JP4919385B2 - Gas dissolving method and apparatus - Google Patents

Gas dissolving method and apparatus Download PDF

Info

Publication number
JP4919385B2
JP4919385B2 JP2006003359A JP2006003359A JP4919385B2 JP 4919385 B2 JP4919385 B2 JP 4919385B2 JP 2006003359 A JP2006003359 A JP 2006003359A JP 2006003359 A JP2006003359 A JP 2006003359A JP 4919385 B2 JP4919385 B2 JP 4919385B2
Authority
JP
Japan
Prior art keywords
gas
condensed water
drain pot
supply system
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006003359A
Other languages
Japanese (ja)
Other versions
JP2007185559A (en
Inventor
紀子 大信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2006003359A priority Critical patent/JP4919385B2/en
Publication of JP2007185559A publication Critical patent/JP2007185559A/en
Application granted granted Critical
Publication of JP4919385B2 publication Critical patent/JP4919385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガス溶解モジュールを用いたガス溶解方法および装置に関し、とくに、運転中常時所望のガス溶解濃度範囲内に精度よく維持できるようにしたガス溶解方法および装置に関する。   The present invention relates to a gas dissolution method and apparatus using a gas dissolution module, and more particularly, to a gas dissolution method and apparatus that can be accurately maintained within a desired gas dissolution concentration range at all times during operation.

例えば脱気水に半透膜を用いたガス溶解モジュールを介してガスを溶解させる方法および装置が知られている。溶解対象ガスとしては、窒素、水素、二酸化炭素、酸素、オゾンなどが挙げられる。ガス溶解モジュールを介してガスを溶解させる場合、飽和溶解度以上であれば気体側は正圧となるが、飽和溶解度以下に溶解させる場合には、気体側は負圧となる。通常気体側には水側からガス溶解膜(半透膜)を水蒸気が抜けて凝縮水として排出されるため、その凝縮水を抜く必要が出てくる。この時、他のガスが混入しては困るので、ガス側が大気開放にならないように、通常は、凝縮水は正圧であれば凝縮水を溜めるドレインポットを設ける。例えば図1に示すように、原水1(例えば、脱気純水)に対し半透膜2を用いたガス溶解モジュール3を介して溶解させるべきガス4を溶解させてガス溶解水5を得るに際し、半透膜2を通して気体側に生成される凝縮水を溜めるドレインポット6を設け、ドレインポット6に凝縮水を溜めて、一定時間もしくは一定容量毎に凝縮水排出系の弁V1(通常運転時は閉)を開けて排出する方式をとって凝縮水の排出を行なっている(例えば、特許文献1、2)。   For example, a method and an apparatus for dissolving a gas via a gas dissolving module using a semipermeable membrane in deaerated water are known. Examples of the gas to be dissolved include nitrogen, hydrogen, carbon dioxide, oxygen, and ozone. When the gas is dissolved through the gas dissolution module, the gas side has a positive pressure if the solubility is higher than the saturation solubility, but when the gas is dissolved below the saturation solubility, the gas side has a negative pressure. Normally, since water vapor passes through the gas dissolution membrane (semipermeable membrane) from the water side and is discharged as condensed water on the gas side, it is necessary to remove the condensed water. At this time, since it is difficult to mix other gases, a drain pot for storing condensed water is usually provided if the condensed water is positive pressure so that the gas side does not open to the atmosphere. For example, as shown in FIG. 1, when the gas 4 to be dissolved is dissolved in the raw water 1 (for example, degassed pure water) through the gas dissolution module 3 using the semipermeable membrane 2, the gas dissolved water 5 is obtained. A drain pot 6 is provided for storing condensed water generated on the gas side through the semipermeable membrane 2, and the condensed water is stored in the drain pot 6, and the condensed water discharge system valve V 1 (during normal operation) The condensate is discharged using a method of opening and discharging (for example, Patent Documents 1 and 2).

しかし、気体側が負圧となった場合は、弁V1を開けても水は排出されないばかりか水が逆流して大気が混入する可能性もあり、図2に示すような排出方式を採るのが普通である。すなわち、凝縮水排出時は、ドレインポット6への凝縮水供給系の弁V2を閉めてから、弁V3(通常運転時は閉)を開いて押し出し用のガスをドレインポット6内に入れて、弁V1を開けて凝縮水を押し出す。この時、ドレインポット6内の圧力は、押し出し用ガスの圧力とほぼ同じ圧力まで上昇する。その後弁V1、V3を閉め、弁V2を開けると、ドレインポット6内に充満したガスの影響でガス溶解モジュール3のガス側の圧力が上がるため、凝縮水排出後に一時ガス溶解濃度が上昇することになり(例えば、図3に図示)、場合によっては安定した濃度のガス溶解水を得ることができなくなることが問題となっていた。   However, if the gas side has a negative pressure, not only water will be discharged even if the valve V1 is opened, but there is a possibility that the water will flow backward and air may be mixed in. It is normal. That is, when condensate is discharged, the valve V2 of the condensate supply system to the drain pot 6 is closed, and then the valve V3 (closed during normal operation) is opened to put the gas for extrusion into the drain pot 6. Open valve V1 to push out condensed water. At this time, the pressure in the drain pot 6 rises to substantially the same pressure as the pressure of the extrusion gas. After that, when the valves V1 and V3 are closed and the valve V2 is opened, the pressure on the gas side of the gas dissolution module 3 increases due to the gas filled in the drain pot 6, so that the temporary gas dissolution concentration increases after the condensed water is discharged. (For example, as shown in FIG. 3), there is a problem that in some cases, it is impossible to obtain gas-dissolved water having a stable concentration.

図2の例では押し出し用のガスとしては溶解させるガスと同じガスを使用しているが、溶解させるガスとは異なるガスを使用する場合もあり、その場合は窒素を使用するのが一般的である。最近では、そのガス溶解濃度の設定値は厳しくなってきており、設定値±20%以内という厳しい数値を求められることも増えてきており、現状の技術では対応が難しくなってきた。
特開平11−319526号公報 特開平11−128704号公報
In the example of FIG. 2, the same gas as the gas to be dissolved is used as the gas for extrusion. However, a gas different from the gas to be dissolved may be used. In this case, nitrogen is generally used. is there. Recently, the set value of the gas dissolution concentration has become stricter, and the demand for a strict value within a set value of ± 20% is increasing, and it is difficult to cope with the current technology.
JP 11-319526 A Japanese Patent Laid-Open No. 11-128704

そこで本発明の課題は、上記のような問題点に着目し、凝縮水の排出制御に伴うガス溶解濃度の変動を抑え、常時安定したガス溶解濃度を維持可能なガス溶解方法および装置を提供することにある。   Accordingly, an object of the present invention is to provide a gas dissolution method and apparatus capable of maintaining a stable gas dissolution concentration at all times while focusing on the above-described problems and suppressing fluctuations in the gas dissolution concentration associated with condensate discharge control. There is.

