JP3768027B2 - Gas dissolved water production equipment - Google Patents

Gas dissolved water production equipment Download PDF

Info

Publication number
JP3768027B2
JP3768027B2 JP10399799A JP10399799A JP3768027B2 JP 3768027 B2 JP3768027 B2 JP 3768027B2 JP 10399799 A JP10399799 A JP 10399799A JP 10399799 A JP10399799 A JP 10399799A JP 3768027 B2 JP3768027 B2 JP 3768027B2
Authority
JP
Japan
Prior art keywords
gas
water
supply passage
liquid separator
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10399799A
Other languages
Japanese (ja)
Other versions
JP2000297392A (en
Inventor
道雄 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP10399799A priority Critical patent/JP3768027B2/en
Publication of JP2000297392A publication Critical patent/JP2000297392A/en
Application granted granted Critical
Publication of JP3768027B2 publication Critical patent/JP3768027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は例えば半導体製造工程において洗浄水として用いられる水素溶解水の如き一定量のガスを溶解してなるガス溶解水を製造するためのガス溶解水製造装置に関する。
【0002】
【従来の技術】
半導体製造工程において、シリコンウエハ表面に付着している微粒子、有機物、金属、自然酸化膜等の除去を行うための洗浄が行われるが、この洗浄処理に当って、硫酸・過酸化水素水混合溶液、フッ酸溶液等の洗浄液が用いられると共に、洗浄後にすすぎを行なうためにすすぎ用水として超純水が用いられている。しかし超純水によるすすぎも全く問題がない訳ではなく、超純水中の溶存酸素によりシリコンウエハ表面に薄い酸化膜が形成されるという問題点があり、この点を解決するため、超純水に水素ガスを溶解せしめた水素溶解水を用いてすすぎ等の洗浄を行う方法が既に幾つか提案されている。
【0003】
水素溶解水を製造するに当り、超純水に水素ガスを溶解させる方法として、水の電気分解により発生した水素ガスを供給して超純水に水素ガスを溶解させる方法がある。
【0004】
この水素ガス溶解方法は図3に示すように、電解装置1内で発生した水素ガスを気液分離器2、ガス供給管3を通してガス溶解装置4のガス供給通路5に供給するものである。図中、6は電解装置の直流電源である。ここにおいて超純水は、水供給管7を通してガス溶解装置4の水供給通路8に導かれ、このガス溶解装置4内において、水素ガスがガス透過膜9を通り、超純水に溶解し、水素溶解水が得られる。
【0005】
かくして得られた水素溶解水は水流出管10を通して例えば半導体製造工場における洗浄工程に送られる。
【0006】
水の電気分解により発生した水素ガスには水蒸気が飽和状態で含まれており、そのためガス溶解装置4のガス供給通路5内において水蒸気の凝縮が起こり、該通路5内に凝縮水が生じて次第に滞留するという事態が発生する。また水供給通路8内の水蒸気がガス透過膜9を通してガス供給通路5側に逆拡散し、この逆拡散した水蒸気がガス供給通路5内で凝縮し、それにより生じた凝縮水が該通路5内に次第に滞留するという事態の発生もみられる。
【0007】
上記した2つの要因によりガス供給通路5内に凝縮水が次第に滞留していくが、この凝縮水の滞留によりガス溶解装置においてガス透過膜を介して水素ガスが超純水と接する境界面面積が狭まり、ガス溶解効率が低下してしまうという不具合を生じる。
【0008】
そこで従来はガス溶解装置4の下方にドレンタンク11を設置し、ガス供給通路5内で生じる凝縮水をドレンタンク11に送り、上記通路5内に凝縮水が滞留しないように対策を講じていた。
【0009】
【発明が解決しようとする課題】
上記ドレンタンク11を設けた構造において、ドレンタンク11内に凝縮水が貯まり、その水位が上限水位に達するとレベルセンサー12が働いてバルブ13を開け、凝縮水を排出すると共に、排水に伴ないタンク内の凝縮水の水位が下限水位に達するともう一方のレベルセンサー14が働いてバルブ13を閉じるように構成されている。
【0010】
このように2つのセンサーを設けてタンク内の凝縮水の水位を監視するのは、ドレンタンク11を含む排水系を開放状態にしておくとガス供給通路5内の水素ガスが排水系を通って抜け出し、該通路5内の水素ガス圧が低下してしまうためバルブ開閉制御を行なう必要があるからである。
【0011】
上記の如く従来において、ガス溶解装置内における凝縮水の滞留防止を図るためには、ドレンタンクという新たな装置を設ける上に、このドレンタンク内の貯留水の量を制御するためのレベルセンサーを含む新たな制御システムを設けなければならず、その結果、ガス溶解水製造装置全体として構造が複雑になり、製造コストの上昇を招くばかりか、新たな制御系が加わることによる故障の確率の増大という問題が生じ、メンテナンスの面からも不利となる欠点があった。
【0012】
本発明は叙上の点に鑑みなされたもので、構造が簡単であり、製造コストを低減でき、且つ故障の問題を解消できるガス溶解水製造装置を提供することを目的としている。
【0013】
【課題を解決するための手段】
本発明は、(1)水の電気分解により生じたガスを、ガス透過膜を介して純水に溶解するためのガス溶解装置を有するガス溶解水製造装置において、該ガス溶解装置のガス供給通路に凝集水排水管を設けるとともに、該凝集水排水管を気液分離器に連結して、該ガス溶解装置のガス供給通路内において生じる凝縮水を該気液分離器に排出するように構成したことを特徴とするガス溶解水製造装置。(2)気液分離器は、レベルセンサーを備えて、気液分離器内に水位が上限水位と下限水位の間にて水が存在するように構成している、ことを特徴とする前記(1)記載のガス溶解水製造装置である。
【0014】
【発明の実施の形態】
以下、本発明を図面に基き詳細に説明する。
【0015】
図1には本発明のガス溶解水製造装置の実施例が示されている。同図において、20は電解装置、21はガス溶解装置、22は気液分離器であり、電解装置20はイオン交換膜23を介して区画された陽極室24と陰極室25を有する。26は陽極、27は陰極、28は電解装置の直流電源である。純水を供給する水供給管29から2つの水流入管30、31が分岐して設けられ、一方の水流入管30は電解装置20に、他方の水流入管31はガス溶解装置21に連結されている。電解装置20には水の電気分解により生じた水素ガスを流出する水素ガス流出管32と、同様に水の電気分解により生じた酸素ガスを流出する酸素ガス流出管33とが配管され、更に水素ガス流出管32は気液分離器22に連結され、該気液分離器22とガス溶解装置21との間にはガス供給管34が配管されている。35は気液分離器22に取付けられた排水管である。
【0016】
気液分離器22は気液分離機構を備えた装置であり、水素ガスと水とを分離するための空間36が設けられている。該気液分離器22には、貯留水の上限水位を検出するレベルセンサー37と、該貯留水の下限水位を検出するレベルセンサー38とが設けられ、これらのセンサー37、38と電気的に接続されてその開閉が制御されるバルブ39が排水管35に設けられている。
【0017】
ガス溶解装置21はガス透過膜40を介して区画されたガス供給通路41と水供給通路42を有し、ガス供給通路41には前記ガス供給管34が連結され、水供給通路42には前記水流入管31が連結されている。更に、水供給通路42の出口側には水流出管43が連結されている。
【0018】
更にガス溶解装置21におけるガス供給通路41の下方に凝縮水排水管44を設け、この凝縮水排水管44は気液分離器22に連結されている。凝縮水排水管44はガス供給通路41内に生じる凝縮水を気液分離器22内に排出するための送液管であり、本発明においてこの排水機構としては自然流排水でも或いはポンプによる強制排水でもよい。自然流排水の場合には、ガス供給通路41における凝縮水排水管44の取付位置Aは、気液分離器22における貯留水の上限水位Bよりも高い位置となるように気液分離器22をガス溶解装置21よりも下方位置に設ける必要がある。一方、ポンプによる強制排水の場合には上記した排水管44の取付位置設定上の制約はなく、ガス溶解装置21と気液分離器22の上下位置関係は任意に設定できる。
【0019】
ガス溶解装置21におけるガス透過膜40としては、シリコン等の親ガス性素材からなるものや、フッ素系樹脂等の撥水性素材からなる膜にガスを透過できる多数の微細孔を設け、ガスは透過するが水は透過しないように構成したもの等が用いられる。ガス透過膜40は例えば中空糸状構造として構成することができ、ガス透過膜40を中空糸状構造に形成した場合、ガス溶解の方法として中空糸の内空部側から外側にガスを透過させる方法、中空糸の外側から内空部側にガスを透過させる方法のいずれの方法も採用することができる。
【0020】
本発明は純水に水素ガス(他の実施例においては酸素ガス)を溶解するものであるが、ここにおいて純水の中で特に超純水を用いることが本発明を適用する上で好ましい。
【0021】
本発明において、超純水とは、工業用水、上水、井水、河川水、湖沼水等の原水を凝集沈殿、ろ過、凝集ろ過、活性炭処理等の前処理装置で処理することにより、原水中の粗大な懸濁物質、有機物等を除去し、次いでイオン交換装置、逆浸透膜装置等の脱塩装置を主体とする一次純水製造装置で処理することにより、微粒子、コロイド物質、有機物、金属イオン、陰イオン等の不純物の大部分を除去し、更にこの一次純水を紫外線照射装置、混床式ポリッシャー、限外ろ過膜や逆浸透膜を装着した膜処理装置からなる二次純水製造装置で循環処理することにより、残留する微粒子、コロイド物質、有機物、金属イオン、陰イオン等の不純物を可及的に除去した高純度純水をいう。
【0022】
上記の如く構成される本発明装置の作用について以下、説明する。尚、以下の説明においては、純水として超純水を用いた場合について述べる。
【0023】
水供給管29より超純水を供給し、水流入管30を介して電解装置20に超純水を流入させ、ここで水の電気分解を行う。水の電気分解により陰極27側に水素ガスが生じる。陰極室25より流出するのは水素ガスと水との気液混合物であり、この気液混合物は水素ガス流出管32を経て気液分離器22に流入する。
【0024】
この気液分離器22において水素ガスと水とが分離し、水素ガスはガス供給管34を通ってガス溶解装置21に導かれる。一方、水は気液分離器22内に滞留する。
【0025】
