JP2010194482A - Membrane separator - Google Patents

Membrane separator Download PDF

Info

Publication number
JP2010194482A
JP2010194482A JP2009044167A JP2009044167A JP2010194482A JP 2010194482 A JP2010194482 A JP 2010194482A JP 2009044167 A JP2009044167 A JP 2009044167A JP 2009044167 A JP2009044167 A JP 2009044167A JP 2010194482 A JP2010194482 A JP 2010194482A
Authority
JP
Japan
Prior art keywords
gas
liquid separation
separation tank
liquid
filtrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009044167A
Other languages
Japanese (ja)
Other versions
JP5025672B2 (en
Inventor
Hideki Akiyoshi
秀樹 秋吉
Yasuhiro Okawa
泰弘 大川
Soichiro Yatsugi
壮一郎 矢次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2009044167A priority Critical patent/JP5025672B2/en
Publication of JP2010194482A publication Critical patent/JP2010194482A/en
Application granted granted Critical
Publication of JP5025672B2 publication Critical patent/JP5025672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane separator capable of stably discharging of a filtrate by a natural discharge route and capable of smoothly charging over the natural discharge route to a forcible discharge route. <P>SOLUTION: The membrane separator 6 includes a membrane separation tank 4 to which a solution to be treated is supplied, the filter membrane 6a arranged in the membrane separation tank 4 so as to be immersed in the solution to be treated and a discharge mechanism 20 for discharging the filtrate, which is subjected to solid-liquid separation treatment by the filter membrane 6a, to the water storage tank 12 installed outside the membrane separation tank 4. The discharge mechanism 20 includes a natural discharge pipe 21 discharging the filtrate by the head difference across the inside and outside of the membrane separation tank 4, the forcible discharge pipe 23 equipped with a pump 24 sucking the filtrate, and solenoid valves 29a and 29b as a route changeover mechanism for discharging the filtrate from either one of the natural discharge pipe 21 and the forcible discharge pipe 23. A gas-liquid separation tank 25 for separating air getting mixed in the filtrate is provided to the natural discharge pipe 21. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、被処理液が供給される処理槽と、前記処理槽内に浸漬配置されたろ過膜と、前記ろ過膜で固液分離したろ過液を槽外に排出する排出機構を備えている膜分離装置に関する。   The present invention includes a treatment tank to which a liquid to be treated is supplied, a filtration membrane immersed in the treatment tank, and a discharge mechanism for discharging the filtrate separated by solid-liquid separation with the filtration membrane to the outside of the tank. The present invention relates to a membrane separator.

図8に示すように、従来、膜分離槽85に浸漬配置されたろ過膜81と、ろ過膜81内の処理液を貯留槽90に排出する自然排出管82にポンプ83を備えた強制排出管84を分岐接続し、膜分離槽85に備えられた液位計86と、膜分離槽85への被処理水の供給管87に備えられた流量計88に計測値に基づいて、自然排出管82と強制排出管84に夫々備えられた開閉弁89a,89bの開閉を制御することで、自然排出管82と強制排出管84によるろ過液の排出を切り換えるように構成された膜分離装置80が提案されている。   As shown in FIG. 8, conventionally, a filtration membrane 81 immersed in a membrane separation tank 85, a forced discharge pipe provided with a pump 83 in a natural discharge pipe 82 that discharges the processing liquid in the filtration membrane 81 to a storage tank 90. 84, and a natural discharge pipe on the basis of the measured values of a liquid level meter 86 provided in the membrane separation tank 85 and a flow meter 88 provided in a supply pipe 87 of water to be treated to the membrane separation tank 85. A membrane separation device 80 configured to switch the discharge of the filtrate through the natural discharge pipe 82 and the forced discharge pipe 84 by controlling the opening and closing of the open / close valves 89a and 89b provided in the 82 and the forced discharge pipe 84, respectively. Proposed.

貯留槽90の液面が、膜分離槽85の液面より低くなるように貯留槽90が配置され、両液面の水頭差を利用して膜分離槽85から自然排出管82を介して貯留槽90にろ過液が排水されている。従って、自然排出管82と強制排出管84も、膜分離槽85の液面より低い位置に配設されている。そして、膜分離槽85に流入する被処理水が多くなったり、膜分離槽85の液位が高くなれば、開閉弁89a,89bを制御し、ポンプ83を起動することによって強制排出管84によりろ過膜を強制的に排出することで安定してろ過液の排出を行うように構成されている。   The storage tank 90 is disposed so that the liquid level of the storage tank 90 is lower than the liquid level of the membrane separation tank 85, and stored from the membrane separation tank 85 through the natural discharge pipe 82 using the water head difference between the two liquid levels. The filtrate is drained into the tank 90. Therefore, the natural discharge pipe 82 and the forced discharge pipe 84 are also disposed at a position lower than the liquid level of the membrane separation tank 85. And if the to-be-processed water which flows into the membrane separation tank 85 increases, or if the liquid level of the membrane separation tank 85 becomes high, the on-off valves 89a and 89b are controlled, and the forced discharge pipe 84 is activated by starting the pump 83. The filtrate is discharged stably by forcibly discharging the filtration membrane.

特開2002−143847号公報JP 2002-143847 A

しかし、ろ過膜81でろ過された被処理水には気泡が含まれているため、自然排出管82または強制排出管84を流下して貯留槽90に排水される流量が不安定になるという不都合があった。特に、自然排出管82がアーチ型に配設され、膜分離槽85の液面より高い配管部位があると、気泡によって排水が途切れる虞もあった。   However, since the water to be treated filtered by the filtration membrane 81 contains air bubbles, the flow rate flowing down the natural discharge pipe 82 or the forced discharge pipe 84 to the storage tank 90 becomes unstable. was there. In particular, if the natural discharge pipe 82 is arranged in an arch shape and there is a piping part higher than the liquid level of the membrane separation tank 85, there is a possibility that the drainage is interrupted by bubbles.

また、膜分離槽等の設備は地中に掘削された領域に構築され、その近傍にポンプ設備等が配設されるが、既設の設備を拡張したり更新する際に、コストの抑制や設置空間が制限される等の様々な要因で、ポンプ設備や排出管等が膜分離装置の液面より下方に設置できない場合がある。   In addition, facilities such as membrane separation tanks are constructed in the area excavated in the ground, and pump facilities etc. are arranged in the vicinity, but when expanding or updating existing facilities, cost control and installation Due to various factors such as limited space, the pump equipment and the discharge pipe may not be installed below the liquid level of the membrane separation device.

そのような場合には、ポンプ設備や、自然排出管及び強制排出管の一部が、膜分離装置の液面より上方に位置するスラブ上に設置されるが、自然排出管によってろ過液を排出しようとしても、膜分離槽内の曝気装置によりろ過液は曝気され、空気を多量に含んでいるため、ろ過液中の空気が自然排出管内に析出し、自然排出管によるろ過液の排出が中断することがあり安定してろ過液の排出が行えないという問題があった。   In such a case, the pump equipment, a part of the natural discharge pipe and the forced discharge pipe are installed on the slab located above the liquid level of the membrane separator, but the natural discharge pipe discharges the filtrate. Even when trying to do so, the filtrate is aerated by the aeration device in the membrane separation tank and contains a large amount of air, so the air in the filtrate is deposited in the natural discharge pipe, and the discharge of the filtrate through the natural discharge pipe is interrupted. There was a problem that the filtrate could not be discharged stably.

さらに、ポンプを起動し強制移送管によってろ過液を排出しようとしても、ポンプの起動時に呼び水が必要になるという問題や、上述と同様にろ過液は多量の空気を含んでいるため、自吸式のポンプであってもエアロックによって自吸できない問題があった。また、キャビテーションが激しくなりポンプが破損される虞もあった。   Furthermore, even if the pump is started and the filtrate is discharged through the forced transfer pipe, there is a problem that priming water is required at the time of starting the pump, and the filtrate contains a large amount of air as described above. Even with this type of pump, there was a problem that it could not be self-primed by air lock. In addition, the cavitation may become intense and the pump may be damaged.

本発明は、自然排出経路によるろ過液の排出を安定して行うことができ、自然排出経路から強制排出経路への切換を円滑に行うことができる膜分離装置を提供することを目的とする。   An object of this invention is to provide the membrane separator which can discharge | emit the filtrate by a natural discharge path stably, and can perform switching from a natural discharge path to a forced discharge path smoothly.

上述の目的を達成するため、本発明による膜分離装置の第一の特徴構成は、特許請求の範囲の請求項1に記載した通り、被処理液が供給される処理槽と、前記処理槽内に浸漬配置されたろ過膜と、前記ろ過膜で固液分離したろ過液を槽外に排出する排出機構を備えている膜分離装置であって、前記排出機構は、前記処理槽の内外の水頭差によりろ過液を排出する自然排出経路と、ろ過液を吸引するポンプを備えた強制排出経路と、前記自然排出経路と前記強制排出経路の何れかからろ過液を排出する経路切換機構とを備え、前記自然排出経路に、ろ過液に混入した空気を分離する気液分離部を設けている点にある。   In order to achieve the above-mentioned object, the first characteristic configuration of the membrane separation apparatus according to the present invention is as described in claim 1 of the present invention. And a membrane separation device provided with a discharge mechanism for discharging the filtrate separated by solid-liquid separation with the filtration membrane to the outside of the tank, wherein the discharge mechanism is a water head inside and outside the treatment tank. A natural discharge path for discharging the filtrate due to the difference, a forced discharge path including a pump for sucking the filtrate, and a path switching mechanism for discharging the filtrate from either the natural discharge path or the forced discharge path In the natural discharge path, a gas-liquid separation unit for separating air mixed in the filtrate is provided.

上述の構成によれば、自然排出経路に気液分離部を備えているため、自然排出経路によってろ過液が排出される際に、ろ過液に混入した空気が気液分離部で分離されるので、自然排出経路が途切れることがなく、ろ過液の移送流量を安定させることができる。移送量を増加させる場合は、経路切換機構により自然排出経路から強制排出経路へと切り換えることで、ポンプによる強制排出ができる。   According to the above configuration, since the gas / liquid separation unit is provided in the natural discharge path, when the filtrate is discharged through the natural discharge path, air mixed in the filtrate is separated by the gas / liquid separation unit. The natural discharge path is not interrupted, and the flow rate of the filtrate can be stabilized. When increasing the transfer amount, forced discharge by the pump can be performed by switching from the natural discharge path to the forced discharge path by the path switching mechanism.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一特徴構成に加えて、前記強制排出経路が前記気液分離部に接続されている点にある。   As described in the second aspect, the second characteristic configuration is that, in addition to the first characteristic configuration described above, the forced discharge path is connected to the gas-liquid separation unit.

上述の構成によれば、強制排出経路に混入した空気が気液分離部で分離されるので、移送流量を安定させることができる。また、強制排出経路の一部を自然排出経路と兼用できるため、排出管路の部品及び施工コストを削減でき、また設備をコンパクトに構成することができる。   According to the above configuration, the air mixed in the forced discharge path is separated by the gas-liquid separation unit, so that the transfer flow rate can be stabilized. In addition, since a part of the forced discharge path can be used also as the natural discharge path, it is possible to reduce the parts of the discharge pipe and the construction cost, and to make the equipment compact.

同第三の特徴構成は、同請求項3に記載した通り、上述の第二特徴構成に加えて、前記ポンプの吐出側経路が前記気液分離部に接続されている点にある。   The third feature configuration is that, in addition to the second feature configuration described above, the discharge-side path of the pump is connected to the gas-liquid separation unit as described in the third aspect.

上述の構成によれば、強制排出経路中の空気は、ポンプの吐出側経路に備えられた気液分離部に溜まるので、ポンプの停止時にポンプの吸込側経路やポンプ内部に空気が溜まることがなくなり、ポンプの運転再開時にエアロックが発生する虞を回避できる。   According to the above-described configuration, the air in the forced discharge path accumulates in the gas-liquid separation part provided in the discharge side path of the pump, so that the air can accumulate in the suction side path of the pump and the inside of the pump when the pump is stopped. This eliminates the possibility of air lock occurring when the pump is restarted.

同第四の特徴構成は、同請求項4に記載した通り、上述の第二または第三特徴構成に加えて、前記強制排出経路に切り換える際に、前記気液分離部の液位は前記ポンプの吐出部より上方である点にある。   In the fourth feature configuration, as described in claim 4, in addition to the second or third feature configuration described above, when switching to the forced discharge path, the liquid level of the gas-liquid separation unit is the pump level. It is in the point above the discharge part.

上述の構成によれば、自然排出経路によるろ過液の排出中に、気液分離部の液位がポンプの吐出部より上方になるようにろ過液が貯留されていれば、気液分離部内のろ過液が強制排出経路に流れ込み、強制排出経路がろ過液で満たされるので、自然排出経路から強制排出経路へ切り換える際に、ポンプを起動するための呼び水の必要がなくなり、自然排出経路から強制排出経路への切換をスムーズに行うことができる。   According to the above-described configuration, if the filtrate is stored so that the liquid level of the gas-liquid separation unit is higher than the discharge unit of the pump during the discharge of the filtrate through the natural discharge path, Since the filtrate flows into the forced drain path and the forced drain path is filled with filtrate, there is no need for priming water to start the pump when switching from the natural drain path to the forced drain path, and forced drain from the natural drain path. Switching to a route can be performed smoothly.

