JP2008253901A - Solid-liquid separator and water treatment apparatus equipped with it - Google Patents

Solid-liquid separator and water treatment apparatus equipped with it Download PDF

Info

Publication number
JP2008253901A
JP2008253901A JP2007097340A JP2007097340A JP2008253901A JP 2008253901 A JP2008253901 A JP 2008253901A JP 2007097340 A JP2007097340 A JP 2007097340A JP 2007097340 A JP2007097340 A JP 2007097340A JP 2008253901 A JP2008253901 A JP 2008253901A
Authority
JP
Japan
Prior art keywords
water
solid
activated sludge
metering pump
sludge tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007097340A
Other languages
Japanese (ja)
Other versions
JP4892390B2 (en
Inventor
Atsushi Hibino
淳 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Housetec Inc
Original Assignee
Housetec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Housetec Inc filed Critical Housetec Inc
Priority to JP2007097340A priority Critical patent/JP4892390B2/en
Publication of JP2008253901A publication Critical patent/JP2008253901A/en
Application granted granted Critical
Publication of JP4892390B2 publication Critical patent/JP4892390B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized and low-cost solid-liquid separator which has a stable treatment performance and a water treatment apparatus equipped with the solid-liquid separator. <P>SOLUTION: The solid-liquid separator comprises an activated sludge tank, an air supply device for supplying air to the activated sludge tank, a filter unit immersed in the activated sludge tank, an intermittent metering pump A connected to the filter unit, and a blower for supplying air to the air supply device and the intermittent metering pump A. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、一般家庭等から排出される排水を処理する水処理装置に備えられている固液分離装置であって、特に活性汚泥の分離装置に関する。   The present invention relates to a solid-liquid separation device provided in a water treatment device for treating waste water discharged from a general household or the like, and particularly relates to an activated sludge separation device.

一般家庭等から排出される排水を処理する水処理装置は、広く普及しているが、設置場所を制限されることから小型化が望まれている。水処理装置の小型化のためには、固液分離機能を安定化することが重要であり、固液分離機能の安定化については、濾過膜を使った装置が、特許文献1にて提案されている。
特許文献1では、膜濾過装置によって小型化が実現でき、更に、機械式のポンプを使わずにエアリフトポンプを使うことで、低コスト化も実現できた。
Water treatment apparatuses for treating wastewater discharged from ordinary households are widely used, but downsizing is desired because the installation location is limited. In order to reduce the size of the water treatment apparatus, it is important to stabilize the solid-liquid separation function. For stabilization of the solid-liquid separation function, an apparatus using a filtration membrane was proposed in Patent Document 1. ing.
In Patent Document 1, it is possible to reduce the size by using a membrane filtration device, and it is also possible to reduce the cost by using an air lift pump without using a mechanical pump.

また、空気を駆動源とするポンプは、小型の水処理装置ではエアリフトポンプが一般的であるが、その他にも、例えば、特許文献2に開示されている。
特開2000−51664号公報 特公昭57−5593号公報
The pump using air as a drive source is generally an air lift pump in a small water treatment apparatus, but is also disclosed in, for example, Patent Document 2.
JP 2000-51664 A Japanese Patent Publication No.57-5593

しかしながら、特許文献1に記載されるものは、水位が最低水位(L.W.L)よりも高い場合にのみ、濾過水移送管との水位差による水頭圧で濾過水が得られる。そのため、最低水位(L.W.L)時には、水位差がなくなり、濾過水を得る事ができない。
また、水位が最高水位(H.W.L)にある場合でも、水位差は水深に比べ小さく、十分な水頭圧を得る事ができない。そのため、必要水量を得るには、水位の変動幅を大きくとるか、又は有効膜面積を大きく取らなければならないという課題がある。
However, what is described in Patent Document 1 is that filtered water can be obtained with a water head pressure due to a water level difference from the filtered water transfer pipe only when the water level is higher than the lowest water level (LWL). Therefore, at the lowest water level (LWL), there is no difference in water level, and filtered water cannot be obtained.
Even when the water level is at the highest water level (HWL), the water level difference is small compared to the water depth, and sufficient head pressure cannot be obtained. Therefore, in order to obtain the required amount of water, there is a problem that the fluctuation range of the water level must be increased or the effective membrane area must be increased.

エアリフトポンプは、水処理装置には広く一般的に用いられているが、その特性から、少量の空気量では揚程(水を汲み上げる高さ)をあまり高くとる事ができないという弱点がある。
また、エアリフトポンプへの空気供給管と他の処理装置への空気供給管とは、連通している場合がほとんどであり、流量調整による水位の変動幅が大きい場合、空気バランスを取る事が難しく、水位が最低水位(L.W.L)にある場合の移送水量と最高水位(H.W.L)にある場合の移送水量とでは、水量の変動幅が大きく、定量性が保てないため、処理性能に悪影響を与えるという課題もある。
Air lift pumps are widely used in water treatment apparatuses, but due to their characteristics, there is a weakness that a lift (height for pumping up water) cannot be made so high with a small amount of air.
In addition, the air supply pipe to the air lift pump and the air supply pipe to other processing equipment are mostly in communication, and it is difficult to achieve an air balance when the fluctuation range of the water level by flow rate adjustment is large. The amount of water transferred when the water level is at the minimum water level (LWL) and the amount of water transferred when the water level is at the maximum water level (HWL) have a large fluctuation range of water volume, and the quantitativeness cannot be maintained. Therefore, there is also a problem that the processing performance is adversely affected.

本発明は、上記問題点を鑑みてなされたものであり、小型で安価な処理性能の安定した固液分離装置及び、その固液分離装置を備えた水処理装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a small and inexpensive solid / liquid separation device with stable treatment performance and a water treatment device including the solid / liquid separation device. .

