservoir 34 (a process for draining condensate water). After that, the valve 42 and the third valve 33 are closed and a valve 53 is opened by actuating an exhaust device 52, and then the interior of the reservoir 34 is evacuated until the readings of a manometer 54 are equal to the pressure levels measured by the manometer 54 (a process for adjusting pressure). Then, the operation returns to the process of reserving condensate water. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は気体溶解膜装置及び気体溶解液の製造方法に係り、詳しくは、気体透過膜によって内部が液相室と気相室に区画された気体透過膜モジュールを有しており、該液相室に水を供給し、該気相室にガスを供給し、該気体透過膜を経由して該気相室内のガスを該液相室内の水に溶解させることにより、ガス溶解水を製造する気体溶解膜装置及び気体溶解液の製造方法に関する。   The present invention relates to a gas-dissolving membrane device and a method for producing a gas-dissolving solution. Specifically, the gas-dissolving membrane module includes a gas-permeable membrane module that is partitioned into a liquid phase chamber and a gas phase chamber by a gas-permeable membrane. Water is supplied to the chamber, gas is supplied to the gas phase chamber, and the gas in the gas phase chamber is dissolved in the water in the liquid phase chamber via the gas permeable membrane to produce gas-dissolved water The present invention relates to a gas dissolution membrane device and a method for producing a gas solution.

従来、半導体用シリコン基板、液晶用ガラス基板などの洗浄は、主として、過酸化水素水と硫酸の混合液、過酸化水素水と塩酸と水の混合液、過酸化水素水とアンモニア水と水の混合液など、過酸化水素をベースとする濃厚な薬液を用いて高温で洗浄した後に超純水で濯ぐ、いわゆるRCA洗浄法によって行われている。しかし、このRCA洗浄法では、過酸化水素水、高濃度の酸、アルカリなどを多量に使用するために薬液コストが高く、さらにリンス用の超純水のコスト、廃液処理コスト、薬品蒸気を排気し新たに清浄空気を調製する空調コストなど、多大なコストを要する。   Conventionally, cleaning of a silicon substrate for a semiconductor, a glass substrate for a liquid crystal, etc., mainly includes a mixed solution of hydrogen peroxide solution and sulfuric acid, a mixed solution of hydrogen peroxide solution, hydrochloric acid and water, hydrogen peroxide solution, ammonia solution and water. This is performed by a so-called RCA cleaning method in which a concentrated chemical solution based on hydrogen peroxide, such as a mixed solution, is washed at a high temperature and then rinsed with ultrapure water. However, this RCA cleaning method uses a large amount of hydrogen peroxide water, high-concentration acid, alkali, etc., so the cost of the chemical solution is high. In addition, the cost of rinsing ultrapure water, the cost of waste liquid treatment, and chemical vapor are exhausted. However, a large cost is required, such as an air conditioning cost for newly preparing clean air.

これに対し、洗浄工程におけるコストの低減や、環境への負荷の低減を目的とした様々な取り組みがなされ、成果を挙げている。その代表が、特定の気体を溶解した気体溶解水を用い、超音波洗浄等によって被処理物を洗浄する技術である。この特定気体としては、酸素ガス、オゾン、炭酸ガス、希ガス、不活性ガス、水素ガスなどが用いられる。   On the other hand, various efforts have been made to reduce costs in the cleaning process and reduce the burden on the environment. A typical example is a technique for cleaning an object to be processed by ultrasonic cleaning or the like using gas-dissolved water in which a specific gas is dissolved. As this specific gas, oxygen gas, ozone, carbon dioxide gas, rare gas, inert gas, hydrogen gas, or the like is used.

このような気体溶解水を製造する方法として、気体透過膜を内蔵した膜モジュールを用いる方法が知られている。この方法では、気体透過膜の液相側に水を供給すると共に気相側に特定気体を供給し、この気体透過膜を介して気相側のガスを液相側の水に溶解させることにより、気体溶解水を製造する。   As a method for producing such gas-dissolved water, a method using a membrane module incorporating a gas-permeable membrane is known. In this method, water is supplied to the liquid phase side of the gas permeable membrane, a specific gas is supplied to the gas phase side, and the gas on the gas phase side is dissolved in the water on the liquid phase side through the gas permeable membrane. Manufacturing gas-dissolved water.

例えば、特開平11−077023号には、超純水を脱気して溶存気体の飽和度を低下させたのち、この超純水に水素ガスを溶解させることが記載されている。   For example, Japanese Patent Application Laid-Open No. 11-077023 describes that after degassing ultrapure water to lower the saturation of dissolved gas, hydrogen gas is dissolved in this ultrapure water.

第4図は、同号公報の工程系統図である。超純水は、流量計1を経由して脱気膜モジュール2に送られる。脱気膜モジュール2は、ガス透過膜を介して超純水と接する気相側が真空ポンプ3により減圧状態に保たれ、超純水中に溶存している気体が脱気される。溶存気体が脱気された超純水は、次いで水素ガス溶解膜モジュール4に送られる。水素ガス溶解膜モジュール4においては、水素ガス供給器5から供給される水素ガスが気相側に送られ、ガス透過膜を介して超純水に供給される。溶存水素ガス濃度が所定の値に達した超純水に、薬液貯槽6から薬注ポンプ7によりアンモニア水などの薬液を添加し、所定のpH値に調整する。水素ガスを溶解し、アルカリ性となった水素含有超純水は、最後に精密ろ過装置8に送られ、MFフィルターなどにより微粒子が除去される。   FIG. 4 is a process flow diagram of the publication. The ultrapure water is sent to the deaeration membrane module 2 via the flow meter 1. In the degassing membrane module 2, the gas phase in contact with the ultrapure water through the gas permeable membrane is kept in a reduced pressure state by the vacuum pump 3, and the gas dissolved in the ultrapure water is degassed. The ultrapure water from which the dissolved gas has been degassed is then sent to the hydrogen gas dissolving membrane module 4. In the hydrogen gas dissolving membrane module 4, the hydrogen gas supplied from the hydrogen gas supplier 5 is sent to the gas phase side and supplied to ultrapure water through the gas permeable membrane. A chemical solution such as ammonia water is added from the chemical solution storage tank 6 to the ultrapure water in which the dissolved hydrogen gas concentration has reached a predetermined value by the chemical injection pump 7 and adjusted to a predetermined pH value. The hydrogen-containing ultrapure water that has become alkaline due to the dissolution of hydrogen gas is finally sent to the microfiltration device 8 and fine particles are removed by an MF filter or the like.