同第五の特徴構成は、同請求項5に記載した通り、上述の第二または第三特徴構成に加えて、前記自然排出経路にろ過液を吸引するポンプを備えて前記強制排出経路が構成されている点にある。   In addition to the second or third characteristic configuration described above, the fifth characteristic configuration includes the pump for sucking filtrate in the natural discharge path, and the forced discharge path is configured as described in claim 5. It is in the point.

上述の構成によれば、自然排出経路にろ過液を吸引するポンプを備えて強制排出経路が構成されているので、ポンプが停止中は自然排出経路となり、ポンプの稼働中は強制排出経路となるように、自然排出経路と強制排出経路が兼用できるようになる。なお、ポンプが、自然排出経路と強制排出経路の何れかからろ過液を排出する経路切換機構として機能する。従って、排出管路の部品及び施工コストを削減でき、また設備をコンパクトに構成することができる。   According to the above-described configuration, the forced discharge path is configured with the pump for sucking the filtrate in the natural discharge path, so that the natural discharge path is provided when the pump is stopped, and the forced discharge path is provided while the pump is operating. Thus, the natural discharge route and the forced discharge route can be used together. The pump functions as a path switching mechanism that discharges the filtrate from either the natural discharge path or the forced discharge path. Accordingly, it is possible to reduce the parts of the discharge pipe and the construction cost, and to make the equipment compact.

同第六の特徴構成は、同請求項6に記載した通り、上述の第一から第五の何れかの特徴構成に加えて、前記気液分離部の液位を測定する液位計と、前記液位計による測定液位に基づいて前記気液分離部の空気を吸引排気する排気機構を設けている点にある。   In addition to any one of the first to fifth feature configurations described above, the sixth feature configuration is a liquid level meter that measures the liquid level of the gas-liquid separation unit, as described in claim 6; An exhaust mechanism for sucking and exhausting air from the gas-liquid separation unit based on the liquid level measured by the liquid level gauge is provided.

上述の構成によれば、排気機構により気液分離部の空気を吸引排気して、気液分離部内を負圧にすることにより、ろ過液が自然排出経路を経由して気液分離部内に貯留され、気液分離部の液位を所定の液位に上げることで、自然排出経路によるろ過液の排出開始をすることができる。さらに、例えば、気液分離部で分離されたろ過液中の空気が溜まり、気液分離部の液位が下がっても、液位計の測定水位に基づいて排気機構により気液分離部の空気が吸引排気されるので、気液分離部の液位が所定の液位に保たれ、自然排出機構によるろ過液の排出の維持が容易に可能となる。   According to the above-described configuration, the filtrate is stored in the gas-liquid separation part via the natural discharge path by sucking and exhausting the air in the gas-liquid separation part by the exhaust mechanism and making the inside of the gas-liquid separation part have a negative pressure. Then, by raising the liquid level of the gas-liquid separation unit to a predetermined liquid level, it is possible to start discharging the filtrate through the natural discharge path. Furthermore, for example, even if air in the filtrate separated by the gas-liquid separation unit accumulates and the liquid level of the gas-liquid separation unit decreases, the air in the gas-liquid separation unit is discharged by the exhaust mechanism based on the measured water level of the liquid level gauge. Is sucked and exhausted, so that the liquid level of the gas-liquid separator is kept at a predetermined level, and the discharge of the filtrate by the natural discharge mechanism can be easily maintained.

また、第四の特徴構成を備える場合には、排気機構により気液分離部のろ過液の液位が、強制排出経路に備えたポンプの吐出部より上方になるように調整されることにより、自然排出経路から強制排出経路によるろ過液の排出をスムーズに切り換えることができる。   Further, when the fourth characteristic configuration is provided, by adjusting the liquid level of the filtrate of the gas-liquid separation unit by the exhaust mechanism so as to be higher than the discharge unit of the pump provided in the forced discharge path, It is possible to smoothly switch the filtrate discharge from the natural discharge path to the forced discharge path.

同第七の特徴構成は、同請求項7に記載した通り、上述の第一から第六の何れかの特徴構成に加えて、前記気液分離部に、停電時に大気開放される自動弁を備えた開放機構を設けている点にある。   In the seventh feature configuration, in addition to any of the first to sixth feature configurations described above, an automatic valve that is opened to the atmosphere in the event of a power failure is provided in the gas-liquid separation unit. The opening mechanism is provided.

開放機構は、停電時に自動弁が開いて気液分離部が大気開放され、自然排出経路によるろ過液の排出を停止するサイフォンブレークとして機能させることで、自然排出経路を介したろ過液の排出中に停電が発生した際に、ろ過液の排出を自動停止して、ろ過膜の閉塞を未然に回避することができる。   The open mechanism opens the automatic valve in the event of a power failure, opens the gas-liquid separation part to the atmosphere, and functions as a siphon break that stops the discharge of the filtrate through the natural discharge path, so that the filtrate is being discharged through the natural discharge path. When a power failure occurs, the discharge of the filtrate can be automatically stopped to obstruct the filtration membrane.

また、自然排出経路内の圧力が設定値以下になると自動弁が開いて気液分離部を大気開放させる大気開放機構として機能させることで、自然排出経路内の圧力が極端に低下して配管等がつぶれる事故を未然に防止することができる。   In addition, when the pressure in the natural discharge path falls below the set value, the automatic valve opens to function as an air release mechanism that opens the gas-liquid separation unit to the atmosphere. It is possible to prevent accidents that cause damage.

同第八の特徴構成は、同請求項8に記載した通り、上述の第三特徴構成に加えて、前記気液分離部を大気開放する開放機構と、前記気液分離部の液位を測定する液位計と、前記気液分離部のろ過液出口を開閉する開閉機構と、前記液位計による測定液位が所定値以下になると、前記ポンプを稼動し、前記開放機構により前記気液分離部を大気開放するとともに、前記開閉機構を閉鎖して前記気液分離部の液位を回復させる制御部を備えている点にある。   In the eighth feature configuration, as described in claim 8, in addition to the third feature configuration described above, an open mechanism that opens the gas-liquid separation unit to the atmosphere and a liquid level of the gas-liquid separation unit are measured. A liquid level meter, an open / close mechanism that opens and closes the filtrate outlet of the gas-liquid separator, and when the liquid level measured by the liquid level meter falls below a predetermined value, the pump is operated and the gas-liquid is A control unit is provided that opens the separation unit to the atmosphere and closes the opening / closing mechanism to recover the liquid level of the gas-liquid separation unit.

上述の構成によれば、制御部は液位計による測定液位が所定値以下になると、開閉機構により気液分離部のろ過液出口を閉めて、開放機構により気液分離部を大気開放するとともに、強制排出経路に備えられたポンプを稼働して、気液分離部内にろ過液を移送して、気液分離部の液位を回復させるので、気液分離部の空気を吸引排気する排気機構を備えなくても、サイフォンを維持した状態での気液分離部内の空気の排気が可能となる。   According to the above configuration, the control unit closes the filtrate outlet of the gas-liquid separation unit by the opening / closing mechanism and opens the gas-liquid separation unit to the atmosphere by the opening mechanism when the liquid level measured by the liquid level gauge becomes a predetermined value or less. At the same time, the pump provided in the forced discharge path is operated to transfer the filtrate into the gas-liquid separation unit and recover the liquid level of the gas-liquid separation unit. Even if a mechanism is not provided, the air in the gas-liquid separation unit can be exhausted while the siphon is maintained.

以上説明した通り、本発明によれば、自然排出経路によるろ過液の排出を安定して行うことができ、自然排出経路から強制排出経路への切換を円滑に行うことができる膜分離装置を提供することができるようになった。   As described above, according to the present invention, there is provided a membrane separation apparatus that can stably discharge filtrate through a natural discharge path and can smoothly switch from the natural discharge path to the forced discharge path. I was able to do that.

本発明による汚水処理装置の説明図Explanatory drawing of the sewage treatment apparatus by this invention 本発明による膜分離装置の説明図Explanatory drawing of the membrane separation apparatus by this invention 制御部の説明図Illustration of the control unit 膜分離装置の第二実施形態の説明図Explanatory drawing of 2nd embodiment of a membrane separator 膜分離装置の第三実施形態の説明図Explanatory drawing of 3rd embodiment of a membrane separator 膜分離装置の第四実施形態の説明図Explanatory drawing of 4th embodiment of a membrane separator 膜分離装置の第五実施形態の説明図Explanatory drawing of 5th embodiment of a membrane separator 従来の膜分離装置の説明図Illustration of a conventional membrane separation device

以下、本発明による膜分離装置を汚水処理装置に適用した場合の実施形態を説明する。
図1に示すように、汚水処理装置100は、未処理の被処理水である原水を流入させる嫌気槽1と、嫌気槽1の下流側に隣接した無酸素槽2と、無酸素槽2の下流側に隣接した好気槽3が、それぞれ隔壁で分離されて構成されている。
Hereinafter, an embodiment when the membrane separation device according to the present invention is applied to a sewage treatment device will be described.
As shown in FIG. 1, the sewage treatment apparatus 100 includes an anaerobic tank 1 into which raw water, which is untreated water to be treated, an anaerobic tank 2 adjacent to the downstream side of the anaerobic tank 1, and an anaerobic tank 2. The aerobic tank 3 adjacent to the downstream side is constituted by being separated by a partition wall.

嫌気槽1では、嫌気条件下で微生物により嫌気処理され、原水に含まれるBOD成分が微生物に取り込まれるとともに、リン化合物が加水分解されて正リン酸としてりリンが液中に放出される。   In the anaerobic tank 1, anaerobic treatment is performed by microorganisms under anaerobic conditions, and BOD components contained in the raw water are taken into the microorganisms, and phosphorus compounds are hydrolyzed to form normal phosphoric acid and phosphorus is released into the liquid.

無酸素槽2では、嫌気槽1から流入した被処理水が無酸素条件下で微生物により無酸素処理され、硝酸イオン及び亜硝酸イオンの窒素ガスへの還元処理、つまり脱窒処理が行われる。   In the anaerobic tank 2, the water to be treated flowing from the anaerobic tank 1 is subjected to anaerobic treatment by microorganisms under anaerobic conditions, and nitrate ions and nitrite ions are reduced to nitrogen gas, that is, denitrification treatment is performed.

好気槽3には、底部に散気装置3aが設置され、無酸素槽2から流入した被処理水に含まれるし尿等が由来のアンモニウムイオンが、好気条件下で微生物により酸化され、亜硝酸や硝酸に変換される硝化処理が行われ、さらに、被処理水中の正リン酸が汚泥に取り込まれ、ポリリン酸として蓄積される好気性処理が行われる。   In the aerobic tank 3, an air diffuser 3a is installed at the bottom, and ammonium ions derived from human urine and the like contained in the water to be treated flowing in from the anaerobic tank 2 are oxidized by microorganisms under aerobic conditions. Nitric acid or a nitrification treatment that converts to nitric acid is performed, and further, an aerobic treatment is performed in which normal phosphoric acid in the water to be treated is taken into sludge and accumulated as polyphosphoric acid.

各処理槽1,2,3で生物処理された被処理水は、隔壁の下部に形成された開口部を介して下流側に移送され、或いは、隔壁をオーバーフローして下流側に移送される。   The water to be treated biologically treated in each of the treatment tanks 1, 2, 3 is transferred to the downstream side through an opening formed in the lower part of the partition wall, or is transferred to the downstream side after overflowing the partition wall.

好気槽3で好気性処理された被処理水は、好気槽3の下流側に隣接した膜分離装置6によりろ過され、さらに下流側の貯水槽7へ排出される。   The water to be treated that has been aerobically treated in the aerobic tank 3 is filtered by the membrane separation device 6 adjacent to the downstream side of the aerobic tank 3 and further discharged to the water storage tank 7 on the downstream side.

膜分離装置6は、被処理液が供給される処理槽としての膜分離槽4と、膜分離槽4内に浸漬配置されたろ過膜6aと、ろ過膜6aで固液分離したろ過液を後述する貯水槽7へ排出する排出機構20を備えている。   The membrane separation device 6 includes a membrane separation tank 4 as a treatment tank to which a liquid to be treated is supplied, a filtration membrane 6a immersed in the membrane separation tank 4, and a filtrate obtained by solid-liquid separation with the filtration membrane 6a. A discharge mechanism 20 for discharging to the water storage tank 7 is provided.

ろ過膜6aは、限外ろ過膜、精密ろ過膜等が採用される。膜の形態は、平膜、チューブラー膜、中空糸膜などが好適に用いられる。   As the filtration membrane 6a, an ultrafiltration membrane, a microfiltration membrane, or the like is employed. As the form of the membrane, a flat membrane, a tubular membrane, a hollow fiber membrane or the like is preferably used.

膜分離槽4は、膜分離槽4の液位を検知する液位計4b及び余剰汚泥を排出する余剰汚泥排出管路5を備えている。さらに、ろ過膜6aの下部には散気装置4aが配設されている。   The membrane separation tank 4 includes a liquid level meter 4b that detects the liquid level of the membrane separation tank 4 and an excess sludge discharge pipe 5 that discharges excess sludge. Further, an air diffuser 4a is disposed below the filtration membrane 6a.