電解装置20において、陽極26側には酸素ガスが発生し、この酸素ガスは陽極室24より、酸素ガス流出管33を経て系外に排出される。尚、電解装置20内の残留水の余剰分もこの流出管33を通して排出される。
【0026】
上記の如くガス供給管34よりガス溶解装置21に導かれた水素ガスは、該装置21のガス供給通路41に流入する。一方、該装置21の水供給通路42には水供給管29及び水流入管31を経て超純水が供給される。ガス供給通路41内の水素ガスはガス透過膜40を通過して水供給通路42内に入り込み、ここで超純水に溶解して水素溶解水が得られる。
【0027】
ここにおいて、ガス供給管34より供給される水素ガスには飽和状態の水蒸気が含まれ、ガス溶解装置のガス供給通路41内で水蒸気の凝縮が起こり、凝縮水が生じる。また同装置の水供給通路42内には常時、水流入管31より超純水が供給され、該水供給通路42内には飽和状態の水蒸気が存在し、この水蒸気がガス透過膜40を通過してガス供給通路41側に逆拡散して入り込む。そしてこの逆拡散によりガス供給通路41内に入り込んだ水蒸気が該通路41内で凝縮し、凝縮水が生じる。
【0028】
このようにガス供給通路41において凝縮水が生じるが、この凝縮水は該通路41下方に連結された凝縮水排水管44を通して気液分離器22内に流れ込む。凝縮水は直ちに凝縮水排水管44に排出され、従ってガス供給通路41内に凝縮水が滞留することはない。気液分離器22内には電解装置20より流出する水素ガスに同伴される水が滞留しているが、前記凝縮水はこの気液分離器22内の滞留水に加えられる形で流入する。
【0029】
このように、気液分離器22内には電解装置20より流出する水素ガスに同伴される水と、凝縮水排水管44より流入する凝縮水とが次第に貯留していくが、この貯留水の水位が上昇して上限水位に達したとき、レベルセンサー37が働いて電気信号が出力され、バルブ39が開かれ、それにより気液分離器22内の貯留水が排水管35を通して系外に排出される。
【0030】
貯留水の排出に伴ない貯留水の水位が下降し、該水位が下限水位に達するとレベルセンサー38が働き、電気信号が出力され、バルブ39が閉じられ、それにより貯留水の排出は停止する。従って、気液分離器22内には常に一定量の水が存在することになる。このように貯留水量によるバルブ開閉制御を行なうことによって、ガス供給通路41内の水素ガスが、凝縮水排水管44、気液分離器22及び排水管35を通して系外に抜け出すことはなく、それによりガス供給通路41内の水素ガス圧の低下を防止することができる。
【0031】
気液分離器22内は水素ガス流出管32を通して電解装置の陰極室25と連通しており、このため気液分離器22内の貯留水の一部は水素ガス流出管32を経て陰極室25内に流れ込み、水の電気分解に用いる原料水の一部ともなっている。このことから本発明によれば凝縮水を上記原料水の一部として利用することができる。
【0032】
上記の如くガス溶解装置21により製造された水素溶解水は該装置の水流出管43を経て系外に流出し、例えば半導体製造工場における洗浄工程に送られ、シリコンウエハ等の半導体基板に対する洗浄水として用いられる。
【0033】
図2は本発明の別の実施態様を示すもので、気液分離機構を有する電解装置を用いることによって気液分離器の使用を省略した構成を有するものである。同図において45は気液分離機構を有する電解装置であり、この電解装置45には、電極室内で発生したガスと電極室内の水とを分離するための空間が設けられている。即ち、陰極室46上方に、該陰極室46内で発生した水素ガスと陰極室内の水とを分離するための空間47が設けられ且つ陽極室48上方に、該陽極室48内で発生した酸素ガスと陽極室内の水とを分解するための空間49が設けられている。50は陽極、51は陰極、52はイオン交換膜、53は直流電源である。
【0034】
電解装置45には上限水位を検出するためのレベルセンサー54と下限水位を検出するためのレベルセンサー55とが設けられ、電解装置45の排水管56に取付けられたバルブ57を電気的に開閉するようになっている。58は酸素ガス流出管、59は電解装置45内で発生した水素ガスをガス溶解装置60に供給するためのガス供給管、61、62はそれぞれガス溶解装置のガス供給通路、水供給通路である。
【0035】
ガス溶解装置のガス供給通路61の下方に凝縮水排水管63が設けられ、該排水管63は電解装置の陰極室46に連結されている。64は水供給管、65、66はそれぞれ水流入管、67は水流出管である。
【0036】
本実施態様では電解装置45自体が気液分離器としても機能するため、電解装置45とガス溶解装置60との間に気液分離器を設ける必要がなく、構造が一層簡単となる。そしてガス供給通路61内で生じた凝縮水は凝縮水排水管63を通って電解装置の陰極室46内に排出される。
【0037】
それにより陰極室46内の水の量が次第に増加するため、レベルセンサーで水位制御を行なう必要がある。陰極室46内の水位が上限水位に達したときレベルセンサー54が働き、バルブ57を開いて排水管56より排水し、また水位が下限水位に達したときレベルセンサー55が働き、バルブ57を閉じて排水を停止する。
【0038】
上記した本発明の各実施態様において、電解装置に原料水を供給する水供給管と、ガス溶解装置に超純水を供給する水供給管とをそれぞれ別個に設けてもよく、またガス溶解装置に供給される超純水には必要に応じて酸若しくはアルカリを添加して予めpH調整を行なった超純水を供給するようにしてもよい。
【0039】
更に本発明は水素溶解水を製造する場合に限定されず、電解装置によって作られる酸素ガス又はオゾンガスをガス溶解装置内で超純水に溶解して酸素溶解水又はオゾン溶解水を製造する場合にも同様に適用できるものである。この酸素溶解水又はオゾン溶解水も前記した水素溶解水と同様、半導体製造工場において、洗浄工程用の洗浄水として用いることができる。
【0040】
【発明の効果】
本発明は水の電気分解により生じたガスをガス溶解装置に供給して純水にガスを溶解させガス溶解水を製造する装置であって、ガス溶解装置のガス供給通路内において生じる凝縮水を気液分離機構を備えた装置内に排出するように構成してなるものであるから、従来のように凝縮水を排出するためわざわざドレンタンクを設ける必要がなく、新たな装置の付加が不要となる。即ち、気液分離機構は電解ガスと水とを分離するために必要なものであり、本発明の装置を構成する上において必須の機構である。
【0041】
従って本発明によれば、ガス溶解水製造装置の基本構造をそのまま利用して凝縮水の排出を行なうことができ、凝縮水を排出するために新たな構成上の付加を必要としない利点がある。
【0042】
その結果、本発明によれば装置全体として構造が簡単となり、製造コストの低減を実現できると共に、構造が簡単となることによって故障の問題も解消でき、装置の維持管理上も有利となる効果がある。
【図面の簡単な説明】
【図1】本発明のガス溶解水製造装置の実施態様を示す略図である。
【図2】本発明装置の別の実施態様を示す略図である。
【図3】従来のガス溶解水製造装置を示す略図である。
【符号の説明】
21,60 ガス溶解装置
22 気液分離器
41,61 ガス供給通路
45 気液分離機構を有する電解装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas-dissolved water production apparatus for producing gas-dissolved water obtained by dissolving a certain amount of gas such as hydrogen-dissolved water used as cleaning water in a semiconductor production process, for example.
[0002]
[Prior art]
In the semiconductor manufacturing process, cleaning is performed to remove fine particles, organic substances, metals, natural oxide films, etc. adhering to the silicon wafer surface. In this cleaning process, a mixed solution of sulfuric acid and hydrogen peroxide solution is used. A cleaning solution such as a hydrofluoric acid solution is used, and ultrapure water is used as rinsing water for rinsing after cleaning. However, rinsing with ultrapure water is not a problem at all, and there is a problem that a thin oxide film is formed on the surface of the silicon wafer due to dissolved oxygen in ultrapure water. Several methods have already been proposed for cleaning such as rinsing using hydrogen-dissolved water in which hydrogen gas is dissolved.
[0003]
In producing hydrogen-dissolved water, there is a method of dissolving hydrogen gas in ultrapure water by supplying hydrogen gas generated by electrolysis of water as a method of dissolving hydrogen gas in ultrapure water.
[0004]
As shown in FIG. 3, this hydrogen gas melting method supplies hydrogen gas generated in the electrolysis apparatus 1 to a gas supply passage 5 of the gas dissolution apparatus 4 through a gas-liquid separator 2 and a gas supply pipe 3. In the figure, 6 is a DC power source for the electrolysis apparatus. Here, the ultrapure water is guided to the water supply passage 8 of the gas dissolving device 4 through the water supply pipe 7, and in this gas dissolving device 4, the hydrogen gas passes through the gas permeable membrane 9 and is dissolved in the ultrapure water, Hydrogen-dissolved water is obtained.