上記課題を解決するために、鋭意検討した結果、凝縮水排出後のガス溶解濃度上昇は、ドレインポットの容積や押し出しに使用するガス圧が影響し、ドレインポットの小容積化や押し出しに使用するガス圧の低下によって改善ができることを見出した。   As a result of intensive studies to solve the above problems, the increase in gas dissolution concentration after condensate discharge is affected by the volume of the drain pot and the gas pressure used for extrusion, and is used for reducing the volume of the drain pot and for extrusion. It has been found that improvement can be made by lowering the gas pressure.

また、凝縮水排出後のガス溶解濃度上昇は、ドレインポットの容積や押し出しに使用するガス圧が影響し、ドレインポットの小容積化や押し出しに使用するガス圧の低下によって改善はできるが、凝縮水排出後の濃度上昇をゼロとすることは困難である。上昇をほぼゼロにするための方法として、押し出し用のガスにてドレインポット内が正圧になった後、その正圧分のガスをガス排出手段(例えば、真空ポンプ)で系外へ排気し、通常運転時の圧力まで戻した後に合流させることで、従来の方法で問題となっていた凝縮水排出後のガス溶解濃度のピークを抑えることができることを見出した。   The increase in gas dissolution concentration after draining condensed water is affected by the volume of the drain pot and the gas pressure used for extrusion, and can be improved by reducing the volume of the drain pot and decreasing the gas pressure used for extrusion. It is difficult to make the concentration increase after water discharge zero. As a method to make the rise almost zero, after the pressure in the drain pot becomes positive with the gas for extrusion, the gas for the positive pressure is exhausted out of the system by the gas discharge means (for example, vacuum pump). It has been found that the peak of the gas dissolution concentration after discharging condensed water, which has been a problem in the conventional method, can be suppressed by joining after returning to the pressure during normal operation.

すなわち、本発明に係るガス溶解方法は、半透膜を用いたガス溶解モジュールの液体側に原水を通水し、気体側に溶解用ガスを供給して原水中に溶解させ、前記半透膜を通して液体側から気体側に抜ける水蒸気によって生成された凝縮水をドレインポットに溜めた後、一旦ドレインポットへの凝縮水の供給系を閉じ、次にドレインポットに押し出し用ガスを供給して凝縮水をドレインポットから排出し、しかる後に、ドレインポットへの押し出し用ガスの供給系を閉じるとともにドレインポットからの凝縮水の排出系を閉じた後、ドレインポットへの凝縮水の供給系を再度開くガス溶解方法において、前記押し出し用ガスの圧力(x〔kgf/cm2 〕)と、前記ドレインポットの凝縮水排出後の液面までの容積(y〔ml〕)とを、xとyとのグラフにおいて、近似式y=−628Lnx+454の曲線以下の領域内に設定または制御することを特徴とする方法からなる(第1の方法)。なお、上記近似式におけるLnは自然対数関数である。 That is, in the gas dissolving method according to the present invention, the raw water is passed through the liquid side of the gas dissolving module using the semipermeable membrane, the dissolving gas is supplied to the gas side and dissolved in the raw water, the semipermeable membrane The condensed water generated by the water vapor passing from the liquid side to the gas side through the reservoir is accumulated in the drain pot, and then the condensed water supply system to the drain pot is once closed, and then the extrusion gas is supplied to the drain pot to condense water. The gas is then discharged from the drain pot, and then the gas supply system for extruding the drain pot is closed, the condensed water discharge system from the drain pot is closed, and then the condensed water supply system to the drain pot is opened again. in the dissolution process, the pressure of the extrusion gas (x [kgf / cm 2]), the volume up to the liquid surface after condensate discharge of the drain pot and (y [ml]), x and y In the graph, consisting of wherein to set or control the approximate expression y = -628Lnx + 454 curves following area (first method). Note that Ln in the above approximate expression is a natural logarithmic function.

この第1の方法における上記近似式は試験によって求められたものである。前述の図2に示した装置あるいはそれと同等の装置を用いて、押し出し用ガスの圧力とドレインポットの凝縮水排出後の液面までの容積との関係を調べた結果、図4に示すような関係があることが判明した。図4に示した関係において、前述の如くガス溶解濃度の許容変動値を±20%以内とした場合、図5に示すように、近似式y=−628Lnx+454の曲線以下の領域内に設定または制御することにより、ガス溶解濃度の許容変動範囲内に納めることができることになる。つまり、図4の結果より、設定値+20%以内とするためには押し出し用のガス圧力とドレインポットの容積を図5に示す近似曲線の下の領域に設定すればよいことになる。この場合、ドレインポットの容積とは、排出する凝縮水の容積ではなく、図2に示した弁V2から凝縮水排出後のドレインポット内液面までの容積である。   The approximate expression in the first method is obtained by a test. Using the apparatus shown in FIG. 2 described above or an apparatus equivalent thereto, the relationship between the pressure of the extrusion gas and the volume of the drain pot up to the liquid level after discharging condensed water was examined. As a result, as shown in FIG. It turns out that there is a relationship. In the relationship shown in FIG. 4, when the allowable fluctuation value of the gas dissolution concentration is within ± 20% as described above, as shown in FIG. 5, the setting or control is performed within the region below the curve of the approximate expression y = −628Lnx + 454. By doing so, it can be within the allowable fluctuation range of the gas dissolution concentration. That is, from the result of FIG. 4, in order to make it within the set value + 20%, the gas pressure for extrusion and the volume of the drain pot may be set in the region below the approximate curve shown in FIG. In this case, the volume of the drain pot is not the volume of the condensed water to be discharged, but the volume from the valve V2 shown in FIG. 2 to the liquid level in the drain pot after the condensed water is discharged.