散気装置4aは図示しないブロワから供給される空気により、被処理水に膜面に対して平行な流速を付与し、膜表面に蓄積した汚れ物質を剥離させるとともに、膜分離槽4内の被処理水が含有する活性汚泥に酸素を供給する。これにより膜分離槽4内は好気条件となり、活性汚泥が被処理水の硝化処理を行う。   The air diffuser 4a applies a flow velocity parallel to the membrane surface to the water to be treated by air supplied from a blower (not shown) to peel off dirt substances accumulated on the membrane surface, and to remove the dirt in the membrane separation tank 4. Oxygen is supplied to the activated sludge contained in the treated water. As a result, the inside of the membrane separation tank 4 is in an aerobic condition, and the activated sludge nitrifies the water to be treated.

さらに、汚水処理装置100は膜分離槽4内の被処理水を好気槽3へ循環させる第一の循環路8と、膜分離槽4内の被処理水を無酸素槽2へ循環させる第二の循環路9と、無酸素槽2内の被処理水を嫌気槽1へ循環させる第三の循環路10を備えている。   Further, the sewage treatment apparatus 100 circulates the treated water in the membrane separation tank 4 to the aerobic tank 3 and the first circulation path 8 for circulating the treated water in the membrane separation tank 4 to the anoxic tank 2. A second circulation path 9 and a third circulation path 10 for circulating the water to be treated in the anaerobic tank 2 to the anaerobic tank 1 are provided.

排出機構20は、図2に示すように、膜分離槽4の内外の水頭差によりろ過液を排出する自然排出経路としての自然排出管21と、ろ過液を吸引する吸引ポンプ24を備えた強制排出経路としての強制排出管23と、自然排出管21と強制排出管23の何れかからろ過液を排出する経路切換機構としての切換バルブ29a,29bとを備えている。   As shown in FIG. 2, the discharge mechanism 20 includes a natural discharge pipe 21 serving as a natural discharge path for discharging the filtrate due to a water head difference between the inside and outside of the membrane separation tank 4, and a forced pump 24 that sucks the filtrate. A forced discharge pipe 23 serving as a discharge path, and switching valves 29a and 29b serving as a path switching mechanism that discharges filtrate from either the natural discharge pipe 21 or the forced discharge pipe 23 are provided.

自然排出管21及び強制排出管23は、一端がろ過膜6aのろ過液側に配置され、他端は貯水槽7に開放されている。   One end of the natural discharge pipe 21 and the forced discharge pipe 23 is disposed on the filtrate side of the filtration membrane 6 a, and the other end is opened to the water storage tank 7.

自然排出管21には、膜分離槽4より高い位置に、ろ過液に混入した空気を分離する気液分離部としての気液分離タンク25が設けられ、気液分離タンク25には、気液分離タンク25内の液位を測定する液位計26と、液位計26の測定液位に基づいて気液分離タンク25内の空気を吸引排気する排気機構として真空ポンプ27a及び自動弁27bと、停電時に開となり気液分離タンク25を大気開放する自動弁28を備えた開放機構と、気液分離タンク25内の気体部分の圧力を検知する圧力計70が備えられている。   The natural discharge pipe 21 is provided with a gas-liquid separation tank 25 as a gas-liquid separation unit that separates air mixed in the filtrate at a position higher than the membrane separation tank 4. A liquid level meter 26 for measuring the liquid level in the separation tank 25, and a vacuum pump 27a and an automatic valve 27b as an exhaust mechanism for sucking and exhausting air in the gas-liquid separation tank 25 based on the measured liquid level of the liquid level meter 26 In addition, an opening mechanism including an automatic valve 28 that is opened at the time of a power failure and opens the gas-liquid separation tank 25 to the atmosphere, and a pressure gauge 70 that detects the pressure of a gas portion in the gas-liquid separation tank 25 are provided.

さらに自然排出管21は、気液分離タンク25の下流側に気液分離タンク25のろ過液出口を開閉する開閉機構としての開閉バルブ22を備えている。   Further, the natural discharge pipe 21 includes an opening / closing valve 22 as an opening / closing mechanism for opening / closing the filtrate outlet of the gas / liquid separation tank 25 on the downstream side of the gas / liquid separation tank 25.

自動弁27b,28は、例えば、制御部12により開閉制御される電磁弁で構成されている。   The automatic valves 27b and 28 are constituted by, for example, electromagnetic valves that are controlled to be opened and closed by the control unit 12.

切換バルブ29a,29b及び開閉バルブ22は管内を流れる処理水の通水・遮断ができるものであればよく、例えば、ゲートバルブ、グローブバルブ、ボールバルブ、バタフライバルブ、ニードルバルブ、ストップバルブ等が好適に用いられる。さらに、バルブは装置の自動化の観点から電動で開閉制御されるものが好ましいが、作業員が手動により開閉を行うものであってもよい。   The switching valves 29a and 29b and the opening / closing valve 22 may be any valves that can pass and shut off the treated water flowing through the pipe. For example, gate valves, globe valves, ball valves, butterfly valves, needle valves, stop valves, etc. are suitable. Used for. Furthermore, the valve is preferably one that is electrically controlled to open and close from the viewpoint of automation of the apparatus, but may be one that is manually opened and closed by an operator.

制御部12は、図3に示すように、液位計4b、液位計26や圧力計70の信号に基づいて、真空ポンプ27aの起動停止及び自動弁27bの開閉や、切換バルブ29a,29bの開閉、吸引ポンプ24の起動停止、開閉バルブ22の開閉及び自動弁28の開閉制御をする。   As shown in FIG. 3, the controller 12 starts and stops the vacuum pump 27a, opens and closes the automatic valve 27b, and switches the switching valves 29a and 29b based on signals from the liquid level gauge 4b, the liquid level gauge 26, and the pressure gauge 70. Control of opening / closing, opening / closing of the suction pump 24, opening / closing of the opening / closing valve 22, and opening / closing of the automatic valve 28.

なお、自動弁28は制御部12からの給電により閉じ、停電時に制御部12からの給電が停止すると開き、気液分離タンク25が大気開放されるように構成されている。さらに、制御部12は、圧力計70が検知する気液分離タンク25内の圧力が設定値以下になったことを検知すると自動弁28を開き、気液分離タンク25を大気開放するように制御されている。   The automatic valve 28 is configured to be closed by power supply from the control unit 12, opened when power supply from the control unit 12 is stopped during a power failure, and the gas-liquid separation tank 25 is opened to the atmosphere. Further, the control unit 12 opens the automatic valve 28 when detecting that the pressure in the gas-liquid separation tank 25 detected by the pressure gauge 70 has become a set value or less, and controls the gas-liquid separation tank 25 to be opened to the atmosphere. Has been.

従って、膜分離装置6が設置される施設内が停電となってろ過膜洗浄を行っている散気装置4aが停止しても、自動弁28が開いて気液分離タンク25を大気開放するので、直ちにろ過を停止することができ、膜の閉塞を未然に防止することができ、貯水槽7のオーバーフローも回避することができる。   Accordingly, even if the facility in which the membrane separation device 6 is installed is out of power and the diffuser 4a that performs filtration membrane cleaning stops, the automatic valve 28 opens and the gas-liquid separation tank 25 is opened to the atmosphere. The filtration can be stopped immediately, the membrane can be prevented from being blocked, and the overflow of the water tank 7 can be avoided.

また、制御部12は、圧力計70が検知する気液分離タンク25内の圧力が設定値以下になったことを検知すると、自動弁28を開き気液分離タンク25を大気開放するように制御されているので、例えば、ろ過膜6aの目詰まりや切換バルブ29a、開閉バルブ22の故障等による締め切り状態での真空ポンプ27aの運転による、気液分離タンク25内の異常な負圧状態を検知できるので、気液分離タンク25や自然移送管21内の圧力が極端に低下し、つぶれる等の事故を未然に防止することができる。   Further, when the control unit 12 detects that the pressure in the gas-liquid separation tank 25 detected by the pressure gauge 70 has become equal to or lower than the set value, the control unit 12 opens the automatic valve 28 and controls the gas-liquid separation tank 25 to open to the atmosphere. Therefore, for example, an abnormal negative pressure state in the gas-liquid separation tank 25 is detected due to the operation of the vacuum pump 27a in the closed state due to clogging of the filtration membrane 6a, failure of the switching valve 29a, the opening / closing valve 22, or the like. Therefore, it is possible to prevent an accident such as the pressure in the gas-liquid separation tank 25 and the natural transfer pipe 21 from being extremely lowered and collapsing.

なお、制御部12は真空ポンプ27aの電流や電圧を監視しておき、気液分離タンク25内の異常な負圧状態を検知してもよい。   The control unit 12 may monitor the current and voltage of the vacuum pump 27a and detect an abnormal negative pressure state in the gas-liquid separation tank 25.

気液分離タンク25内の液位が自然排出管21による移送可能最低水位LWL以下の状態で、自然排出管21による排水を開始するときは、切換バルブ29aを開いて、切換バルブ29b、開閉バルブ22を閉じる。自動弁27bを開いて真空ポンプ27aを起動し、気液分離タンク25内の空気を外部に排出することで、気液分離タンク25内を負圧にする。すると、自然排出管21を通って処理水が気液分離タンク25内に貯留される。なお、開閉バルブ22は開いた状態にしておいてもよい。   When drainage by the natural discharge pipe 21 is started in a state where the liquid level in the gas-liquid separation tank 25 is below the lowest water level LWL that can be transferred by the natural discharge pipe 21, the switching valve 29a is opened, the switching valve 29b, and the open / close valve 22 is closed. The automatic valve 27b is opened, the vacuum pump 27a is started, and the air in the gas-liquid separation tank 25 is discharged to the outside, whereby the pressure in the gas-liquid separation tank 25 is made negative. Then, treated water is stored in the gas-liquid separation tank 25 through the natural discharge pipe 21. The on-off valve 22 may be left open.

液位計26が気液分離タンク25の液位の高水位HWLを検知すると、自動弁27bを閉じ、真空ポンプ27aを停止し、開閉バルブ22を開く。このとき気液分離タンク25より上流側の自然排出管21内には処理水が満たされていることになる。   When the liquid level meter 26 detects the high water level HWL of the liquid level in the gas-liquid separation tank 25, the automatic valve 27b is closed, the vacuum pump 27a is stopped, and the open / close valve 22 is opened. At this time, the natural discharge pipe 21 upstream of the gas-liquid separation tank 25 is filled with treated water.

すると、膜分離槽4の液面と貯水槽7の液面との水頭差に応じた水頭圧力差によりサイフォンの原理で膜分離装置6のろ過膜6aによりろ過された処理水が自然排出管21を通って貯水槽7へと自然移送されるのである。   Then, the treated water filtered by the filtration membrane 6a of the membrane separation device 6 by the principle of siphon due to the water head pressure difference according to the water head difference between the liquid level of the membrane separation tank 4 and the liquid level of the water storage tank 7 is a natural discharge pipe 21. It is naturally transferred to the water tank 7 through it.

なお、真空ポンプ27aによる気液分離タンク25内の空気の排出の開始から、気液分離タンク25内の液位が自然排出管21による移送可能最低水位LWLになった時点で、開閉バルブ22を開いてろ過を開始し、気液分離タンク25の液位が高水位HWLになった時点で真空ポンプ27aを停止する運転方法も可能である。   When the liquid level in the gas-liquid separation tank 25 reaches the lowest water level LWL that can be transferred by the natural discharge pipe 21 from the start of the discharge of air in the gas-liquid separation tank 25 by the vacuum pump 27a, the open / close valve 22 is opened. An operation method is also possible in which the vacuum pump 27a is stopped when the liquid level in the gas-liquid separation tank 25 reaches the high water level HWL by opening and starting filtration.

このように、自然排出管21に処理水が流れだすと、処理水を移送するための動力は必要とせず経済的である。なお、貯水槽7に貯水された処理水は、排水管11により適宜排水される。   As described above, when the treated water flows into the natural discharge pipe 21, no power is required for transferring the treated water, which is economical. The treated water stored in the water tank 7 is appropriately drained through the drain pipe 11.

制御部12は、液位計26が検出する気液分離タンク25内の液位が自然排出管21による移送可能最低水位LWLを検出すると、自動弁27bを開き真空ポンプ27aを稼動して、気液分離タンク25内の空気を排出して液位を回復させる。このとき、気液分離タンク25のろ過液出口を開閉する開閉機構としての開閉バルブ22、または、切換バルブ29aを閉じてろ過を停止させてもよいし、開いたままろ過を継続させてもよい。   When the liquid level in the gas-liquid separation tank 25 detected by the liquid level meter 26 detects the lowest water level LWL that can be transferred by the natural discharge pipe 21, the control unit 12 opens the automatic valve 27b and operates the vacuum pump 27a. The air in the liquid separation tank 25 is discharged to recover the liquid level. At this time, the on-off valve 22 or the switching valve 29a as an opening / closing mechanism for opening and closing the filtrate outlet of the gas-liquid separation tank 25 may be closed to stop the filtration, or the filtration may be continued while being opened. .

制御部12は、液位計4bが膜分離槽4の液位の低水位LWLを検出すると、切換バルブ29aを閉じて自然移送管21によるろ過液の排出を停止する。また、自動弁28を開き、気液分離タンク25を大気開放し、自然移送管21によるろ過液の排出を停止することも可能である。   When the liquid level meter 4b detects the low water level LWL of the liquid level in the membrane separation tank 4, the control unit 12 closes the switching valve 29a and stops discharging the filtrate through the natural transfer pipe 21. It is also possible to open the automatic valve 28, open the gas-liquid separation tank 25 to the atmosphere, and stop the discharge of the filtrate through the natural transfer pipe 21.