本発明は、以下のものに関する。
(1)活性汚泥槽と、この活性汚泥槽に空気を供給する空気供給装置と、上記活性汚泥槽内に浸漬させる濾過ユニットと、この濾過ユニットに連結される間欠定量ポンプAと、上記空気供給装置及び間欠定量ポンプAへと空気を供給する送風機とを備えた固液分離装置。
(2)項(1)において、活性汚泥槽が、微生物固定化用の流動担体を有する固液分離装置。
(3)項(1)又は(2)において、濾過ユニットが、濾過材として液中膜又は不織布を用いる固液分離装置。
(4)項(1)乃至(3)の何れかに記載の固液分離装置と、この固液分離装置の前段に設けられる嫌気処理槽とを有する水処理装置。
(5)項(4)において、活性汚泥槽が、流量調整機能と、濾過ユニットに連結される間欠定量ポンプAとは別に他の間欠定量ポンプBとを有し、間欠定量ポンプA及びBが、送風機からの空気を移送する共通の空気供給管により連通し、間欠定量ポンプBの吸込管取水口が、上記活性汚泥槽の低水位に設置される水処理装置。
(6)項(4)又は(5)の水処理装置において、送風機が、間欠運転される水処理装置。
The present invention relates to the following.
(1) An activated sludge tank, an air supply device for supplying air to the activated sludge tank, a filtration unit immersed in the activated sludge tank, an intermittent metering pump A connected to the filtration unit, and the air supply The solid-liquid separator provided with the apparatus and the air blower which supplies air to the intermittent metering pump A.
(2) The solid-liquid separation device according to item (1), wherein the activated sludge tank has a fluid carrier for immobilizing microorganisms.
(3) The solid-liquid separation device according to item (1) or (2), wherein the filtration unit uses a submerged membrane or a non-woven fabric as a filtering material.
(4) A water treatment apparatus comprising the solid-liquid separation apparatus according to any one of items (1) to (3) and an anaerobic treatment tank provided in a preceding stage of the solid-liquid separation apparatus.
(5) In the item (4), the activated sludge tank has a flow rate adjusting function and another intermittent metering pump B separately from the intermittent metering pump A connected to the filtration unit. A water treatment device which is communicated by a common air supply pipe for transferring air from the blower and in which the suction pipe water intake of the intermittent metering pump B is installed at a low water level in the activated sludge tank.
(6) The water treatment apparatus according to item (4) or (5), wherein the blower is operated intermittently.

本発明によれば、従来の重力沈降による、例えば沈殿槽のような固液分離装置に比べ、小型化が可能になり、しかも濾過ユニットにより強制的に固液分離するため、分離性能に優れた固液分離装置及び水処理装置を提供できる。
また、空気を駆動源とするポンプを使用するため、機械式のポンプに比べ安価な固液分離装置及び水処理装置を提供できる。
According to the present invention, compared to a conventional solid-liquid separation device such as a sedimentation tank by gravity sedimentation, it is possible to reduce the size and forcibly solid-liquid separation by a filtration unit, so that the separation performance is excellent. A solid-liquid separation device and a water treatment device can be provided.
In addition, since a pump using air as a drive source is used, a solid-liquid separation device and a water treatment device can be provided that are less expensive than a mechanical pump.

本発明にて述べる活性汚泥槽は、排水に含まれる有機物を好気処理する室である。活性汚泥槽内へは、後述する空気供給装置から空気を吐出させ、室内をばっ気撹拌し、槽内を好気性に保つ。尚、槽内の溶存酸素濃度は、1mg/L以上が好ましい。
また、槽内の汚泥濃度(MLSS濃度)は、3,000〜20,000mg/Lが好ましく、5,000〜15,000mg/Lがより好ましい。
3,000mg/L未満の場合は、活性汚泥のフロックができにくいため、濾過ユニットの濾過材に生物膜が付着しやすく目詰まりの原因となるため、汚泥投入をして3,000mg/L以上になるように調整する。
逆に20,000mg/Lを超えるようになると、濾過ユニットでの透過抵抗が増大し計画透過水量を得られなくなる恐れがあるため、汚泥を引き抜き20,000mg/L以下になるように調整する。
The activated sludge tank described in the present invention is a chamber for aerobic treatment of organic substances contained in waste water. Into the activated sludge tank, air is discharged from an air supply device to be described later, the inside of the tank is aerated and agitated, and the inside of the tank is kept aerobic. The dissolved oxygen concentration in the tank is preferably 1 mg / L or more.
Moreover, 3,000-20,000 mg / L is preferable and, as for the sludge density | concentration (MLSS density | concentration) in a tank, 5,000-15,000 mg / L is more preferable.
If it is less than 3,000 mg / L, activated sludge is difficult to flocate, and the biofilm tends to adhere to the filtration material of the filtration unit, causing clogging. Adjust so that
Conversely, if it exceeds 20,000 mg / L, the permeation resistance in the filtration unit may increase and the planned permeated water amount may not be obtained. Therefore, the sludge is extracted and adjusted to 20,000 mg / L or less.

本発明にて述べる空気供給装置は、活性汚泥槽内に空気を供給できれば特に制限されるものでない。具体的には、パイプに一定間隔で孔を開けたものや、平面積の広い箱状直方体に一定間隔で孔を開けたもの等を用いることができる。
槽内の汚泥濃度が高濃度になると目詰まりしやすくなるため、孔径は直径2.5mm〜10mmが好ましく、3mm〜5mmがより好ましい。孔径2.5mm未満の場合は、空気供給圧が15kPa程度、汚泥濃度が3,000mg/L以上の場合、数ヶ月で目詰まりを起す場合がある。孔径10mm以上の場合は気泡径が大きくなり、同一空気量での気泡表面積が低下するため、水中への酸素溶解効率が極端に悪化し処理性能に悪影響を及ぼす。
尚、空気供給装置は、濾過ユニットの濾過材に空気の気泡が当たる位置に設置する。気泡が濾過材に付着した生物膜を剥ぎ取り、目詰まりしにくくするためである。
The air supply apparatus described in the present invention is not particularly limited as long as air can be supplied into the activated sludge tank. Specifically, it is possible to use a pipe having holes at regular intervals, a box-shaped rectangular parallelepiped with a large flat area having holes at regular intervals, and the like.
When the sludge concentration in the tank becomes high, clogging is likely to occur, so that the hole diameter is preferably 2.5 mm to 10 mm, and more preferably 3 mm to 5 mm. When the pore diameter is less than 2.5 mm, clogging may occur in several months when the air supply pressure is about 15 kPa and the sludge concentration is 3,000 mg / L or more. When the pore diameter is 10 mm or more, the bubble diameter increases and the bubble surface area with the same amount of air decreases, so that the efficiency of dissolving oxygen in water is extremely deteriorated, which adversely affects the processing performance.
The air supply device is installed at a position where air bubbles hit the filter medium of the filtration unit. This is because air bubbles peel off the biofilm adhering to the filter medium and make it difficult to clog.