また、本発明に係るガス溶解方法は、半透膜を用いたガス溶解モジュールの液体側に原水を通水し、気体側に溶解用ガスを供給して原水中に溶解させ、前記半透膜を通して液体側から気体側に抜ける水蒸気によって生成された凝縮水をドレインポットに溜めた後、一旦ドレインポットへの凝縮水の供給系を閉じ、次にドレインポットに押し出し用ガスを供給して凝縮水をドレインポットから排出し、しかる後に、ドレインポットへの押し出し用ガスの供給系を閉じるとともにドレインポットからの凝縮水の排出系を閉じた後、ドレインポットへの凝縮水の供給系を再度開くガス溶解方法において、前記ドレインポットへの凝縮水の供給系を再度開く前に、前記ドレインポット内の凝縮水排出後の液面までの空間からガスを真空ポンプにより排出して該空間内の圧力を前記押し出し用ガス供給前の圧力まで低下させることを特徴とする方法からなる(第2の方法)。 Further, the gas dissolving method according to the present invention is a method in which raw water is passed through the liquid side of a gas dissolving module using a semipermeable membrane, the dissolving gas is supplied to the gas side and dissolved in the raw water, and the semipermeable membrane The condensed water generated by the water vapor passing from the liquid side to the gas side through the reservoir is accumulated in the drain pot, and then the condensed water supply system to the drain pot is once closed, and then the extrusion gas is supplied to the drain pot to condense water. The gas is then discharged from the drain pot, and then the gas supply system for extruding the drain pot is closed, the condensed water discharge system from the drain pot is closed, and then the condensed water supply system to the drain pot is opened again. discharge in the dissolution process, before opening the supply system of the condensed water into the drain pot again, by a vacuum pump gas from the space to the liquid surface after condensate drain in said drain pot And consists method characterized by reducing the pressure within the space to a pressure before the gas supply said extruded (second method).

この第2の方法は、例えば図6〜図8に示すように実施できる。図において、破線ラインが作動中のラインを示している。また、図中、真空ポンプ以外の構成要素については、図2と同じ符号を用いている。図6に示すように、ドレインポット6内に凝縮水が溜められ、凝縮水が溜まったら、図7に示すように、それまで開けられていた弁V2を閉めて弁V3、弁V1を開け、押し出し用ガス(この例の場合、溶解ガスを利用しているが、別の供給系として溶解ガスとは別の押し出し用ガスを用いてもよい。)をドレインポット6内に供給してドレインポット6内の凝縮水を排出する。凝縮水排出後、図8に示すように、弁V3、V1を閉め、弁V4を開き、ドレインポット内の凝縮水排出後の液面までの空間からガスを排出して該空間内の圧力を低下させるドレインポット内ガス排出手段としての真空ポンプ7を運転してポット内ガスを排出して上記空間内の圧力を通常運転時のガス圧まで低下させる。ガス圧が所定値まで低下したら弁V4を閉じ、真空ポンプ7を停止して、弁V2を開ける。それによって図6の状態に戻る。   This second method can be implemented, for example, as shown in FIGS. In the figure, a broken line indicates an active line. In the figure, the same reference numerals as those in FIG. As shown in FIG. 6, when condensed water is accumulated in the drain pot 6, and condensed water accumulates, as shown in FIG. 7, the valve V2 that has been opened up to that time is closed and the valves V3 and V1 are opened. An extrusion gas (in this example, a dissolved gas is used, but a separate supply gas such as an extruded gas may be used as a separate supply system) is supplied into the drain pot 6 to supply the drain pot. The condensed water in 6 is discharged. After condensate discharge, as shown in FIG. 8, valves V3 and V1 are closed, valve V4 is opened, gas is discharged from the space up to the liquid level after condensate discharge in the drain pot, and the pressure in the space is reduced. The vacuum pump 7 is operated as a drain pot gas discharge means for reducing the pressure in the pot, and the pressure in the space is reduced to the gas pressure during normal operation. When the gas pressure drops to a predetermined value, the valve V4 is closed, the vacuum pump 7 is stopped, and the valve V2 is opened. As a result, the state of FIG.

本発明に係るガス溶解装置は、半透膜を用いてその液体側に原水を通水し気体側に溶解用ガスを供給して原水中に溶解させるガス溶解モジュールと、前記半透膜を通して液体側から気体側に抜ける水蒸気によって生成された凝縮水を溜めるドレインポットと、前記ガス溶解モジュールから前記ドレインポットへの凝縮水供給系と、ドレインポットへの凝縮水押し出し用ガス供給系と、ドレインポットからの凝縮水排出系とを備え、凝縮水をドレインポットに溜めた後、一旦前記凝縮水供給系を閉じ、次に前記押し出し用ガス供給系と前記凝縮水排出系を開いて凝縮水をドレインポットから排出し、しかる後に、前記押し出し用ガス供給系を閉じるとともに凝縮水排出系を閉じた後、凝縮水供給系を再度開くようにしたガス溶解装置において、前記押し出し用ガスの圧力(x〔kgf/cm2 〕)と、前記ドレインポットの凝縮水排出後の液面までの容積(y〔ml〕)とを、xとyとのグラフにおいて、近似式y=−628Lnx+454の曲線以下の領域内に設定または制御する手段を設けたことを特徴とするものからなる(第1の装置)。なお、上記近似式におけるLnは自然対数関数である。 The gas dissolution apparatus according to the present invention includes a gas dissolution module that uses a semipermeable membrane to pass raw water to the liquid side, supplies a gas for dissolution to the gas side, and dissolves in the raw water, and a liquid through the semipermeable membrane. A drain pot for storing condensed water generated by water vapor flowing from the gas side to the gas side, a condensed water supply system from the gas dissolution module to the drain pot, a gas supply system for pushing condensed water to the drain pot, and a drain pot A condensate drainage system, and after condensing the condensate in the drain pot, the condensate supply system is once closed, and then the extrusion gas supply system and the condensate drainage system are opened to drain the condensate. After discharging from the pot, and then closing the extrusion gas supply system and closing the condensed water discharge system, the gas dissolving apparatus reopening the condensed water supply system, Serial pressure of extrusion gas (x [kgf / cm 2]), and a volume up to the liquid surface after condensate discharge of the drain pot (y [ml]), in the graph of x and y, an approximate expression A device for setting or controlling is provided in a region below a curve of y = −628Lnx + 454 (first device). Note that Ln in the above approximate expression is a natural logarithmic function.