[0005]
The hydrogen-dissolved water thus obtained is sent to a cleaning process in a semiconductor manufacturing factory, for example, through the water outflow pipe 10.
[0006]
The hydrogen gas generated by the electrolysis of water contains water vapor in a saturated state. Therefore, condensation of water vapor occurs in the gas supply passage 5 of the gas dissolving device 4, and condensed water is gradually produced in the passage 5. The situation of staying occurs. Further, water vapor in the water supply passage 8 is reversely diffused to the gas supply passage 5 side through the gas permeable membrane 9, and the reverse diffused water vapor is condensed in the gas supply passage 5, and the condensed water generated thereby is condensed in the passage 5. Occasionally, the situation of stagnation gradually appears.
[0007]
Condensed water gradually accumulates in the gas supply passage 5 due to the two factors described above, and the boundary area where hydrogen gas contacts ultrapure water through the gas permeable membrane in the gas dissolving device due to the retention of this condensed water. It narrows, and the malfunction that gas dissolution efficiency will fall arises.
[0008]
Therefore, conventionally, a drain tank 11 is installed below the gas dissolving device 4, and condensed water generated in the gas supply passage 5 is sent to the drain tank 11, and measures are taken so that the condensed water does not stay in the passage 5. .
[0009]
[Problems to be solved by the invention]
In the structure provided with the drain tank 11, condensed water is stored in the drain tank 11, and when the water level reaches the upper limit water level, the level sensor 12 operates to open the valve 13, discharge condensed water, and accompany drainage. When the water level of the condensed water in the tank reaches the lower limit water level, the other level sensor 14 is activated to close the valve 13.
[0010]
In this way, the two sensors are provided to monitor the level of the condensed water in the tank. When the drainage system including the drain tank 11 is opened, the hydrogen gas in the gas supply passage 5 passes through the drainage system. This is because the hydrogen gas pressure in the passage 5 drops and the valve opening / closing control needs to be performed.
[0011]
As described above, in order to prevent the condensate from staying in the gas dissolving device, a new device called a drain tank is provided, and a level sensor for controlling the amount of stored water in the drain tank is provided. As a result, the structure of the gas-dissolved water production apparatus as a whole becomes complicated, resulting in an increase in manufacturing costs and an increase in the probability of failure due to the addition of a new control system. As a result, there is a disadvantage that it is disadvantageous in terms of maintenance.
[0012]
The present invention has been made in view of the above points, and an object of the present invention is to provide a gas-dissolved water manufacturing apparatus that has a simple structure, can reduce manufacturing costs, and can solve the problem of failure.
[0013]
[Means for Solving the Problems]
The present invention relates to (1) a gas supply passage of a gas dissolving apparatus in a gas dissolving water producing apparatus having a gas dissolving apparatus for dissolving a gas generated by electrolysis of water into pure water through a gas permeable membrane. The condensed water drain pipe is provided, and the condensed water drain pipe is connected to the gas-liquid separator so that the condensed water generated in the gas supply passage of the gas dissolving apparatus is discharged to the gas-liquid separator. A gas-dissolved water production apparatus characterized by that. (2) The gas-liquid separator includes a level sensor, and is configured such that water exists in the gas-liquid separator between the upper limit water level and the lower limit water level. 1) The gas-dissolved water production apparatus according to 1).
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 shows an embodiment of the gas-dissolved water production apparatus of the present invention. In the figure, 20 is an electrolysis apparatus, 21 is a gas dissolution apparatus, 22 is a gas-liquid separator, and the electrolysis apparatus 20 has an anode chamber 24 and a cathode chamber 25 partitioned by an ion exchange membrane 23. Reference numeral 26 denotes an anode, 27 denotes a cathode, and 28 denotes a DC power source for the electrolysis apparatus. Two water inflow pipes 30 and 31 are branched from a water supply pipe 29 for supplying pure water. One water inflow pipe 30 is connected to the electrolysis apparatus 20, and the other water inflow pipe 31 is connected to the gas dissolving apparatus 21. . The electrolysis apparatus 20 is provided with a hydrogen gas outflow pipe 32 for flowing out hydrogen gas generated by water electrolysis and an oxygen gas outflow pipe 33 for flowing out oxygen gas generated by water electrolysis. The gas outflow pipe 32 is connected to the gas-liquid separator 22, and a gas supply pipe 34 is connected between the gas-liquid separator 22 and the gas dissolving device 21. A drain pipe 35 is attached to the gas-liquid separator 22.