活性汚泥槽には、流動担体を備えることが好ましい。流動担体は、微生物が付着できれば特に制限されるものでない。具体的には、粒状・円筒状・立方体状で、比重が1.0前後、大きさが10mm程度のもの等を用いることができる。フロックを形成できない微生物の棲家を提供することで、濾過材への生物膜の付着が低減できる。
また、流動担体自体が濾過材へ当たることで、濾過材に付着した生物膜を剥ぎ取り、目詰まりしにくくなる。
流動担体の比重は、好ましくは0.94〜0.98である。この範囲では、微生物が付着後に比重が1.0に近くなり流動しやすくなる。
また、流動担体の充填率は70%以下が好ましい。70%を越えると担体同士の衝突により流動が阻害され、流動しにくくなる。
The activated sludge tank is preferably provided with a fluid carrier. The fluid carrier is not particularly limited as long as microorganisms can adhere to it. Specifically, those having a granular shape, a cylindrical shape, a cubic shape, a specific gravity of about 1.0, and a size of about 10 mm can be used. By providing a microorganism house that cannot form flocs, biofilm adhesion to the filter medium can be reduced.
Moreover, when the fluid carrier itself hits the filter medium, the biofilm attached to the filter medium is peeled off, and clogging becomes difficult.
The specific gravity of the fluid carrier is preferably 0.94 to 0.98. In this range, the specific gravity becomes close to 1.0 after the microorganisms adhere, and the microorganisms easily flow.
The filling rate of the fluid carrier is preferably 70% or less. If it exceeds 70%, the flow is hindered by the collision between the carriers, and it becomes difficult to flow.

本発明にて述べる濾過ユニットは、濾過水排出口を備える濾過材と、濾過材を支持する支持体と、濾過水排出口に連結された濾過水排出管とを備えている。
濾過材は、濾過機能を備えていれば特に制限されるものでない。具体的には、平膜や中空糸膜で、特に孔径が0.1μm〜10μm程度の精密濾過膜(MF膜)や、孔径10μm〜1mm程度に相当する不織布を用いることができる。
尚、濾過材数は計画透過水量によって決定される。
The filtration unit described in the present invention includes a filter medium provided with a filtrate discharge port, a support that supports the filter medium, and a filtrate discharge pipe connected to the filtrate discharge port.
The filter medium is not particularly limited as long as it has a filtration function. Specifically, a microfiltration membrane (MF membrane) having a pore diameter of about 0.1 μm to 10 μm or a non-woven fabric corresponding to a pore diameter of about 10 μm to 1 mm can be used.
The number of filter media is determined by the planned permeate amount.

濾過材を支持する支持体は、濾過材を活性汚泥槽内に固定するものであれば特に制限されるものでない。具体的には、例えば上記平膜に対応するものであれば、濾過材の濾過水透過部分が垂直になるように固定するために、濾過材の端面を挟みこむように鉛直方向にガイドを設ける。これは、濾過材が破損・劣化した場合に濾過材ごと交換できるように、上下方向に移動ができるようにするためである。   The support for supporting the filter medium is not particularly limited as long as the filter medium is fixed in the activated sludge tank. Specifically, for example, if it corresponds to the above flat membrane, a guide is provided in the vertical direction so as to sandwich the end face of the filter medium so as to fix the filtered water permeation portion of the filter medium to be vertical. This is because the filter medium can be moved up and down so that the filter medium can be replaced when the filter medium is damaged or deteriorated.

尚、濾過材が複数個必要な場合は、濾過材を平行に並べるように、鉛直方向のガイドも濾過材の数に対応した数を用意する。濾過材と濾過材の間隔は、濾過材間を流動担体が流通することを考慮して、担体の大きさ(担体の最大長さ部分)の2〜3倍程度とすることが好ましい。これより狭い場合は、濾過材間に流動担体が入り込まず、流動担体による濾過材の生物膜剥離効果が期待できない。また、これより広い場合は、ユニット自体が大きくなってしまい、全体として固液分離装置の小型化に相反する。   When a plurality of filter media are required, the number of guides in the vertical direction corresponding to the number of filter media is prepared so that the filter media are arranged in parallel. The distance between the filter medium and the filter medium is preferably about 2 to 3 times the size of the carrier (maximum length portion of the carrier) in consideration of the flow carrier flowing between the filter media. If it is narrower than this, the fluid carrier does not enter between the filter media, and the biofilm peeling effect of the filter media by the fluid carrier cannot be expected. On the other hand, when the width is larger than this, the unit itself becomes large, which is contrary to the downsizing of the solid-liquid separator.

濾過水排出管は、濾過材からの濾過水排出口に連結された通水管であり、通水できれば特に制限されるものでない。具体的には、パイプやチューブ等を用いることができる。
複数の濾過水排出口がある場合には、各々の濾過水排出口を並列に連結して、濾過水排出管の端末をひとつにすることが好ましい。この際、濾過水排出管の端末の口径面積が、各々の濾過水排出口の合計面積よりも大きいことが好ましい。こうすることで、配管抵抗による水頭損失が低減され、より多くの濾過水量を得ることができる。
The filtered water discharge pipe is a water pipe connected to the filtered water discharge port from the filter medium, and is not particularly limited as long as water can be passed. Specifically, a pipe, a tube, or the like can be used.
In the case where there are a plurality of filtrate outlets, it is preferable to connect the filtrate outlets in parallel to form one end of the filtrate outlet pipe. At this time, it is preferable that the diameter area of the end of the filtrate discharge pipe is larger than the total area of the filtrate discharge outlets. By carrying out like this, the head loss by piping resistance is reduced and more filtered water amount can be obtained.

本発明にて述べる間欠定量ポンプは、上記特許文献2にて開示されたものと同等のものを用いることができる。間欠定量ポンプの吸込管(ポンプへの流入口)は、濾過水排出管と連結させる。間欠定量ポンプ内の高水位(H.W.L)の位置は、上記濾過材の上端よりも低い位置に設置する。この位置に設置することで、常に濾過材に水圧がかかり、常時濾過水を得る事が可能である。好ましくは、濾過材の規定使用水圧の上限と、間欠定量ポンプ内の高水位(H.W.L)と濾過材の上端との水頭差による水頭圧と、が等しくなるように間欠定量ポンプ内の高水位(H.W.L)の位置を設定する。こうすることで、より多くの濾過水を得ることができる。
尚、間欠定量ポンプの吸込管に逆流防止用の逆止弁を設ける場合もあるが、この場合、濾過材への水圧が十分に高いため逆流が起こりにくく必ずしも設ける必要はない。
As the intermittent metering pump described in the present invention, an equivalent pump disclosed in Patent Document 2 can be used. The suction pipe (inlet to the pump) of the intermittent metering pump is connected to the filtered water discharge pipe. The position of the high water level (HWL) in the intermittent metering pump is installed at a position lower than the upper end of the filter medium. By installing in this position, water pressure is always applied to the filter medium, and it is possible to always obtain filtered water. Preferably, in the intermittent metering pump, the upper limit of the specified working water pressure of the filter medium and the head pressure due to the water head difference between the high water level (HWL) in the intermittent metering pump and the upper end of the filter medium are equal. The position of the high water level (HWL) is set. By doing so, more filtered water can be obtained.
In some cases, a check valve for preventing backflow may be provided in the suction pipe of the intermittent metering pump. However, in this case, since the water pressure to the filter medium is sufficiently high, it is not always necessary to provide a backflow.