また、もう一つの本発明に係るガス溶解装置は、半透膜を用いてその液体側に原水を通水し気体側に溶解用ガスを供給して原水中に溶解させるガス溶解モジュールと、前記半透膜を通して液体側から気体側に抜ける水蒸気によって生成された凝縮水を溜めるドレインポットと、前記ガス溶解モジュールから前記ドレインポットへの凝縮水供給系と、ドレインポットへの凝縮水押し出し用ガス供給系と、ドレインポットからの凝縮水排出系とを備え、凝縮水をドレインポットに溜めた後、一旦前記凝縮水供給系を閉じ、次に前記押し出し用ガス供給系と前記凝縮水排出系を開いて凝縮水をドレインポットから排出し、しかる後に、前記押し出し用ガス供給系を閉じるとともに凝縮水排出系を閉じた後、凝縮水供給系を再度開くようにしたガス溶解装置において、前記凝縮水供給系を再度開く前に、前記ドレインポット内の凝縮水排出後の液面までの空間からガスを排出して該空間内の圧力を前記押し出し用ガス供給前の圧力まで低下させるドレインポット内ガス排出手段としての真空ポンプを設けたことを特徴とするものからなる(第2の装置)。
Further, another gas dissolving apparatus according to the present invention is a gas dissolving module for passing raw water to the liquid side using a semipermeable membrane and supplying a dissolving gas to the gas side to dissolve in the raw water, A drain pot for storing condensed water generated by water vapor passing from the liquid side to the gas side through the semipermeable membrane, a condensed water supply system from the gas dissolution module to the drain pot, and a gas supply for pushing condensed water to the drain pot And a condensed water discharge system from the drain pot. After the condensed water is collected in the drain pot, the condensed water supply system is temporarily closed, and then the extrusion gas supply system and the condensed water discharge system are opened. The condensed water is discharged from the drain pot, and then the gas supply system for closing the extrusion gas supply system is closed and the condensed water discharge system is closed, and then the condensed water supply system is opened again. In the apparatus, the before opening the condensed water supply system again until the pressure of the front extrusion gas supply pressure in the space to discharge the gas from the space to the liquid surface after condensate drain in said drain pot A vacuum pump is provided as a means for discharging the gas in the drain pot to be lowered (second device).

本発明で使用するガス溶解モジュールに使用する半透膜としては、液体を透過させないが気体を透過させるものであればいかなるものでもよい。このような膜としては例えば、ポリエチレン、ポリプロピレン等のポリオレフィン製の膜や、ポリ四フッ化エチレン等のフッ素樹脂製の膜、更にはポリスルホン製、シリコンゴム製等の膜が挙げられる。膜構造としては、微多孔膜、均質膜、不均質膜、複合膜、ポリプロピレン微多孔膜層でウレタン等の薄膜をサンドイッチしたいわゆるサンドイッチ膜などいずれも使用できる。   The semipermeable membrane used in the gas dissolution module used in the present invention may be any as long as it does not transmit liquid but allows gas to pass. Examples of such a film include a film made of polyolefin such as polyethylene and polypropylene, a film made of fluororesin such as polytetrafluoroethylene, and a film made of polysulfone and silicon rubber. As the membrane structure, a microporous membrane, a homogeneous membrane, a heterogeneous membrane, a composite membrane, a so-called sandwich membrane in which a thin film such as urethane is sandwiched between polypropylene microporous membrane layers, and the like can be used.

モジュールの形状としては、中空糸状、管状(チューブ状)、平膜状等種々の形状を使用できる。   As the shape of the module, various shapes such as a hollow fiber shape, a tubular shape (tube shape), and a flat membrane shape can be used.

本発明にて溶解するガスとしては、特に制限はなく、アルゴン、ヘリウム等の希ガス類、酸素、窒素、オゾン、炭酸ガス、アンモニア、塩素、塩化水素、窒素酸化物、また、これらの混合物など使用目的によって適宜選択できる。   The gas dissolved in the present invention is not particularly limited, and is used for rare gases such as argon and helium, oxygen, nitrogen, ozone, carbon dioxide, ammonia, chlorine, hydrogen chloride, nitrogen oxides, and mixtures thereof. Can be selected as appropriate.

なお、凝縮水をガス溶解モジュール内からドレインポットまで排出するための配管の口径は、細すぎると凝縮水が全く排出されなかったり、凝縮水の排出が不十分になるため、凝縮水が安定して排出される口径である必要がある。凝縮水の排出が不十分な状態でガス溶解装置が運転された場合、凝縮水がガス側の膜内にある一定量以上溜まると、ガスを溶解させるための有効面積が低下するので、ガス溶解濃度が低下してしまう。凝縮水の排出が充分に行われるために必要な口径は、ガス溶解モジュール出口からドレインポットまでの長さや構造によって変わるため、規定するのは難しいが内径φ12mm以上であることが好ましい。   Note that if the diameter of the pipe for discharging condensed water from the gas dissolution module to the drain pot is too small, condensed water will not be discharged at all, or condensed water will be insufficiently discharged. It is necessary that the caliber is discharged. When the gas dissolving device is operated with insufficient condensate discharge, the effective area for dissolving the gas decreases if the condensate accumulates over a certain amount in the membrane on the gas side. Concentration will decrease. The diameter necessary for sufficiently discharging condensed water varies depending on the length and structure from the gas dissolution module outlet to the drain pot, and is difficult to define, but preferably has an inner diameter of φ12 mm or more.

本発明に係るガス溶解方法および装置によれば、従来凝縮水を排出後に問題となっていたガス溶解濃度の変動を適切に抑えることが可能となった。本発明の第1のガス溶解方法および装置によれば、ドレインポットの小容積化および押し出しに使用するガス圧を下げることによって、長期間にわたって安定した濃度のガス溶解水を得ることができる。また、本発明の第2のガス溶解方法および装置によれば、凝縮水排出後に、押し出しガスによって正圧になったドレインポット内のガスを真空ポンプ等で排出して、通常運転時と同等のガス圧とすることによって、長期間にわたって安定した濃度のガス溶解水を得ることができる。   According to the gas dissolution method and apparatus according to the present invention, it has become possible to appropriately suppress fluctuations in the gas dissolution concentration, which has been a problem after discharging condensed water. According to the first gas dissolving method and apparatus of the present invention, gas dissolved water having a stable concentration over a long period of time can be obtained by reducing the gas pressure used for reducing the volume and pushing out the drain pot. Further, according to the second gas dissolving method and apparatus of the present invention, after the condensed water is discharged, the gas in the drain pot that has become positive pressure by the extruded gas is discharged by a vacuum pump or the like, which is equivalent to that during normal operation. By setting the gas pressure, gas dissolved water having a stable concentration over a long period of time can be obtained.

以下に、本発明の望ましい実施の形態を、図面を参照しながら説明するが、本発明はこれらの実施態様によりなんら制限されるものではない。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments.