[0016]
The gas-liquid separator 22 is a device having a gas-liquid separation mechanism, and is provided with a space 36 for separating hydrogen gas and water. The gas-liquid separator 22 is provided with a level sensor 37 for detecting the upper limit water level of the stored water and a level sensor 38 for detecting the lower limit water level of the stored water, and is electrically connected to these sensors 37, 38. A valve 39 whose opening and closing is controlled is provided in the drain pipe 35.
[0017]
The gas dissolving device 21 has a gas supply passage 41 and a water supply passage 42 partitioned through a gas permeable membrane 40, the gas supply passage 41 is connected to the gas supply pipe 34, and the water supply passage 42 is connected to the gas supply passage 42. A water inflow pipe 31 is connected. Further, a water outflow pipe 43 is connected to the outlet side of the water supply passage 42.
[0018]
Further, a condensed water drain pipe 44 is provided below the gas supply passage 41 in the gas dissolving device 21, and the condensed water drain pipe 44 is connected to the gas-liquid separator 22. The condensed water drain pipe 44 is a liquid feed pipe for discharging condensed water generated in the gas supply passage 41 into the gas-liquid separator 22. In the present invention, the drainage mechanism is natural drainage or forced drainage by a pump. But you can. In the case of natural flow drainage, the gas-liquid separator 22 is set so that the attachment position A of the condensed water drain pipe 44 in the gas supply passage 41 is higher than the upper limit water level B of the stored water in the gas-liquid separator 22. It is necessary to provide at a position below the gas dissolving device 21. On the other hand, in the case of forced drainage by a pump, there is no restriction on the setting position of the drainage pipe 44 described above, and the vertical positional relationship between the gas dissolving device 21 and the gas-liquid separator 22 can be arbitrarily set.
[0019]
The gas permeable film 40 in the gas dissolving apparatus 21 is provided with a large number of fine holes through which gas can permeate through a film made of a hydrophilic material such as silicon or a film made of a water repellent material such as fluorine-based resin. However, those configured so that water does not permeate are used. The gas permeable membrane 40 can be configured, for example, as a hollow fiber-like structure, and when the gas permeable membrane 40 is formed in a hollow fiber-like structure, a method of allowing gas to permeate from the inner space side of the hollow fiber to the outside as a gas dissolution method Any method of allowing gas to permeate from the outside of the hollow fiber to the inner space side can be employed.
[0020]
In the present invention, hydrogen gas (oxygen gas in other embodiments) is dissolved in pure water. In this case, it is particularly preferable to use ultrapure water in pure water.
[0021]
In the present invention, ultrapure water means raw water such as industrial water, clean water, well water, river water, lake water, etc., by treating it with a pretreatment device such as coagulation sedimentation, filtration, coagulation filtration, activated carbon treatment, etc. By removing coarse suspended substances, organic substances, etc. in the water, and then treating with primary deionized water production equipment mainly composed of desalination equipment such as ion exchange equipment, reverse osmosis membrane equipment, fine particles, colloidal materials, organic matter, The secondary pure water consists of a membrane treatment device that removes most of the impurities such as metal ions and anions, and further equips this primary pure water with an ultraviolet irradiation device, mixed bed polisher, ultrafiltration membrane and reverse osmosis membrane. High-purity pure water from which impurities such as residual fine particles, colloidal substances, organic substances, metal ions, and anions are removed as much as possible by circulating treatment in a production apparatus.
[0022]
The operation of the device of the present invention configured as described above will be described below. In the following description, a case where ultrapure water is used as pure water will be described.
[0023]
Ultrapure water is supplied from the water supply pipe 29, and the ultrapure water is caused to flow into the electrolysis apparatus 20 through the water inflow pipe 30, where water is electrolyzed. Hydrogen gas is generated on the cathode 27 side by electrolysis of water. Outflowing from the cathode chamber 25 is a gas-liquid mixture of hydrogen gas and water, and this gas-liquid mixture flows into the gas-liquid separator 22 through the hydrogen gas outflow pipe 32.