本発明にて述べる送風機(ブロワー)は、間欠定量ポンプ及び空気供給装置に空気を供給できれば特に制限されるものでない。具体的には、ダイアフラムポンプ、ロータリーブロワー等を、用いることができる。送風機は、間欠定量ポンプ用、空気供給装置用と各々に設けても、兼用にしてもよい。
尚、その他の空気が必要な処理装置がある場合は、その処理装置への空気供給と兼用にしてよい。
The blower described in the present invention is not particularly limited as long as air can be supplied to the intermittent metering pump and the air supply device. Specifically, a diaphragm pump, a rotary blower, or the like can be used. The blower may be provided for each of the intermittent metering pump and the air supply device, or may be shared.
In addition, when there exists another processing apparatus which requires air, you may combine with the air supply to the processing apparatus.

本発明にて述べる水処理装置は、固液分離装置と嫌気処理槽とを備える。
嫌気処理槽は、固液分離装置の前段、即ち上流に設けられ、嫌気性の処理機能を有している槽であれば特に制限されるものでなく、具体的には、沈殿分離槽、嫌気濾床槽等を用いることができる。嫌気処理槽は、汚水に含まれる有機物を嫌気処理し、固液分離された上澄水を固液分離装置に移送する。一方、固液分離された汚泥は嫌気消化される。
The water treatment device described in the present invention includes a solid-liquid separation device and an anaerobic treatment tank.
The anaerobic treatment tank is not particularly limited as long as it is provided upstream of the solid-liquid separation device, that is, upstream, and has an anaerobic treatment function. A filter bed tank or the like can be used. An anaerobic treatment tank carries out the anaerobic process of the organic substance contained in sewage, and transfers the supernatant water separated into solid and liquid to a solid-liquid separator. On the other hand, sludge separated into solid and liquid is subjected to anaerobic digestion.

本発明にて述べる水処理装置に、流量調整機能を付加する場合は、以下のようにすることができる。
流量調整機能は、多大な流入ピークを緩和するための機能であり、貯留機能と送水機能とを備える。
貯留機能は、流入した汚水を一時的に貯留しておく機能であり、活性汚泥槽上部を水位変動させて機能を持たせる事ができる。この場合の低水位(L.W.L)の設定は、空気供給管が連通した他の間欠定量ポンプの吸込管取水口位置で決定される。
送水機能は、濾過ユニットに連結された間欠定量ポンプに兼用できる。送水先は固液分離装置の後段の処理装置となる。
他の間欠定量ポンプの送水先は、嫌気処理槽が好ましい。このようにすることで、脱窒効果が期待でき、有機物も消費されるため、処理性能の安定化を図ることができる。
When a flow rate adjusting function is added to the water treatment apparatus described in the present invention, the following can be performed.
The flow rate adjustment function is a function for alleviating a large inflow peak, and includes a storage function and a water supply function.
The storage function is a function of temporarily storing the inflowing sewage, and can have a function by changing the water level in the upper part of the activated sludge tank. In this case, the setting of the low water level (LWL) is determined by the intake pipe intake position of another intermittent metering pump with which the air supply pipe communicates.
The water supply function can also be used as an intermittent metering pump connected to the filtration unit. The water supply destination is a subsequent processing device of the solid-liquid separator.
The water supply destination of other intermittent metering pumps is preferably an anaerobic treatment tank. By doing in this way, since the denitrification effect can be expected and organic matter is consumed, the treatment performance can be stabilized.

送風機は、タイマー機能を併設したものを用いることで、活性汚泥槽の間欠運転ができる。このようにすることで、脱窒効果が期待でき、有機物も消費されるため、処理性能の安定化を図ることができる。送風機を兼用とすることで、送風機停止中はばっ気が停止し濾過材面に気泡が当たらないが、間欠定量ポンプも停止するため、濾過材が目詰まりする恐れがない。   By using the blower with a timer function, the activated sludge tank can be intermittently operated. By doing in this way, since the denitrification effect can be expected and organic matter is consumed, the treatment performance can be stabilized. When the blower is also used, aeration stops while the blower is stopped, and bubbles do not hit the surface of the filter medium. However, the intermittent metering pump also stops, so there is no risk of the filter medium being clogged.

以下、本発明の実施例を図面により説明する。図1は本発明に係る1実施例である水処理装置の概略立面図である。
水処理装置1は、嫌気濾床槽2、固液分離装置3、消毒槽4を有している。
嫌気濾床槽2は、濾床21を有しており、濾材は網様円筒濾材である。
固液分離装置3は、活性汚泥槽31、空気供給装置32、濾過ユニット33と、間欠定量ポンプ34、送風機35で構成される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic elevation view of a water treatment apparatus according to one embodiment of the present invention.
The water treatment apparatus 1 has an anaerobic filter bed tank 2, a solid-liquid separation apparatus 3, and a disinfection tank 4.
The anaerobic filter bed tank 2 has a filter bed 21 and the filter medium is a mesh-like cylindrical filter medium.
The solid-liquid separation device 3 includes an activated sludge tank 31, an air supply device 32, a filtration unit 33, an intermittent metering pump 34, and a blower 35.