実施例1(本発明の第1のガス溶解方法および装置の実施例)
図9に示すように(図6〜図8と共通の符号を使用している)、微多孔膜ポリプロピレン中空糸でできた半透膜2を用いたガス溶解モジュール3に、溶存酸素濃度1ppb以下、溶存窒素濃度1ppm以下まで脱ガスされた脱気純水を原水1として液体側に通水し、ガス供給側には溶解ガス4として窒素ガスを1.2L/minにて供給して、7m3/hの窒素溶解水(ガス溶解水5)を作成し3ケ月間連続して運転した。設定濃度は12±2ppmである。通常運転時は、溶存窒素濃度は12ppm±2ppm、系内のガス圧は-0.03MPaと安定していた。弁V2から凝縮水排出終了時のドレインポット6内液面(レベルセンサー下部(LS低)に達した時の液面)までの容積は500mlで、凝縮水の量がレベルセンサー上部(LS高)に達した時に、レベル計より信号を送って、弁V2を閉め、次に弁V3、弁V1を開けて押し出し用の窒素ガスを0.3kgf/cm2の圧力でドレインポット内に送りドレインポット6内に溜まった凝縮水を排出した(PIは圧力計を示している)。凝縮水が排出し終わったらドレインポット6内のレベル計から信号を送って弁V3、弁V1を閉める。次に弁V2を開けて通常運転時に戻る。凝縮水がレベルセンサー上部まで溜まる毎にこの凝縮水排出作業を繰り返した。なお、ドレイン配管は内径φ25mmを使用、凝縮水は約20ml/hの流量で安定して排出されていた。
Example 1 (Example of the first gas dissolving method and apparatus of the present invention)
As shown in FIG. 9 (the same reference numerals as in FIGS. 6 to 8 are used), the dissolved oxygen concentration is 1 ppb or less in the gas dissolution module 3 using the semipermeable membrane 2 made of microporous membrane polypropylene hollow fiber. , and passed through the liquid-side deaerating pure water was degassed to less than the concentration of dissolved nitrogen 1ppm as the raw water 1, the gas supply side to supply the nitrogen gas at 1.2 L / min as dissolved gases 4, 7m 3 / h nitrogen dissolved water (gas dissolved water 5) was prepared and operated continuously for 3 months. The set concentration is 12 ± 2ppm. During normal operation, the dissolved nitrogen concentration was 12 ppm ± 2 ppm, and the gas pressure in the system was stable at -0.03 MPa. The volume from the valve V2 to the liquid level in the drain pot 6 at the end of condensate discharge (the level when reaching the lower level sensor (LS low)) is 500 ml, and the amount of condensed water is the upper level sensor (LS high). When the pressure reaches the level, a signal is sent from the level meter, the valve V2 is closed, then the valves V3 and V1 are opened and nitrogen gas for extrusion is sent into the drain pot at a pressure of 0.3 kgf / cm 2. The condensed water accumulated inside was discharged (PI indicates a pressure gauge). When the condensed water is completely discharged, a signal is sent from the level meter in the drain pot 6 to close the valves V3 and V1. Then open valve V2 and return to normal operation. This condensed water discharge operation was repeated each time condensed water accumulated up to the upper part of the level sensor. The drain pipe had an inner diameter of 25 mm, and the condensed water was stably discharged at a flow rate of about 20 ml / h.

3カ月運転を行なったが、このように図5に示した領域内に設定あるいは制御することにより、凝縮水排出作業を行なっても溶存窒素濃度12ppm±2ppmの窒素溶解水を安定して製造することができた。   Although operation was performed for 3 months, by setting or controlling in the region shown in FIG. 5, nitrogen dissolved water having a dissolved nitrogen concentration of 12 ppm ± 2 ppm can be stably produced even when condensed water is discharged. I was able to.

実施例2(本発明の第2のガス溶解方法および装置の実施例)
図10に示すように(図6〜図8と共通の符号を使用している)、微多孔膜ポリプロピレン中空糸でできた半透膜2を用いたガス溶解モジュール3に、溶存酸素濃度1ppb以下、溶存窒素濃度1ppm以下まで脱ガスされた脱気純水を原水1として通水し、ガス供給側には溶解ガス4として窒素ガスを1.2L/minにて供給して、7m3/hの窒素溶解水(ガス溶解水5)を作成し3ケ月間連続して運転した。設定濃度は12±2ppmである。通常運転時は、溶存窒素濃度は12ppm±2ppm、系内のガス圧は-0.03MPaと安定していた。弁V2から凝縮水排出終了時のドレインポット6内液面(レベルセンサー下部(LS低)に達した時の液面)までの容積は1000mlで、凝縮水の量がレベルセンサー(LS高)に達した時に、レベル計より信号を送って、弁V2を閉め、次に弁V3、弁V1を開けて押し出し用の窒素ガスを1kgf/cm2の圧力でドレインポット内に送りドレインポット内に溜まった凝縮水を排出した(PIは圧力計を示している)。凝縮水が排出し終わったらドレインポット内のレベル計から信号を送って弁V3、弁V1を閉める。次に、弁V4を開けて真空ポンプ7を運転し、ドレインポット6内の空間8からガスを系外に排出して、ガス圧が通常運転時である、-0.03MPaになったところで真空ポンプ7を停止するとともに弁V4を閉じ、弁V2を開けた。凝縮水がレベルセンサー上部まで溜まる毎にこの凝縮水排出作業を繰り返した。なお、ドレイン配管は内径φ25mmを使用、凝縮水は約20ml/hの流量で安定して排出されていた。
Example 2 (Example of the second gas dissolving method and apparatus of the present invention)
As shown in FIG. 10 (the same reference numerals as in FIGS. 6 to 8 are used), the dissolved oxygen concentration is 1 ppb or less in the gas dissolution module 3 using the semipermeable membrane 2 made of microporous membrane polypropylene hollow fiber. Then, degassed pure water degassed to a dissolved nitrogen concentration of 1 ppm or less is passed as raw water 1 and nitrogen gas is supplied as dissolved gas 4 at 1.2 L / min to the gas supply side, and 7 m 3 / h Nitrogen-dissolved water (gas-dissolved water 5) was prepared and operated continuously for 3 months. The set concentration is 12 ± 2ppm. During normal operation, the dissolved nitrogen concentration was 12 ppm ± 2 ppm, and the gas pressure in the system was stable at -0.03 MPa. The volume from the valve V2 to the liquid level in the drain pot 6 at the end of condensate discharge (the liquid level when reaching the lower level sensor (LS low)) is 1000 ml, and the amount of condensed water is at the level sensor (LS high). When it reaches, a signal is sent from the level meter, valve V2 is closed, then valve V3 and valve V1 are opened and nitrogen gas for extrusion is sent into the drain pot at a pressure of 1 kgf / cm 2 and accumulated in the drain pot. The condensed water was discharged (PI indicates a pressure gauge). When the condensed water is completely discharged, a signal is sent from the level meter in the drain pot to close the valves V3 and V1. Next, the valve V4 is opened and the vacuum pump 7 is operated. The gas is discharged from the space 8 in the drain pot 6 to the outside of the system. When the gas pressure is -0.03 MPa, which is the normal operation time, the vacuum pump 7 was stopped, valve V4 was closed, and valve V2 was opened. This condensed water discharge operation was repeated each time condensed water accumulated up to the upper part of the level sensor. The drain pipe had an inner diameter of 25 mm, and the condensed water was stably discharged at a flow rate of about 20 ml / h.