[0024]
In the gas-liquid separator 22, hydrogen gas and water are separated, and the hydrogen gas is guided to the gas dissolving device 21 through the gas supply pipe 34. On the other hand, water stays in the gas-liquid separator 22.
[0025]
In the electrolysis apparatus 20, oxygen gas is generated on the anode 26 side, and this oxygen gas is discharged from the anode chamber 24 through the oxygen gas outflow pipe 33 to the outside of the system. The surplus water remaining in the electrolyzer 20 is also discharged through the outflow pipe 33.
[0026]
As described above, the hydrogen gas introduced into the gas dissolving device 21 from the gas supply pipe 34 flows into the gas supply passage 41 of the device 21. On the other hand, ultrapure water is supplied to the water supply passage 42 of the apparatus 21 through the water supply pipe 29 and the water inflow pipe 31. The hydrogen gas in the gas supply passage 41 passes through the gas permeable membrane 40 and enters the water supply passage 42, where it is dissolved in ultrapure water to obtain hydrogen-dissolved water.
[0027]
Here, the hydrogen gas supplied from the gas supply pipe 34 contains water vapor in a saturated state, and water vapor condenses in the gas supply passage 41 of the gas dissolving apparatus, resulting in condensed water. Also, ultrapure water is always supplied from the water inflow pipe 31 into the water supply passage 42 of the apparatus, and saturated water vapor exists in the water supply passage 42, and this water vapor passes through the gas permeable membrane 40. Then, it diffuses back into the gas supply passage 41 side. Then, the water vapor that has entered the gas supply passage 41 due to the reverse diffusion is condensed in the passage 41 to generate condensed water.
[0028]
In this way, condensed water is generated in the gas supply passage 41, and this condensed water flows into the gas-liquid separator 22 through the condensed water drain pipe 44 connected to the lower side of the passage 41. The condensed water is immediately discharged to the condensed water drain pipe 44, and therefore the condensed water does not stay in the gas supply passage 41. Although water accompanying the hydrogen gas flowing out from the electrolysis device 20 is retained in the gas-liquid separator 22, the condensed water flows in a form added to the retained water in the gas-liquid separator 22.
[0029]
As described above, the water accompanying the hydrogen gas flowing out from the electrolysis device 20 and the condensed water flowing in from the condensed water drain pipe 44 are gradually stored in the gas-liquid separator 22. When the water level rises and reaches the upper limit water level, the level sensor 37 operates to output an electrical signal, and the valve 39 is opened, whereby the stored water in the gas-liquid separator 22 is discharged out of the system through the drain pipe 35. Is done.
[0030]
The level of the stored water drops with the discharge of the stored water, and when the water level reaches the lower limit water level, the level sensor 38 is activated, an electric signal is output, the valve 39 is closed, and the discharge of the stored water is thereby stopped. . Therefore, a certain amount of water always exists in the gas-liquid separator 22. By performing valve opening / closing control based on the amount of stored water in this way, hydrogen gas in the gas supply passage 41 does not escape out of the system through the condensed water drain pipe 44, the gas-liquid separator 22, and the drain pipe 35, thereby A decrease in the hydrogen gas pressure in the gas supply passage 41 can be prevented.
[0031]
The gas-liquid separator 22 communicates with the cathode chamber 25 of the electrolysis apparatus through the hydrogen gas outflow pipe 32, and therefore, a part of the stored water in the gas-liquid separator 22 passes through the hydrogen gas outflow pipe 32 to the cathode chamber 25. It flows into the water and becomes part of the raw water used for electrolysis of water. Therefore, according to the present invention, the condensed water can be used as a part of the raw material water.
[0032]
The hydrogen-dissolved water produced by the gas dissolving apparatus 21 as described above flows out of the system through the water outflow pipe 43 of the apparatus, and is sent to a cleaning process in a semiconductor manufacturing factory, for example, for cleaning water for a semiconductor substrate such as a silicon wafer. Used as
[0033]
FIG. 2 shows another embodiment of the present invention, which has a configuration in which the use of a gas-liquid separator is omitted by using an electrolysis apparatus having a gas-liquid separation mechanism. In the figure, 45 is an electrolysis apparatus having a gas-liquid separation mechanism, and this electrolysis apparatus 45 is provided with a space for separating the gas generated in the electrode chamber and the water in the electrode chamber. That is, a space 47 for separating hydrogen gas generated in the cathode chamber 46 and water in the cathode chamber 46 is provided above the cathode chamber 46, and oxygen generated in the anode chamber 48 is above the anode chamber 48. A space 49 is provided for decomposing the gas and the water in the anode chamber. 50 is an anode, 51 is a cathode, 52 is an ion exchange membrane, and 53 is a DC power source.
[0034]
The electrolyzer 45 is provided with a level sensor 54 for detecting the upper limit water level and a level sensor 55 for detecting the lower limit water level, and electrically opens and closes a valve 57 attached to the drain pipe 56 of the electrolyzer 45. It is like that. 58 is an oxygen gas outflow pipe, 59 is a gas supply pipe for supplying hydrogen gas generated in the electrolyzer 45 to the gas dissolving apparatus 60, and 61 and 62 are a gas supply passage and a water supply path of the gas dissolving apparatus, respectively. .
[0035]
A condensed water drain pipe 63 is provided below the gas supply passage 61 of the gas dissolving apparatus, and the drain pipe 63 is connected to the cathode chamber 46 of the electrolysis apparatus. Reference numeral 64 is a water supply pipe, 65 and 66 are water inflow pipes, and 67 is a water outflow pipe.
[0036]
In this embodiment, since the electrolyzer 45 itself also functions as a gas-liquid separator, it is not necessary to provide a gas-liquid separator between the electrolyzer 45 and the gas dissolving device 60, and the structure is further simplified. The condensed water generated in the gas supply passage 61 is discharged into the cathode chamber 46 of the electrolysis apparatus through the condensed water drain pipe 63.
[0037]
As a result, the amount of water in the cathode chamber 46 gradually increases, and it is necessary to control the water level with a level sensor. When the water level in the cathode chamber 46 reaches the upper limit water level, the level sensor 54 operates, and the valve 57 is opened to drain from the drain pipe 56, and when the water level reaches the lower limit water level, the level sensor 55 operates to close the valve 57. Stop draining.
[0038]
In each of the embodiments of the present invention described above, a water supply pipe for supplying raw water to the electrolysis apparatus and a water supply pipe for supplying ultrapure water to the gas dissolution apparatus may be provided separately. The ultrapure water that has been subjected to pH adjustment in advance by adding an acid or an alkali as necessary may be supplied to the ultrapure water supplied to.
[0039]
Furthermore, the present invention is not limited to the case of producing hydrogen-dissolved water, and in the case of producing oxygen-dissolved water or ozone-dissolved water by dissolving oxygen gas or ozone gas produced by an electrolysis device in ultrapure water in the gas dissolver. Can be applied similarly. This oxygen-dissolved water or ozone-dissolved water can also be used as cleaning water for the cleaning process in the semiconductor manufacturing factory, like the above-described hydrogen-dissolved water.
[0040]
【The invention's effect】
The present invention is an apparatus for producing gas-dissolved water by supplying gas generated by electrolysis of water to a gas-dissolving apparatus and dissolving the gas in pure water, and the condensed water generated in the gas supply passage of the gas-dissolving apparatus is Since it is configured to be discharged into an apparatus equipped with a gas-liquid separation mechanism, it is not necessary to provide a drain tank in order to discharge condensed water as in the prior art, and there is no need to add a new apparatus. Become. That is, the gas-liquid separation mechanism is necessary for separating the electrolytic gas and water, and is an essential mechanism for configuring the apparatus of the present invention.
[0041]
Therefore, according to the present invention, the basic structure of the gas-dissolved water production apparatus can be used as it is, and the condensed water can be discharged, and there is an advantage that a new configuration is not required for discharging the condensed water. .
[0042]
As a result, according to the present invention, the structure of the entire apparatus is simplified, the manufacturing cost can be reduced, the problem of failure can be solved by the simplified structure, and the apparatus can be advantageously maintained and managed. is there.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an embodiment of a gas-dissolved water production apparatus of the present invention.
FIG. 2 is a schematic diagram showing another embodiment of the apparatus of the present invention.
FIG. 3 is a schematic view showing a conventional gas-dissolved water production apparatus.
[Explanation of symbols]
21, 60 Gas dissolving device 22 Gas-liquid separator 41, 61 Gas supply passage 45 Electrolyzer having gas-liquid separation mechanism

Claims (2)

水の電気分解により生じたガスを、ガス透過膜を介して純水に溶解するためのガス溶解装置を有するガス溶解水製造装置において、
該ガス溶解装置のガス供給通路に凝集水排水管を設けるとともに、該凝集水排水管を気液分離器に連結して、該ガス溶解装置のガス供給通路内において生じる凝縮水を該気液分離器に排出するように構成したことを特徴とするガス溶解水製造装置。
In a gas-dissolved water production apparatus having a gas dissolving apparatus for dissolving gas generated by electrolysis of water into pure water through a gas permeable membrane ,
A condensed water drain pipe is provided in the gas supply passage of the gas dissolving apparatus, and the condensed water drain pipe is connected to a gas-liquid separator to separate condensed water generated in the gas supply passage of the gas dissolving apparatus. A gas-dissolved water production apparatus characterized by being configured to discharge into a vessel .
気液分離器は、レベルセンサーを備えて、気液分離器内に水位が上限水位と下限水位の間にて水が存在するように構成している、ことを特徴とする請求項1記載のガス溶解水製造装置。 The gas-liquid separator is provided with a level sensor, and is configured such that water exists in the gas-liquid separator between the upper limit water level and the lower limit water level . Gas dissolved water production equipment.
JP10399799A 1999-04-12 1999-04-12 Gas dissolved water production equipment Expired - Lifetime JP3768027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10399799A JP3768027B2 (en) 1999-04-12 1999-04-12 Gas dissolved water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10399799A JP3768027B2 (en) 1999-04-12 1999-04-12 Gas dissolved water production equipment