以下、排水の流れに沿って説明する。
排水は、流入口11を通って嫌気濾床槽2に流れ込む。流れ込んだ排水中の固形物は、濾床21に捕捉され、嫌気分解された後、嫌気濾床槽2の底部に沈降する。沈降した固形物は汚泥と共に清掃時に引抜かれる。なお、移流路22は清掃孔を兼ねている。固形物が分離された排水は移流口23より固液分離装置3へ移流する。
固液分離装置3の活性汚泥槽31に流れ込んだ水は、空気供給装置32から放出された気泡によって好気状態に保たれた槽内で好気処理される。好気処理された水は、濾過ユニット33にて濾過され、間欠定量ポンプ34を経て、消毒槽4にて滅菌され流出口12から放流される。
Hereinafter, it demonstrates along the flow of waste_water | drain.
Drainage flows into the anaerobic filter bed tank 2 through the inlet 11. The solid matter in the drained wastewater is captured by the filter bed 21 and anaerobically decomposed, and then settles at the bottom of the anaerobic filter bed tank 2. The settled solids are pulled out together with the sludge during cleaning. The transfer channel 22 also serves as a cleaning hole. The waste water from which the solid matter has been separated is transferred to the solid-liquid separator 3 through the transfer port 23.
The water that has flowed into the activated sludge tank 31 of the solid-liquid separator 3 is subjected to an aerobic treatment in a tank that is kept in an aerobic state by bubbles released from the air supply device 32. The aerobic treated water is filtered by the filtration unit 33, sterilized in the disinfection tank 4 through the intermittent metering pump 34, and discharged from the outlet 12.

濾過ユニット33は、濾過水排出口332を備える濾過材331と、この濾過材331を支持する支持体333と、濾過水排出口332に連結された濾過水排出管334を有している。
濾過材331は、ポリプロピレン製スパンボンド不織布(日本不織布株式会社製、商品名:スプリトップ、品番:SP−1070EHY)を使用した。ポリプロピレン製不織布は、疎水性で水に馴染みにくいので、親水剤を生地に練り込んだ親水性の物が好ましい。親水性の物は初期から性能を発揮できる。
長時間運転していると、いずれ濾過材面に生物膜等が付着し閉塞する。そこで、付着した生物膜を剥ぎ取るため、空気供給装置32を濾過材331の直下に配置し、気泡が濾過材面に当たるようにする。更に、直径12mmの円筒状の流動担体(図示略)を充填率30%投入し、流動する担体も濾過材面に当たるようにする。
The filtration unit 33 includes a filter medium 331 provided with a filtrate discharge port 332, a support 333 that supports the filter medium 331, and a filtrate discharge pipe 334 connected to the filtrate discharge port 332.
As the filter medium 331, a spunbond nonwoven fabric made of polypropylene (manufactured by Nippon Nonwoven Fabric Co., Ltd., trade name: SPRITOP, product number: SP-1070EHY) was used. Since the nonwoven fabric made of polypropylene is hydrophobic and is not easily adapted to water, a hydrophilic material in which a hydrophilic agent is kneaded into the fabric is preferable. A hydrophilic material can exhibit performance from the beginning.
If it is operated for a long time, a biofilm or the like will eventually adhere to the surface of the filter medium and close up. Therefore, in order to peel off the attached biofilm, the air supply device 32 is disposed immediately below the filter medium 331 so that the bubbles hit the filter medium surface. Further, a cylindrical fluid carrier (not shown) having a diameter of 12 mm is charged at a filling rate of 30% so that the fluid carrier also hits the filter medium surface.

活性汚泥槽31内の水は、濾過材331を通過し、上部にある濾過水排出口332に集められる。そして、濾過水排出管334を通じて間欠定量ポンプ34に送られる。
間欠定量ポンプ34は、十分な濾過水頭圧が得られるように、濾過材331の高さの約1/2の位置に設置する。尚、濾過水排出管334も水没するようにする。
活性汚泥槽31の水位は、間欠定量ポンプ34から消毒槽4に処理水が送られるに従い、低下する。そこで、水位検知手段36を活性汚泥槽31内に設け、濾過材331が気中に露出しないように、低水位(L.W.L)を感知し、空気供給停止手段37(本実施例では電磁弁を使用)で間欠定量ポンプ34への空気供給を止める。水位検知手段36は、特に制限はなく、具体的には水位センサー等が使われる。空気供給停止手段37も特に制限はなく、具体的には電磁弁等が使われる。
The water in the activated sludge tank 31 passes through the filter medium 331 and is collected at the filtrate outlet 332 at the top. Then, it is sent to the intermittent metering pump 34 through the filtered water discharge pipe 334.
The intermittent metering pump 34 is installed at a position about 1/2 the height of the filter medium 331 so that a sufficient filtered head pressure can be obtained. The filtered water discharge pipe 334 is also submerged.
The water level in the activated sludge tank 31 decreases as the treated water is sent from the intermittent metering pump 34 to the disinfecting tank 4. Therefore, the water level detection means 36 is provided in the activated sludge tank 31 to detect the low water level (LWL) so that the filter medium 331 is not exposed to the air, and the air supply stop means 37 (in this embodiment). The air supply to the intermittent metering pump 34 is stopped by using a solenoid valve. The water level detection means 36 is not particularly limited, and specifically, a water level sensor or the like is used. The air supply stop means 37 is not particularly limited, and specifically, an electromagnetic valve or the like is used.

本実施例では、活性汚泥槽31内に、沈殿部311を設けている。沈殿部311では、活性汚泥の重力沈降により、上部が上澄水域、下部が活性汚泥域に分かれる。万一、送風機35の故障等で、間欠定量ポンプ34が停止した場合は、沈殿部311の上部の上澄水が、オーバーフロー口312を介して消毒槽4に移送される。沈殿部311底部の連通部には、流動担体が流出しないように多孔部材(図示略)を設ける。なお、活性汚泥槽31の汚泥の引き抜きは、流動担体が系外に引抜かれないようにこの沈殿部311から行う。
沈殿部311には、活性汚泥槽31の汚泥濃度が高くなるに従いスカムが発生するため、オーバーフロー口312にスカムバッフル313を設け、スカムの消毒槽4への流出を防止する。この沈殿部311には、活性汚泥槽31の汚泥濃度が高くなり過ぎないようにスカム化して汚泥を貯留する機能もある。
In the present embodiment, a sedimentation section 311 is provided in the activated sludge tank 31. In the sedimentation part 311, the upper part is divided into a supernatant water area and the lower part is divided into an activated sludge area by gravity sedimentation of the activated sludge. If the intermittent metering pump 34 stops due to a failure of the blower 35 or the like, the supernatant water at the top of the sedimentation unit 311 is transferred to the disinfection tank 4 via the overflow port 312. A porous member (not shown) is provided at the communicating part at the bottom of the precipitation part 311 so that the fluid carrier does not flow out. In addition, extraction of the sludge of the activated sludge tank 31 is performed from this sedimentation part 311 so that a fluid carrier may not be extracted out of the system.
Since scum is generated in the sedimentation section 311 as the sludge concentration in the activated sludge tank 31 increases, a scum baffle 313 is provided at the overflow port 312 to prevent the scum from flowing out to the disinfection tank 4. The sedimentation section 311 also has a function of scumming and storing sludge so that the sludge concentration in the activated sludge tank 31 does not become too high.