3カ月運転を行なったが、このように真空ポンプ7を用いてドレインポット6内の圧力を通常運転時圧力と同等にしてからドレインポット6への凝縮水供給系を開くことにより、凝縮水排出作業を行なっても溶存窒素濃度12ppm±2ppmの窒素溶解水を安定して製造することができた。   The operation was performed for three months, and the condensed water was discharged by opening the condensed water supply system to the drain pot 6 after the pressure in the drain pot 6 was made equal to the normal operation pressure using the vacuum pump 7 in this way. Even if the work was performed, it was possible to stably produce nitrogen-dissolved water having a dissolved nitrogen concentration of 12 ppm ± 2 ppm.

比較例1(上記第1の方法および装置と第2の方法および装置に共通の比較例)
図11に示すように(図6〜図8と共通の符号を使用している)、微多孔膜ポリプロピレン中空糸でできた半透膜2を用いたガス溶解モジュール3に、溶存酸素濃度1ppb以下、溶存窒素濃度1ppm以下まで脱ガスされた脱気純水を原水1として通水し、ガス供給側には溶解ガス4として窒素ガスを1.2L/minにて供給して、7m3/hの窒素溶解水(ガス溶解水5)を作成し3ケ月間連続して運転した。設定濃度は12±2ppmである。通常運転時は、溶存窒素濃度は12ppm±2ppm、系内のガス圧は-0.03MPaと安定していた。弁V2から凝縮水排出終了時のドレインポット6内液面(レベルセンサー下部(LS低)に達した時の液面)までの容積は1000mlで、凝縮水の量がレベルセンサー(LS高)に達した時に、レベル計より信号を送って、弁V2を閉め、次に弁V3、弁V1を開けて押し出し用の窒素ガスを1kgf/cm2の圧力でドレインポット内に送りドレインポット内に溜まった凝縮水を排出した(PIは圧力計を示している)。凝縮水が排出し終わったらドレインポット6内のレベル計から信号を送って弁V3、弁V1を閉め、弁V2を開けた。凝縮水がレベルセンサー上部まで溜まる毎にこの凝縮水排出作業を繰り返した。なお、ドレイン配管は内径φ25mmを使用、凝縮水は約20ml/hの流量で安定して排出されていた。
Comparative Example 1 (Comparative example common to the first method and apparatus and the second method and apparatus)
As shown in FIG. 11 (the same reference numerals as in FIGS. 6 to 8 are used), the dissolved oxygen concentration is 1 ppb or less in the gas dissolution module 3 using the semipermeable membrane 2 made of microporous membrane polypropylene hollow fiber. Then, degassed pure water degassed to a dissolved nitrogen concentration of 1 ppm or less is passed as raw water 1 and nitrogen gas is supplied as dissolved gas 4 at 1.2 L / min to the gas supply side, and 7 m 3 / h Nitrogen-dissolved water (gas-dissolved water 5) was prepared and operated continuously for 3 months. The set concentration is 12 ± 2ppm. During normal operation, the dissolved nitrogen concentration was 12 ppm ± 2 ppm, and the gas pressure in the system was stable at -0.03 MPa. The volume from the valve V2 to the liquid level in the drain pot 6 at the end of condensate discharge (the liquid level when reaching the lower level sensor (LS low)) is 1000 ml, and the amount of condensed water is at the level sensor (LS high). When it reaches, a signal is sent from the level meter, valve V2 is closed, then valve V3 and valve V1 are opened and nitrogen gas for extrusion is sent into the drain pot at a pressure of 1 kgf / cm 2 and accumulated in the drain pot. The condensed water was discharged (PI indicates a pressure gauge). When the condensed water was discharged, a signal was sent from the level meter in the drain pot 6 to close the valves V3 and V1 and open the valve V2. This condensed water discharge operation was repeated each time condensed water accumulated up to the upper part of the level sensor. The drain pipe had an inner diameter of 25 mm, and the condensed water was stably discharged at a flow rate of about 20 ml / h.

3カ月運転を行なったが、通常運転時は溶存窒素濃度12ppm±2ppmの窒素溶解水を安定して製造することができたが、凝縮水排出後に+3〜5ppmの溶存窒素濃度の上昇が確認され設定濃度範囲から外れてしまった。   Although operation was performed for 3 months, it was possible to stably produce dissolved nitrogen with a dissolved nitrogen concentration of 12 ppm ± 2 ppm during normal operation. The concentration range is out of the set range.

従来のガス溶解装置の概略機器系統図である。It is a schematic apparatus system diagram of the conventional gas dissolving apparatus. 従来の別のガス溶解装置の概略機器系統図である。It is a schematic apparatus system diagram of another conventional gas dissolving apparatus. 従来のガス溶解装置におけるガス溶解濃度の変動を示す特性図である。It is a characteristic view which shows the fluctuation | variation of the gas dissolution concentration in the conventional gas dissolution apparatus. 本発明の第1の方法における試験結果を示す、凝縮水排出後のドレンポット内空間容積とガス濃度変化(Δガス濃度)との関係図である。It is a relationship figure of the space volume in the drain pot after condensed water discharge, and gas concentration change (delta gas concentration) which shows the test result in the 1st method of the present invention. 図4の結果から求めた近似式およびそれによる本発明規定領域を示す押し出しガス圧と凝縮水排出後のドレンポット内空間容積との関係図である。FIG. 5 is a relational diagram between an approximate expression obtained from the result of FIG. 4 and an extruded gas pressure and a space volume in the drain pot after condensed water discharge showing the prescribed region of the present invention. 本発明の第2の方法における一ステップを示す概略機器系統図である。It is a schematic apparatus system diagram which shows one step in the 2nd method of this invention. 図6の次のステップを示す概略機器系統図である。FIG. 7 is a schematic device system diagram showing a next step of FIG. 6. 図7の次のステップを示す概略機器系統図である。FIG. 8 is a schematic device system diagram showing a next step of FIG. 7. 実施例1における概略機器系統図である。1 is a schematic device system diagram in Embodiment 1. FIG. 実施例2における概略機器系統図である。FIG. 6 is a schematic device system diagram in Embodiment 2. 比較例1における概略機器系統図である。6 is a schematic device system diagram in Comparative Example 1. FIG.