脱気膜モジュール2の入口及び出口に設置した溶存気体測定センサ9により、超純水中の気体量を測定して飽和度を求め、信号を真空ポンプに送って超純水の飽和度と所望飽和度とを対比し、脱気量を調整する。脱気量の調整は、例えば、真空ポンプによる真空度を真空度調節弁の開度を調整して行う。脱気後の超純水の気体飽和度を溶存気体測定センサ9により測定し、水素ガス溶解膜モジュールから流出する水素含有超純水中の水素ガス濃度を溶存水素測定センサ9Aにより測定する。これらの測定信号を水素ガス供給器に送り、例えば、水素ガス供給路に設けた弁の開度などを調整することにより水素ガスの供給量を制御する。
特開平11−077023号
The dissolved gas measurement sensors 9 installed at the inlet and outlet of the degassing membrane module 2 measure the amount of gas in the ultrapure water to determine the saturation, and send a signal to the vacuum pump to determine the saturation and the desired purity of the ultrapure water. The amount of deaeration is adjusted by comparing with the degree of saturation. The deaeration amount is adjusted, for example, by adjusting the degree of vacuum by the vacuum pump by adjusting the degree of opening of the vacuum degree adjusting valve. The gas saturation of the ultrapure water after deaeration is measured by the dissolved gas measuring sensor 9, and the hydrogen gas concentration in the hydrogen-containing ultrapure water flowing out from the hydrogen gas dissolving membrane module is measured by the dissolved hydrogen measuring sensor 9A. These measurement signals are sent to the hydrogen gas supply device, and the supply amount of the hydrogen gas is controlled by adjusting, for example, the opening degree of a valve provided in the hydrogen gas supply path.
JP-A-11-077023

上記特開平11−077023号において、水素ガス溶解膜モジュール4のガス透過膜は、気体のみを透過し、液体を透過しない特性を有するが、水蒸気は透過する。このため、ガス透過膜を透過して液相室から気相室へ水蒸気が拡散してくる。このように液相室から気相室へガス透過膜を透過した水蒸気は、気相室で結露して凝縮水となり、気相室内に溜まる。   In the above-mentioned Japanese Patent Application Laid-Open No. 11-077023, the gas permeable membrane of the hydrogen gas dissolving membrane module 4 has a characteristic of transmitting only gas and not transmitting liquid, but transmits water vapor. For this reason, water vapor diffuses from the liquid phase chamber to the gas phase chamber through the gas permeable membrane. Thus, the water vapor that has passed through the gas permeable membrane from the liquid phase chamber to the gas phase chamber is condensed in the gas phase chamber to become condensed water, and is accumulated in the gas phase chamber.

この凝縮水が少量である場合には、この水素ガス溶解膜モジュール4の性能に及ぼす影響は軽微であるが、凝縮水が多量になると、この凝縮水で被われるガス透過膜の気相室側の膜面積が大きくなり、ガス透過膜のうちガスの透過に寄与する有効面積が減少する。これにより、水素ガス溶解膜モジュール4の性能が低下し、超純水に水素ガスを十分に溶解させることができなくなる。   When the amount of the condensed water is small, the influence on the performance of the hydrogen gas dissolving membrane module 4 is slight. However, when the amount of condensed water is large, the gas permeable membrane covered with the condensed water is on the gas phase chamber side. As a result, the effective area of the gas permeable membrane contributing to gas permeation decreases. Thereby, the performance of the hydrogen gas-dissolving membrane module 4 is lowered, and the hydrogen gas cannot be sufficiently dissolved in the ultrapure water.

このため、水素ガス溶解膜モジュール4の気相室内に凝縮水が溜まったときに、運転を停止してこの凝縮水を気相室から排出する必要がある。   For this reason, when condensed water accumulates in the gas phase chamber of the hydrogen gas dissolving membrane module 4, it is necessary to stop the operation and discharge the condensed water from the gas phase chamber.

なお、水素ガス溶解膜モジュールの気相室に溜まった凝縮水を運転中に排出する方法として、この気相室に真空ポンプ等の排気装置を接続し、気相室に凝縮水が溜まった時に、この凝縮水をこの真空ポンプで吸引して排出することが考えられる。しかしながら、真空ポンプに液状の水が吸い込まれると、ポンプ駆動部が著しく劣化し、吸引性能の低下、故障の増加などの問題が生じる。その結果、運転を停止し、ポンプのメンテナンスや交換等を行う必要が生じる。また、真空ポンプ等で気相室内の凝縮水を吸引する場合、気相室の圧力が低下するため、気相室からガス透過膜を介して液相室内の超純水に供給される気体量が減少し、気体溶解水の気体濃度が低下するという問題も生じる。   As a method of discharging the condensed water accumulated in the gas phase chamber of the hydrogen gas dissolving membrane module during operation, an exhaust device such as a vacuum pump is connected to the gas phase chamber, and when the condensed water accumulates in the gas phase chamber. It is conceivable that the condensed water is sucked and discharged by the vacuum pump. However, when liquid water is sucked into the vacuum pump, the pump drive section is significantly deteriorated, causing problems such as a reduction in suction performance and an increase in failure. As a result, it is necessary to stop the operation and perform maintenance or replacement of the pump. In addition, when the condensed water in the gas phase chamber is sucked with a vacuum pump or the like, the pressure in the gas phase chamber decreases, so the amount of gas supplied from the gas phase chamber to the ultrapure water in the liquid phase chamber through the gas permeable membrane Decreases and the gas concentration of the gas-dissolved water decreases.

本発明は、上記の問題点を解決し、長期間にわたって連続的かつ安定的に運転することが可能な気体溶解膜装置及び気体溶解液の製造方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide a gas-dissolving membrane device and a method for producing a gas-dissolving solution that can be operated continuously and stably for a long period of time.

本発明(請求項1)のガス溶解水の製造装置は、気体透過膜によって気相室と液相室に区画された気体溶解膜モジュールと、該気相室で凝縮した凝縮水を排出するための凝縮水排出装置とを有する気体溶解膜装置において、該凝縮水排出装置は、該気相室から排出された凝縮水が流入する貯留部及び該貯留部からの水の流出部を備えた排出路と、該気相室と該貯留部との連通及び遮断を行う第1の弁と、該第1の弁を閉止した状態で該貯留部内に加圧ガスを供給して該貯留部内の凝縮水を該流出部から排出させるためのガス供給手段と、を有することを特徴とするものである。   The apparatus for producing gas-dissolved water of the present invention (Claim 1) is for discharging a gas-dissolved membrane module partitioned into a gas phase chamber and a liquid phase chamber by a gas permeable membrane, and condensed water condensed in the gas phase chamber. In the gas dissolution membrane device having the condensate discharge device, the condensate discharge device includes a storage portion into which the condensed water discharged from the gas phase chamber flows and a discharge portion having a water outflow portion from the storage portion. A first valve that communicates and shuts off the passage, the gas phase chamber and the reservoir, and supplies pressurized gas into the reservoir with the first valve closed to condense in the reservoir And a gas supply means for discharging water from the outflow portion.

請求項2の気体溶解膜装置は、請求項1において、前記流出部に第2の弁が設けられており、前記第1の弁及び該第2の弁を閉弁させた状態で該貯留部内の圧力を調節する圧力調節手段を有することを特徴とする。   The gas dissolution membrane device according to claim 2 is the gas dissolution membrane device according to claim 1, wherein a second valve is provided in the outflow portion, and the first valve and the second valve are closed in the storage portion. It has a pressure adjusting means for adjusting the pressure.

請求項3の気体溶解膜装置は、請求項2において、該圧力調節手段は、該排出路内のガスを吸引排気する排気装置を有することを特徴とする。   According to a third aspect of the present invention, there is provided the gas-dissolving membrane device according to the second aspect, wherein the pressure adjusting means includes an exhaust device that sucks and exhausts the gas in the exhaust passage.

本発明(請求項4)の気体溶解液の製造方法は、請求項1ないし3のいずれか1項の気体溶解膜装置を用いて気体溶解液を製造する方法であって、前記液相室に液体を通液すると共に前記気相室に気体を供給し、該気相室内のガスを前記気体透過膜を透過させて該液相室内の液体に溶解させて気体溶解液を得る気体溶解液の製造運転の実行中において、前記第1の弁を開弁し、該気相室で凝縮した凝縮水を前記貯留部に受け入れる凝縮水貯留工程と、該第1の弁を閉弁すると共に前記ガス供給手段から該貯留部内に加圧ガスを供給し、該貯留部内の凝縮水を前記流出部から排出させる凝縮水排出工程と、を順次に行うことを特徴とするものである。   A method for producing a gas solution according to the present invention (Claim 4) is a method for producing a gas solution using the gas dissolution membrane device according to any one of Claims 1 to 3, wherein the gas solution is provided in the liquid phase chamber. A gas solution for passing a liquid and supplying a gas to the gas phase chamber, and allowing the gas in the gas phase chamber to pass through the gas permeable membrane and dissolve in the liquid in the liquid phase chamber to obtain a gas solution. During the execution of the manufacturing operation, the first valve is opened, the condensed water storage step for receiving the condensed water condensed in the gas phase chamber into the storage section, the first valve is closed and the gas is closed. A pressurized gas is supplied from the supply means into the storage section, and a condensed water discharge step for discharging condensed water in the storage section from the outflow section is sequentially performed.

請求項5の気体溶解液の製造方法は、請求項4において、前記凝縮水排出装置は請求項2又は3の凝縮水排出装置であり、前記製造運転の実行中において、前記第1の弁を開弁すると共に前記第2の弁を閉弁し、前記気相室で凝縮した凝縮水を前記貯留部に受け入れる凝縮水貯留工程と、該第1の弁を閉弁すると共に該第2の弁を開弁し、かつ前記ガス供給手段から該貯留部内に加圧ガスを供給して、該貯留部内の凝縮水を前記流出部から排出させる凝縮水排出工程と、該第1の弁及び該第2の弁を閉弁し、前記圧力調節手段で該貯留部内の圧力を該気相室内の圧力と同一に調節した後に、該第1の弁を開弁する圧力調節工程と、を順次に行うことを特徴とする。   According to a fifth aspect of the present invention, there is provided the method for producing a gas solution according to the fourth aspect, wherein the condensate drainage device is the condensate drainage device according to the second or third aspect. A condensed water storage step of opening the valve and closing the second valve to receive condensed water condensed in the gas phase chamber into the storage unit; and closing the first valve and the second valve; A condensate discharge step of supplying pressurized gas from the gas supply means into the reservoir and discharging condensed water in the reservoir from the outflow portion, the first valve and the first valve A pressure adjusting step of sequentially opening the first valve after closing the valve 2 and adjusting the pressure in the reservoir to be the same as the pressure in the gas phase chamber by the pressure adjusting means. It is characterized by that.

本発明の気体溶解膜装置(請求項1ないし3)及び気体溶解液の製造方法(請求項4,5)にあっては、第1の弁を開弁し、気相室で凝縮した凝縮水を貯留部に受け入れることにより、気体溶解液の製造運転中に気相室内に凝縮水が溜まって製造効率が低下することが防止される。また、該貯留部に凝縮水が溜まった場合、第1の弁を閉弁すると共にガス供給手段から該貯留部内に加圧ガスを供給することにより、該貯留部内の凝縮水を流出部から排出させることができる。この際、第1の弁が閉弁しているため、気相室内の圧力が変化することがなく、気体溶解液の製造が安定して継続される。本発明では、このように貯留部内の凝縮水の排出にガス供給手段を用いており、真空ポンプを用いていないため、真空ポンプに凝縮水が吸い込まれることによるポンプ駆動部の劣化、吸引性能の低下、故障の増加などの問題が生じることがない。   In the gas-dissolving membrane device of the present invention (Claims 1 to 3) and the method for producing a gas-dissolving liquid (Claims 4 and 5), the condensed water condensed in the gas phase chamber is opened. Is received in the storage unit, it is prevented that the condensed water accumulates in the gas phase chamber during the manufacturing operation of the gas solution and the manufacturing efficiency decreases. Further, when condensed water accumulates in the reservoir, the first valve is closed and pressurized gas is supplied from the gas supply means into the reservoir, thereby discharging the condensed water in the reservoir from the outflow portion. Can be made. At this time, since the first valve is closed, the pressure in the gas phase chamber does not change, and the production of the gas solution is stably continued. In the present invention, since the gas supply means is used for discharging the condensed water in the storage portion as described above and no vacuum pump is used, the deterioration of the pump driving portion due to the condensed water being sucked into the vacuum pump, and the suction performance There will be no problems such as a decrease or an increase in failure.

請求項2の通り、流出部に第2の弁が設けられており、第1の弁及び第2の弁を閉弁させた状態で貯留部内の圧力を調節する圧力調節手段を有していてもよい。   As described in claim 2, the second valve is provided in the outflow portion, and has pressure adjusting means for adjusting the pressure in the storage portion in a state in which the first valve and the second valve are closed. Also good.

この場合、請求項5の通り、第1の弁を開弁すると共に第2の弁を閉弁し、気相室で凝縮した凝縮水を貯留部に受け入れる凝縮水貯留工程と、該第1の弁を閉弁すると共に該第2の弁を開弁し、かつガス供給手段から該貯留部内に加圧ガスを供給して、該貯留部内の凝縮水を流出部から排出させる凝縮水排出工程と、該第1の弁及び該第2の弁を閉弁し、圧力調節手段で該貯留部内の圧力を該気相室内の圧力と同一に調節した後に、該第1の弁を開弁する圧力調節工程と、を順次に行うことが好ましい。凝縮水貯留工程において第2の弁及び第3の弁が閉弁しているため、系外からガスや不純物が貯留部に逆流することが防止される。圧力調節工程で貯留部内の圧力を気相室内の圧力と同一にしてから凝縮水貯留工程に復帰するため、復帰時に貯留部内の気体が気相室内に逆流したり、気相室内の圧力が変動したりすることがなく、気体溶解液の製造が安定して継続される。凝縮水排出工程で貯留部内の凝縮水が貯留部から排出されているため、その後の圧力調節工程で圧力調節手段が凝縮水を吸い込むことがなく、凝縮水の吸引に起因する圧力調節手段の劣化、性能低下、故障などの問題が生じることがない。   In this case, as in claim 5, the first valve is opened and the second valve is closed, and the condensed water storage step for receiving the condensed water condensed in the gas phase chamber in the storage portion; A condensed water discharge step of closing the valve and opening the second valve, supplying pressurized gas from the gas supply means into the storage section, and discharging condensed water in the storage section from the outflow section; The first valve and the second valve are closed, and the pressure in the reservoir is adjusted by the pressure adjusting means to be the same as the pressure in the gas phase chamber, and then the first valve is opened. It is preferable to sequentially perform the adjustment step. Since the second valve and the third valve are closed in the condensate storage step, it is possible to prevent gas and impurities from flowing back to the storage unit from outside the system. Since the pressure in the storage section is made the same as the pressure in the gas phase chamber in the pressure adjustment process and then returned to the condensed water storage process, the gas in the storage section flows back into the gas phase chamber or the pressure in the gas phase chamber fluctuates at the time of return. The production of the gas solution is stably continued. Since the condensed water in the reservoir is discharged from the reservoir in the condensed water discharge process, the pressure regulator does not suck in the condensed water in the subsequent pressure adjustment process, and the pressure regulator is deteriorated due to the suction of the condensed water. No problems such as performance degradation or failure occur.