送風機35には、タイマーが搭載され、送風機35の運転・停止サイクルが可能である。送風機35の運転中、活性汚泥槽31内が好気状態、停止中は活性汚泥槽31内が嫌気状態となり、脱窒が期待できる。運転・停止の間隔は、流入負荷や活性汚泥濃度等の条件によって異なるため、可変タイマーとしている。   The blower 35 is equipped with a timer, and an operation / stop cycle of the blower 35 is possible. During the operation of the blower 35, the activated sludge tank 31 is in an aerobic state, and during the stop, the activated sludge tank 31 is in an anaerobic state, and denitrification can be expected. Since the interval between operation and stop varies depending on conditions such as inflow load and activated sludge concentration, a variable timer is used.

以下、本発明の他の実施例を図面により説明する。図2は本発明に係る他の実施例である水処理装置の概略立面図、図3〜8は間欠定量ポンプの動作を示す概略図である。
本実施例では、沈殿部311内に、もう1台の間欠定量ポンプ34bが設置されている。間欠定量ポンプ34と間欠定量ポンプ34bとは、空気供給管351で連通している。
活性汚泥槽31の水位が低水位(L.W.L)よりも上にある場合には、両方の間欠定量ポンプ内に水が供給され、給水・送水が行われている。この時の間欠定量ポンプ34、34bの送水量比は、各々の間欠定量ポンプ内の水面積比となる。例えば、間欠定量ポンプ34の送水量を2Q、間欠定量ポンプ34bの送水量を3Qとしたい場合は、間欠定量ポンプ34内の水面積(水平断面積)を2S、間欠定量ポンプ34b内の水面積を3Sとすれば良い。
Other embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a schematic elevation view of a water treatment apparatus according to another embodiment of the present invention, and FIGS. 3 to 8 are schematic views showing the operation of the intermittent metering pump.
In the present embodiment, another intermittent metering pump 34 b is installed in the sedimentation section 311. The intermittent metering pump 34 and the intermittent metering pump 34 b communicate with each other through an air supply pipe 351.
When the water level of the activated sludge tank 31 is above the low water level (LWL), water is supplied into both intermittent metering pumps, and water supply / water supply is performed. At this time, the water supply amount ratio of the intermittent metering pumps 34, 34b is the water area ratio in each intermittent metering pump. For example, when it is desired to set the water supply amount of the intermittent metering pump 34 to 2Q and the water supply amount of the intermittent metering pump 34b to 3Q, the water area (horizontal sectional area) in the intermittent metering pump 34 is 2S, and the water area in the intermittent metering pump 34b. Is 3S.

図3は、給水工程を示す図である。この工程では、間欠定量ポンプ34の吐出管342から空気が逃げるため、間欠定量ポンプ34、34bとも水頭圧が生じ、間欠定量ポンプ34は濾過水排出管に連結された吸込管341から、間欠定量ポンプ34bは吸込管341bの取水口から水が供給される。
図4は、給水工程から送水工程に切り替わる瞬間の図である。間欠定量ポンプ34内のU字管344頂部にまで水面が達する(H.W.L)と、U字管344底部に水が流れ込みトラップが形成される。すると、空気の逃げ場所がなくなり、間欠定量ポンプ34、34b内の両方の水面に空気圧がかかる。この時、逆止弁343が閉じ、逆流を防ぐ。
図5は、送水工程を示す図である。間欠定量ポンプ34、34b内の両方の水面にかかった空気圧により、吐出管342、342bから各々水が吐出される。そして、間欠定量ポンプ34、34b内の水面は徐々に下がって行く。
図6は、送水工程から給水工程に切り替わる瞬間の図である。間欠定量ポンプ34内のU字管344底部にまで水面が達する(L.W.L)と、トラップが切れて吐出管342から空気が逃げ、間欠定量ポンプ34、34b内の両方の水面にかかった空気圧は水頭圧に負け、再び図3に示す給水工程になる。吐出管342、342bの残水は間欠定量ポンプ34、34b内に戻される。
FIG. 3 is a diagram illustrating a water supply process. In this process, since air escapes from the discharge pipe 342 of the intermittent metering pump 34, a water head pressure is generated in both the intermittent metering pumps 34 and 34 b, and the intermittent metering pump 34 is intermittently metered from the suction pipe 341 connected to the filtered water discharge pipe. The pump 34b is supplied with water from the intake port of the suction pipe 341b.
FIG. 4 is a diagram at the moment of switching from the water supply process to the water supply process. When the water surface reaches the top of the U-shaped tube 344 in the intermittent metering pump 34 (HWL), water flows into the bottom of the U-shaped tube 344 and a trap is formed. Then, there is no place for air to escape, and air pressure is applied to both water surfaces in the intermittent metering pumps 34 and 34b. At this time, the check valve 343 is closed to prevent backflow.
FIG. 5 is a diagram illustrating a water supply process. Water is discharged from the discharge pipes 342 and 342b by the air pressure applied to both water surfaces in the intermittent metering pumps 34 and 34b. Then, the water level in the intermittent metering pumps 34, 34b gradually decreases.
FIG. 6 is a diagram at the moment of switching from the water supply process to the water supply process. When the water surface reaches the bottom of the U-shaped tube 344 in the intermittent metering pump 34 (LWL), the trap is cut and air escapes from the discharge tube 342, and is applied to both water surfaces in the intermittent metering pumps 34 and 34b. The air pressure is lost to the water head pressure, and the water supply process shown in FIG. 3 is performed again. The residual water in the discharge pipes 342 and 342b is returned into the intermittent metering pumps 34 and 34b.