Publications (2)

Publication Number Publication Date
JP2000297392A JP2000297392A (en) 2000-10-24
JP3768027B2 true JP3768027B2 (en) 2006-04-19

Family

ID=14368945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10399799A Expired - Lifetime JP3768027B2 (en) 1999-04-12 1999-04-12 Gas dissolved water production equipment

Country Status (1)

Country Link
JP (1) JP3768027B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172317A (en) * 2000-12-05 2002-06-18 Kiyoshi Sato Method and apparatus for increasing concentration of dissolved gas
JP4919385B2 (en) * 2006-01-11 2012-04-18 オルガノ株式会社 Gas dissolving method and apparatus
JP2007319843A (en) * 2006-06-05 2007-12-13 Kurita Water Ind Ltd Gas dissolving module
JP7245002B2 (en) * 2018-06-06 2023-03-23 株式会社日本トリム Hydrogen gas dissolver
JP2019209285A (en) * 2018-06-06 2019-12-12 株式会社日本トリム Hydrogen gas dissolution device
JP6767431B2 (en) * 2018-06-06 2020-10-14 株式会社日本トリム Hydrogen gas melting device
JP7328840B2 (en) * 2019-09-11 2023-08-17 オルガノ株式会社 Gas-dissolved water production device and method
CN116529426A (en) * 2020-12-03 2023-08-01 引能仕株式会社 Organic hydride production device, water removal device, and water removal method

Also Published As

Publication number Publication date
JP2000297392A (en) 2000-10-24

Similar Documents

Publication Publication Date Title
US20030121864A1 (en) System and method for removing deep sub-micron particles from water
JP3273718B2 (en) Method for treating water to be treated by electrodeionization and apparatus used for the method
EP1090880A1 (en) Electrolytic ozone generating method, system and ozone water producing system
JP4909648B2 (en) Circulating ozone water production apparatus and method of operating the apparatus
KR101082812B1 (en) Apparatus for electrolyzing sulfuric acid, method of performing electrolysis, and apparatus for processing a substrate
JP5357836B2 (en) Purified water production equipment and its use
JP2011083727A (en) Water treatment system
JP3768027B2 (en) Gas dissolved water production equipment
JPWO2018225186A1 (en) Apparatus and method for cleaning water treatment membrane, and water treatment system
JPH09206743A (en) Superpure water producing and supplying device and washing method thereof
JP4439674B2 (en) Deionized water production equipment
JP2007266477A (en) Semiconductor substrate cleaning system
JP3732330B2 (en) Gas dissolved water production equipment
JP3639102B2 (en) Wet processing equipment
JP4200118B2 (en) Alkaline ion water conditioner
JP2023031133A (en) Water electrolysis device and control method
KR101745568B1 (en) Ionic water generator
JP2000354857A (en) Method and apparatus for making functional water
JP4403622B2 (en) Electrodemineralization treatment method and electrodesalination treatment apparatus
JP4583520B2 (en) Waste water treatment apparatus and method
KR20170130815A (en) Ultra-pure water production system using electrical de-ionization
JP2004160380A (en) Pure water production apparatus
JPH07284772A (en) Apparatus for producing electrolytic water
KR101614077B1 (en) Filter system using stackable filter plate
JP2002113336A (en) Method of cleaning membrane filtration device and water treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term