以下、図面を参照して本発明の実施の形態を説明する。第1図〜第3図は実施の形態に係る気体溶解膜装置及び気体溶解液の製造方法を説明する系統図である。第1図は凝縮水貯留工程を説明する系統図、第2図は凝縮水排出工程を説明する系統図、第3図は圧力調節工程を説明する系統図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 to FIG. 3 are system diagrams for explaining a gas dissolution membrane device and a method for producing a gas solution according to the embodiment. FIG. 1 is a system diagram illustrating a condensed water storage process, FIG. 2 is a system diagram illustrating a condensed water discharge process, and FIG. 3 is a system diagram illustrating a pressure adjustment process.

この実施の形態は、気体透過膜モジュール10によって気体溶解水を生成させると共に、気体透過膜モジュール10の気相室13内の凝縮水を凝縮水排出装置60で排出するよう構成したものである。   In this embodiment, gas dissolved water is generated by the gas permeable membrane module 10, and condensed water in the gas phase chamber 13 of the gas permeable membrane module 10 is discharged by the condensed water discharge device 60.

気体溶解膜モジュール10内は、気体透過膜11によって液相室12と気相室13に区画されている。   The gas dissolution membrane module 10 is partitioned into a liquid phase chamber 12 and a gas phase chamber 13 by a gas permeable membrane 11.

この気体透過膜10としては、水を透過させず、かつ水に溶解させるガスを透過させるものであれば特に制限はなく、例えば、ポリプロピレン、ポリジメチルシロキサン、ポリカーボネート−ポリジメチルシロキサンブロック共重合体、ポリビニルフェノール−ポリジメチルシロキサン−ポリスルホンブロック共重合体、ポリ(4−メチルペンテン−1)、ポリ(2,6−ジメチルフェニレンオキシド)、ポリテトラフルオロエチレンなどの高分子膜などを挙げることができる。   The gas permeable membrane 10 is not particularly limited as long as it does not permeate water and permeates gas dissolved in water. For example, polypropylene, polydimethylsiloxane, polycarbonate-polydimethylsiloxane block copolymer, Examples thereof include a polymer film such as polyvinylphenol-polydimethylsiloxane-polysulfone block copolymer, poly (4-methylpentene-1), poly (2,6-dimethylphenylene oxide), and polytetrafluoroethylene.

開閉弁21aを備えた原水配管21が、気体溶解膜モジュール10の液相室12に接続されている。また、この液相室12に、気体溶解水取出用の配管23が接続されている。   A raw water pipe 21 provided with an on-off valve 21 a is connected to the liquid phase chamber 12 of the gas dissolution membrane module 10. Further, a pipe 23 for extracting dissolved gas water is connected to the liquid phase chamber 12.

この原水配管21に供給する原水としては、ユースポイントで使用する用途を満足する清浄度があり、気体透過膜を極度に劣化ないし変質させる物質が含まれていないものであれば特に制限はなく、上水、純水、超純水等が用いられる。また、前記第4図の脱気膜モジュール2などで脱気した脱気水を用いてもよい。   The raw water supplied to the raw water pipe 21 is not particularly limited as long as it has a cleanliness that satisfies the application used at the point of use and does not contain substances that extremely deteriorate or alter the gas permeable membrane. Water, pure water, ultrapure water, etc. are used. Moreover, you may use the deaerated water deaerated by the deaeration membrane module 2 of FIG.

この気体溶解膜モジュール10の気相室13に、流量調節弁22aを備えたガス供給配管22が接続されている。   A gas supply pipe 22 having a flow rate adjusting valve 22 a is connected to the gas phase chamber 13 of the gas dissolving membrane module 10.

このガス供給配管22に供給する特定気体としては、例えば、水素、酸素、炭酸ガス、オゾン、アルゴンやヘリウムなどの希ガス、窒素などの不活性ガス、これらのガスの2種以上の混合ガスなどが用いられる。   Examples of the specific gas supplied to the gas supply pipe 22 include hydrogen, oxygen, carbon dioxide, ozone, a rare gas such as argon and helium, an inert gas such as nitrogen, and a mixed gas of two or more of these gases. Is used.

この気相室13に、凝縮水排出装置60が接続されている。この凝縮水排出装置60について次に説明する。   A condensed water discharge device 60 is connected to the gas phase chamber 13. Next, the condensed water discharge device 60 will be described.

この気相室13に管状の排出路30が接続されている。この排出路30は、一端が気相室13に接続され、水平に延在する水平部30aと、該水平部の他端から垂下する垂下部30bとを有している。この垂下部30bに、第1の弁31、第2の弁32及び第3の弁33が上方から下方に向ってこの順に設けられている。この排出路30のうち第1の弁31と第2の弁32の間の部分が貯留部34となっており、該貯留部34の下端側が流出部34aとなっている。該貯留部34に凝縮水検出手段35が設けられている。   A tubular discharge passage 30 is connected to the gas phase chamber 13. One end of the discharge path 30 is connected to the gas phase chamber 13, and has a horizontal portion 30 a that extends horizontally and a hanging portion 30 b that hangs down from the other end of the horizontal portion. A first valve 31, a second valve 32, and a third valve 33 are provided on the hanging portion 30b in this order from the upper side to the lower side. A portion of the discharge path 30 between the first valve 31 and the second valve 32 is a storage portion 34, and a lower end side of the storage portion 34 is an outflow portion 34a. Condensed water detection means 35 is provided in the storage part 34.

この排出路30の内径に制限は無いが、内径が小さすぎると凝縮水が流れにくいため、内径は3.96〜25.4mm特に6〜23mmであることが好ましい。   Although there is no restriction | limiting in the internal diameter of this discharge path 30, since it is difficult for condensed water to flow when an internal diameter is too small, it is preferable that an internal diameter is 3.96-25.4 mm, especially 6-23 mm.

凝縮水検出手段35としては、例えば、この貯留部34に溜まった凝縮水の液面を検知する液面計や、溜まった凝縮水の重量を測定する重量測定計などが用いられる。このうち、構造が簡易であり、かつ正確な検知が可能であるため、液面計を用いるのが好ましい。液面計としては、光、超音波、静電容量などを利用する液面計等を用いることができる。   As the condensed water detection means 35, for example, a liquid level meter that detects the liquid level of the condensed water accumulated in the storage unit 34, a weight meter that measures the weight of the accumulated condensed water, or the like is used. Among these, since the structure is simple and accurate detection is possible, it is preferable to use a liquid level gauge. As the liquid level gauge, a liquid level gauge using light, ultrasonic waves, capacitance, or the like can be used.

この貯留部34の上部側に、該貯留部34にスイープガスを供給するためのガス供給配管41が接続されている。このガス供給配管41に、弁42が設けられている。   A gas supply pipe 41 for supplying sweep gas to the reservoir 34 is connected to the upper side of the reservoir 34. A valve 42 is provided in the gas supply pipe 41.

このスイープガスとしては、供給ガスと同じものが挙げられる。例えば、水素ガス、酸素ガス、炭酸ガス、オゾン、アルゴンやヘリウムなどの希ガス、窒素などの不活性ガス等が例示される。   Examples of the sweep gas include the same as the supply gas. For example, hydrogen gas, oxygen gas, carbon dioxide gas, ozone, rare gas such as argon or helium, inert gas such as nitrogen, etc. are exemplified.

この排出路30のうち第2の弁32と第3の弁33との間の位置に、貯留部34内の気体を排出するための排気装置52を備えた排気配管51が接続されている。この排気配管51には、弁53及び圧力計54が設けられている。   An exhaust pipe 51 including an exhaust device 52 for discharging the gas in the storage section 34 is connected to a position between the second valve 32 and the third valve 33 in the discharge path 30. The exhaust pipe 51 is provided with a valve 53 and a pressure gauge 54.

排気装置52としては、貯留部34内を15kPa以下、特に10kPa以下に減圧する能力があるものが好適に用いられる。排気装置としては、真空ポンプやアスピレータなどが挙げられる。真空ポンプを用いる場合、真空側への汚染を防止するためにオイルレスのものが好適に用いられる。   As the exhaust device 52, an exhaust device having an ability to depressurize the inside of the storage section 34 to 15 kPa or less, particularly 10 kPa or less is suitably used. Examples of the exhaust device include a vacuum pump and an aspirator. When a vacuum pump is used, an oilless type is preferably used in order to prevent contamination on the vacuum side.

この排出路30のうち第1の弁31よりも気相室13側の位置に、圧力計36が設けられている。   A pressure gauge 36 is provided in the discharge passage 30 at a position closer to the gas phase chamber 13 than the first valve 31.

図示は省略するが、この凝縮水排出装置60は制御回路を有している。この制御回路は、凝縮水検出手段35からの信号を受信し、この受信信号に基づいて第1の弁31、第2の弁32、第3の弁33、弁42、弁53の開閉制御を行うことができるように構成されている。また、この制御回路は、圧力計36及び圧力計54からの信号を受信し、これらの圧力が同一値又は近似値となるように排気装置52の動作及び/又は弁53の開度の制御を行うことができるように構成されている。   Although not shown, the condensed water discharge device 60 has a control circuit. This control circuit receives a signal from the condensed water detection means 35, and controls opening and closing of the first valve 31, the second valve 32, the third valve 33, the valve 42 and the valve 53 based on the received signal. It is configured to be able to do. The control circuit receives signals from the pressure gauge 36 and the pressure gauge 54, and controls the operation of the exhaust device 52 and / or the opening degree of the valve 53 so that these pressures have the same value or approximate values. It is configured to be able to do.

凝縮水排出装置60で用いる弁(第1の弁31、第2の弁32、第3の弁33、弁42、弁53)は、真空側への汚染を防止するために禁油であることが好ましい。   The valves (the first valve 31, the second valve 32, the third valve 33, the valve 42, and the valve 53) used in the condensed water discharge device 60 are oil-free to prevent contamination on the vacuum side. Is preferred.

次に、このように構成された気体溶解膜装置を用いて気体溶解水を製造する方法の一例を説明する。   Next, an example of a method for producing gas-dissolved water using the gas-dissolving membrane device configured as described above will be described.

本例は、気体溶解膜モジュール10の液相室12に原水を流通させると共に気相室13にガスを供給して気体溶解水を製造する過程において、気相室で凝縮した凝縮水を上記の凝縮水排出装置60を作動させて排出するものである。   In this example, the raw water is circulated in the liquid phase chamber 12 of the gas dissolving membrane module 10 and the gas is supplied to the gas phase chamber 13 to produce the gas dissolved water. The condensed water discharge device 60 is operated and discharged.

従って、先ず気体溶解水を製造する過程について説明し、次いで、この製造過程で実行する凝縮水排出装置60の作動工程(凝縮水貯留工程、凝縮水排出工程及び圧力調節工程)について説明する。   Therefore, first, the process of producing the gas-dissolved water will be described, and then the operation process (condensate storage process, condensate discharge process, and pressure adjustment process) of the condensate discharge device 60 executed in the manufacture process will be described.

[気体溶解水の製造運転]
弁21a及び弁22aを開弁する。なお、凝縮水排出装置60の少なくとも第1の弁31(好ましくはすべての弁)を閉弁しておく。
[Production operation of dissolved gas water]
The valves 21a and 22a are opened. Note that at least the first valve 31 (preferably all valves) of the condensed water discharge device 60 is closed.

これにより、原水が、原水配管21を経由して気体溶解膜モジュール10の液相室12に供給される。また、ガスが、ガス供給配管22を経由して気相室13内に供給される。この気相室13内に供給されたガスが、気体透過膜11を透過し、液相室12内の原水に溶解する。このようにして得られた気体溶解水は、ガス溶解水配管23を経由してユースポイントに供給される。   Thereby, raw water is supplied to the liquid phase chamber 12 of the gas dissolution membrane module 10 via the raw water pipe 21. Further, gas is supplied into the gas phase chamber 13 via the gas supply pipe 22. The gas supplied into the gas phase chamber 13 passes through the gas permeable membrane 11 and dissolves in the raw water in the liquid phase chamber 12. The gas dissolved water thus obtained is supplied to the use point via the gas dissolved water pipe 23.

なお、気相室13内の圧力は溶存ガス濃度によって決まるが、水素の場合60〜100kPa程度とするのが好ましい。   The pressure in the gas phase chamber 13 is determined by the dissolved gas concentration, but in the case of hydrogen, it is preferably about 60 to 100 kPa.

このようにして気体溶解水を製造する過程において、水蒸気が液相室12から気体透過膜11を透過して気相室13に徐々に拡散し、気相室13で結露して凝縮水となる。この気相室13内の凝縮水は、上記の凝縮水排出装置60を用いて、次のようにして排出される。   In the process of producing the gas-dissolved water in this way, water vapor permeates through the gas permeable membrane 11 from the liquid phase chamber 12 and gradually diffuses into the gas phase chamber 13, and is condensed in the gas phase chamber 13 to become condensed water. . The condensed water in the gas phase chamber 13 is discharged as follows using the condensed water discharge device 60 described above.

[凝縮水貯留工程(第1図)]
上記の気体溶解水の製造運転の実行中において、凝縮水排出装置60の第2の弁32、第3の弁33、弁42、弁53が閉弁した状態において、第1の弁31を開弁する(第1図)。
[Condensate storage process (Fig. 1)]
During execution of the gas dissolved water production operation, the first valve 31 is opened while the second valve 32, the third valve 33, the valve 42, and the valve 53 of the condensed water discharge device 60 are closed. Valve (FIG. 1).

これにより、気相室13で凝縮した凝縮水は、排出路30及び第1の弁31を通って貯留部34に貯留される。この貯留部34に貯留された凝縮水量は、凝縮水検出手段35によって測定される。   Thereby, the condensed water condensed in the gas phase chamber 13 is stored in the storage unit 34 through the discharge path 30 and the first valve 31. The amount of condensed water stored in the storage unit 34 is measured by the condensed water detection means 35.

この貯留部34への凝縮水の貯留時に第2の弁32、第3の弁33が閉弁しているため、系外から気体や不純物が排出路30、第3の弁33、第2の弁32を介して貯留部34に流入することが防止される。   Since the second valve 32 and the third valve 33 are closed when condensate is stored in the storage unit 34, gas and impurities are discharged from the outside of the system through the discharge passage 30, the third valve 33, and the second valve. Inflow into the storage part 34 through the valve 32 is prevented.

[凝縮水排出工程(第2図)]
凝縮水検出手段35によって測定された凝縮水量が所定値を超えると、第1の弁31が閉弁すると共に、第2の弁32、第3の弁33及び弁42が開弁する(第2図)。
[Condensate draining process (Fig. 2)]
When the amount of condensed water measured by the condensed water detection means 35 exceeds a predetermined value, the first valve 31 is closed and the second valve 32, the third valve 33, and the valve 42 are opened (second valve). Figure).

これにより、スイープガスが配管41を介して貯留部34内の上部側に供給される。貯留部34内の凝縮水は、このスイープガスに押圧されて貯留部34の流出部34aから排出され、さらに排出路30を通って凝縮水排出装置60の系外に排出される。   As a result, the sweep gas is supplied to the upper side in the storage portion 34 via the pipe 41. Condensed water in the storage unit 34 is pressed by the sweep gas and discharged from the outflow part 34a of the storage unit 34, and further discharged out of the system of the condensed water discharge device 60 through the discharge path 30.

このように、スイープガスの供給によって貯留部34内が加圧されるが、第1の弁31が閉弁しているため、第1の弁31よりも上流側の気相室13にスイープガスが流入したり、該気相室13の圧力が高くなったりすることがない。このため、気体溶解水の製造が安定に継続される。   Thus, although the inside of the storage part 34 is pressurized by the supply of the sweep gas, the first valve 31 is closed, so that the sweep gas is introduced into the gas phase chamber 13 upstream of the first valve 31. Does not flow in or the pressure in the gas phase chamber 13 does not increase. For this reason, manufacture of gas dissolution water is continued stably.

なお、第1の弁31の閉弁と弁42の開弁は同時に行ってもよいが、スイープガスの気相室13への逆流を確実に防止するために、第1の弁31を閉弁した後に弁42を開弁するようにしてもよい。   The closing of the first valve 31 and the opening of the valve 42 may be performed at the same time, but the first valve 31 is closed in order to reliably prevent the reverse flow of the sweep gas to the gas phase chamber 13. After that, the valve 42 may be opened.

また、第2の弁32及び第3の弁33の開弁は、弁42の開弁よりも前、同時、後のいずれであってもよいが、先ず弁42を開弁して貯留部34内を加圧し、次いで第2の弁32及び第3の弁33を開弁するのが好ましい。このように貯留部34内を加圧してから第2の弁32及び第3の弁33を開弁する場合、系外の空気や異物が排出路30、第3の弁33及び第2の弁32を通って貯留部34内に逆流することが防止される。この逆流を防止するためには、貯留部34内の圧力を0.05PMa以上にしてから、第2の弁32及び第3の弁33を開弁することが好ましい。   Further, the second valve 32 and the third valve 33 may be opened before, simultaneously with, or after the valve 42 is opened. First, the valve 42 is opened and the storage unit 34 is opened. It is preferable to pressurize the inside and then open the second valve 32 and the third valve 33. When the second valve 32 and the third valve 33 are opened after pressurizing the inside of the storage portion 34 in this way, air and foreign matters outside the system are discharged from the discharge passage 30, the third valve 33, and the second valve. Backflow into the reservoir 34 through 32 is prevented. In order to prevent this backflow, it is preferable to open the second valve 32 and the third valve 33 after setting the pressure in the reservoir 34 to 0.05 PMa or more.

第2の弁32と第3の弁33は、同時に開弁してもよく、いずれかを先に開弁してもよい。   The second valve 32 and the third valve 33 may be opened simultaneously, or one of them may be opened first.

凝縮水の排出を促進するために、第2の弁32及び第3の弁33を開弁した状態で弁42を開閉させてもよい。また、第2の弁32及び第3の弁33を交互に開弁させながら、弁42を開閉させてもよい。さらに、上記の凝縮水貯留工程、当該凝縮水排出工程、及び後述する圧力調整工程を繰り返すことで、凝縮水の排出を促してもよい。   In order to promote the discharge of the condensed water, the valve 42 may be opened and closed with the second valve 32 and the third valve 33 opened. Further, the valve 42 may be opened and closed while the second valve 32 and the third valve 33 are alternately opened. Further, the condensed water storage process, the condensed water discharge process, and the pressure adjustment process described later may be repeated to promote the discharge of the condensed water.

[圧力調節工程(第3図)]
上記の凝縮水排出工程では、第1の弁31よりも下流側がスイープガスによって加圧されているため、この状態で第1の弁31を開弁して上記の凝縮水貯留工程に復帰した場合、スイープガスが第1の弁31を通って気相室13内に流入するおそれがある。これを防止するために、次の圧力調節工程を行う。
[Pressure adjustment process (Fig. 3)]
In the condensate discharge process, the downstream side of the first valve 31 is pressurized by the sweep gas, and therefore the first valve 31 is opened in this state and the process returns to the condensate storage process. The sweep gas may flow into the gas phase chamber 13 through the first valve 31. In order to prevent this, the following pressure adjustment process is performed.

上記の凝縮水排出工程を行った後、弁42及び第3の弁33を閉弁する。また、排気装置52を作動させ、弁53を開弁する(第3図)。   After performing the condensed water discharge step, the valve 42 and the third valve 33 are closed. Further, the exhaust device 52 is operated to open the valve 53 (FIG. 3).

これにより、排出路30のうち第1の弁31よりも下流側の部分(第1の弁31と第3の弁33との間の部分)のガスが排気され、圧力が低下する。この排気装置52による排気は、排出路30のうち第1の弁31よりも下流側の部分の圧力(圧力計54で測定される圧力)が、上流側の部分の圧力(圧力計54で測定される圧力)と同一値又は近似値になるまで行われる。   As a result, the gas in the portion downstream of the first valve 31 in the discharge passage 30 (the portion between the first valve 31 and the third valve 33) is exhausted, and the pressure decreases. In the exhaust by the exhaust device 52, the pressure in the portion downstream of the first valve 31 in the discharge passage 30 (pressure measured by the pressure gauge 54) is the pressure in the upstream portion (measured by the pressure gauge 54). Until the pressure becomes the same value or approximate value.

この圧力の調節に際しては、弁53として圧力調整弁を用い、該弁53の開度を調整することによって行ってもよい。この圧力調整弁としては、圧力センサーが内蔵されているタイプのものを用いてもよく、この場合、圧力計54を省略することができる。   The pressure may be adjusted by using a pressure adjusting valve as the valve 53 and adjusting the opening degree of the valve 53. As this pressure regulating valve, a type having a built-in pressure sensor may be used. In this case, the pressure gauge 54 can be omitted.

また、この圧力の調節は、排気装置52の抽気量を調整することによって行ってもよい。例えば、排気装置52が真空ポンプである場合には、その周波数を制御すればよく、排気装置52がアスピレータである場合には、駆動流体の圧力や流量を制御すればよい。   Further, the pressure may be adjusted by adjusting the amount of bleed of the exhaust device 52. For example, when the exhaust device 52 is a vacuum pump, the frequency may be controlled, and when the exhaust device 52 is an aspirator, the pressure and flow rate of the driving fluid may be controlled.

このようにして、排出路30のうち第1の弁31よりも下流側の部分の圧力が上流側の部分の圧力と同一になった後、弁53を閉弁すると共に排気装置52を停止する。また、第2の弁32を閉弁すると共に第1の弁31を開弁する。これにより、凝縮水貯留工程(第1図)に復帰する。   In this way, after the pressure in the downstream portion of the discharge passage 30 from the first valve 31 becomes the same as the pressure in the upstream portion, the valve 53 is closed and the exhaust device 52 is stopped. . In addition, the second valve 32 is closed and the first valve 31 is opened. Thereby, it returns to a condensed water storage process (FIG. 1).

これら3工程(凝縮水貯留工程、凝縮水排出工程及び圧力調節工程)は、凝縮水検出手段35による凝縮水の検知量が所定量以下になるまで繰り返し続けられるようにしてもよい。また、凝縮水排出装置60にタイマー及びカウンターを設け、これら3工程を所定時間毎に所定回数繰り返すようにしてもよい。   These three steps (condensed water storage step, condensed water discharge step, and pressure adjustment step) may be repeated until the amount of condensed water detected by the condensed water detection means 35 becomes a predetermined amount or less. Further, a timer and a counter may be provided in the condensed water discharge device 60, and these three steps may be repeated a predetermined number of times every predetermined time.

以下、実施例及び比較例を参照して、本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

[実施例1]
第1図の装置を用い、液相室12に通水する原水として十分に脱気した超純水を用い、気相室13に供給する特定気体として水素ガスを用いて、水素溶解水を製造した。液相室12には超純水を毎時1mで供給し、気相室13には水素ガスを毎時1.2gで供給し、3ヶ月間の連続運転を行った。
[Example 1]
Using the apparatus shown in FIG. 1, hydrogen-dissolved water is produced using ultrapure water sufficiently degassed as raw water passing through the liquid phase chamber 12 and using hydrogen gas as the specific gas supplied to the gas phase chamber 13. did. Ultrapure water was supplied to the liquid phase chamber 12 at 1 m 3 / h, and hydrogen gas was supplied to the gas phase chamber 13 at 1.2 g / h to perform continuous operation for 3 months.

凝縮水検出手段35として液面計を用い、排気装置52として真空ポンプを用いた。   A liquid level gauge was used as the condensed water detection means 35, and a vacuum pump was used as the exhaust device 52.

貯留部34内の凝縮水の排出は、60分に1回の頻度で行った。   The condensed water in the storage part 34 was discharged once every 60 minutes.

この3ヶ月の連続運転によって、溶存水素ガス濃度1.2mg/Lの水素ガス溶解水を毎時1mにて製造することができた。 Through continuous operation for three months, hydrogen gas-dissolved water having a dissolved hydrogen gas concentration of 1.2 mg / L could be produced at 1 m 3 / h.

[比較例1]
第1図の装置から、ガス供給配管41及び弁53を除き、第3の弁33を閉弁した装置を用い、実施例1と同様にして3ヶ月の連続運転を行った。
[Comparative Example 1]
Using the apparatus in which the third valve 33 was closed except for the gas supply pipe 41 and the valve 53 from the apparatus of FIG.

なお、比較例1では、凝縮水検出手段35が凝縮水を検知したら、第1の弁31を閉弁すると共に第2の弁32を開弁し、真空ポンプ52によって貯留部34内の凝縮水を系外に排出した。   In the first comparative example, when the condensed water detecting means 35 detects the condensed water, the first valve 31 is closed and the second valve 32 is opened, and the condensed water in the reservoir 34 is opened by the vacuum pump 52. Was discharged out of the system.

運転開始から2ヶ月間は、溶存水素ガス濃度1.2mg/Lの水素ガス溶解水を毎時1mにて製造することができた。しかしながら、2ヶ月経過後から真空ポンプ52の吸引能力が落ち、凝縮水の吸引を行わなくなった。さらに運転を継続したところ、溶存水素ガス濃度が徐々に低下し、運転開始3ヶ月後には、溶存水素ガス濃度が0.9mg/Lにまで低下した。運転を停止して気体溶解膜モジュール10を開放したところ、気相室13の約3/4が凝縮水で浸水していた。 For two months from the start of operation, hydrogen gas-dissolved water having a dissolved hydrogen gas concentration of 1.2 mg / L could be produced at 1 m 3 / h. However, the suction capability of the vacuum pump 52 dropped after two months, and the condensed water was no longer sucked. When the operation was further continued, the dissolved hydrogen gas concentration gradually decreased, and the dissolved hydrogen gas concentration decreased to 0.9 mg / L three months after the operation started. When the operation was stopped and the gas dissolving membrane module 10 was opened, about 3/4 of the gas phase chamber 13 was submerged with condensed water.

実施の形態に係る気体溶解膜装置の凝縮水貯留工程を説明する系統図である。It is a systematic diagram explaining the condensed water storage process of the gas dissolving film apparatus which concerns on embodiment. 実施の形態に係る気体溶解膜装置の凝縮水排出工程を説明する系統図である。It is a systematic diagram explaining the condensed water discharge process of the gas dissolution membrane apparatus concerning an embodiment. 実施の形態に係る気体溶解膜装置の圧力調節工程を説明する系統図である。It is a systematic diagram explaining the pressure regulation process of the gas dissolution film apparatus concerning an embodiment. 従来例に係る水素溶解水の製造工程系統図である。It is a manufacturing-process system diagram of the hydrogen-dissolved water which concerns on a prior art example.

符号の説明Explanation of symbols

10 気体溶解膜モジュール
11 気体透過膜
12 液相室
13 気相室
30 排出路
31 第1の弁
32 第2の弁
33 第3の弁
34 貯留部
35 凝縮水検出手段
41 ガス供給配管
52 排気装置
DESCRIPTION OF SYMBOLS 10 Gas melt | dissolution membrane module 11 Gas permeable membrane 12 Liquid phase chamber 13 Gas phase chamber 30 Discharge path 31 1st valve 32 2nd valve 33 3rd valve 34 Storage part 35 Condensed water detection means 41 Gas supply piping 52 Exhaust device

Claims (5)

気体透過膜によって気相室と液相室に区画された気体溶解膜モジュールと、該気相室で凝縮した凝縮水を排出するための凝縮水排出装置とを有する気体溶解膜装置において、
該凝縮水排出装置は、
該気相室から排出された凝縮水が流入する貯留部及び該貯留部からの水の流出部を備えた排出路と、
該気相室と該貯留部との連通及び遮断を行う第1の弁と、
該第1の弁を閉止した状態で該貯留部内に加圧ガスを供給して該貯留部内の凝縮水を該流出部から排出させるためのガス供給手段と、
を有することを特徴とする気体溶解膜装置。
In a gas dissolution membrane device having a gas dissolution membrane module partitioned into a gas phase chamber and a liquid phase chamber by a gas permeable membrane, and a condensed water discharge device for discharging condensed water condensed in the gas phase chamber,
The condensate drain device is
A storage section into which condensed water discharged from the gas phase chamber flows in, and a discharge path having an outflow section of water from the storage section;
A first valve that communicates and shuts off the gas phase chamber and the reservoir;
Gas supply means for supplying pressurized gas into the reservoir with the first valve closed to discharge condensed water in the reservoir from the outlet;
A gas-dissolving membrane device comprising:
請求項1において、前記流出部に第2の弁が設けられており、前記第1の弁及び該第2の弁を閉弁させた状態で該貯留部内の圧力を調節する圧力調節手段を有することを特徴とする気体溶解膜装置。   2. The pressure adjusting means according to claim 1, wherein a second valve is provided in the outflow portion, and the pressure in the storage portion is adjusted with the first valve and the second valve closed. A gas-dissolving membrane device characterized by that. 請求項2において、該圧力調節手段は、該排出路内のガスを吸引排気する排気装置を有することを特徴とする気体溶解膜装置。   3. The gas dissolution membrane device according to claim 2, wherein the pressure adjusting means includes an exhaust device that sucks and exhausts the gas in the exhaust passage. 請求項1ないし3のいずれか1項の気体溶解膜装置を用いて気体溶解液を製造する方法であって、
前記液相室に液体を通液すると共に前記気相室に気体を供給し、該気相室内のガスを前記気体透過膜を透過させて該液相室内の液体に溶解させて気体溶解液を得る気体溶解液の製造運転の実行中において、
前記第1の弁を開弁し、該気相室で凝縮した凝縮水を前記貯留部に受け入れる凝縮水貯留工程と、
該第1の弁を閉弁すると共に前記ガス供給手段から該貯留部内に加圧ガスを供給し、該貯留部内の凝縮水を前記流出部から排出させる凝縮水排出工程と、
を順次に行うことを特徴とする気体溶解液の製造方法。
A method for producing a gas-dissolved solution using the gas-dissolving membrane device according to any one of claims 1 to 3,
A liquid is passed through the liquid phase chamber and gas is supplied to the gas phase chamber, and the gas in the gas phase chamber is allowed to pass through the gas permeable membrane and dissolved in the liquid in the liquid phase chamber. During the execution of the production operation of the obtained gas solution,
A condensed water storage step of opening the first valve and receiving condensed water condensed in the gas phase chamber into the storage unit;
A condensed water discharge step of closing the first valve and supplying pressurized gas from the gas supply means into the storage section, and discharging condensed water in the storage section from the outflow section;
Are sequentially performed. A method for producing a gas-dissolved solution.
請求項4において、前記凝縮水排出装置は請求項2又は3の凝縮水排出装置であり、
前記製造運転の実行中において、
前記第1の弁を開弁すると共に前記第2の弁を閉弁し、前記気相室で凝縮した凝縮水を前記貯留部に受け入れる凝縮水貯留工程と、
該第1の弁を閉弁すると共に該第2の弁を開弁し、かつ前記ガス供給手段から該貯留部内に加圧ガスを供給して、該貯留部内の凝縮水を前記流出部から排出させる凝縮水排出工程と、
該第1の弁及び該第2の弁を閉弁し、前記圧力調節手段で該貯留部内の圧力を該気相室内の圧力と同一に調節した後に、該第1の弁を開弁する圧力調節工程と、
を順次に行うことを特徴とする気体溶解液の製造方法。
In Claim 4, the said condensed water discharge device is the condensed water discharge device of Claim 2 or 3,
During execution of the manufacturing operation,
A condensed water storage step of opening the first valve and closing the second valve, and receiving condensed water condensed in the gas phase chamber in the storage unit;
The first valve is closed and the second valve is opened, and pressurized gas is supplied from the gas supply means into the reservoir, and the condensed water in the reservoir is discharged from the outlet. A condensate draining process,
The first valve and the second valve are closed, and the pressure adjusting means adjusts the pressure in the reservoir to the same as the pressure in the gas phase chamber, and then opens the first valve. The adjustment process;
Are sequentially performed. A method for producing a gas-dissolved solution.
JP2008104819A 2008-04-14 2008-04-14 Gas dissolving membrane device and method of manufacturing gas-dissolved solution Pending JP2009254935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008104819A JP2009254935A (en) 2008-04-14 2008-04-14 Gas dissolving membrane device and method of manufacturing gas-dissolved solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008104819A JP2009254935A (en) 2008-04-14 2008-04-14 Gas dissolving membrane device and method of manufacturing gas-dissolved solution

Publications (1)

Publication Number Publication Date
JP2009254935A true JP2009254935A (en) 2009-11-05

Family

ID=41383076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008104819A Pending JP2009254935A (en) 2008-04-14 2008-04-14 Gas dissolving membrane device and method of manufacturing gas-dissolved solution

Country Status (1)

Country Link
JP (1) JP2009254935A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180500A (en) * 2015-05-29 2015-10-15 栗田工業株式会社 Gas dissolved water supply device and manufacturing method of gas dissolved water
JP2021041342A (en) * 2019-09-11 2021-03-18 オルガノ株式会社 Apparatus and method for manufacturing gas-dissolved water

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185559A (en) * 2006-01-11 2007-07-26 Japan Organo Co Ltd Method and device for dissolving gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185559A (en) * 2006-01-11 2007-07-26 Japan Organo Co Ltd Method and device for dissolving gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180500A (en) * 2015-05-29 2015-10-15 栗田工業株式会社 Gas dissolved water supply device and manufacturing method of gas dissolved water
JP2021041342A (en) * 2019-09-11 2021-03-18 オルガノ株式会社 Apparatus and method for manufacturing gas-dissolved water
JP7328840B2 (en) 2019-09-11 2023-08-17 オルガノ株式会社 Gas-dissolved water production device and method

Similar Documents

Publication Publication Date Title
TWI534098B (en) Gas-dissolving water supply device and gas-dissolving water
US8999069B2 (en) Method for producing cleaning water for an electronic material
JP2001190938A (en) Method of detecting breakage of water treating membrane
JP2006071340A (en) Method of measuring concentration of dissolved gas in liquid, measuring device, and manufacture device of nitrogen gas-dissolved water
JP2005218885A (en) Hydrogen water manufacturing apparatus, hydrogen water manufacturing method, and hydrogen water
JP5380870B2 (en) Method and apparatus for producing gas-dissolved water
JP5999222B2 (en) Gas dissolved water supply apparatus and gas dissolved water manufacturing method
JP2000189742A (en) Gas dissolving module
JP4919385B2 (en) Gas dissolving method and apparatus
JP2009254935A (en) Gas dissolving membrane device and method of manufacturing gas-dissolved solution
JP2000271549A (en) Gas-dissolved water supply device
JP2012176360A (en) Production unit of gas dissolved water
JP4893592B2 (en) Gas dissolved water manufacturing apparatus and manufacturing method
JP2007319843A (en) Gas dissolving module
JP5092968B2 (en) Gas dissolved water supply apparatus and gas dissolved water manufacturing method
TW202003098A (en) Membrane clean device and method for cleaning membrane
JP5358910B2 (en) Carbonated water manufacturing apparatus and manufacturing method
JP3561589B2 (en) Membrane deaerator
JP4998200B2 (en) Gas-dissolved water production unit, production apparatus and production method
JP3290385B2 (en) Resist processing method and resist processing apparatus
JP5552792B2 (en) Gas dissolved water production apparatus and production method
JP2012139656A (en) Method and system for making nitrogen gas-dissolved water
JP2004188252A (en) Membrane filtration apparatus and its operating method
JP7328840B2 (en) Gas-dissolved water production device and method
WO2020255251A1 (en) Water treatment device and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110328

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120217

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108