ところが、活性汚泥槽31の水位が低水位(L.W.L)の場合には、間欠定量ポンプ34は吸込管341から供給されるものの、間欠定量ポンプ34bは吸込管341bの取水口から水が供給されない。そして、間欠定量ポンプ34内のU字管344頂部にまで水面が達する(H.W.L)と、吐出管342、342bから各々水が吐出される(図7参照)。
その後直ぐに、間欠定量ポンプ34bは送水されるべき水が無くなり、空になる(図8参照)。この時、空気供給管351から供給された空気は、そのまま吐出管342bから逃げてしまうため、間欠定量ポンプ34内の水面には空気圧がかからず吐出管342から送水されない。活性汚泥槽31の水位が低水位(L.W.L)である限りこの状態が継続される。
すなわち、吸込管341bが、水位検知手段であり、間欠定量ポンプ34bが空気供給停止手段となる。
However, when the water level of the activated sludge tank 31 is low (LWL), the intermittent metering pump 34 is supplied from the suction pipe 341, but the intermittent metering pump 34b is supplied with water from the intake port of the suction pipe 341b. Is not supplied. When the water surface reaches the top of the U-shaped tube 344 in the intermittent metering pump 34 (HWL), water is discharged from the discharge tubes 342 and 342b, respectively (see FIG. 7).
Immediately thereafter, the intermittent metering pump 34b runs out of water to be sent and becomes empty (see FIG. 8). At this time, since the air supplied from the air supply pipe 351 escapes from the discharge pipe 342b as it is, no air pressure is applied to the water surface in the intermittent metering pump 34 and water is not sent from the discharge pipe 342. This state is continued as long as the water level of the activated sludge tank 31 is a low water level (LWL).
That is, the suction pipe 341b is a water level detection unit, and the intermittent metering pump 34b is an air supply stop unit.

沈殿部311には、スカムが浮上するが、間欠定量ポンプ34bにより嫌気濾床槽2に返送され、再処理され、処理性能の安定化が図られる。スカムは徐々に返送されるため肥厚せず、異常なピークかかった場合等でも、スカムバッフル313を越えてオーバーフロー口312から消毒槽4へ流出する恐れもない。   The scum floats on the sedimentation unit 311 but is returned to the anaerobic filter bed tank 2 by the intermittent metering pump 34b and reprocessed to stabilize the processing performance. Since the scum is gradually returned, it does not thicken, and even when an abnormal peak is applied, there is no possibility that the scum will flow over the scum baffle 313 to the disinfection tank 4 from the overflow port 312.

本発明に係る1実施例である水処理装置の概略立面図である。1 is a schematic elevation view of a water treatment apparatus according to one embodiment of the present invention. 本発明に係る他の実施例である水処理装置の概略立面図である。It is a schematic elevation view of the water treatment apparatus which is another Example which concerns on this invention. 水位が低水位(L.W.L)よりも上にある場合の間欠定量ポンプの給水工程図。The water supply process figure of an intermittent metering pump in case a water level is above a low water level (LWL). 水位が低水位(L.W.L)よりも上にある場合の給水工程から送水工程に切り替わる瞬間の図。The figure of the moment which switches from a water supply process to a water supply process in case a water level is above a low water level (LWL). 水位が低水位(L.W.L)よりも上にある場合の間欠定量ポンプの送水工程図。The water supply process figure of an intermittent metering pump in case a water level is above a low water level (LWL). 水位が低水位(L.W.L)よりも上にある場合の送水工程から給水工程に切り替わる瞬間の図。The figure of the moment which switches from a water supply process to a water supply process in case a water level is above a low water level (LWL). 水位が低水位(L.W.L)時の給水工程から送水工程に切り替わる瞬間の図。The figure of the moment when a water level switches from a water supply process at the time of a low water level (LWL) to a water supply process. 水位が低水位(L.W.L)時の送水工程が終わった時の図。The figure when the water supply process at the time of a water level being a low water level (LWL) is completed.

符号の説明Explanation of symbols

1…水処理装置、2…嫌気濾床槽、3…固液分離装置、4…消毒槽、
11…流入口、12…流出口、
21…濾床、22…移流路、23…移流口、
31…活性汚泥槽、32…空気供給装置、33…濾過ユニット、34…間欠定量ポンプ、
35…送風機、36…水位検知手段、37…空気供給停止手段
311…沈殿部、312…オーバーフロー口、313…スカムバッフル
331…濾過材、332…濾過水排出口、333…支持体、334…濾過水排出管、
34b…間欠定量ポンプ、
341…吸込管、341b…吸込管、342…吐出管、342b…吐出管、
343…逆止弁、344…U字管、351…空気供給管。
DESCRIPTION OF SYMBOLS 1 ... Water treatment apparatus, 2 ... Anaerobic filter bed tank, 3 ... Solid-liquid separation apparatus, 4 ... Disinfection tank,
11 ... Inlet, 12 ... Outlet,
21 ... Filter bed, 22 ... Transfer channel, 23 ... Transfer port,
31 ... Activated sludge tank, 32 ... Air supply device, 33 ... Filtration unit, 34 ... Intermittent metering pump,
35 ... Air blower, 36 ... Water level detection means, 37 ... Air supply stop means 311 ... Precipitation part, 312 ... Overflow port, 313 ... Scum baffle 331 ... Filter material, 332 ... Filtrated water discharge port, 333 ... Support, 334 ... Filtration Water discharge pipe,
34b ... intermittent metering pump,
341 ... Suction pipe, 341b ... Suction pipe, 342 ... Discharge pipe, 342b ... Discharge pipe,
343 ... Check valve, 344 ... U-shaped pipe, 351 ... Air supply pipe.

Claims (6)

活性汚泥槽と、この活性汚泥槽に空気を供給する空気供給装置と、上記活性汚泥槽内に浸漬させる濾過ユニットと、この濾過ユニットに連結される間欠定量ポンプAと、上記空気供給装置及び間欠定量ポンプAへと空気を供給する送風機とを備えた固液分離装置。   An activated sludge tank, an air supply device for supplying air to the activated sludge tank, a filtration unit immersed in the activated sludge tank, an intermittent metering pump A connected to the filtration unit, the air supply device and the intermittent A solid-liquid separator comprising a blower for supplying air to the metering pump A. 請求項1において、活性汚泥槽が、微生物固定化用の流動担体を有する固液分離装置。   The solid-liquid separator according to claim 1, wherein the activated sludge tank has a fluid carrier for immobilizing microorganisms. 請求項1又は2において、濾過ユニットが、濾過材として液中膜又は不織布を用いる固液分離装置。   3. The solid-liquid separator according to claim 1, wherein the filtration unit uses a submerged membrane or a nonwoven fabric as a filtering material. 請求項1乃至3の何れかに記載の固液分離装置と、この固液分離装置の前段に設けられる嫌気処理槽とを有する水処理装置。   A water treatment apparatus comprising: the solid-liquid separation apparatus according to any one of claims 1 to 3; and an anaerobic treatment tank provided at a front stage of the solid-liquid separation apparatus. 請求項4において、活性汚泥槽が、流量調整機能と、濾過ユニットに連結される間欠定量ポンプAとは別に他の間欠定量ポンプBとを有し、間欠定量ポンプA及びBが、送風機からの空気を移送する共通の空気供給管により連通し、間欠定量ポンプBの吸込管取水口が、上記活性汚泥槽の低水位に設置される水処理装置。   In claim 4, the activated sludge tank has a flow rate adjustment function and another intermittent metering pump B separately from the intermittent metering pump A connected to the filtration unit, and the intermittent metering pumps A and B are supplied from the blower. A water treatment apparatus which is communicated by a common air supply pipe for transferring air, and in which an intake pipe intake of the intermittent metering pump B is installed at a low water level in the activated sludge tank. 請求項4又は5の水処理装置において、送風機が、間欠運転される水処理装置。   The water treatment apparatus according to claim 4 or 5, wherein the blower is operated intermittently.
JP2007097340A 2007-04-03 2007-04-03 Water treatment apparatus having a solid-liquid separator Expired - Fee Related JP4892390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007097340A JP4892390B2 (en) 2007-04-03 2007-04-03 Water treatment apparatus having a solid-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007097340A JP4892390B2 (en) 2007-04-03 2007-04-03 Water treatment apparatus having a solid-liquid separator