強制排出管23による処理水の強制排出を行う場合は、制御部12は、切換バルブ29aを閉じて切換バルブ29bを開き、吸引ポンプ24を起動する。   When forcibly discharging treated water through the forced discharge pipe 23, the control unit 12 closes the switching valve 29a, opens the switching valve 29b, and activates the suction pump 24.

自然排出管21と強制排出管23の切り換えは、液位計4bが異常高水位HHWLを検出すると強制排出管23に切り換えるように構成すればよい。   The natural discharge pipe 21 and the forced discharge pipe 23 may be switched to the forced discharge pipe 23 when the liquid level meter 4b detects an abnormally high water level HHWL.

なお、気液分離タンク25内の空気を排出する真空ポンプ27a及び自動弁27bは必ずしも設ける必要はなく、作業員が気液分離タンク25に処理水を注ぎ込むなどして気液分離タンク25内に処理水を満たしてもよい。   Note that the vacuum pump 27a and the automatic valve 27b for discharging the air in the gas-liquid separation tank 25 are not necessarily provided, and an operator pours treated water into the gas-liquid separation tank 25, for example. You may fill treated water.

さらに、気液分離部は気液分離タンク25のようなタンクである必要はなく、自然排出管21を構成する配管中にレデューサで拡径した部分を設け、当該拡径した部分を気液分離部としてもよい。   Further, the gas-liquid separation unit does not need to be a tank such as the gas-liquid separation tank 25, and a portion enlarged in diameter by a reducer is provided in the pipe constituting the natural discharge pipe 21, and the enlarged part is gas-liquid separated. It is good also as a part.

本実施形態では、気液分離タンク25の下部に開閉バルブ22を設けたが、上述した通り、開閉バルブ22は常に開いた状態で運転することができるので、開閉バルブ22は必ずしも設ける必要はない。   In this embodiment, the opening / closing valve 22 is provided in the lower part of the gas-liquid separation tank 25. However, as described above, the opening / closing valve 22 can be operated in an always open state, and therefore the opening / closing valve 22 is not necessarily provided. .

次に、第二実施形態について説明する。上述の実施形態と同一または相当部分には同一符号を付して説明を省略する。   Next, a second embodiment will be described. The same or corresponding parts as those in the above-described embodiment are designated by the same reference numerals and the description thereof is omitted.

図4に示すように、排出機構30は、膜分離槽4の内外の水頭差によりろ過液を排出する自然排出経路としての自然排出管31と、ろ過液を吸引する吸引ポンプ34を備えた強制排出経路としての強制排出管33と、自然排出管31と強制排出管33の何れかからろ過液を排出する経路切換機構としての切換バルブ39a,39bとを備えている。   As shown in FIG. 4, the discharge mechanism 30 includes a natural discharge pipe 31 as a natural discharge path for discharging the filtrate due to a water head difference between the inside and outside of the membrane separation tank 4, and a suction pump 34 for sucking the filtrate. A forced discharge pipe 33 serving as a discharge path and switching valves 39a and 39b serving as a path switching mechanism for discharging filtrate from either the natural discharge pipe 31 or the forced discharge pipe 33 are provided.

自然排出管31には、膜分離槽4より高い位置に、ろ過液に混入した空気を分離する気液分離部としての気液分離タンク25が設けられている。   The natural discharge pipe 31 is provided with a gas-liquid separation tank 25 as a gas-liquid separation unit that separates air mixed in the filtrate at a position higher than the membrane separation tank 4.

自然排出管31は、一端がろ過膜6aのろ過液側に配置され、他端は貯水槽7に開放され、強制排出管33は、吸引ポンプ34の吸込側が気液分離タンク25の下流側の自然排出管31であって気液分離タンク25側に接続され、吸引ポンプの吐出側が気液分離タンク25の下流側の自然排出管31であって貯水タンク7側に接続されている。   One end of the natural discharge pipe 31 is disposed on the filtrate side of the filtration membrane 6 a, the other end is opened to the water storage tank 7, and the forced discharge pipe 33 has a suction side of the suction pump 34 on the downstream side of the gas-liquid separation tank 25. The natural discharge pipe 31 is connected to the gas-liquid separation tank 25 side, and the discharge side of the suction pump is the natural discharge pipe 31 downstream of the gas-liquid separation tank 25 and is connected to the water storage tank 7 side.

自然排出管31と強制排出管33の何れかからろ過液を排出する経路切換機構としての切換バルブ39a,39bは、気液分離タンク25のろ過液出口を開閉する開閉機構としての開閉バルブとしても機能するように構成されている。   The switching valves 39a and 39b serving as a path switching mechanism for discharging the filtrate from either the natural discharge pipe 31 or the forced discharge pipe 33 may be used as an opening / closing valve serving as an opening / closing mechanism for opening / closing the filtrate outlet of the gas-liquid separation tank 25. Configured to work.

制御部13(図示せず)は、液位計4b、液位計26や圧力計70の信号に基づいて、真空ポンプ27aの起動停止及び自動弁27bの開閉や、経路切換機構及び開閉バルブとしての切換バルブ39a,39bの開閉、吸引ポンプ34の起動停止、自動弁28の開閉制御をする。   Based on the signals from the liquid level gauge 4b, the liquid level gauge 26, and the pressure gauge 70, the control unit 13 (not shown) serves as a start / stop of the vacuum pump 27a, opening / closing of the automatic valve 27b, a path switching mechanism, and an opening / closing valve. The switching valves 39a and 39b are opened and closed, the suction pump 34 is started and stopped, and the automatic valve 28 is opened and closed.

なお、自動弁28は制御部13からの給電により閉じ、停電時に制御部13からの給電が停止すると開き、気液分離タンク25が大気開放されるように構成されている。さらに、制御部13は、圧力計70が検知する気液分離タンク25内の圧力が設定値以下になったことを検知すると自動弁28を開き、気液分離タンク25を大気開放するように制御されている。   The automatic valve 28 is configured to be closed by power supply from the control unit 13, opened when power supply from the control unit 13 is stopped during a power failure, and the gas-liquid separation tank 25 is opened to the atmosphere. Further, when the control unit 13 detects that the pressure in the gas-liquid separation tank 25 detected by the pressure gauge 70 has become equal to or lower than the set value, the control unit 13 opens the automatic valve 28 and controls the gas-liquid separation tank 25 to open to the atmosphere. Has been.

従って、膜分離装置6が設置される施設内が停電となってろ過膜洗浄を行っている散気装置4aが停止しても、自動弁28が開いて気液分離タンク25を大気開放するので、直ちにろ過を停止することができ、膜の閉塞を未然に防止することができ、貯水槽7のオーバーフローも回避することができる。   Accordingly, even if the facility in which the membrane separation device 6 is installed is out of power and the diffuser 4a that performs filtration membrane cleaning stops, the automatic valve 28 opens and the gas-liquid separation tank 25 is opened to the atmosphere. The filtration can be stopped immediately, the membrane can be prevented from being blocked, and the overflow of the water tank 7 can be avoided.

また、制御部13は、圧力計70が検知する気液分離タンク25内の圧力が設定値以下になったことを検知すると、自動弁28を開き気液分離タンク25を大気開放するように制御されているので、例えば、ろ過膜6aの目詰まりや切換バルブ39a,39bの故障等による締め切り状態での真空ポンプ27aの運転による、気液分離タンク25内の異常な負圧状態を検知できるので、気液分離タンク25や自然移送管31、強制排出管33内の圧力が極端に低下し、つぶれる等の事故を未然に防止することができる。   Further, when the control unit 13 detects that the pressure in the gas-liquid separation tank 25 detected by the pressure gauge 70 has become equal to or lower than the set value, the control unit 13 opens the automatic valve 28 and controls the gas-liquid separation tank 25 to open to the atmosphere. Therefore, for example, an abnormal negative pressure state in the gas-liquid separation tank 25 can be detected by operating the vacuum pump 27a in a closed state due to clogging of the filtration membrane 6a or failure of the switching valves 39a and 39b. In addition, it is possible to prevent accidents such as the pressure in the gas-liquid separation tank 25, the natural transfer pipe 31, and the forced discharge pipe 33 from being extremely lowered and collapsing.

なお、制御部13は真空ポンプ27aの電流や電圧を監視しておき、気液分離タンク25内の異常な負圧状態を検知してもよい。   The controller 13 may monitor the current and voltage of the vacuum pump 27a and detect an abnormal negative pressure state in the gas-liquid separation tank 25.

気液分離タンク25内の液位が自然排出管31による移送可能最低水位LWL以下の状態で、自然排出管31による排水を開始するときは、切換バルブ39a,39bを閉じる。自動弁27bを開いて真空ポンプ27aを起動し、気液分離タンク25内の空気を外部に排出することで、気液分離タンク25内を負圧にする。すると、自然排出管31を通って処理水が気液分離タンク25内に貯留される。なお、切換バルブ39aは開いた状態にしておいてもよい。   When drainage by the natural discharge pipe 31 is started in a state where the liquid level in the gas-liquid separation tank 25 is below the lowest water level LWL that can be transferred by the natural discharge pipe 31, the switching valves 39a and 39b are closed. The automatic valve 27b is opened, the vacuum pump 27a is started, and the air in the gas-liquid separation tank 25 is discharged to the outside, whereby the pressure in the gas-liquid separation tank 25 is made negative. Then, the treated water is stored in the gas-liquid separation tank 25 through the natural discharge pipe 31. Note that the switching valve 39a may be opened.

液位計26が気液分離タンク25の液位の高水位HWLを検知すると、自動弁27bを閉じ、真空ポンプ27aを停止し、切換バルブ39aを開く。このとき気液分離タンク25より上流側の自然排出管31内には処理水が満たされていることになる。   When the liquid level meter 26 detects the high water level HWL of the liquid level in the gas-liquid separation tank 25, the automatic valve 27b is closed, the vacuum pump 27a is stopped, and the switching valve 39a is opened. At this time, the natural discharge pipe 31 upstream of the gas-liquid separation tank 25 is filled with treated water.

すると、膜分離槽4の液面と貯水槽7の液面との水頭差に応じた水頭圧力差によりサイフォンの原理で膜分離装置6のろ過膜6aによりろ過された処理水が自然排出管31を通って貯水槽7へと自然移送されるのである。   Then, the treated water filtered by the filtration membrane 6a of the membrane separation device 6 by the siphon principle by the head pressure difference corresponding to the head difference between the liquid level of the membrane separation tank 4 and the water level of the water storage tank 7 is a natural discharge pipe 31. It is naturally transferred to the water tank 7 through it.

なお、真空ポンプ27aによる気液分離タンク25内の空気の排出の開始から、気液分離タンク25内の液位が自然排出管31による移送可能最低水位LWLになった時点で、切換バルブ39aを開いてろ過を開始し、気液分離タンク25の液位が高水位HWLになった時点で真空ポンプ27aを停止する運転方法も可能である。   The switching valve 39a is turned on when the liquid level in the gas-liquid separation tank 25 reaches the lowest water level LWL that can be transferred by the natural discharge pipe 31 from the start of the discharge of air in the gas-liquid separation tank 25 by the vacuum pump 27a. An operation method is also possible in which the vacuum pump 27a is stopped when the liquid level in the gas-liquid separation tank 25 reaches the high water level HWL by opening and starting filtration.

このように、自然排出管31に処理水が流れだすと、処理水を移送するための動力は必要とせず経済的である。なお、貯水槽7に貯水された処理水は、排水管11により適宜排水される。   As described above, when the treated water flows into the natural discharge pipe 31, no power is required for transferring the treated water, which is economical. The treated water stored in the water tank 7 is appropriately drained through the drain pipe 11.

制御部13は、液位計26が検出する気液分離タンク25内の液位が自然排出管31による移送可能最低水位LWLを検出すると、自動弁27bを開き真空ポンプ27aを稼動して、気液分離タンク25内の空気を排出して液位を回復させる。このとき、気液分離タンク25のろ過液出口を開閉する開閉機構としての切換バルブ39aを閉じてろ過を停止させてもよいし、開いたままろ過を継続させてもよい。   When the liquid level in the gas-liquid separation tank 25 detected by the liquid level meter 26 detects the lowest water level LWL that can be transferred by the natural discharge pipe 31, the control unit 13 opens the automatic valve 27b and operates the vacuum pump 27a to The air in the liquid separation tank 25 is discharged to recover the liquid level. At this time, the switching valve 39a as an opening / closing mechanism that opens and closes the filtrate outlet of the gas-liquid separation tank 25 may be closed to stop the filtration, or the filtration may be continued while being opened.

制御部13は、液位計4bが膜分離槽4の液位の低水位LWLを検出すると、切換バルブ39aを閉じて、自然移送管31によるろ過液の排出を停止する。また、自動弁28を開き、気液分離タンク25を大気開放し、自然移送管31によるろ過液の排出を停止することも可能である。   When the liquid level meter 4 b detects the low water level LWL of the liquid level in the membrane separation tank 4, the control unit 13 closes the switching valve 39 a and stops the discharge of the filtrate through the natural transfer pipe 31. It is also possible to open the automatic valve 28, open the gas-liquid separation tank 25 to the atmosphere, and stop the discharge of the filtrate through the natural transfer pipe 31.

強制排出管33による処理水の強制排出を行う場合は、制御部13は、切換バルブ39aを閉じて、切換バルブ39bを開き、吸引ポンプ34を起動する。   When forcibly discharging the treated water through the forced discharge pipe 33, the control unit 13 closes the switching valve 39a, opens the switching valve 39b, and activates the suction pump 34.

自然排出管31と強制排出管33の切り換えは、液位計4bが異常高水位HHWLを検出すると強制排出管33に切り換えるように構成すればよい。   The natural discharge pipe 31 and the forced discharge pipe 33 may be switched to the forced discharge pipe 33 when the liquid level meter 4b detects an abnormally high water level HHWL.

なお、気液分離タンク25内の空気を排出する真空ポンプ27a及び自動弁27bは必ずしも設ける必要はなく、作業員が気液分離タンク25に処理水を注ぎ込むなどして気液分離タンク25内に処理水を満たしてもよい。   Note that the vacuum pump 27a and the automatic valve 27b for discharging the air in the gas-liquid separation tank 25 are not necessarily provided, and an operator pours treated water into the gas-liquid separation tank 25, for example. You may fill treated water.

次に、第三実施形態について説明する。上述の何れかの実施形態と同一または相当部分には同一符号を付して説明を省略する。   Next, a third embodiment will be described. The same reference numerals are given to the same or corresponding parts as in any of the above-described embodiments, and the description will be omitted.

図5に示すように、排出機構40は、膜分離槽4の内外の水頭差によりろ過液を排出する自然排出経路としての自然排出管41と、自然排出管41の経路中であって膜分離槽4より高い位置に、ろ過液に混入した空気を分離する気液分離部としての気液分離タンク25が設けられ、気液分離タンク25の下流側の自然排出管41には、吸引ポンプ44が備えられている。   As shown in FIG. 5, the discharge mechanism 40 includes a natural discharge pipe 41 as a natural discharge path for discharging the filtrate due to a head difference between the inside and outside of the membrane separation tank 4, and a membrane separation in the path of the natural discharge pipe 41. A gas-liquid separation tank 25 as a gas-liquid separation unit that separates air mixed in the filtrate is provided at a position higher than the tank 4, and a suction pump 44 is provided in the natural discharge pipe 41 on the downstream side of the gas-liquid separation tank 25. Is provided.

つまり、本実施形態では、自然排出管41は吸引ポンプ44の停止中には、自然排出経路となり、吸引ポンプ44の起動中は強制排出経路となり、吸引ポンプ44が自然排出経路と強制排出経路を切り換える経路切換機構となる。   That is, in the present embodiment, the natural discharge pipe 41 becomes a natural discharge path when the suction pump 44 is stopped, and becomes a forced discharge path while the suction pump 44 is activated, and the suction pump 44 has a natural discharge path and a forced discharge path. It becomes a path switching mechanism for switching.

なお、気液分離タンク25の下流側であって、吸引ポンプ44の吸込側の上流側に気液分離タンク25のろ過液出口を開閉する開閉機構としての開閉バルブ42が備えられている。   An open / close valve 42 as an open / close mechanism for opening and closing the filtrate outlet of the gas / liquid separation tank 25 is provided downstream of the gas / liquid separation tank 25 and upstream of the suction side of the suction pump 44.

制御部14(図示せず)は、液位計4b、液位計26や圧力計70の信号に基づいて、真空ポンプ27aの起動停止及び自動弁27bの開閉や、開閉バルブ42の開閉、吸引ポンプ44の起動停止及び自動弁28の開閉制御をする。   Based on the signals from the liquid level gauge 4b, the liquid level gauge 26, and the pressure gauge 70, the control unit 14 (not shown) starts and stops the vacuum pump 27a, opens and closes the automatic valve 27b, and opens and closes the open / close valve 42. The start / stop of the pump 44 and the opening / closing control of the automatic valve 28 are controlled.

なお、自動弁28は制御部14からの給電により閉じ、停電時に制御部14からの給電が停止すると開き、気液分離タンク25が大気開放されるように構成されている。さらに、制御部14は、圧力計70が検知する気液分離タンク25内の圧力が設定値以下になったことを検知すると自動弁28を開き、気液分離タンク25を大気開放するように制御されている。   The automatic valve 28 is configured to be closed by power supply from the control unit 14, opened when power supply from the control unit 14 is stopped during a power failure, and the gas-liquid separation tank 25 is opened to the atmosphere. Further, when the control unit 14 detects that the pressure in the gas-liquid separation tank 25 detected by the pressure gauge 70 has become a set value or less, the control unit 14 opens the automatic valve 28 and controls the gas-liquid separation tank 25 to be opened to the atmosphere. Has been.

従って、膜分離装置6が設置される施設内が停電となってろ過膜洗浄を行っている散気装置4aが停止しても、自動弁28が開いて気液分離タンク25を大気開放するので、直ちにろ過を停止することができ、膜の閉塞を未然に防止することができ、貯水槽7のオーバーフローも回避することができる。   Accordingly, even if the facility in which the membrane separation device 6 is installed is out of power and the diffuser 4a that performs filtration membrane cleaning stops, the automatic valve 28 opens and the gas-liquid separation tank 25 is opened to the atmosphere. The filtration can be stopped immediately, the membrane can be prevented from being blocked, and the overflow of the water tank 7 can be avoided.

また、制御部14は、圧力計70が検知する気液分離タンク25内の圧力が設定値以下になったことを検知すると、自動弁28を開き気液分離タンク25を大気開放するように制御されているので、例えば、ろ過膜6aの目詰まりや開閉バルブ42の故障等による締め切り状態での真空ポンプ27aの運転による、気液分離タンク25内の異常な負圧状態を検知できるので、気液分離タンク25や自然移送管41内の圧力が極端に低下し、つぶれる等の事故を未然に防止することができる。   Further, when the control unit 14 detects that the pressure in the gas-liquid separation tank 25 detected by the pressure gauge 70 has become equal to or lower than the set value, the control unit 14 opens the automatic valve 28 and controls the gas-liquid separation tank 25 to open to the atmosphere. Therefore, for example, an abnormal negative pressure state in the gas-liquid separation tank 25 due to the operation of the vacuum pump 27a in a closed state due to clogging of the filtration membrane 6a or failure of the opening / closing valve 42 can be detected. It is possible to prevent accidents such as the pressure in the liquid separation tank 25 and the natural transfer pipe 41 from being extremely lowered and collapsing.

なお、制御部14は真空ポンプ27aの電流や電圧を監視しておき、気液分離タンク25内の異常な負圧状態を検知してもよい。   The control unit 14 may monitor the current and voltage of the vacuum pump 27a and detect an abnormal negative pressure state in the gas-liquid separation tank 25.

気液分離タンク25内の液位が自然排出管41による移送可能最低水位LWL以下の状態で、自然排出管41による排水を開始するときは、開閉バルブ42を閉じる。自動弁27bを開いて真空ポンプ27aを起動し、気液分離タンク25内の空気を外部に排出することで、気液分離タンク25内を負圧にする。すると、自然排出管41を通って処理水が気液分離タンク25内に貯留される。なお、開閉バルブ42は開いた状態にしておいてもよい。   When drainage by the natural discharge pipe 41 is started in a state where the liquid level in the gas-liquid separation tank 25 is below the lowest water level LWL that can be transferred by the natural discharge pipe 41, the open / close valve 42 is closed. The automatic valve 27b is opened, the vacuum pump 27a is started, and the air in the gas-liquid separation tank 25 is discharged to the outside, whereby the pressure in the gas-liquid separation tank 25 is made negative. Then, the treated water is stored in the gas-liquid separation tank 25 through the natural discharge pipe 41. The on-off valve 42 may be left open.

液位計26が気液分離タンク25の液位の高水位HWLを検知すると、自動弁27bを閉じ、真空ポンプ27aを停止し、開閉バルブ42を開く。このとき気液分離タンク25より上流側の自然排出管41内には処理水が満たされていることになる。   When the liquid level meter 26 detects the high water level HWL of the liquid level in the gas-liquid separation tank 25, the automatic valve 27b is closed, the vacuum pump 27a is stopped, and the open / close valve 42 is opened. At this time, the natural discharge pipe 41 on the upstream side of the gas-liquid separation tank 25 is filled with treated water.

すると、膜分離槽4の液面と貯水槽7の液面との水頭差に応じた水頭圧力差によりサイフォンの原理で膜分離装置6のろ過膜6aによりろ過された処理水が自然排出管41を通って貯水槽7へと自然移送されるのである。   Then, the treated water filtered by the filtration membrane 6a of the membrane separation device 6 by the principle of siphon due to the water head pressure difference according to the water head difference between the liquid surface of the membrane separation tank 4 and the liquid tank 7 is a natural discharge pipe 41. It is naturally transferred to the water tank 7 through it.

なお、真空ポンプ27aによる気液分離タンク25内の空気の排出の開始から、気液分離タンク25内の液位が自然排出管41による移送可能最低水位LWLになった時点で、開閉バルブ42を開いてろ過を開始し、気液分離タンク25の液位が高水位HWLになった時点で真空ポンプ27aを停止する運転方法も可能である。   When the liquid level in the gas-liquid separation tank 25 reaches the lowest water level LWL that can be transferred by the natural discharge pipe 41 from the start of the discharge of air in the gas-liquid separation tank 25 by the vacuum pump 27a, the open / close valve 42 is opened. An operation method is also possible in which the vacuum pump 27a is stopped when the liquid level in the gas-liquid separation tank 25 reaches the high water level HWL by opening and starting filtration.

このように、自然排出管41に処理水が流れだすと、処理水を移送するための動力は必要とせず経済的である。なお、貯水槽7に貯水された処理水は、排水管11により適宜排水される。   As described above, when the treated water flows into the natural discharge pipe 41, the power for transferring the treated water is not required, which is economical. The treated water stored in the water tank 7 is appropriately drained through the drain pipe 11.

制御部14は、液位計26が検出する気液分離タンク25内の液位が自然排出管41による移送可能最低水位LWLを検出すると、自動弁27bを開き真空ポンプ27aを稼動して、気液分離タンク25内の空気を排出して液位を回復させる。このとき、気液分離タンク25のろ過液出口を開閉する開閉機構としての開閉バルブ42を閉じてろ過を停止させてもよいし、開いたままろ過を継続させてもよい。   When the liquid level in the gas-liquid separation tank 25 detected by the liquid level meter 26 detects the lowest water level LWL that can be transferred by the natural discharge pipe 41, the control unit 14 opens the automatic valve 27b and operates the vacuum pump 27a to The air in the liquid separation tank 25 is discharged to recover the liquid level. At this time, the opening / closing valve 42 as an opening / closing mechanism for opening / closing the filtrate outlet of the gas-liquid separation tank 25 may be closed to stop the filtration, or the filtration may be continued while being opened.

制御部14は、液位計4bが膜分離槽4の液位の低水位LWLを検出すると、開閉バルブ42を閉じて自然移送管41によるろ過液の排出を停止する。また、自動弁28を開き、気液分離タンク25を大気開放し、自然移送管41によるろ過液の排出を停止することも可能である。   When the liquid level meter 4 b detects the low water level LWL of the membrane separation tank 4, the control unit 14 closes the open / close valve 42 and stops the discharge of the filtrate through the natural transfer pipe 41. It is also possible to open the automatic valve 28, open the gas-liquid separation tank 25 to the atmosphere, and stop the discharge of the filtrate through the natural transfer pipe 41.

本実施形態の場合、吸引ポンプ44を起動することで処理水の強制排出が行われる。   In the case of this embodiment, the forced discharge of the treated water is performed by starting the suction pump 44.

自然排出管41と強制排出管の切り換えは、液位計4bが異常高水位HHWLを検出すると強制排出管に切り換えるように構成すればよい。   The natural discharge pipe 41 and the forced discharge pipe may be switched so as to switch to the forced discharge pipe when the liquid level gauge 4b detects an abnormally high water level HHWL.

なお、気液分離タンク25内の空気を排出する真空ポンプ27a及び自動弁27bは必ずしも設ける必要はなく、作業員が気液分離タンク25に処理水を注ぎ込むなどして気液分離タンク25内に処理水を満たしてもよい。   Note that the vacuum pump 27a and the automatic valve 27b for discharging the air in the gas-liquid separation tank 25 are not necessarily provided, and an operator pours treated water into the gas-liquid separation tank 25, for example. You may fill treated water.

次に、本発明の第四実施形態について説明する。上述の何れかの実施形態と同一または相当部分には同一符号を付して説明を省略する。   Next, a fourth embodiment of the present invention will be described. The same reference numerals are given to the same or corresponding parts as in any of the above-described embodiments, and the description will be omitted.

図6に示すように、排出機構50は、膜分離槽4の内外の水頭差によりろ過液を排出する自然排出経路としての自然排出管51と、ろ過液を吸引する吸引ポンプ54を備えた強制排出経路としての強制排出管53と、自然排出管51と強制排出管53の何れかからろ過液を排出する経路切換機構としての切換バルブ59a,59bとを備えている。   As shown in FIG. 6, the discharge mechanism 50 includes a natural discharge pipe 51 serving as a natural discharge path for discharging the filtrate due to a water head difference between the inside and outside of the membrane separation tank 4, and a suction pump 54 for sucking the filtrate. A forced discharge pipe 53 as a discharge path, and switching valves 59a and 59b as a path switching mechanism for discharging filtrate from either the natural discharge pipe 51 or the forced discharge pipe 53 are provided.

自然排出管51は、一端がろ過膜6aのろ過液側に配置され、他端は貯水槽7に開放されている。   One end of the natural discharge pipe 51 is disposed on the filtrate side of the filtration membrane 6 a, and the other end is opened to the water storage tank 7.

自然排出管51には、膜分離槽4より高い位置に、ろ過液に混入した空気を分離する気液分離部としての気液分離タンク25が設けられ、気液分離タンク25の上流側の自然排出管51には強制排出管53が接続されている。   The natural discharge pipe 51 is provided with a gas-liquid separation tank 25 as a gas-liquid separation unit that separates air mixed in the filtrate at a position higher than the membrane separation tank 4. A forced discharge pipe 53 is connected to the discharge pipe 51.

制御部15(図示せず)は、液位計4b、液位計26や圧力計70の信号に基づいて、真空ポンプ27aの起動停止及び自動弁27bの開閉や、切換バルブ59a,59bの開閉、吸引ポンプ54の起動停止、開閉バルブ52の開閉及び自動弁28の開閉制御をする。   Based on signals from the liquid level gauge 4b, the liquid level gauge 26, and the pressure gauge 70, the control unit 15 (not shown) starts and stops the vacuum pump 27a, opens and closes the automatic valve 27b, and opens and closes the switching valves 59a and 59b. Then, the start and stop of the suction pump 54, the opening and closing of the opening and closing valve 52, and the opening and closing control of the automatic valve 28 are controlled.

なお、自動弁28は制御部15からの給電により閉じ、停電時に制御部15からの給電が停止すると開き、気液分離タンク25が大気開放されるように構成されている。さらに、制御部15は、圧力計70が検知する気液分離タンク25内の圧力が設定値以下になったことを検知すると自動弁28を開き、気液分離タンク25を大気開放するように制御されている。   The automatic valve 28 is configured to be closed by power supply from the control unit 15, opened when power supply from the control unit 15 is stopped during a power failure, and the gas-liquid separation tank 25 is opened to the atmosphere. Further, when the control unit 15 detects that the pressure in the gas-liquid separation tank 25 detected by the pressure gauge 70 has become the set value or less, the control unit 15 opens the automatic valve 28 and controls the gas-liquid separation tank 25 to be opened to the atmosphere. Has been.

従って、膜分離装置6が設置される施設内が停電となってろ過膜洗浄を行っている散気装置4aが停止しても、自動弁28が開いて気液分離タンク25を大気開放するので、直ちにろ過を停止することができ、膜の閉塞を未然に防止することができ、貯水槽7のオーバーフローも回避することができる。   Accordingly, even if the facility in which the membrane separation device 6 is installed is out of power and the diffuser 4a that performs filtration membrane cleaning stops, the automatic valve 28 opens and the gas-liquid separation tank 25 is opened to the atmosphere. The filtration can be stopped immediately, the membrane can be prevented from being blocked, and the overflow of the water tank 7 can be avoided.

また、制御部15は、圧力計70が検知する気液分離タンク25内の圧力が設定値以下になったことを検知すると、自動弁28を開き気液分離タンク25を大気開放するように制御されているので、例えば、ろ過膜6aの目詰まりや切換バルブ59a,59b、開閉バルブ52の故障等による締め切り状態での真空ポンプ27aの運転による、気液分離タンク25内の異常な負圧状態を検知できるので、気液分離タンク25や自然移送管51、強制排出管53内の圧力が極端に低下し、つぶれる等の事故を未然に防止することができる。   In addition, when the control unit 15 detects that the pressure in the gas-liquid separation tank 25 detected by the pressure gauge 70 has become equal to or lower than the set value, the control unit 15 opens the automatic valve 28 and controls the gas-liquid separation tank 25 to open to the atmosphere. Therefore, for example, an abnormal negative pressure state in the gas-liquid separation tank 25 due to the operation of the vacuum pump 27a in the closed state due to the clogging of the filtration membrane 6a, the failure of the switching valves 59a, 59b, the opening / closing valve 52 or the like. Since the pressure in the gas-liquid separation tank 25, the natural transfer pipe 51, and the forced discharge pipe 53 is extremely reduced, an accident such as crushing can be prevented in advance.

なお、制御部15は真空ポンプ27aの電流や電圧を監視しておき、気液分離タンク25内の異常な負圧状態を検知してもよい。   The control unit 15 may monitor the current and voltage of the vacuum pump 27a and detect an abnormal negative pressure state in the gas-liquid separation tank 25.

気液分離タンク25内の液位が自然排出管51による移送可能最低水位LWL以下の状態で、自然排出管51による排水を開始するときは、切換バルブ59aを開き、切換バルブ59b、開閉バルブ52を閉じる。自動弁27bを開いて真空ポンプ27aを起動し、気液分離タンク25内の空気を外部に排出することで、気液分離タンク25内を負圧にする。すると、自然排出管51を通って処理水が気液分離タンク25内に貯留される。なお、開閉バルブ52は開いた状態にしておいてもよい。   When drainage by the natural discharge pipe 51 is started in a state where the liquid level in the gas-liquid separation tank 25 is below the lowest water level LWL that can be transferred by the natural discharge pipe 51, the switching valve 59a is opened, the switching valve 59b, and the open / close valve 52 are opened. Close. The automatic valve 27b is opened, the vacuum pump 27a is started, and the air in the gas-liquid separation tank 25 is discharged to the outside, whereby the pressure in the gas-liquid separation tank 25 is made negative. Then, the treated water is stored in the gas-liquid separation tank 25 through the natural discharge pipe 51. The open / close valve 52 may be opened.

液位計26が気液分離タンク25の液位の高水位HWLを検知すると、自動弁27bを閉じ、真空ポンプ27aを停止し、開閉バルブ52を開く。このとき気液分離タンク25より上流側の自然排出管51内には処理水が満たされていることになる。   When the liquid level gauge 26 detects the high water level HWL of the liquid level in the gas-liquid separation tank 25, the automatic valve 27b is closed, the vacuum pump 27a is stopped, and the open / close valve 52 is opened. At this time, the natural discharge pipe 51 on the upstream side of the gas-liquid separation tank 25 is filled with treated water.

すると、膜分離槽4の液面と貯水槽7の液面との水頭差に応じた水頭圧力差によりサイフォンの原理で膜分離装置6のろ過膜6aによりろ過された処理水が自然排出管51を通って貯水槽7へと自然移送されるのである。   Then, the treated water filtered by the filtration membrane 6a of the membrane separation device 6 by the principle of siphon due to the water head pressure difference according to the water head difference between the liquid level of the membrane separation tank 4 and the liquid level of the water storage tank 7 is a natural discharge pipe 51. It is naturally transferred to the water tank 7 through it.

なお、真空ポンプ27aによる気液分離タンク25内の空気の排出の開始から、気液分離タンク25内の液位が自然排出管51による移送可能最低水位LWLになった時点で、開閉バルブ52を開いてろ過を開始し、気液分離タンク25の液位が高水位HWLになった時点で真空ポンプ27aを停止する運転方法も可能である。   When the liquid level in the gas-liquid separation tank 25 reaches the lowest water level LWL that can be transferred by the natural discharge pipe 51 from the start of the discharge of air in the gas-liquid separation tank 25 by the vacuum pump 27a, the open / close valve 52 is opened. An operation method is also possible in which the vacuum pump 27a is stopped when the liquid level in the gas-liquid separation tank 25 reaches the high water level HWL by opening and starting filtration.

このように、自然排出管51に処理水が流れだすと、処理水を移送するための動力は必要とせず経済的である。なお、貯水槽7に貯水された処理水は、排水管11により適宜排水される。   In this way, when the treated water flows into the natural discharge pipe 51, the power for transferring the treated water is not required and it is economical. The treated water stored in the water tank 7 is appropriately drained through the drain pipe 11.

制御部15は、液位計26が検出する気液分離タンク25内の液位が自然排出管51による移送可能最低水位LWLを検出すると、自動弁27bを開き真空ポンプ27aを稼動して、気液分離タンク25内の空気を排出して液位を回復させる。このとき、気液分離タンク25のろ過液出口を開閉する開閉機構としての開閉バルブ52、または、切換バルブ59aを閉じてろ過を停止させてもよいし、開いたままろ過を継続させてもよい。   When the liquid level in the gas-liquid separation tank 25 detected by the liquid level gauge 26 detects the lowest water level LWL that can be transferred by the natural discharge pipe 51, the control unit 15 opens the automatic valve 27b and operates the vacuum pump 27a. The air in the liquid separation tank 25 is discharged to recover the liquid level. At this time, the on / off valve 52 or the switching valve 59a as an opening / closing mechanism for opening / closing the filtrate outlet of the gas-liquid separation tank 25 may be closed to stop the filtration, or the filtration may be continued while being opened. .

制御部12は、液位計4bが膜分離槽4の液位の低水位LWLを検出すると、切換バルブ59aを閉じて、自然移送管51によるろ過液の排出を停止する。また、自動弁28を開き、気液分離タンク25を大気開放し、自然移送管51によるろ過液の排出を停止することも可能である。   When the liquid level meter 4b detects the low water level LWL of the membrane separation tank 4, the control unit 12 closes the switching valve 59a and stops discharging the filtrate through the natural transfer pipe 51. It is also possible to open the automatic valve 28, open the gas-liquid separation tank 25 to the atmosphere, and stop the discharge of the filtrate through the natural transfer pipe 51.

強制排出管53による処理水の強制排出を行う場合は、制御部15は、切換バルブ59aを閉じて、切換バルブ59bを開き、吸引ポンプ54を起動する。   When forcibly discharging the treated water through the forced discharge pipe 53, the control unit 15 closes the switching valve 59a, opens the switching valve 59b, and activates the suction pump 54.

自然排出管51と強制排出管53の切り換えは、液位計4bが異常高水位HHWLを検出すると強制排出管53に切り換えるように構成すればよい。なお、強制排出経路53による排水への切り換えは、気液分離タンク25の液位PLが吸引ポンプ24の吐出部より上方であるときに可能である。   The natural discharge pipe 51 and the forced discharge pipe 53 may be switched to the forced discharge pipe 53 when the liquid level meter 4b detects an abnormally high water level HHWL. Switching to drainage by the forced discharge path 53 is possible when the liquid level PL of the gas-liquid separation tank 25 is above the discharge part of the suction pump 24.

本実施形態では、気液分離タンク25の下部に開閉バルブ52を設けたが、上述した通り開閉バルブ52は常に開いた状態で運転することができるので、開閉バルブ52は必ずしも設ける必要はない。   In the present embodiment, the opening / closing valve 52 is provided in the lower part of the gas-liquid separation tank 25. However, since the opening / closing valve 52 can be operated in an open state as described above, the opening / closing valve 52 is not necessarily provided.

なお、気液分離タンク25内の空気を排出する真空ポンプ27a及び自動弁27bは必ずしも設ける必要はなく、作業員が気液分離タンク25に処理水を注ぎ込むなどして気液分離タンク25内に処理水を満たしてもよい。   Note that the vacuum pump 27a and the automatic valve 27b for discharging the air in the gas-liquid separation tank 25 are not necessarily provided, and an operator pours treated water into the gas-liquid separation tank 25, for example. You may fill treated water.

真空ポンプ27a及び自動弁27bを備えない場合、制御部15は、液位計26が気液分離タンク25内の液位が所定液位まで下がったことを検出すると、吸引ポンプ54を稼動するとともに、自動弁28を開き気液分離タンク25を大気開放するとともに、開閉バルブ52を閉鎖して気液分離タンク25の液位を回復させる。このように、サイフォンを維持したまま、気液分離タンク25内の空気を排出することができる。   When the vacuum pump 27a and the automatic valve 27b are not provided, the control unit 15 operates the suction pump 54 when the liquid level meter 26 detects that the liquid level in the gas-liquid separation tank 25 has dropped to a predetermined liquid level. Then, the automatic valve 28 is opened to open the gas-liquid separation tank 25 to the atmosphere, and the open / close valve 52 is closed to restore the liquid level in the gas-liquid separation tank 25. Thus, the air in the gas-liquid separation tank 25 can be discharged while maintaining the siphon.

次に、本発明の第五実施形態について説明する。上述の何れかの実施形態と同一または相当部分には同一符号を付して説明を省略する。   Next, a fifth embodiment of the present invention will be described. The same reference numerals are given to the same or corresponding parts as in any of the above-described embodiments, and the description will be omitted.

図7に示すように、排出機構60は、膜分離槽4の内外の水頭差によりろ過液を排出する自然排出経路としての自然排出管61と、自然排出管61の経路中であって膜分離槽4より高い位置に、ろ過液に混入した空気を分離する気液分離部としての気液分離タンク25が設けられ、気液分離タンク25の上流側の自然排出管61には、吸引ポンプ64及び開閉バルブ63が、気液分離タンク25の下流側の自然排出管61には開閉バルブ62が備えられている。   As shown in FIG. 7, the discharge mechanism 60 includes a natural discharge pipe 61 as a natural discharge path for discharging the filtrate due to a water head difference between the inside and outside of the membrane separation tank 4, and a membrane separation in the path of the natural discharge pipe 61. A gas-liquid separation tank 25 as a gas-liquid separation unit that separates air mixed in the filtrate is provided at a position higher than the tank 4, and a suction pump 64 is provided in the natural discharge pipe 61 on the upstream side of the gas-liquid separation tank 25. The natural discharge pipe 61 on the downstream side of the gas-liquid separation tank 25 is provided with an open / close valve 62.

つまり、本実施形態では、自然排出管61は吸引ポンプ64の停止中には自然排出経路となり、吸引ポンプ64の起動中は強制排出経路となり、吸引ポンプ64が自然排出経路と強制排出経路を切り換える経路切換機構となる。   That is, in this embodiment, the natural discharge pipe 61 becomes a natural discharge path when the suction pump 64 is stopped, and becomes a forced discharge path while the suction pump 64 is activated, and the suction pump 64 switches between the natural discharge path and the forced discharge path. It becomes a route switching mechanism.

制御部16(図示せず)は、液位計4b、液位計26や圧力計70の信号に基づいて、真空ポンプ27aの起動停止及び自動弁27bの開閉や、開閉バルブ62及び開閉バルブ63の開閉、吸引ポンプ64の起動停止、自動弁28の開閉制御をする。   Based on signals from the liquid level gauge 4b, the liquid level gauge 26, and the pressure gauge 70, the control unit 16 (not shown) starts / stops the vacuum pump 27a, opens / closes the automatic valve 27b, and opens / closes the valve 62/63. Open / close, start / stop of the suction pump 64, and open / close control of the automatic valve 28.

なお、自動弁28は制御部16からの給電により閉じ、停電時に制御部16からの給電が停止すると開き、気液分離タンク25が大気開放されるように構成されている。さらに、制御部16は、圧力計70が検知する気液分離タンク25内の圧力が設定値以下になったことを検知すると自動弁28を開き、気液分離タンク25を大気開放するように制御されている。   The automatic valve 28 is configured to be closed by power supply from the control unit 16 and to be opened when power supply from the control unit 16 is stopped during a power failure, and the gas-liquid separation tank 25 is opened to the atmosphere. Further, when the control unit 16 detects that the pressure in the gas-liquid separation tank 25 detected by the pressure gauge 70 has become a set value or less, the control unit 16 opens the automatic valve 28 and controls the gas-liquid separation tank 25 to be opened to the atmosphere. Has been.

従って、膜分離装置6が設置される施設内が停電となってろ過膜洗浄を行っている散気装置4aが停止しても、自動弁28が開いて気液分離タンク25を大気開放するので、直ちにろ過を停止することができ、膜の閉塞を未然に防止することができ、貯水槽7のオーバーフローも回避することができる。   Accordingly, even if the facility in which the membrane separation device 6 is installed is out of power and the diffuser 4a that performs filtration membrane cleaning stops, the automatic valve 28 opens and the gas-liquid separation tank 25 is opened to the atmosphere. The filtration can be stopped immediately, the membrane can be prevented from being blocked, and the overflow of the water tank 7 can be avoided.

また、制御部16は、圧力計70が検知する気液分離タンク25内の圧力が設定値以下になったことを検知すると、自動弁28を開き気液分離タンク25を大気開放するように制御されているので、例えば、ろ過膜6aの目詰まりや開閉バルブ62,63の故障等による締め切り状態での真空ポンプ27aの運転による、気液分離タンク25内の異常な負圧状態を検知できるので、気液分離タンク25や自然移送管61内の圧力が極端に低下し、つぶれる等の事故を未然に防止することができる。   Further, when the control unit 16 detects that the pressure in the gas-liquid separation tank 25 detected by the pressure gauge 70 has become equal to or lower than the set value, the control unit 16 opens the automatic valve 28 and controls the gas-liquid separation tank 25 to open to the atmosphere. Therefore, for example, an abnormal negative pressure state in the gas-liquid separation tank 25 can be detected due to the operation of the vacuum pump 27a in the closed state due to clogging of the filtration membrane 6a or failure of the on-off valves 62 and 63. Moreover, the pressure in the gas-liquid separation tank 25 and the natural transfer pipe 61 is extremely reduced, and an accident such as crushing can be prevented in advance.

なお、制御部16は真空ポンプ27aの電流や電圧を監視しておき、気液分離タンク25内の異常な負圧状態を検知してもよい。   The controller 16 may monitor the current and voltage of the vacuum pump 27a and detect an abnormal negative pressure state in the gas-liquid separation tank 25.

気液分離タンク25内の液位が自然排出管61による移送可能最低水位LWL以下の状態で、自然排出管61による排水を開始するときは、開閉バルブ62を閉じる。自動弁27bを開いて真空ポンプ27aを起動し、気液分離タンク25内の空気を外部に排出することで、気液分離タンク25内を負圧にする。すると、自然排出管61を通って処理水が気液分離タンク25内に貯留される。なお、開閉バルブ62は開いた状態にしておいてもよい。   When drainage by the natural discharge pipe 61 is started in a state where the liquid level in the gas-liquid separation tank 25 is below the lowest water level LWL that can be transferred by the natural discharge pipe 61, the open / close valve 62 is closed. The automatic valve 27b is opened, the vacuum pump 27a is started, and the air in the gas-liquid separation tank 25 is discharged to the outside, whereby the pressure in the gas-liquid separation tank 25 is made negative. Then, the treated water is stored in the gas-liquid separation tank 25 through the natural discharge pipe 61. The open / close valve 62 may be opened.

液位計26が気液分離タンク25の液位の高水位HWLを検知すると、自動弁27bを閉じ、真空ポンプ27aを停止し、開閉バルブ62を開く。このとき気液分離タンク25より上流側の自然排出管61内には処理水が満たされていることになる。   When the liquid level gauge 26 detects the high water level HWL of the liquid level in the gas-liquid separation tank 25, the automatic valve 27b is closed, the vacuum pump 27a is stopped, and the open / close valve 62 is opened. At this time, the natural discharge pipe 61 on the upstream side of the gas-liquid separation tank 25 is filled with treated water.

すると、膜分離槽4の液面と貯水槽7の液面との水頭差に応じた水頭圧力差によりサイフォンの原理で膜分離装置6のろ過膜6aによりろ過された処理水が自然排出管61を通って貯水槽7へと自然移送されるのである。   Then, the treated water filtered by the filtration membrane 6a of the membrane separation device 6 by the principle of siphon due to the water head pressure difference according to the water head difference between the liquid level of the membrane separation tank 4 and the water level of the water storage tank 7 is a natural discharge pipe 61. It is naturally transferred to the water tank 7 through it.

なお、真空ポンプ27aによる気液分離タンク25内の空気の排出の開始から、気液分離タンク25内の液位が自然排出管61による移送可能最低水位LWLになった時点で、開閉バルブ62を開いてろ過を開始し、気液分離タンク25の液位が高水位HWLになった時点で真空ポンプ27aを停止する運転方法も可能である。   When the liquid level in the gas-liquid separation tank 25 reaches the lowest water level LWL that can be transferred by the natural discharge pipe 61 from the start of the discharge of air in the gas-liquid separation tank 25 by the vacuum pump 27a, the open / close valve 62 is opened. An operation method is also possible in which the vacuum pump 27a is stopped when the liquid level in the gas-liquid separation tank 25 reaches the high water level HWL by opening and starting filtration.

このように、自然排出管61に処理水が流れだすと、処理水を移送するための動力は必要とせず経済的である。なお、貯水槽7に貯水された処理水は、排水管11により適宜排水される。   As described above, when the treated water flows into the natural discharge pipe 61, the power for transferring the treated water is not required and it is economical. The treated water stored in the water tank 7 is appropriately drained through the drain pipe 11.

制御部16は、液位計26が検出する気液分離タンク25内の液位が自然排出管61による移送可能最低水位LWLを検出すると、自動弁27bを開き真空ポンプ27aを稼動して、気液分離タンク25内の空気を排出して液位を回復させる。このとき、気液分離タンク25のろ過液出口を開閉する開閉機構としての開閉バルブ62,開閉バルブ63の少なくとも一方を閉じてろ過を停止させてもよいし、開いたままろ過を継続させてもよい。   When the liquid level in the gas-liquid separation tank 25 detected by the liquid level meter 26 detects the lowest water level LWL that can be transferred by the natural discharge pipe 61, the control unit 16 opens the automatic valve 27b and operates the vacuum pump 27a. The air in the liquid separation tank 25 is discharged to recover the liquid level. At this time, at least one of the opening / closing valve 62 and the opening / closing valve 63 serving as an opening / closing mechanism for opening / closing the filtrate outlet of the gas-liquid separation tank 25 may be closed to stop the filtration, or the filtration may be continued while being opened. Good.

制御部16は、液位計4bが膜分離槽4の液位の低水位LWLを検出すると、開閉バルブ62,開閉バルブ63の少なくとも一方を閉じて、自然移送管61によるろ過液の排出を停止する。また、自動弁28を開き、気液分離タンク25を大気開放し、自然移送管61によるろ過液の排出を停止することも可能である。   When the liquid level gauge 4b detects the low water level LWL of the membrane separation tank 4, the control unit 16 closes at least one of the open / close valve 62 and the open / close valve 63 and stops the discharge of the filtrate through the natural transfer pipe 61. To do. It is also possible to open the automatic valve 28, open the gas-liquid separation tank 25 to the atmosphere, and stop the discharge of the filtrate through the natural transfer pipe 61.

本実施形態の場合、吸引ポンプ64を起動することで処理水の強制排出が行われる。   In the case of this embodiment, the forced discharge of the treated water is performed by starting the suction pump 64.

自然排出管61と強制排出管の切り換えは、液位計4bが異常高水位HHWLを検出すると強制排出管に切り換えるように構成すればよい。なお、吸引ポンプ64による処理水の強制排出を行う場合は、気液分離タンク25の液位PLが吸引ポンプ64の吐出部より上方であるときに可能である。   The natural discharge pipe 61 and the forced discharge pipe may be switched so as to switch to the forced discharge pipe when the liquid level meter 4b detects an abnormally high water level HHWL. Note that the forced discharge of the treated water by the suction pump 64 is possible when the liquid level PL of the gas-liquid separation tank 25 is above the discharge part of the suction pump 64.

本実施形態では、気液分離タンク25の下部に開閉バルブ62を設けたが、上述した通り開閉バルブ62は常に開いた状態で運転することができるので、開閉バルブ62は必ずしも設ける必要はない。   In the present embodiment, the opening / closing valve 62 is provided in the lower part of the gas-liquid separation tank 25. However, since the opening / closing valve 62 can be operated in an always open state as described above, the opening / closing valve 62 is not necessarily provided.

なお、気液分離タンク25内の空気を排出する真空ポンプ27a及び自動弁27bは必ずしも設ける必要はなく、作業員が気液分離タンク25に処理水を注ぎ込むなどして気液分離タンク25内に処理水を満たしてもよい。   Note that the vacuum pump 27a and the automatic valve 27b for discharging the air in the gas-liquid separation tank 25 are not necessarily provided, and an operator pours treated water into the gas-liquid separation tank 25, for example. You may fill treated water.

真空ポンプ27a及び自動弁27bを備えない場合、制御部16は、液位計26が気液分離タンク22内の液位が所定液位まで下がったことを検出すると、吸引ポンプ64を稼動するとともに、自動弁28を開き気液分離タンク25を大気開放するとともに、開閉バルブ62を閉鎖して気液分離タンク25の液位を回復させる。このように、サイフォンを維持したまま、気液分離タンク25内の空気を排出することができる。   When the vacuum pump 27a and the automatic valve 27b are not provided, the control unit 16 operates the suction pump 64 when the liquid level meter 26 detects that the liquid level in the gas-liquid separation tank 22 has dropped to a predetermined liquid level. Then, the automatic valve 28 is opened to open the gas-liquid separation tank 25 to the atmosphere, and the open / close valve 62 is closed to restore the liquid level in the gas-liquid separation tank 25. Thus, the air in the gas-liquid separation tank 25 can be discharged while maintaining the siphon.

上述の何れの実施形態も、水頭差によりサイフォンろ過するものについて説明したが、本発明はサイフォンろ過に限定されるものではなく、膜分離槽と自然排出管の出口の水頭差でろ過する重力ろ過にも適用される。   In any of the above-described embodiments, what is siphon filtered by a water head difference has been described. However, the present invention is not limited to siphon filtration, and gravity filtration that filters by a water head difference between the outlet of a membrane separation tank and a natural discharge pipe. Also applies.

上述の何れの実施形態でも、自然排出管や強制排出管のろ過液の流量調整については明示しなかったが、自然排出管や強制排出管に流量計や流量調整バルブ等を適宜備え、公知の技術で流量調整ができることは言うまでもない。また、その他の計装装置やバルブについて明示しなかったが、自然排出管や強制排出管に圧力計や逆止弁、仕切弁等を適宜備えることは言うまでもない。   In any of the above-described embodiments, the flow rate adjustment of the filtrate of the natural discharge pipe or the forced discharge pipe was not specified, but the natural discharge pipe or the forced discharge pipe is appropriately provided with a flow meter, a flow control valve, or the like. Needless to say, the flow rate can be adjusted with technology. In addition, although other instrumentation devices and valves were not clearly shown, it goes without saying that a pressure gauge, a check valve, a gate valve and the like are appropriately provided in the natural discharge pipe or the forced discharge pipe.

上述の何れの実施形態でも、定常運転時は自然排出経路による処理水の自然排出を行い、膜分離装置4が異常高水位HHWLのときに強制排出経路に切り替える運転方法について説明したが、自然排出経路と強制排出経路との切り替え方法は本記載に限定されるものではない。   In any of the above-described embodiments, the operation method is described in which the treated water is naturally discharged through the natural discharge path during the steady operation and is switched to the forced discharge path when the membrane separation device 4 is at the abnormally high water level HHWL. The method of switching between the route and the forced discharge route is not limited to this description.

例えば、定常時は自然排出経路により運転するが、流量調整弁の故障などにより処理液の排出流量の調整が適切に行えない場合に、強制排出経路による運転に切り替える制御を併用することも可能である。   For example, it is possible to use a control that switches to the forced discharge path when the process liquid discharge flow rate cannot be adjusted properly due to a failure of the flow rate adjustment valve, etc. is there.

また、原水の流入量が設定値以下の場合は自然排出経路による運転を行い、設定値を超えた場合に強制排出経路による運転に切り替える制御方法も可能である。   In addition, a control method is also possible in which the operation using the natural discharge route is performed when the inflow amount of the raw water is equal to or less than the set value, and the operation is switched to the operation using the forced discharge route when the set value is exceeded.

上述した実施形態は、何れも本発明の一例であり、該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることは言うまでもない。   Each of the above-described embodiments is an example of the present invention, and the present invention is not limited by the description. The specific configuration of each part can be appropriately changed and designed within the range where the effects of the present invention are exhibited. Needless to say.

1:嫌気槽
2:無酸素槽
3:好気槽
3a:散気装置
4:処理槽(膜分離槽)
4a:散気装置
4b:液位計
5:余剰汚泥排出管路
6:膜分離装置
6a:ろ過膜
7:貯水槽
8:第一の循環路
9:第二の循環路
10:第三の循環路
11:排水管
12,13,14,15,16:制御部
20:排出機構
21:自然排出経路(自然排出管)
22:開閉機構(開閉バルブ)
23:強制排出経路(強制排出管)
24:吸引ポンプ
25:気液分離部(気液分離タンク)
26:液位計
27a:排気機構(真空ポンプ)
27b:排気機構(自動弁)
28:開放機構(自動弁)
29a,29b:経路切換機構(切換バルブ)
30:排出機構
31:自然排出経路(自然排出管)
33:強制排出経路(強制排出管)
34:吸引ポンプ
39a,39b:経路切換機構(切換バルブ)
40:排出機構
41:自然排出経路(自然排出管)
42:開閉バルブ
44:吸引ポンプ
50:排出機構
51:自然排出経路(自然排出管)
52:開閉機構(開閉バルブ)
53:強制排出経路(強制排出管)
54:吸引ポンプ
59a,59b:経路切換機構(切換バルブ)
60:排出機構
61:自然排出経路(自然排出管)
62:開閉機構(開閉バルブ)
63:開閉機構(開閉バルブ)
64:吸引ポンプ
70:圧力計
100:汚水処理装置
LWL:最低水位
1: Anaerobic tank 2: Anoxic tank 3: Aerobic tank 3a: Air diffuser 4: Treatment tank (membrane separation tank)
4a: Air diffuser 4b: Liquid level meter 5: Excess sludge discharge line 6: Membrane separator 6a: Filtration membrane 7: Water tank 8: First circulation path 9: Second circulation path 10: Third circulation Road 11: Drain pipes 12, 13, 14, 15, 16: Control unit 20: Discharge mechanism 21: Natural discharge path (natural discharge pipe)
22: Open / close mechanism (open / close valve)
23: Forced discharge route (forced discharge pipe)
24: Suction pump 25: Gas-liquid separation part (gas-liquid separation tank)
26: Level gauge 27a: Exhaust mechanism (vacuum pump)
27b: Exhaust mechanism (automatic valve)
28: Opening mechanism (automatic valve)
29a, 29b: path switching mechanism (switching valve)
30: Discharge mechanism 31: Natural discharge route (natural discharge pipe)
33: Forced discharge route (forced discharge pipe)
34: Suction pumps 39a, 39b: path switching mechanism (switching valve)
40: Discharge mechanism 41: Natural discharge route (natural discharge pipe)
42: Opening / closing valve 44: Suction pump 50: Discharge mechanism 51: Natural discharge path (natural discharge pipe)
52: Opening / closing mechanism (opening / closing valve)
53: Forced discharge route (forced discharge pipe)
54: Suction pumps 59a, 59b: Path switching mechanism (switching valve)
60: Discharge mechanism 61: Natural discharge route (natural discharge pipe)
62: Opening / closing mechanism (opening / closing valve)
63: Open / close mechanism (open / close valve)
64: Suction pump 70: Pressure gauge 100: Sewage treatment device LWL: Minimum water level

Claims (8)

被処理液が供給される処理槽と、前記処理槽内に浸漬配置されたろ過膜と、前記ろ過膜で固液分離したろ過液を槽外に排出する排出機構を備えている膜分離装置であって、
前記排出機構は、前記処理槽の内外の水頭差によりろ過液を排出する自然排出経路と、ろ過液を吸引するポンプを備えた強制排出経路と、前記自然排出経路と前記強制排出経路の何れかからろ過液を排出する経路切換機構とを備え、
前記自然排出経路に、ろ過液に混入した空気を分離する気液分離部を設けていることを特徴とする膜分離装置。
A membrane separation apparatus comprising a treatment tank to which a liquid to be treated is supplied, a filtration membrane immersed in the treatment tank, and a discharge mechanism for discharging the filtrate separated by solid-liquid separation with the filtration membrane to the outside of the tank. There,
The discharge mechanism is one of a natural discharge path for discharging the filtrate due to a water head difference between the inside and outside of the treatment tank, a forced discharge path having a pump for sucking the filtrate, the natural discharge path, and the forced discharge path. A path switching mechanism for discharging the filtrate from
A membrane separation apparatus, wherein a gas-liquid separation unit for separating air mixed in the filtrate is provided in the natural discharge path.
前記強制排出経路が前記気液分離部に接続されていることを特徴とする請求項1に記載の膜分離装置。   The membrane separation apparatus according to claim 1, wherein the forced discharge path is connected to the gas-liquid separation unit. 前記ポンプの吐出側経路が前記気液分離部に接続されていることを特徴とする請求項2に記載の膜分離装置。   The membrane separation apparatus according to claim 2, wherein a discharge side path of the pump is connected to the gas-liquid separation unit. 前記強制排出経路に切り換える際に、前記気液分離部の液位は前記ポンプの吐出部より上方であることを特徴とする請求項2または3に記載の膜分離装置。   4. The membrane separation apparatus according to claim 2, wherein when switching to the forced discharge path, the liquid level of the gas-liquid separation unit is above the discharge unit of the pump. 5. 前記自然排出経路にろ過液を吸引するポンプを備えて前記強制排出経路が構成されている請求項2または3に記載の膜分離装置。   The membrane separation apparatus according to claim 2 or 3, wherein the forced discharge path is configured by including a pump for sucking the filtrate in the natural discharge path. 前記気液分離部の液位を測定する液位計と、前記液位計による測定液位に基づいて前記気液分離部の空気を吸引排気する排気機構を設けていることを特徴とする請求項1から5の何れかに記載の膜分離装置。   A liquid level meter that measures a liquid level of the gas-liquid separation unit, and an exhaust mechanism that sucks and exhausts air of the gas-liquid separation unit based on a liquid level measured by the liquid level meter is provided. Item 6. The membrane separator according to any one of Items 1 to 5. 前記気液分離部に、停電時に大気開放される自動弁を備えた開放機構を設けている請求項1から6の何れかに記載の膜分離装置。   The membrane separation apparatus according to any one of claims 1 to 6, wherein the gas-liquid separation unit is provided with an opening mechanism including an automatic valve that is opened to the atmosphere during a power failure. 前記気液分離部を大気開放する開放機構と、前記気液分離部の液位を測定する液位計と、前記気液分離部のろ過液出口を開閉する開閉機構と、前記液位計による測定液位が所定値以下になると、前記ポンプを稼動し、前記開放機構により前記気液分離部を大気開放するとともに、前記開閉機構を閉鎖して前記気液分離部の液位を回復させる制御部を備えていることを特徴とする請求項3に記載の膜分離装置。   An open mechanism that opens the gas-liquid separator to the atmosphere, a liquid level meter that measures the liquid level of the gas-liquid separator, an open / close mechanism that opens and closes the filtrate outlet of the gas-liquid separator, and the liquid level meter When the measured liquid level becomes a predetermined value or less, the pump is operated, the gas-liquid separation unit is opened to the atmosphere by the opening mechanism, and the opening / closing mechanism is closed to restore the liquid level of the gas-liquid separation unit The membrane separation apparatus according to claim 3, further comprising a section.
JP2009044167A 2009-02-26 2009-02-26 Membrane separator Active JP5025672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009044167A JP5025672B2 (en) 2009-02-26 2009-02-26 Membrane separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009044167A JP5025672B2 (en) 2009-02-26 2009-02-26 Membrane separator

Publications (2)

Publication Number Publication Date
JP2010194482A true JP2010194482A (en) 2010-09-09
JP5025672B2 JP5025672B2 (en) 2012-09-12

Family

ID=42819778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009044167A Active JP5025672B2 (en) 2009-02-26 2009-02-26 Membrane separator

Country Status (1)

Country Link
JP (1) JP5025672B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166142A (en) * 2011-02-14 2012-09-06 Hitachi Plant Technologies Ltd System for membrane separation activated sludge and method for membrane separation activated sludge
JP2012170895A (en) * 2011-02-22 2012-09-10 Mitsubishi Rayon Co Ltd Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP2016140783A (en) * 2015-01-30 2016-08-08 株式会社クボタ Organic wastewater treatment method and apparatus
JP2021098165A (en) * 2019-12-23 2021-07-01 株式会社クボタ Water treatment facility operation method and water treatment facility

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118684A (en) * 1996-10-17 1998-05-12 Tokyu Constr Co Ltd Immersion type membrane separation and activated sludge apparatus
JP2002143847A (en) * 2000-11-08 2002-05-21 Hitachi Plant Eng & Constr Co Ltd Membrane separator
JP2006015274A (en) * 2004-07-02 2006-01-19 Nishihara:Kk Water treatment apparatus
JP2008012443A (en) * 2006-07-06 2008-01-24 Fuji Electric Systems Co Ltd Filter plate for sludge tank and sludge thickening device
JP2009297681A (en) * 2008-06-17 2009-12-24 Hitachi Plant Technologies Ltd Air venting device and air venting method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118684A (en) * 1996-10-17 1998-05-12 Tokyu Constr Co Ltd Immersion type membrane separation and activated sludge apparatus
JP2002143847A (en) * 2000-11-08 2002-05-21 Hitachi Plant Eng & Constr Co Ltd Membrane separator
JP2006015274A (en) * 2004-07-02 2006-01-19 Nishihara:Kk Water treatment apparatus
JP2008012443A (en) * 2006-07-06 2008-01-24 Fuji Electric Systems Co Ltd Filter plate for sludge tank and sludge thickening device
JP2009297681A (en) * 2008-06-17 2009-12-24 Hitachi Plant Technologies Ltd Air venting device and air venting method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166142A (en) * 2011-02-14 2012-09-06 Hitachi Plant Technologies Ltd System for membrane separation activated sludge and method for membrane separation activated sludge
JP2012170895A (en) * 2011-02-22 2012-09-10 Mitsubishi Rayon Co Ltd Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP2016140783A (en) * 2015-01-30 2016-08-08 株式会社クボタ Organic wastewater treatment method and apparatus
JP2021098165A (en) * 2019-12-23 2021-07-01 株式会社クボタ Water treatment facility operation method and water treatment facility
JP7288846B2 (en) 2019-12-23 2023-06-08 株式会社クボタ Method of operating water treatment equipment and water treatment equipment

Also Published As

Publication number Publication date
JP5025672B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
EP3427807B1 (en) Water purifier and control method for water purifier
US7708887B2 (en) Combination membrane/biolytic filtration
KR20090127124A (en) Drain-flush sequence and system for filter module
US8377225B2 (en) Submerged membrane separation apparatus, cleaning method for diffusing apparatus, and method for membrane separation
KR101005422B1 (en) Apparatus and method for high flux membrane wastewater treatment using early stage control of membrane fouling
JP6695515B1 (en) Filtration membrane cleaning device, filtration membrane cleaning method, and water treatment system
JP4497406B2 (en) Method and apparatus for cleaning submerged membrane module
JP5025672B2 (en) Membrane separator
JP2014172014A (en) Membrane separation device and membrane separation method
JP2010137208A (en) Water cleaning apparatus
KR100315968B1 (en) Apparatus and method of submerged membrane wastewater treatment with releasing function of suction pressure
JP2008253901A (en) Solid-liquid separator and water treatment apparatus equipped with it
JP2006116388A (en) Air diffuser and its operating method
JP3105140B2 (en) Sewage treatment equipment
JPH10290994A (en) Septic tank
JP4335193B2 (en) Method and apparatus for treating organic wastewater
KR102464092B1 (en) Sewege treatment system using the socket type separation membrane filter
JPH10286567A (en) Membrane separating process
JP2000301176A (en) Filter device and sewage cleaning tank using the same
JP2000312896A (en) Waste water treatment apparatus
JP2016137469A (en) Method and device for cleaning air diffusion pipe, and activated sludge treatment method and activated sludge treatment system
JP6878050B2 (en) Membrane filtration device, membrane filtration method and blow device of membrane filtration device
KR200203570Y1 (en) A waste water reuseing machine of reverse osmotic pressure clean water machine
JP3257946B2 (en) Sewage treatment method and sewage treatment apparatus
JP3263283B2 (en) Septic tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5025672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150