符号の説明Explanation of symbols

1 原水
2 半透膜
3 ガス溶解モジュール
4 ガス溶解水
5 溶解ガス
6 ドレインポット
7 真空ポンプ
8 空間
1 Raw Water 2 Semipermeable Membrane 3 Gas Dissolving Module 4 Gas Dissolved Water 5 Dissolved Gas 6 Drain Pot 7 Vacuum Pump 8 Space

Claims (4)

半透膜を用いたガス溶解モジュールの液体側に原水を通水し、気体側に溶解用ガスを供給して原水中に溶解させ、前記半透膜を通して液体側から気体側に抜ける水蒸気によって生成された凝縮水をドレインポットに溜めた後、一旦ドレインポットへの凝縮水の供給系を閉じ、次にドレインポットに押し出し用ガスを供給して凝縮水をドレインポットから排出し、しかる後に、ドレインポットへの押し出し用ガスの供給系を閉じるとともにドレインポットからの凝縮水の排出系を閉じた後、ドレインポットへの凝縮水の供給系を再度開くガス溶解方法において、前記押し出し用ガスの圧力(x〔kgf/cm〕)と、前記ドレインポットの凝縮水排出後の液面までの容積(y〔ml〕)とを、xとyとのグラフにおいて、近似式y=−628Lnx+454の曲線以下の領域内に設定または制御することを特徴とするガス溶解方法。 Generated by water vapor flowing from the liquid side to the gas side through the semipermeable membrane by supplying raw gas to the liquid side of the gas dissolution module using a semipermeable membrane, supplying the dissolving gas to the gas side and dissolving it in the raw water. After the condensed water is collected in the drain pot, the condensed water supply system to the drain pot is once closed, and then the gas for extrusion is supplied to the drain pot to discharge the condensed water from the drain pot. In the gas dissolution method of closing the supply system of the gas for extrusion to the pot and closing the discharge system of the condensed water from the drain pot and then reopening the supply system of the condensed water to the drain pot, the pressure of the extrusion gas ( and x [kgf / cm 2]), and a volume up to the liquid surface after condensate discharge of the drain pot (y [ml]), in the graph of x and y, an approximate expression y = -62 Gas dissolving method and setting or controlling the lnx + 454 curves following region. 半透膜を用いたガス溶解モジュールの液体側に原水を通水し、気体側に溶解用ガスを供給して原水中に溶解させ、前記半透膜を通して液体側から気体側に抜ける水蒸気によって生成された凝縮水をドレインポットに溜めた後、一旦ドレインポットへの凝縮水の供給系を閉じ、次にドレインポットに押し出し用ガスを供給して凝縮水をドレインポットから排出し、しかる後に、ドレインポットへの押し出し用ガスの供給系を閉じるとともにドレインポットからの凝縮水の排出系を閉じた後、ドレインポットへの凝縮水の供給系を再度開くガス溶解方法において、前記ドレインポットへの凝縮水の供給系を再度開く前に、前記ドレインポット内の凝縮水排出後の液面までの空間からガスを真空ポンプにより排出して該空間内の圧力を前記押し出し用ガス供給前の圧力まで低下させることを特徴とするガス溶解方法。 Generated by water vapor flowing from the liquid side to the gas side through the semipermeable membrane by supplying raw gas to the liquid side of the gas dissolution module using a semipermeable membrane, supplying the dissolving gas to the gas side and dissolving it in the raw water. After the condensed water is collected in the drain pot, the condensed water supply system to the drain pot is once closed, and then the gas for extrusion is supplied to the drain pot to discharge the condensed water from the drain pot. In the gas dissolving method, the condensed water supply to the drain pot is reopened after closing the supply system for the gas for extrusion to the pot and closing the discharge system for the condensed water from the drain pot. before opening the supply system to again, the extrusion pressure in the space is discharged by a vacuum pump gas from the space to the liquid surface after condensate drain in said drain pot Gas dissolving method characterized by reduced to pressure before the gas supply. 半透膜を用いてその液体側に原水を通水し気体側に溶解用ガスを供給して原水中に溶解させるガス溶解モジュールと、前記半透膜を通して液体側から気体側に抜ける水蒸気によって生成された凝縮水を溜めるドレインポットと、前記ガス溶解モジュールから前記ドレインポットへの凝縮水供給系と、ドレインポットへの凝縮水押し出し用ガス供給系と、ドレインポットからの凝縮水排出系とを備え、凝縮水をドレインポットに溜めた後、一旦前記凝縮水供給系を閉じ、次に前記押し出し用ガス供給系と前記凝縮水排出系を開いて凝縮水をドレインポットから排出し、しかる後に、前記押し出し用ガス供給系を閉じるとともに凝縮水排出系を閉じた後、凝縮水供給系を再度開くようにしたガス溶解装置において、前記押し出し用ガスの圧力(x〔kgf/cm〕)と、前記ドレインポットの凝縮水排出後の液面までの容積(y〔ml〕)とを、xとyとのグラフにおいて、近似式y=−628Lnx+454の曲線以下の領域内に設定または制御する手段を設けたことを特徴とするガス溶解装置。 Generated by a gas dissolution module that passes raw water to the liquid side using a semipermeable membrane, supplies a gas for dissolution to the gas side and dissolves in the raw water, and water vapor that escapes from the liquid side to the gas side through the semipermeable membrane A drain pot for storing the condensed water, a condensed water supply system from the gas dissolution module to the drain pot, a gas supply system for pushing condensed water to the drain pot, and a condensed water discharge system from the drain pot. The condensed water is stored in the drain pot, and then the condensed water supply system is closed, and then the extrusion gas supply system and the condensed water discharge system are opened to discharge the condensed water from the drain pot. In the gas dissolving apparatus in which the condensed gas supply system is closed and the condensed water discharge system is closed, and then the condensed water supply system is reopened, the pressure of the pushing gas (x a kgf / cm 2]), the volume up to the liquid surface after condensate discharge of the drain pot (y [ml]) and the, in the graph of x and y, the following areas curve approximate expression y = -628Lnx + 454 A gas dissolving apparatus comprising means for setting or controlling the inside. 半透膜を用いてその液体側に原水を通水し気体側に溶解用ガスを供給して原水中に溶解させるガス溶解モジュールと、前記半透膜を通して液体側から気体側に抜ける水蒸気によって生成された凝縮水を溜めるドレインポットと、前記ガス溶解モジュールから前記ドレインポットへの凝縮水供給系と、ドレインポットへの凝縮水押し出し用ガス供給系と、ドレインポットからの凝縮水排出系とを備え、凝縮水をドレインポットに溜めた後、一旦前記凝縮水供給系を閉じ、次に前記押し出し用ガス供給系と前記凝縮水排出系を開いて凝縮水をドレインポットから排出し、しかる後に、前記押し出し用ガス供給系を閉じるとともに凝縮水排出系を閉じた後、凝縮水供給系を再度開くようにしたガス溶解装置において、前記凝縮水供給系を再度開く前に、前記ドレインポット内の凝縮水排出後の液面までの空間からガスを排出して該空間内の圧力を前記押し出し用ガス供給前の圧力まで低下させるドレインポット内ガス排出手段としての真空ポンプを設けたことを特徴とするガス溶解装置。 Generated by a gas dissolution module that passes raw water to the liquid side using a semipermeable membrane, supplies a gas for dissolution to the gas side and dissolves in the raw water, and water vapor that escapes from the liquid side to the gas side through the semipermeable membrane A drain pot for storing the condensed water, a condensed water supply system from the gas dissolution module to the drain pot, a gas supply system for pushing condensed water to the drain pot, and a condensed water discharge system from the drain pot. The condensed water is stored in the drain pot, and then the condensed water supply system is closed, and then the extrusion gas supply system and the condensed water discharge system are opened to discharge the condensed water from the drain pot. Before reopening the condensate supply system in the gas dissolving apparatus in which the condensate discharge system is closed after the extrusion gas supply system is closed and the condensate discharge system is closed. The vacuum pump as a drain pot gas discharge means for reducing the up pressure before the gas supply the extrusion pressure in the space to discharge the gas from the space to the liquid surface after condensate drain in said drain pot A gas dissolving apparatus provided.
JP2006003359A 2006-01-11 2006-01-11 Gas dissolving method and apparatus Active JP4919385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006003359A JP4919385B2 (en) 2006-01-11 2006-01-11 Gas dissolving method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006003359A JP4919385B2 (en) 2006-01-11 2006-01-11 Gas dissolving method and apparatus

Publications (2)

Publication Number Publication Date
JP2007185559A JP2007185559A (en) 2007-07-26
JP4919385B2 true JP4919385B2 (en) 2012-04-18

Family

ID=38341099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006003359A Active JP4919385B2 (en) 2006-01-11 2006-01-11 Gas dissolving method and apparatus

Country Status (1)

Country Link
JP (1) JP4919385B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893592B2 (en) * 2007-11-09 2012-03-07 栗田工業株式会社 Gas dissolved water manufacturing apparatus and manufacturing method
JP5380870B2 (en) * 2008-03-14 2014-01-08 栗田工業株式会社 Method and apparatus for producing gas-dissolved water
JP2009254935A (en) * 2008-04-14 2009-11-05 Kurita Water Ind Ltd Gas dissolving membrane device and method of manufacturing gas-dissolved solution
JP2010234298A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Device for supplying water containing dissolved gas and method for producing water containing dissolved gas
JP6569731B2 (en) * 2015-04-13 2019-09-04 Dic株式会社 Specific resistance value adjusting device and specific resistance value adjusting method
JP5999222B2 (en) * 2015-05-29 2016-09-28 栗田工業株式会社 Gas dissolved water supply apparatus and gas dissolved water manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3561589B2 (en) * 1996-10-28 2004-09-02 オルガノ株式会社 Membrane deaerator
JP3728959B2 (en) * 1998-12-28 2005-12-21 栗田工業株式会社 Method for producing gas dissolved water
JP3768027B2 (en) * 1999-04-12 2006-04-19 オルガノ株式会社 Gas dissolved water production equipment

Also Published As

Publication number Publication date
JP2007185559A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP4919385B2 (en) Gas dissolving method and apparatus
KR101176241B1 (en) Method and apparatus for measuring concentration of dissolved gas in liquid, and apparatus for producing nitrogen gas dissolved water
TWI534098B (en) Gas-dissolving water supply device and gas-dissolving water
JP6129289B2 (en) Water treatment system and water treatment method
JP6185445B2 (en) Hydrogen water supply device
JP6477772B2 (en) Washing water supply device
JP2016034607A (en) Water treatment system
JP2005218885A (en) Hydrogen water manufacturing apparatus, hydrogen water manufacturing method, and hydrogen water
JP5380870B2 (en) Method and apparatus for producing gas-dissolved water
JP4673804B2 (en) Decarbonation apparatus and decarbonation method
JPH05317605A (en) Membrane vacuum deaerating method and device therefor
JP2000350902A (en) Deaeration method
JP5999222B2 (en) Gas dissolved water supply apparatus and gas dissolved water manufacturing method
JPWO2017110288A1 (en) Water treatment method and water treatment system
US7811358B2 (en) Deaerator and deaerating method
JP2611183B2 (en) Fluid circulation deaerator
JP5663410B2 (en) Ultrapure water production method and apparatus
JP6777534B2 (en) Diluting solution manufacturing equipment and diluent manufacturing method
JP2010194482A (en) Membrane separator
JP2012176360A (en) Production unit of gas dissolved water
JP4893592B2 (en) Gas dissolved water manufacturing apparatus and manufacturing method
JP2009254935A (en) Gas dissolving membrane device and method of manufacturing gas-dissolved solution
JP6361802B1 (en) Gas dissolved water production apparatus and gas dissolved water production method using the same
JP5092968B2 (en) Gas dissolved water supply apparatus and gas dissolved water manufacturing method
KR102325399B1 (en) Pressure control system of membrane module and method for controlling pressure thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120127

R150 Certificate of patent or registration of utility model

Ref document number: 4919385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250