Publications (2)

Publication Number Publication Date
JP2008253901A true JP2008253901A (en) 2008-10-23
JP4892390B2 JP4892390B2 (en) 2012-03-07

Family

ID=39978047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007097340A Expired - Fee Related JP4892390B2 (en) 2007-04-03 2007-04-03 Water treatment apparatus having a solid-liquid separator

Country Status (1)

Country Link
JP (1) JP4892390B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184210A (en) * 2009-02-13 2010-08-26 Best Plant Ltd Co Automatic cleaning device for floating filter medium layer for biofiltration treatment
JP2012206043A (en) * 2011-03-30 2012-10-25 Kurita Water Ind Ltd Treatment apparatus of organic wastewater
JP2013146662A (en) * 2012-01-18 2013-08-01 Hitachi Plant Technologies Ltd Treatment facility for wastewater
KR101948324B1 (en) 2012-01-18 2019-02-14 가부시키가이샤 히타치세이사쿠쇼 Wastewater treatment equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299480A (en) * 1994-05-09 1995-11-14 Kubota Corp Operating method of septic tank and septic tank
JPH07328624A (en) * 1994-06-06 1995-12-19 Ebara Res Co Ltd Biological treatment method by membrane separation
JPH0889960A (en) * 1994-09-29 1996-04-09 Kubota Corp Treating device for sewage
JPH08141566A (en) * 1994-11-21 1996-06-04 Kubota Corp Wastewater treatment apparatus
JPH091173A (en) * 1995-06-26 1997-01-07 Matsushita Electric Works Ltd Waste water treatment equipment
JPH10277585A (en) * 1997-04-08 1998-10-20 Matsushita Electric Works Ltd Single tank sewage treatment method
JP2000176252A (en) * 1998-12-14 2000-06-27 Sekisui Chem Co Ltd Filter device and purifying tank
JP2000301176A (en) * 1999-04-22 2000-10-31 Sekisui Chem Co Ltd Filter device and sewage cleaning tank using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299480A (en) * 1994-05-09 1995-11-14 Kubota Corp Operating method of septic tank and septic tank
JPH07328624A (en) * 1994-06-06 1995-12-19 Ebara Res Co Ltd Biological treatment method by membrane separation
JPH0889960A (en) * 1994-09-29 1996-04-09 Kubota Corp Treating device for sewage
JPH08141566A (en) * 1994-11-21 1996-06-04 Kubota Corp Wastewater treatment apparatus
JPH091173A (en) * 1995-06-26 1997-01-07 Matsushita Electric Works Ltd Waste water treatment equipment
JPH10277585A (en) * 1997-04-08 1998-10-20 Matsushita Electric Works Ltd Single tank sewage treatment method
JP2000176252A (en) * 1998-12-14 2000-06-27 Sekisui Chem Co Ltd Filter device and purifying tank
JP2000301176A (en) * 1999-04-22 2000-10-31 Sekisui Chem Co Ltd Filter device and sewage cleaning tank using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184210A (en) * 2009-02-13 2010-08-26 Best Plant Ltd Co Automatic cleaning device for floating filter medium layer for biofiltration treatment
JP2012206043A (en) * 2011-03-30 2012-10-25 Kurita Water Ind Ltd Treatment apparatus of organic wastewater
JP2013146662A (en) * 2012-01-18 2013-08-01 Hitachi Plant Technologies Ltd Treatment facility for wastewater
KR101948324B1 (en) 2012-01-18 2019-02-14 가부시키가이샤 히타치세이사쿠쇼 Wastewater treatment equipment

Also Published As

Publication number Publication date
JP4892390B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP6024754B2 (en) Multi-stage immersion membrane separation apparatus and membrane separation method
JP5803293B2 (en) Air diffuser
JPH07155758A (en) Waste water treating device
JP5822264B2 (en) Operation method of membrane separation activated sludge treatment equipment
WO2001072643A1 (en) Method and apparatus for treating waste water
JP4892390B2 (en) Water treatment apparatus having a solid-liquid separator
JP5001923B2 (en) Water treatment apparatus and water treatment method
Vigneswaran et al. Submerged membrane adsorption hybrid system (SMAHS): process control and optimization of operating parameters
JP6613323B2 (en) Water treatment apparatus and water treatment method
JP4591678B2 (en) Biological treatment equipment
WO2018051630A1 (en) Membrane-separation activated sludge treatment system
JP2014172014A (en) Membrane separation device and membrane separation method
JP2016123920A (en) Wastewater treatment apparatus and method
JP5016827B2 (en) Membrane separation activated sludge treatment method
JP3171746B2 (en) Domestic wastewater treatment equipment
JP4335193B2 (en) Method and apparatus for treating organic wastewater
JP4124957B2 (en) Filter body washing method and apparatus
CN110451659A (en) A kind of novel Round Sump MBBR-MBR reactor
JP4048559B2 (en) U-shaped air lift pump pipe and septic tank
JP4075393B2 (en) Mountain-shaped airlift pump pipe and septic tank
JP2014233685A (en) Effluent treatment apparatus
JP2004305926A (en) Immersion membrane separation type activated sludge treatment method
JP2003181483A (en) Method for treating septic tank and the septic tank
JP2000246245A (en) Waste water treatment apparatus
JP2002035556A (en) Method for filtering sewage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees