JP2012139656A - Method and system for making nitrogen gas-dissolved water - Google Patents

Method and system for making nitrogen gas-dissolved water Download PDF

Info

Publication number
JP2012139656A
JP2012139656A JP2011000428A JP2011000428A JP2012139656A JP 2012139656 A JP2012139656 A JP 2012139656A JP 2011000428 A JP2011000428 A JP 2011000428A JP 2011000428 A JP2011000428 A JP 2011000428A JP 2012139656 A JP2012139656 A JP 2012139656A
Authority
JP
Japan
Prior art keywords
condensed water
gas
nitrogen gas
water discharge
phase chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011000428A
Other languages
Japanese (ja)
Inventor
Hiroshi Kurobe
洋 黒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011000428A priority Critical patent/JP2012139656A/en
Publication of JP2012139656A publication Critical patent/JP2012139656A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method and system for making nitrogen gas-dissolved water constituted so as to be continuously and stably operated over a long period of time by efficiently performing the discharge of condensed water in making the nitrogen gas-dissolved water by dissolving nitrogen gas in pure water or ultrapure water.SOLUTION: In the method for making the nitrogen gas-dissolved water by dissolving the nitrogen gas in pure water or ultrapure water using a gas dissolving membrane module 2 equipped with a gaseous phase chamber 22 and a liquid phase chamber 23 demarcated by a gas permeable membrane 21, the condensed water produced in the gaseous phase chamber 22 is introduced into the condensed water discharge part 4 connected to the gaseous phase chamber 22 to cut off the connection of the condensed water discharge part 4 with the gaseous phase chamber 22. The nitrogen gas is supplied to the condensed water discharge part 4 in a state that the connection with the gaseous phase chamber 22 is cut off to discharge the condensed water introduced into the condensed water discharge part 4.

Description

本発明は、窒素ガスを純水又は超純水に溶解させて窒素ガス溶解水を製造する窒素ガス溶解水製造方法および窒素ガス溶解水製造システムに関する。   The present invention relates to a nitrogen gas-dissolved water production method and a nitrogen gas-dissolved water production system for producing nitrogen gas-dissolved water by dissolving nitrogen gas in pure water or ultrapure water.

従来、半導体用のシリコンウェハやフラットパネルディスプレイ用のガラス基板等の電子材料の表面から微粒子や有機物、金属などを除去するためには、RCA洗浄法と呼ばれる、過酸化水素をベースとする高濃度の薬液による高温でのウェット洗浄方法が行われていた。RCA洗浄法は、電子材料の表面の金属などを除去するために有効な方法であるが、高濃度の酸やアルカリ、過酸化水素を多量に使用する必要がある。そのため、廃液中にこれら多量の薬液が排出され、当該廃液の中和処理や沈殿処理を行うことに多大な負担がかかるとともに、多量の汚泥が発生するという問題があった。また、洗浄後の被洗浄物を濯ぐために多量の純水や超純水が必要となる問題もあった。   Conventionally, in order to remove fine particles, organic substances, metals, etc. from the surface of electronic materials such as silicon wafers for semiconductors and glass substrates for flat panel displays, a high concentration based on hydrogen peroxide called RCA cleaning method A wet cleaning method at a high temperature with a chemical solution was performed. The RCA cleaning method is an effective method for removing metal or the like on the surface of the electronic material, but it is necessary to use a large amount of high-concentration acid, alkali, or hydrogen peroxide. Therefore, these large amounts of chemicals are discharged into the waste liquid, and there is a problem that a great burden is imposed on the neutralization treatment and precipitation treatment of the waste liquid and a large amount of sludge is generated. There is also a problem that a large amount of pure water or ultrapure water is required to rinse the object to be cleaned after cleaning.

そこで、特定のガスを純水に溶解させ、必要に応じて微量の薬剤を添加して調製したガス溶解水が、高濃度薬液に代わって使用されるようになってきている。ガス溶解水による洗浄であれば、廃液処理の負担は軽減され、被洗浄物に対する薬剤残留の問題も少ない一方で洗浄効果も高いため、洗浄用水の使用量を低減することができる。電子材料用洗浄水としてのガス溶解水に用いられる特定のガスとしては、窒素ガス、水素ガス、酸素ガス、オゾンガス、希ガス、炭酸ガスなどがある。   Therefore, gas-dissolved water prepared by dissolving a specific gas in pure water and adding a trace amount of chemicals as necessary has been used in place of high-concentration chemical solutions. If the cleaning is performed with gas-dissolved water, the burden of waste liquid treatment is reduced and the amount of cleaning water used can be reduced because the problem of chemical residue on the object to be cleaned is small and the cleaning effect is high. Specific gases used for the gas-dissolved water as the electronic material cleaning water include nitrogen gas, hydrogen gas, oxygen gas, ozone gas, rare gas, carbon dioxide gas, and the like.

このようなガス溶解水を製造する方法として、ガス透過膜によって区画された気相室及び液相室を備えたガス溶解膜モジュールを用いたものが知られている。ガス透過膜とは、水などの液体は透過させないが、ガス(気体)は透過させる膜である。気相室に窒素ガス等のガスを供給し、液相室に純水又は超純水を供給すると、窒素ガスがガス透過膜を透過して液相室において純水又は超純水に溶解し、ガス溶解水が製造される。例えば、特許文献1には、超純水を脱気して溶存気体の飽和度を低下させた後、この脱気処理された超純水に、ガス溶解膜モジュールを用いて水素ガスを溶解させる技術が記載されている。   As a method for producing such gas-dissolved water, a method using a gas-dissolving membrane module having a gas phase chamber and a liquid phase chamber partitioned by a gas permeable membrane is known. The gas permeable membrane is a membrane that does not allow liquid such as water to pass therethrough but allows gas (gas) to pass therethrough. When a gas such as nitrogen gas is supplied to the gas phase chamber and pure water or ultrapure water is supplied to the liquid phase chamber, the nitrogen gas permeates the gas permeable membrane and dissolves in the pure water or ultrapure water in the liquid phase chamber. Gas dissolved water is produced. For example, in Patent Document 1, after degassing ultrapure water to lower the saturation level of dissolved gas, hydrogen gas is dissolved in the degassed ultrapure water using a gas dissolving membrane module. The technology is described.

前述のように、ガス透過膜は液体を透過させないものであるが、ガス溶解膜モジュールを用いてガスを純水又は超純水に溶解させてガス溶解水を製造する際に、液相室に供給された純水又は超純水の一部が水蒸気となってガス透過膜を透過し、気相室に拡散してくる。このように液相室から透過してきた水蒸気は、気相室で結露して凝縮水となり、気相室に溜まってしまう。   As described above, the gas permeable membrane does not allow liquid to permeate. However, when the gas-dissolved membrane module is used to dissolve the gas in pure water or ultrapure water, Part of the supplied pure water or ultrapure water becomes water vapor and permeates the gas permeable membrane and diffuses into the gas phase chamber. The water vapor that has permeated from the liquid phase chamber in this way is condensed in the gas phase chamber to become condensed water, and accumulates in the gas phase chamber.

このような凝縮水が少量であるうちは、ガス溶解膜モジュールの性能に及ぼす影響が軽微であるものの、時間が経過して凝縮水が多量になると、この凝縮水によってガス透過膜の気相室側の表面が覆われてしまい、ガス透過膜のうちガスの透過に寄与する有効面積が減少する。その結果、ガスの液相室への透過がスムーズに行われなくなるため、ガス溶解膜モジュールの性能は低下し、液相室に供給された純水又は超純水に対してガスを十分に溶解させることができなくなる。このような状況を回避すべく、ガス溶解膜モジュールの気相室に溜まる凝縮水を、定期的に系外へ排出する必要がある。   While the amount of such condensed water is small, the effect on the performance of the gas-dissolving membrane module is slight. However, when the amount of condensed water increases over time, the condensed water causes a gas-phase chamber of the gas permeable membrane. The surface on the side is covered, and the effective area contributing to gas permeation in the gas permeable membrane is reduced. As a result, the permeation of gas into the liquid phase chamber is not performed smoothly, so the performance of the gas dissolution membrane module is reduced, and the gas is sufficiently dissolved in pure water or ultrapure water supplied to the liquid phase chamber. Can not be made. In order to avoid such a situation, it is necessary to periodically discharge condensed water accumulated in the gas phase chamber of the gas dissolution membrane module to the outside of the system.

特開平11−077023号公報Japanese Patent Laid-Open No. 11-077023

ガス溶解膜モジュールの気相室に溜まる凝縮水を系外へ排出する方法としては、排出用配管を介して真空ポンプやエジェクタを気相室に接続し、気相室に溜まった凝縮水をその真空ポンプ等で吸引して排出することが考えられる。しかしながら、真空ポンプ等で気相室内の凝縮水を吸引すると、気相室の圧力が低下し、気相室からガス透過膜を透過して液相室の純水又は超純水に供給されるガス量が減少してしまうため、ガス溶解水のガス濃度が低下してしまうという問題がある。そのために、凝縮水を排出する際には、凝縮水を排出用配管に導入した後、当該排出用配管のガス溶解膜モジュール側のバルブを閉じ、ガス溶解膜モジュールの気相室への影響が及ばない状態にする必要がある。   As a method of discharging condensed water accumulated in the gas phase chamber of the gas dissolution membrane module to the outside of the system, a vacuum pump or an ejector is connected to the gas phase chamber via a discharge pipe, and the condensed water accumulated in the gas phase chamber is It is conceivable to suction and discharge with a vacuum pump or the like. However, when the condensed water in the gas phase chamber is sucked with a vacuum pump or the like, the pressure in the gas phase chamber is reduced, and the gas phase is transmitted from the gas phase chamber to the pure water or ultrapure water in the liquid phase chamber. Since the amount of gas decreases, there is a problem that the gas concentration of the dissolved gas decreases. Therefore, when condensate is discharged, after the condensed water is introduced into the discharge pipe, the valve on the gas dissolution membrane module side of the discharge pipe is closed to affect the gas phase chamber of the gas dissolution membrane module. It is necessary to make it unacceptable.

一方、排出用配管のガス溶解膜モジュール側のバルブを閉じ、ガス溶解膜モジュールの気相室への影響が及ばない状態にした場合、排出用配管に接続された真空ポンプやエジェクタによって排出用配管を減圧することにより凝縮水を排出しようとしても、気相室から気体が流れ込んで凝縮水を押し出すことがないため、うまく凝縮水が排出用配管から排出されないという別の問題が生じてしまう。   On the other hand, when the valve on the gas dissolution membrane module side of the exhaust pipe is closed and the gas phase of the gas dissolution membrane module is not affected, the exhaust pipe is connected by a vacuum pump or ejector connected to the exhaust pipe. Even if it is attempted to discharge the condensed water by reducing the pressure, the gas does not flow into the gas phase chamber and the condensed water is not pushed out, which causes another problem that the condensed water is not discharged well from the discharge pipe.

本発明は、上記課題に鑑みてなされたものであり、窒素ガスを純水又は超純水に溶解させて窒素ガス溶解水を製造するにあたり、効率的に凝縮水の排出を行うことにより、長期間に亘って連続的かつ安定的に運転可能な窒素ガス溶解水製造方法および窒素ガス溶解水製造システムを提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and in producing nitrogen gas-dissolved water by dissolving nitrogen gas in pure water or ultrapure water, the condensate is discharged efficiently, An object is to provide a nitrogen gas-dissolved water production method and a nitrogen gas-dissolved water production system that can be operated continuously and stably over a period of time.

上記目的を達成するために、第一に、本発明は、ガス透過膜によって区画された気相室及び液相室を備えたガス溶解膜モジュールを用い、窒素ガスを純水又は超純水に溶解させて窒素ガス溶解水を製造する方法であって、前記気相室に生じた凝縮水を、前記気相室に接続された凝縮水排出部に導入するステップと、前記凝縮水排出部と前記気相室との接続を遮断するステップと、前記気相室との接続が遮断された状態で前記凝縮水排出部に窒素ガスを供給することにより、前記凝縮水排出部に導入された前記凝縮水を排出するステップと、を備えていることを特徴とする、窒素ガス溶解水製造方法を提供する(発明1)。   In order to achieve the above object, first, the present invention uses a gas dissolution membrane module having a gas phase chamber and a liquid phase chamber partitioned by a gas permeable membrane, and converts nitrogen gas into pure water or ultrapure water. A method of producing dissolved nitrogen gas dissolved water by introducing the condensed water generated in the gas phase chamber into a condensed water discharge portion connected to the gas phase chamber, and the condensed water discharge portion; Cutting the connection with the gas phase chamber, and supplying nitrogen gas to the condensate discharge portion in a state where the connection with the gas phase chamber is cut off, thereby introducing the condensate discharge portion into the condensate discharge portion. And a step of discharging condensed water. A method for producing dissolved nitrogen gas water is provided (Invention 1).

上記発明(発明1)によれば、凝縮水排出部とガス溶解膜モジュールの気相室との接続を遮断し、ガス溶解膜モジュールの気相室への影響が及ばない状態においても、凝縮水排出部に対して供給された窒素ガスが、凝縮水排出部に導入された凝縮水を系外に押し出すため、効率的に凝縮水の排出を行うことができる。また、その結果として、ガス透過膜の気相室側の表面を覆うほどの凝縮水が気相室内に滞留することはなく、ガス溶解膜モジュールの性能が低下することもないため、長期間に亘って連続的かつ安定的に窒素ガスを純水又は超純水に溶解させた窒素ガス溶解水を製造できる。   According to the above invention (Invention 1), the condensate is removed even in a state where the connection between the condensed water discharge part and the gas-phase chamber of the gas-dissolving membrane module is shut off and the gas-dissolving membrane module is not affected. Since the nitrogen gas supplied to the discharge unit pushes out the condensed water introduced into the condensed water discharge unit, the condensed water can be discharged efficiently. As a result, condensed water that covers the surface of the gas permeable membrane on the gas phase chamber side does not stay in the gas phase chamber, and the performance of the gas dissolution membrane module does not deteriorate. Nitrogen gas-dissolved water in which nitrogen gas is continuously and stably dissolved in pure water or ultrapure water can be produced.

上記発明(発明1)において、前記凝縮水排出部に導入された前記凝縮水の量を測定するステップを更に備えており、前記凝縮水排出部と前記気相室との接続を遮断するステップにおいて、前記凝縮水排出部に導入された前記凝縮水の量が所定の量を超えると、前記凝縮水排出部と前記気相室との接続を遮断することが好ましい(発明2)。   In the above invention (Invention 1), the method further comprises the step of measuring the amount of the condensed water introduced into the condensed water discharge part, and in the step of cutting off the connection between the condensed water discharge part and the gas phase chamber. When the amount of the condensed water introduced into the condensed water discharge part exceeds a predetermined amount, it is preferable to disconnect the connection between the condensed water discharge part and the gas phase chamber (Invention 2).

上記発明(発明2)によれば、凝縮水排出部に導入された凝縮水が凝縮水排出部から溢れ出すことはなく、適切なタイミングを見計らって凝縮水の排出を行うことができる。   According to the said invention (invention 2), the condensed water introduce | transduced into the condensed water discharge part does not overflow from a condensed water discharge part, but can discharge condensed water at an appropriate timing.

上記発明(発明1、2)において、前記凝縮水を排出するステップは、前記気相室との接続が遮断された状態で前記凝縮水排出部に窒素ガスを供給するとともに、前記凝縮水排出部を減圧することにより、前記凝縮水排出部に導入された前記凝縮水を排出することが好ましい(発明3)。   In the above inventions (Inventions 1 and 2), the step of discharging the condensed water supplies nitrogen gas to the condensed water discharging unit in a state where the connection with the gas phase chamber is cut off, and the condensed water discharging unit It is preferable to discharge the condensed water introduced into the condensed water discharge part by depressurizing (Convention 3).

上記発明(発明3)によれば、供給された窒素ガスによって凝縮水排出部内に滞留している凝縮水を押し出しつつ、凝縮水排出部を減圧することによって凝縮水を吸引することができるため、より効率的に凝縮水の排出を行うことができる。   According to the above invention (Invention 3), the condensed water can be sucked by depressurizing the condensed water discharge part while pushing out the condensed water staying in the condensed water discharge part by the supplied nitrogen gas. The condensed water can be discharged more efficiently.

上記発明(発明3)において、真空ポンプによって前記凝縮水排出部を減圧するようにしてもよいし(発明4)、エジェクタによって前記凝縮水排出部を減圧するようにしてもよい(発明5)。   In the above invention (Invention 3), the condensed water discharge part may be decompressed by a vacuum pump (Invention 4), or the condensed water discharge part may be decompressed by an ejector (Invention 5).

第二に、本発明は、ガス透過膜によって区画された気相室及び液相室を備えたガス溶解膜モジュールと、前記気相室に生じた凝縮水を排出する凝縮水排出装置と、を備えた窒素ガス溶解水製造システムであって、前記凝縮水排出装置は、前記気相室に接続されており、前記気相室に生じた凝縮水が導入される凝縮水排出部と、前記凝縮水排出部と前記気相室との接続を遮断可能なバルブと、前記凝縮水排出部に窒素ガスを供給する窒素ガス供給装置と、を備えていることを特徴とする、窒素ガス溶解水製造システムを提供する(発明6)。   Secondly, the present invention provides a gas-dissolved membrane module having a gas phase chamber and a liquid phase chamber partitioned by a gas permeable membrane, and a condensed water discharge device for discharging condensed water generated in the gas phase chamber. A system for producing dissolved nitrogen gas, wherein the condensed water discharge device is connected to the gas phase chamber, the condensed water discharge unit into which condensed water generated in the gas phase chamber is introduced, and the condensation Nitrogen gas-dissolved water production comprising: a valve capable of interrupting connection between a water discharge part and the gas phase chamber; and a nitrogen gas supply device for supplying nitrogen gas to the condensed water discharge part A system is provided (Invention 6).

上記発明(発明6)によれば、凝縮水排出部とガス溶解膜モジュールの気相室との接続をバルブによって遮断し、ガス溶解膜モジュールの気相室への影響が及ばない状態においても、窒素ガス供給装置により凝縮水排出部に対して供給された窒素ガスが、凝縮水排出部に導入された凝縮水を系外に押し出すため、効率的に凝縮水の排出を行うことができる。また、その結果として、ガス透過膜の気相室側の表面を覆うほどの凝縮水が気相室内に滞留することはなく、ガス溶解膜モジュールの性能が低下することもないため、長期間に亘って連続的かつ安定的に窒素ガスを純水又は超純水に溶解させた窒素ガス溶解水を製造できる。   According to the above invention (Invention 6), the connection between the condensed water discharge part and the gas-phase chamber of the gas-dissolving membrane module is blocked by a valve, and even in a state where the gas-dissolving membrane module has no influence on the gas-phase chamber, Since the nitrogen gas supplied to the condensed water discharge unit by the nitrogen gas supply device pushes out the condensed water introduced into the condensed water discharge unit, the condensed water can be discharged efficiently. As a result, condensed water that covers the surface of the gas permeable membrane on the gas phase chamber side does not stay in the gas phase chamber, and the performance of the gas dissolution membrane module does not deteriorate. Nitrogen gas-dissolved water in which nitrogen gas is continuously and stably dissolved in pure water or ultrapure water can be produced.

上記発明(発明6)において、前記凝縮水排出装置は、前記凝縮水排出部に導入された前記凝縮水の量を測定する測定装置を更に備えており、前記測定装置が測定した前記凝縮水の量が所定の量を超えると、前記バルブが前記凝縮水排出部と前記気相室との接続を遮断することが好ましい(発明7)。   In the said invention (invention 6), the said condensed water discharge | emission apparatus is further equipped with the measuring apparatus which measures the quantity of the said condensed water introduced into the said condensed water discharge part, The said condensed water measured by the said measurement apparatus When the amount exceeds a predetermined amount, the valve preferably disconnects the connection between the condensed water discharge part and the gas phase chamber (Invention 7).

上記発明(発明7)によれば、凝縮水排出部に導入された凝縮水が凝縮水排出部から溢れ出すことはなく、適切なタイミングを見計らって凝縮水の排出を行うことができる。   According to the said invention (invention 7), the condensed water introduce | transduced into the condensed water discharge part does not overflow from a condensed water discharge part, but can discharge condensed water at an appropriate timing.

上記発明(発明6、7)において、前記凝縮水排出装置は、前記凝縮水排出部を減圧する減圧手段を更に備えていることが好ましい(発明8)。   In the said invention (invention 6 and 7), it is preferable that the said condensed water discharge apparatus is further equipped with the pressure reduction means which pressure-reduces the said condensed water discharge part (invention 8).

上記発明(発明8)によれば、供給された窒素ガスによって凝縮水排出部内に滞留している凝縮水を押し出しつつ、凝縮水排出部を減圧することによって凝縮水を吸引することができるため、より効率的に凝縮水の排出を行うことができる。   According to the above invention (Invention 8), the condensed water can be sucked by depressurizing the condensed water discharge part while extruding the condensed water staying in the condensed water discharge part by the supplied nitrogen gas. The condensed water can be discharged more efficiently.

上記発明(発明8)において、前記減圧手段は真空ポンプであってもよいし(発明9)、エジェクタであってもよい(発明10)。   In the said invention (invention 8), the said pressure reduction means may be a vacuum pump (invention 9), and may be an ejector (invention 10).

本発明の窒素ガス溶解水製造方法および窒素ガス溶解水製造システムによれば、効率的に凝縮水の排出を行うことができ、長期間に亘って連続的かつ安定的に窒素ガスを純水又は超純水に溶解させた窒素ガス溶解水を製造できる。   According to the nitrogen gas-dissolved water production method and the nitrogen gas-dissolved water production system of the present invention, condensed water can be discharged efficiently, and nitrogen gas can be purified continuously or stably over a long period of time with pure water or Nitrogen gas-dissolved water dissolved in ultrapure water can be produced.

本発明の一の実施形態に係る窒素ガス溶解水製造システムを示す概略図である。It is the schematic which shows the nitrogen gas dissolved water manufacturing system which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る窒素ガス溶解水製造システムを示す概略図である。It is the schematic which shows the nitrogen gas dissolved water manufacturing system which concerns on other embodiment of this invention.

以下、図面を参照して本発明の実施の形態について説明する。図1に示すように、本実施形態に係る窒素ガス溶解水製造システム1は、ガス溶解膜モジュール2、窒素ガス供給装置3、凝縮水排出部4、排出ガス供給装置5、および真空ポンプ6から構成されている。   Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, a nitrogen gas dissolved water production system 1 according to this embodiment includes a gas dissolved membrane module 2, a nitrogen gas supply device 3, a condensed water discharge unit 4, an exhaust gas supply device 5, and a vacuum pump 6. It is configured.

ガス溶解膜モジュール2内は、ガス透過膜21によって気相室22と液相室23とに区画されている。液相室23には原水供給管24とガス溶解水供給管25とが接続されており、純水製造装置(図示せず)により製造された原水Wが、原水供給管24を介してガス溶解膜モジュール2に対して供給され、ガス溶解膜モジュール2において製造されたガス溶解水が、ガス溶解水供給管25を介して洗浄装置(図示せず)に対して供給される。また、気相室22には、ガス供給管31を介して窒素ガス供給装置3が接続されている。ガス供給管31の途中には窒素ガス供給装置3から気相室22に対して供給される窒素ガスの流量を調節するための窒素ガス供給制御弁32が設けられている。さらに、気相室22は、気相室22内に生じた凝縮水を排出するための凝縮水排出部4に接続されている。   The gas dissolution membrane module 2 is partitioned into a gas phase chamber 22 and a liquid phase chamber 23 by a gas permeable membrane 21. A raw water supply pipe 24 and a gas-dissolved water supply pipe 25 are connected to the liquid phase chamber 23, and raw water W produced by a pure water production apparatus (not shown) is dissolved into the gas via the raw water supply pipe 24. Gas dissolved water supplied to the membrane module 2 and manufactured in the gas dissolved membrane module 2 is supplied to a cleaning device (not shown) via the gas dissolved water supply pipe 25. A nitrogen gas supply device 3 is connected to the gas phase chamber 22 via a gas supply pipe 31. A nitrogen gas supply control valve 32 for adjusting the flow rate of nitrogen gas supplied from the nitrogen gas supply device 3 to the gas phase chamber 22 is provided in the middle of the gas supply pipe 31. Further, the gas phase chamber 22 is connected to a condensed water discharge portion 4 for discharging condensed water generated in the gas phase chamber 22.

ガス透過膜21は、水を透過させず、かつガスを透過させるものであれば特に制限はなく、例えば、ポリプロピレン、ポリジメチルシロキサン、ポリカーボネート―ポリジメチルシロキサンブロック共重合体、ポリビニルフェノール―ポリジメチルシロキサン―ポリスルホンブロック共重合体、ポリ(4―メチルペンテン―1)、ポリ(2,6―ジメチルフェニレンオキシド)、ポリテトラフルオロエチレンなどの高分子膜などを挙げることができる。   The gas permeable membrane 21 is not particularly limited as long as it does not transmit water and allows gas to pass. For example, polypropylene, polydimethylsiloxane, polycarbonate-polydimethylsiloxane block copolymer, polyvinylphenol-polydimethylsiloxane. -Polysulfone block copolymers, polymer films such as poly (4-methylpentene-1), poly (2,6-dimethylphenylene oxide), polytetrafluoroethylene and the like.

原水Wとしては、一般に、被洗浄物を要求された清浄度に洗浄することができる程度に精製された純水又は超純水が用いられるが、これに限られるものではなく、ユースポイントで使用する用途を満足する清浄度があり、ガス透過膜を徒に劣化ないし変質させる物質が含まれていない水であればよい。また、脱気処理を施した脱気水を用いてもよい。   As the raw water W, pure water or ultrapure water purified to such an extent that the object to be cleaned can be cleaned to the required cleanliness level is generally used. However, the raw water W is not limited to this and is used at a use point. Water that has a cleanliness that satisfies the intended use and does not contain a substance that can easily degrade or alter the gas permeable membrane. Moreover, you may use the deaerated water which performed the deaeration process.

凝縮水排出部4は、管状の凝縮水排出管40と、凝縮水排出管40の途中上流寄りに設けられた第1バルブ41と、凝縮水排出管40の途中下流寄りに設けられた第2バルブ42と、凝縮水排出管40の途中かつ第1バルブ41の一次側に設けられた測定器43とから構成されている。凝縮水排出管40の上流側の端部は、ガス溶解膜モジュール2の気相室22に接続されている。また、凝縮水排出管40には、第1バルブ41と第2バルブ42との間において、第1バルブ41寄りの位置に排出ガス供給装置5が排出ガス供給管51を介して接続されている。排出ガス供給管51の途中には排出ガス供給装置5から排出ガス供給管51に対して供給される窒素ガスの流量を調節するための排出ガス供給制御弁52が設けられている。さらに、凝縮水排出管40の下流側の端部には真空ポンプ6が接続されている。   The condensed water discharge part 4 includes a tubular condensed water discharge pipe 40, a first valve 41 provided near the middle upstream of the condensed water discharge pipe 40, and a second provided near the middle downstream of the condensed water discharge pipe 40. It consists of a valve 42 and a measuring instrument 43 provided in the middle of the condensed water discharge pipe 40 and on the primary side of the first valve 41. The upstream end of the condensed water discharge pipe 40 is connected to the gas phase chamber 22 of the gas dissolution membrane module 2. Further, the exhaust gas supply device 5 is connected to the condensed water discharge pipe 40 through the exhaust gas supply pipe 51 at a position near the first valve 41 between the first valve 41 and the second valve 42. . An exhaust gas supply control valve 52 for adjusting the flow rate of nitrogen gas supplied from the exhaust gas supply device 5 to the exhaust gas supply pipe 51 is provided in the middle of the exhaust gas supply pipe 51. Further, the vacuum pump 6 is connected to the downstream end of the condensed water discharge pipe 40.

測定器43は、凝縮水排出管40に溜まった凝縮水の液面を検知する液面計(レベルセンサ)である。本実施形態においては、凝縮水排出管40に溜まった凝縮水の量を測定する測定器43として液面計を採用したが、例えば、溜まった凝縮水の重量を測定する重量測定計などを用いてもよい。測定器43は、光を利用する液面計であってもよいし、超音波や静電容量などを利用する液面計であってもよい。また、本実施形態においては測定器43を第1バルブ41の一次側に設けている。すなわち、測定器43が凝縮水の液面を検知するときは、凝縮水の液面が第1バルブ41の一次側に位置している状態である。そのため、凝縮水の排出工程において第1バルブ41を閉じた際に、一部の凝縮水が第1バルブ41の一次側に取り残されることとなり、第1バルブ41を開弁して凝縮水の排出工程を完了させる際には、取り残されていた凝縮水が第1バルブ41の二次側に流れ込むため、排出ガスが第1バルブ41の一次側に流れ込むことが抑えられる。その結果、排出ガスによりガス溶解水が汚染されにくくなるという効果が生じる。   The measuring device 43 is a liquid level gauge (level sensor) that detects the level of condensed water accumulated in the condensed water discharge pipe 40. In the present embodiment, a liquid level gauge is used as the measuring device 43 for measuring the amount of condensed water accumulated in the condensed water discharge pipe 40. For example, a weight measuring device for measuring the weight of accumulated condensed water is used. May be. The measuring device 43 may be a liquid level meter that uses light, or may be a liquid level meter that uses ultrasonic waves, capacitance, or the like. In the present embodiment, the measuring instrument 43 is provided on the primary side of the first valve 41. In other words, when the measuring device 43 detects the liquid level of the condensed water, the liquid level of the condensed water is located on the primary side of the first valve 41. Therefore, when the first valve 41 is closed in the condensed water discharge step, a part of the condensed water is left on the primary side of the first valve 41, and the first valve 41 is opened to discharge the condensed water. When the process is completed, the remaining condensed water flows into the secondary side of the first valve 41, so that the exhaust gas is prevented from flowing into the primary side of the first valve 41. As a result, the gas dissolved water is hardly contaminated by the exhaust gas.

排出ガス供給装置5は、凝縮水排出管40に窒素ガスを供給する装置であり、凝縮水排出管40の、第1バルブ41と第2バルブ42との間であって第1バルブ41寄りの位置に、排出ガス供給管51を介して接続されている。このような位置に排出ガス供給装置5が接続されていることにより、第1バルブ41を閉じた状態において、排出ガス供給装置5から窒素ガスが凝縮水排出管40に供給されると、供給された窒素ガスが凝縮水排出管40内に滞留している凝縮水を第2バルブ42方向へ押し出し、効率的に凝縮水の排出を行うことができる。   The exhaust gas supply device 5 is a device that supplies nitrogen gas to the condensed water discharge pipe 40, and is between the first valve 41 and the second valve 42 of the condensed water discharge pipe 40 and close to the first valve 41. It is connected to the position via an exhaust gas supply pipe 51. When the exhaust gas supply device 5 is connected to such a position, the nitrogen gas is supplied from the exhaust gas supply device 5 to the condensed water discharge pipe 40 in a state where the first valve 41 is closed. The condensed water in which the nitrogen gas stays in the condensed water discharge pipe 40 is pushed out toward the second valve 42, and the condensed water can be discharged efficiently.

真空ポンプ6には特に制限はないが、例えば、水封式真空ポンプや水蒸気除去機能を備えたスクロールポンプなどのように水蒸気を吸気できるものが好ましい。排出ガス供給装置5を作動させて凝縮水排出管40に窒素ガスを供給するともに、真空ポンプ6を作動させることにより、供給された窒素ガスによって凝縮水排出管40内に滞留している凝縮水を押し出しつつ、真空ポンプ6が凝縮水排出管40内を減圧し、凝縮水を吸引するため、より効率的に凝縮水の排出を行うことができる。   Although there is no restriction | limiting in particular in the vacuum pump 6, What can take in water vapor | steam like a water-sealed vacuum pump, a scroll pump provided with the water vapor removal function, etc. is preferable, for example. By operating the exhaust gas supply device 5 to supply nitrogen gas to the condensed water discharge pipe 40 and operating the vacuum pump 6, the condensed water staying in the condensed water discharge pipe 40 by the supplied nitrogen gas. Since the vacuum pump 6 depressurizes the condensed water discharge pipe 40 and sucks the condensed water while pushing out the condensed water, the condensed water can be discharged more efficiently.

また、本実施形態においては、凝縮水排出管40内を減圧するための減圧装置として真空ポンプ6を備えたが、これに限られるものではなく、例えば、図2に示すように、真空ポンプ6の代わりにエジェクタ7を設けてもよいし、そのような減圧装置を設けなくてもよい。なお、図2に示した窒素ガス溶解水製造システム1Aは、真空ポンプ6の代わりにエジェクタ7を設けたことを除いて、図1に示した窒素ガス溶解水製造システム1と同様の構成を有するものであるため、その詳細の説明については省略する。   In the present embodiment, the vacuum pump 6 is provided as a decompression device for decompressing the inside of the condensed water discharge pipe 40. However, the present invention is not limited to this. For example, as shown in FIG. Instead of this, the ejector 7 may be provided, or such a decompression device may not be provided. The nitrogen gas dissolved water manufacturing system 1A shown in FIG. 2 has the same configuration as the nitrogen gas dissolved water manufacturing system 1 shown in FIG. 1 except that an ejector 7 is provided instead of the vacuum pump 6. Therefore, detailed description thereof is omitted.

このように構成された窒素ガス溶解水製造システム1を用いて窒素ガス溶解水を製造するには、まず純水製造装置(図示せず)により製造された原水Wを、原水供給管24よりガス溶解膜モジュール2の液相室23に供給開始する。また、窒素ガス供給制御弁32を開弁し、窒素ガス供給装置3からガス溶解膜モジュール2の気相室22に対して窒素ガスの供給を開始する。このとき、凝縮水排出部4の第1バルブ41は閉弁しておく。凝縮水排出部4の第2バルブ42は閉弁しておくことが好ましいが、開弁していてもよい。   In order to produce nitrogen gas-dissolved water using the nitrogen gas-dissolved water production system 1 configured as described above, first, raw water W produced by a pure water production apparatus (not shown) is supplied from the raw water supply pipe 24 to the gas. Supply to the liquid phase chamber 23 of the dissolved membrane module 2 is started. Further, the nitrogen gas supply control valve 32 is opened, and supply of nitrogen gas from the nitrogen gas supply device 3 to the gas phase chamber 22 of the gas dissolution membrane module 2 is started. At this time, the first valve 41 of the condensed water discharge unit 4 is closed. The second valve 42 of the condensed water discharge unit 4 is preferably closed, but may be opened.

ガス溶解膜モジュール2の液相室23に原水Wを、気相室22に窒素ガスを供給すると、窒素ガスが、気相室22側から液相室23側へとガス透過膜21を透過し、液相室23内の原水Wに溶解する。このようにして得られた窒素ガス溶解水は、ガス溶解水供給管25を経由してユースポイントに供給される。   When raw water W is supplied to the liquid phase chamber 23 of the gas dissolution membrane module 2 and nitrogen gas is supplied to the gas phase chamber 22, the nitrogen gas permeates the gas permeable membrane 21 from the gas phase chamber 22 side to the liquid phase chamber 23 side. Dissolve in the raw water W in the liquid phase chamber 23. The nitrogen gas dissolved water thus obtained is supplied to the use point via the gas dissolved water supply pipe 25.

このように窒素ガス溶解水を製造する過程において、ガス溶解膜モジュール2の液相室23に供給された原水Wの一部が水蒸気となり、ガス透過膜21を透過して気相室22に拡散してくる。このように液相室23から透過してきた水蒸気は、気相室22で結露して凝縮水となり、気相室22内に滞留し始める。   Thus, in the process of producing the nitrogen gas dissolved water, a part of the raw water W supplied to the liquid phase chamber 23 of the gas dissolved membrane module 2 becomes water vapor and diffuses into the gas phase chamber 22 through the gas permeable membrane 21. Come on. The water vapor that has permeated from the liquid phase chamber 23 in this way is condensed in the gas phase chamber 22 to become condensed water, and begins to stay in the gas phase chamber 22.

ここで、凝縮水排出部4の第2バルブ42を閉弁した状態で、第1バルブ41を開弁する。これにより、気相室22内に生じた凝縮水が凝縮水排出部4の凝縮水排出管40内に貯留される。第2バルブ42が閉弁されているため、凝縮水排出管40内に貯留された凝縮水の量は徐々に増えていくが、この凝縮水の量は凝縮水排出管40に設けられた測定器43によって測定される。なお、このように気相室22内に生じた凝縮水が凝縮水排出部4の凝縮水排出管40内に貯留される過程において、第2バルブ42が閉弁されていることにより、系外から気体や不純物が凝縮水排出管40を介してガス溶解膜モジュール2に流入することが防止される。   Here, the first valve 41 is opened with the second valve 42 of the condensed water discharge part 4 closed. Thereby, the condensed water generated in the gas phase chamber 22 is stored in the condensed water discharge pipe 40 of the condensed water discharge portion 4. Since the second valve 42 is closed, the amount of condensed water stored in the condensed water discharge pipe 40 gradually increases. This amount of condensed water is measured in the condensed water discharge pipe 40. Measured by instrument 43. In addition, in the process in which the condensed water generated in the gas phase chamber 22 is stored in the condensed water discharge pipe 40 of the condensed water discharge portion 4, the second valve 42 is closed, so that Gas and impurities are prevented from flowing into the gas-dissolving membrane module 2 through the condensed water discharge pipe 40.

測定器43によって測定された凝縮水排出管40内に貯留された凝縮水の量が所定量を超えると、第1バルブ41を閉弁し、第2バルブ42を開弁する。そして、排出ガス供給制御弁52も開弁し、排出ガス供給装置5から凝縮水排出管40に対して窒素ガスの供給を開始する。これにより、凝縮水排出管40内に貯留された凝縮水は、この窒素ガスに押圧されて第2バルブ42方向に押し流され、凝縮水排出管40から系外へと排出される。なお、このように、排出ガス供給装置5から窒素ガスが凝縮水排出管40に対して供給されるが、このときに第1バルブ41が閉弁されていることにより、第1バルブ41よりも上流側に窒素ガスが流入したり、ガス溶解膜モジュール2に凝縮水が逆流したりすることはない。また、ガス溶解膜モジュール2の気相室22内の圧力が高くなることもないため、窒素ガス溶解水の製造は安定的に継続される。   When the amount of condensed water stored in the condensed water discharge pipe 40 measured by the measuring device 43 exceeds a predetermined amount, the first valve 41 is closed and the second valve 42 is opened. The exhaust gas supply control valve 52 is also opened, and supply of nitrogen gas from the exhaust gas supply device 5 to the condensed water discharge pipe 40 is started. As a result, the condensed water stored in the condensed water discharge pipe 40 is pressed by the nitrogen gas, is pushed away toward the second valve 42, and is discharged from the condensed water discharge pipe 40 to the outside of the system. As described above, nitrogen gas is supplied from the exhaust gas supply device 5 to the condensed water discharge pipe 40. At this time, the first valve 41 is closed, so that the first valve 41 is closed. Nitrogen gas does not flow into the upstream side, and condensed water does not flow backward into the gas dissolution membrane module 2. Moreover, since the pressure in the gas phase chamber 22 of the gas dissolution membrane module 2 does not increase, the production of nitrogen gas dissolved water is stably continued.

排出ガス供給装置5から凝縮水排出管40に対して供給するガスを窒素ガスとすることにより、凝縮水排出後に再び第1バルブ41を開弁し、凝縮水排出管40とガス溶解膜モジュール2の気相室22との接続を回復させる際、ガス溶解膜モジュール2における窒素ガス溶解水の製造に対する影響を最小限に留めることができるという利点がある。すなわち、凝縮水排出後、凝縮水排出管40内には排出ガス供給装置5から供給されたガスが充満しており、この状態で凝縮水排出管40とガス溶解膜モジュール2の気相室22との接続を回復させると、気相室22側にも当該ガスが流れ込む。ここで当該ガスが空気であったり、水素ガスであったりすると、気相室22側から液相室23側へとガス透過膜21を透過する窒素ガス量に影響が出てしまう。しかしながら、当該ガスが窒素ガスであれば、気相室22側から液相室23側へとガス透過膜21を透過する窒素ガス量にはほとんど影響がなく、液相室23において安定的に窒素ガス溶解水を製造することができる。   By using nitrogen gas as the gas supplied from the exhaust gas supply device 5 to the condensed water discharge pipe 40, the first valve 41 is opened again after the condensed water is discharged, and the condensed water discharge pipe 40 and the gas dissolution membrane module 2 are opened. When the connection with the gas phase chamber 22 is recovered, there is an advantage that the influence on the production of the nitrogen gas dissolved water in the gas dissolving membrane module 2 can be minimized. That is, after the condensed water is discharged, the condensed water discharge pipe 40 is filled with the gas supplied from the exhaust gas supply device 5, and in this state, the condensed water discharge pipe 40 and the gas phase chamber 22 of the gas dissolution membrane module 2 are filled. When the connection is restored, the gas also flows into the gas phase chamber 22 side. Here, if the gas is air or hydrogen gas, the amount of nitrogen gas passing through the gas permeable membrane 21 from the gas phase chamber 22 side to the liquid phase chamber 23 side will be affected. However, if the gas is nitrogen gas, the amount of nitrogen gas that permeates the gas permeable membrane 21 from the gas phase chamber 22 side to the liquid phase chamber 23 side is hardly affected, and nitrogen is stably stabilized in the liquid phase chamber 23. Gas-dissolved water can be produced.

このように、窒素ガスを凝縮水排出管40に対して供給することにより、凝縮水排出管40内に貯留された凝縮水を系外へと排出するが、このときに、真空ポンプ6を作動させて凝縮水排出管40内を減圧すると、供給された窒素ガスによって凝縮水排出管40内に滞留している凝縮水を押し出しつつ、真空ポンプ6が凝縮水排出管40内を減圧し、凝縮水を吸引するため、より効率的に凝縮水の排出を行うことができる。   Thus, by supplying nitrogen gas to the condensed water discharge pipe 40, the condensed water stored in the condensed water discharge pipe 40 is discharged out of the system. At this time, the vacuum pump 6 is operated. When the inside of the condensed water discharge pipe 40 is depressurized, the condensed water remaining in the condensed water discharge pipe 40 is pushed out by the supplied nitrogen gas, and the vacuum pump 6 depressurizes the condensed water discharge pipe 40 to condense. Since water is sucked, condensed water can be discharged more efficiently.

凝縮水排出管40内に貯留された凝縮水が排出された後は、第2バルブ42及び排出ガス供給制御弁52を閉弁するとともに、第1バルブ41を開弁し、凝縮水の排出工程が完了する。この排出工程は所定時間毎に所定の回数繰り返すようにしてもよいし、窒素ガス溶解水の製造状況をみながら適宜行うようにしてもよい。   After the condensed water stored in the condensed water discharge pipe 40 is discharged, the second valve 42 and the exhaust gas supply control valve 52 are closed and the first valve 41 is opened to discharge the condensed water. Is completed. This discharging step may be repeated a predetermined number of times every predetermined time, or may be appropriately performed while observing the production status of the nitrogen gas dissolved water.

以上のような凝縮水の排出工程を行うことにより、凝縮水排出管40に設けられた第1バルブ41を閉弁し、ガス溶解膜モジュール2の気相室22への影響が及ばない状態として、凝縮水排出管40内に貯留された凝縮水を排出する場合であっても、排出ガス供給装置5から凝縮水排出管40に対して供給された窒素ガスが、凝縮水排出管40内に貯留された凝縮水を系外に押し出すため、効率的に凝縮水の排出を行うことができる。また、その結果として、ガス透過膜21の気相室22側の表面を覆うほどの凝縮水が気相室22内に滞留することはなく、ガス溶解膜モジュール2の性能が低下することもないため、長期間に亘って連続的かつ安定的に窒素ガスを純水又は超純水に溶解させた窒素ガス溶解水を製造できる。さらに、排出ガス供給装置5から凝縮水排出管40に対して供給するガスを窒素ガスとすることにより、凝縮水排出後に再び第1バルブ41を開弁する際にも、ガス溶解膜モジュール2における窒素ガス溶解水の製造に対する影響を最小限に留め、安定的に窒素ガス溶解水を製造することができる。   By performing the condensate discharge process as described above, the first valve 41 provided in the condensate discharge pipe 40 is closed so that the gas dissolution chamber module 2 is not affected by the gas phase chamber 22. Even when the condensed water stored in the condensed water discharge pipe 40 is discharged, the nitrogen gas supplied from the exhaust gas supply device 5 to the condensed water discharge pipe 40 is contained in the condensed water discharge pipe 40. Since the stored condensed water is pushed out of the system, the condensed water can be efficiently discharged. Moreover, as a result, the condensed water which covers the surface of the gas permeable membrane 21 on the gas phase chamber 22 side does not stay in the gas phase chamber 22, and the performance of the gas dissolution membrane module 2 does not deteriorate. Therefore, it is possible to produce nitrogen gas-dissolved water in which nitrogen gas is dissolved in pure water or ultrapure water continuously and stably over a long period of time. Furthermore, when the gas supplied from the exhaust gas supply device 5 to the condensed water discharge pipe 40 is nitrogen gas, the gas dissolving membrane module 2 can also be used when the first valve 41 is opened again after the condensed water is discharged. The influence on the production of the nitrogen gas-dissolved water can be minimized, and the nitrogen gas-dissolved water can be produced stably.

以下、実施例及び比較例により本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited at all by these Examples.

〔実施例1〕
図2に示す窒素ガス溶解水製造システムにおいて、ガス溶解膜モジュール2の液相室23に通水する原水Wとして超純水を用い、気相室22に窒素ガス供給装置3より窒素ガスを供給して、凝縮水排出部4の第1バルブ41を開弁、第2バルブ42を閉弁とした状態で、窒素ガス溶解水を製造した。製造された窒素ガス溶解水における溶存酸素濃度を測定したところ、溶存酸素濃度は5μg/L前後であった。
[Example 1]
In the nitrogen gas dissolved water production system shown in FIG. 2, ultrapure water is used as raw water W that passes through the liquid phase chamber 23 of the gas dissolved membrane module 2, and nitrogen gas is supplied to the gas phase chamber 22 from the nitrogen gas supply device 3. Then, nitrogen gas-dissolved water was produced with the first valve 41 of the condensed water discharge unit 4 opened and the second valve 42 closed. When the dissolved oxygen concentration in the produced nitrogen gas-dissolved water was measured, the dissolved oxygen concentration was around 5 μg / L.

その後、測定器43(レベルセンサ)が凝縮水排出部4に貯留される凝縮水を感知したところで、第1バルブ41を閉弁、第2バルブ42を開弁、排出ガス供給制御弁52を開弁とし、凝縮水排出管40に対して窒素ガスを1NL/分で10秒間供給したところ、凝縮水排出管40の第1バルブ41から第2バルブ42までの区間における凝縮水の残留量は、凝縮水排出管40の第1バルブ41から第2バルブ42までの区間の容積の10%程度であった。   Thereafter, when the measuring device 43 (level sensor) senses the condensed water stored in the condensed water discharge section 4, the first valve 41 is closed, the second valve 42 is opened, and the exhaust gas supply control valve 52 is opened. When the nitrogen gas was supplied to the condensed water discharge pipe 40 at 1 NL / min for 10 seconds, the amount of residual condensed water in the section from the first valve 41 to the second valve 42 of the condensed water discharge pipe 40 was The volume of the section from the first valve 41 to the second valve 42 of the condensed water discharge pipe 40 was about 10%.

凝縮水排出管40から凝縮水を排出した後、第1バルブ41を開弁、第2バルブ42を閉弁、排出ガス供給制御弁52を閉弁とし、直後の窒素ガス溶解水における溶存酸素濃度を計測したところ、溶存酸素濃度は5μg/L前後であった。すなわち、凝縮水排出工程を行った後にガス溶解膜モジュール2で製造される窒素ガス溶解水の溶存酸素濃度が、凝縮水排出工程を行う前よりも上昇することはなかった。   After the condensed water is discharged from the condensed water discharge pipe 40, the first valve 41 is opened, the second valve 42 is closed, the exhaust gas supply control valve 52 is closed, and the dissolved oxygen concentration in the nitrogen gas dissolved water immediately after is opened. Was measured, and the dissolved oxygen concentration was around 5 μg / L. That is, the dissolved oxygen concentration of the nitrogen gas-dissolved water produced by the gas-dissolving membrane module 2 after performing the condensed water discharging step did not rise more than before the condensating water discharging step.

〔実施例2〕
図2に示す窒素ガス溶解水製造システムにおいて、凝縮水排出管40に対して窒素ガスを供給するとともにエジェクタ7を作動させること以外、実施例1と同様にして凝縮水排出管40から凝縮水を排出したところ、凝縮水排出管40の第1バルブ41から第2バルブ42までの区間における凝縮水の残留量は、凝縮水排出管40の第1バルブ41から第2バルブ42までの区間の容積の5%未満でとなった。
[Example 2]
In the nitrogen gas dissolved water production system shown in FIG. 2, the condensed water is supplied from the condensed water discharge pipe 40 in the same manner as in Example 1 except that the nitrogen gas is supplied to the condensed water discharge pipe 40 and the ejector 7 is operated. When discharged, the residual amount of condensed water in the section from the first valve 41 to the second valve 42 of the condensed water discharge pipe 40 is the volume of the section from the first valve 41 to the second valve 42 of the condensed water discharge pipe 40. Of less than 5%.

凝縮水排出管40から凝縮水を排出した後、第1バルブ41を開弁、第2バルブ42を閉弁、排出ガス供給制御弁52を閉弁とし、直後の窒素ガス溶解水における溶存酸素濃度を計測したところ、溶存酸素濃度は5μg/L前後であった。   After the condensed water is discharged from the condensed water discharge pipe 40, the first valve 41 is opened, the second valve 42 is closed, the exhaust gas supply control valve 52 is closed, and the dissolved oxygen concentration in the nitrogen gas dissolved water immediately after is opened. Was measured, and the dissolved oxygen concentration was around 5 μg / L.

〔実施例3〕
図1に示す窒素ガス溶解水製造システムにおいて、凝縮水排出管40に対して窒素ガスを供給するとともに真空ポンプ6を作動させること以外、実施例1と同様にして凝縮水排出管40から凝縮水を排出したところ、凝縮水排出管40の第1バルブ41から第2バルブ42までの区間における凝縮水の残留量は、凝縮水排出管40の第1バルブ41から第2バルブ42までの区間の容積の5%未満でとなった。
Example 3
In the nitrogen gas dissolved water production system shown in FIG. 1, condensed water is supplied from the condensed water discharge pipe 40 in the same manner as in Example 1 except that nitrogen gas is supplied to the condensed water discharge pipe 40 and the vacuum pump 6 is operated. As a result, the remaining amount of condensed water in the section from the first valve 41 to the second valve 42 of the condensed water discharge pipe 40 is equal to that in the section from the first valve 41 to the second valve 42 of the condensed water discharge pipe 40. Less than 5% of the volume.

凝縮水排出管40から凝縮水を排出した後、第1バルブ41を開弁、第2バルブ42を閉弁、排出ガス供給制御弁52を閉弁とし、直後の窒素ガス溶解水における溶存酸素濃度を計測したところ、溶存酸素濃度は5μg/L前後であった。   After the condensed water is discharged from the condensed water discharge pipe 40, the first valve 41 is opened, the second valve 42 is closed, the exhaust gas supply control valve 52 is closed, and the dissolved oxygen concentration in the nitrogen gas dissolved water immediately after is opened. Was measured, and the dissolved oxygen concentration was around 5 μg / L.

〔比較例1〕
図2に示す窒素ガス溶解水製造システムにおいて、ガス溶解膜モジュール2の液相室23に通水する原水Wとして超純水を用い、気相室22に窒素ガス供給装置3より窒素ガスを供給して、凝縮水排出部4の第1バルブ41を開弁、第2バルブ42を閉弁とした状態で、窒素ガス溶解水を製造した。製造された窒素ガス溶解水における溶存酸素濃度を測定したところ、溶存酸素濃度は5μg/L前後であった。
[Comparative Example 1]
In the nitrogen gas dissolved water production system shown in FIG. 2, ultrapure water is used as raw water W that passes through the liquid phase chamber 23 of the gas dissolved membrane module 2, and nitrogen gas is supplied to the gas phase chamber 22 from the nitrogen gas supply device 3. Then, nitrogen gas-dissolved water was produced with the first valve 41 of the condensed water discharge unit 4 opened and the second valve 42 closed. When the dissolved oxygen concentration in the produced nitrogen gas-dissolved water was measured, the dissolved oxygen concentration was around 5 μg / L.

その後、測定器43(レベルセンサ)が凝縮水排出部4に貯留される凝縮水を感知したところで、第1バルブ41を閉弁、第2バルブ42を開弁、排出ガス供給制御弁52を開弁とし、凝縮水排出管40に対して窒素ガスではなく空気を1NL/分で1分間供給したところ、凝縮水排出管40の第1バルブ41から第2バルブ42までの区間における凝縮水の残留量は、凝縮水排出管40の第1バルブ41から第2バルブ42までの区間の容積の10%程度であった。   Thereafter, when the measuring device 43 (level sensor) senses the condensed water stored in the condensed water discharge section 4, the first valve 41 is closed, the second valve 42 is opened, and the exhaust gas supply control valve 52 is opened. When the valve is used and air is supplied to the condensate discharge pipe 40 instead of nitrogen gas at 1 NL / min for one minute, the condensate remains in the section from the first valve 41 to the second valve 42 of the condensate discharge pipe 40. The amount was about 10% of the volume of the section from the first valve 41 to the second valve 42 of the condensed water discharge pipe 40.

凝縮水排出管40から凝縮水を排出した後、第1バルブ41を開弁、第2バルブ42を閉弁、排出ガス供給制御弁52を閉弁とし、直後の窒素ガス溶解水における溶存酸素濃度を計測したところ、溶存酸素濃度は30μg/L前後であった。すなわち、凝縮水排出工程を行った後にガス溶解膜モジュール2で製造される窒素ガス溶解水の溶存酸素濃度が、凝縮水排出工程を行う前よりも上昇した。   After the condensed water is discharged from the condensed water discharge pipe 40, the first valve 41 is opened, the second valve 42 is closed, the exhaust gas supply control valve 52 is closed, and the dissolved oxygen concentration in the nitrogen gas dissolved water immediately after is opened. Was measured, and the dissolved oxygen concentration was around 30 μg / L. That is, the dissolved oxygen concentration of the nitrogen gas-dissolved water produced by the gas-dissolved membrane module 2 after performing the condensed water discharging step increased from before the condensed water discharging step.

〔比較例2〕
図2に示す窒素ガス溶解水製造システムにおいて、比較例1と同様の方法で窒素ガス溶解水を製造し、その後、測定器43(レベルセンサ)が凝縮水排出部4に貯留される凝縮水を感知したところで、第1バルブ41を閉弁、第2バルブ42を開弁、排出ガス供給制御弁52を閉弁とし、凝縮水排出管40に対してガスを供給することなく、エジェクタ7を作動させたところ、凝縮水排出管40の第1バルブ41から第2バルブ42までの区間における凝縮水の残留量は、凝縮水排出管40の第1バルブ41から第2バルブ42までの区間の容積の20%程度であった。
[Comparative Example 2]
In the nitrogen gas dissolved water production system shown in FIG. 2, nitrogen gas dissolved water is produced by the same method as in Comparative Example 1, and then the measuring device 43 (level sensor) removes the condensed water stored in the condensed water discharge unit 4. Upon detection, the first valve 41 is closed, the second valve 42 is opened, the exhaust gas supply control valve 52 is closed, and the ejector 7 is operated without supplying gas to the condensed water discharge pipe 40. As a result, the residual amount of condensed water in the section from the first valve 41 to the second valve 42 of the condensed water discharge pipe 40 is the volume of the section from the first valve 41 to the second valve 42 of the condensed water discharge pipe 40. About 20%.

以上の実施例及び比較例により、排出ガス供給装置5から凝縮水排出管40に対して供給された窒素ガスが、凝縮水排出管40内に貯留された凝縮水を系外に押し出すため、効率的に凝縮水の排出を行うことができることが確認された。また、窒素ガスを凝縮水排出管40に対して供給するとともに、真空ポンプ6やエジェクタ7を作動させることにより、より効率的に凝縮水の排出を行うことができることが確認された。その結果として、溶解膜モジュール2の性能が低下することもないため、長期間に亘って連続的かつ安定的に窒素ガスを純水又は超純水に溶解させた窒素ガス溶解水を製造できることが確認された。さらに、窒素ガスを凝縮水排出管40に対して供給することにより、凝縮水排出工程を行った後においても窒素ガス溶解水の溶存酸素濃度ガスには影響を与えることがなく、安定的に窒素ガス溶解水を製造することができることが確認された。   According to the above examples and comparative examples, the nitrogen gas supplied from the exhaust gas supply device 5 to the condensed water discharge pipe 40 pushes the condensed water stored in the condensed water discharge pipe 40 out of the system. It was confirmed that the condensed water can be discharged. Further, it was confirmed that the condensed water can be discharged more efficiently by supplying the nitrogen gas to the condensed water discharge pipe 40 and operating the vacuum pump 6 and the ejector 7. As a result, since the performance of the dissolved membrane module 2 does not deteriorate, it is possible to produce nitrogen gas-dissolved water in which nitrogen gas is dissolved in pure water or ultrapure water continuously and stably over a long period of time. confirmed. Further, by supplying nitrogen gas to the condensed water discharge pipe 40, the dissolved oxygen concentration gas of the nitrogen gas dissolved water is not affected even after the condensed water discharging step is performed, and nitrogen can be stably added. It was confirmed that gas-dissolved water can be produced.

本発明は、効率的に窒素ガスを純水又は超純水に溶解させて窒素ガス溶解水を製造するために有用である。   The present invention is useful for producing nitrogen gas-dissolved water by efficiently dissolving nitrogen gas in pure water or ultrapure water.

1,1A…窒素ガス溶解水製造システム
2…ガス溶解膜モジュール
21…ガス透過膜
22…気相室
23…液相室
24…原水供給管
25…ガス溶解水供給管
3…窒素ガス供給装置
31…窒素ガス供給管
32…窒素ガス供給制御弁
4…凝縮水排出部
40…凝縮水排出管
41…第1バルブ
42…第2バルブ
43…測定器
5…排出ガス供給装置
51…排出ガス供給管
52…排出ガス供給制御弁
6…真空ポンプ
7…エジェクタ
DESCRIPTION OF SYMBOLS 1,1A ... Nitrogen gas dissolved water manufacturing system 2 ... Gas dissolved membrane module 21 ... Gas permeable membrane 22 ... Gas phase chamber 23 ... Liquid phase chamber 24 ... Raw water supply pipe 25 ... Gas dissolved water supply pipe 3 ... Nitrogen gas supply apparatus 31 ... Nitrogen gas supply pipe 32 ... Nitrogen gas supply control valve 4 ... Condensate discharge part 40 ... Condensate discharge pipe 41 ... First valve 42 ... Second valve 43 ... Measurement instrument 5 ... Exhaust gas supply device 51 ... Exhaust gas supply pipe 52 ... Exhaust gas supply control valve 6 ... Vacuum pump 7 ... Ejector

Claims (10)

ガス透過膜によって区画された気相室及び液相室を備えたガス溶解膜モジュールを用い、窒素ガスを純水又は超純水に溶解させて窒素ガス溶解水を製造する方法であって、
前記気相室に生じた凝縮水を、前記気相室に接続された凝縮水排出部に導入するステップと、
前記凝縮水排出部と前記気相室との接続を遮断するステップと、
前記気相室との接続が遮断された状態で前記凝縮水排出部に窒素ガスを供給することにより、前記凝縮水排出部に導入された前記凝縮水を排出するステップと、
を備えていることを特徴とする、窒素ガス溶解水製造方法。
A method for producing nitrogen gas-dissolved water by dissolving a nitrogen gas in pure water or ultrapure water using a gas-dissolving membrane module having a gas phase chamber and a liquid phase chamber partitioned by a gas permeable membrane,
Introducing the condensed water generated in the gas phase chamber into a condensed water discharge unit connected to the gas phase chamber;
Cutting off the connection between the condensed water discharger and the gas phase chamber;
Discharging the condensed water introduced into the condensed water discharge part by supplying nitrogen gas to the condensed water discharge part in a state where the connection with the gas phase chamber is interrupted;
A method for producing dissolved nitrogen gas water, comprising:
前記凝縮水排出部に導入された前記凝縮水の量を測定するステップを更に備えており、
前記凝縮水排出部と前記気相室との接続を遮断するステップにおいて、前記凝縮水排出部に導入された前記凝縮水の量が所定の量を超えると、前記凝縮水排出部と前記気相室との接続を遮断することを特徴とする、請求項1に記載の窒素ガス溶解水製造方法。
Further comprising the step of measuring the amount of the condensed water introduced into the condensed water discharge part,
In the step of disconnecting the connection between the condensed water discharge part and the gas phase chamber, if the amount of the condensed water introduced into the condensed water discharge part exceeds a predetermined amount, the condensed water discharge part and the gas phase Connection with a chamber is interrupted | blocked, The nitrogen gas dissolved water manufacturing method of Claim 1 characterized by the above-mentioned.
前記凝縮水を排出するステップは、前記気相室との接続が遮断された状態で前記凝縮水排出部に窒素ガスを供給するとともに、前記凝縮水排出部を減圧することにより、前記凝縮水排出部に導入された前記凝縮水を排出することを特徴とする、請求項1又は2に記載の窒素ガス溶解水製造方法。   The step of discharging the condensed water includes supplying nitrogen gas to the condensed water discharge portion in a state where the connection with the gas phase chamber is cut off, and reducing the pressure of the condensed water discharge portion, thereby discharging the condensed water. 3. The method for producing dissolved nitrogen gas according to claim 1 or 2, wherein the condensed water introduced into the section is discharged. 真空ポンプによって前記凝縮水排出部を減圧することを特徴とする、請求項3に記載の窒素ガス溶解水製造方法。   The method for producing dissolved nitrogen gas according to claim 3, wherein the condensed water discharge part is decompressed by a vacuum pump. エジェクタによって前記凝縮水排出部を減圧することを特徴とする、請求項3に記載の窒素ガス溶解水製造方法。   The method for producing dissolved nitrogen gas according to claim 3, wherein the condensed water discharge part is decompressed by an ejector. ガス透過膜によって区画された気相室及び液相室を備えたガス溶解膜モジュールと、前記気相室に生じた凝縮水を排出する凝縮水排出装置と、を備えた窒素ガス溶解水製造システムであって、
前記凝縮水排出装置は、
前記気相室に接続されており、前記気相室に生じた凝縮水が導入される凝縮水排出部と、
前記凝縮水排出部と前記気相室との接続を遮断可能なバルブと、
前記凝縮水排出部に窒素ガスを供給する窒素ガス供給装置と、
を備えていることを特徴とする、窒素ガス溶解水製造システム。
A system for producing dissolved nitrogen gas, comprising: a gas dissolution membrane module having a gas phase chamber and a liquid phase chamber partitioned by a gas permeable membrane; and a condensed water discharge device for discharging condensed water generated in the gas phase chamber. Because
The condensed water discharge device is:
A condensed water discharge unit connected to the gas phase chamber, into which condensed water generated in the gas phase chamber is introduced;
A valve capable of blocking connection between the condensed water discharge portion and the gas phase chamber;
A nitrogen gas supply device for supplying nitrogen gas to the condensed water discharge unit;
A system for producing dissolved water of nitrogen gas, comprising:
前記凝縮水排出装置は、前記凝縮水排出部に導入された前記凝縮水の量を測定する測定装置を更に備えており、
前記測定装置が測定した前記凝縮水の量が所定の量を超えると、前記バルブが前記凝縮水排出部と前記気相室との接続を遮断することを特徴とする、請求項6に記載の窒素ガス溶解水製造システム。
The condensed water discharge device further includes a measuring device for measuring the amount of the condensed water introduced into the condensed water discharge portion,
The valve according to claim 6, wherein when the amount of the condensed water measured by the measuring device exceeds a predetermined amount, the valve cuts off the connection between the condensed water discharge part and the gas phase chamber. Nitrogen gas dissolved water production system.
前記凝縮水排出装置は、前記凝縮水排出部を減圧する減圧手段を更に備えていることを特徴とする、請求項6又は7に記載の窒素ガス溶解水製造システム。   The nitrogen gas dissolved water production system according to claim 6 or 7, wherein the condensed water discharge device further includes a decompression means for decompressing the condensed water discharge unit. 前記減圧手段は真空ポンプであることを特徴とする、請求項8に記載の窒素ガス溶解水製造システム。   9. The nitrogen gas dissolved water production system according to claim 8, wherein the decompression means is a vacuum pump. 前記減圧手段はエジェクタであることを特徴とする、請求項8に記載の窒素ガス溶解水製造システム。   The system for producing dissolved water of nitrogen gas according to claim 8, wherein the decompression means is an ejector.
JP2011000428A 2011-01-05 2011-01-05 Method and system for making nitrogen gas-dissolved water Pending JP2012139656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011000428A JP2012139656A (en) 2011-01-05 2011-01-05 Method and system for making nitrogen gas-dissolved water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011000428A JP2012139656A (en) 2011-01-05 2011-01-05 Method and system for making nitrogen gas-dissolved water

Publications (1)

Publication Number Publication Date
JP2012139656A true JP2012139656A (en) 2012-07-26

Family

ID=46676505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011000428A Pending JP2012139656A (en) 2011-01-05 2011-01-05 Method and system for making nitrogen gas-dissolved water

Country Status (1)

Country Link
JP (1) JP2012139656A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021041342A (en) * 2019-09-11 2021-03-18 オルガノ株式会社 Apparatus and method for manufacturing gas-dissolved water
CN114905652A (en) * 2022-05-18 2022-08-16 江苏科尔玛智能装备制造有限公司 PVC calendering anterior segment mixes machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021041342A (en) * 2019-09-11 2021-03-18 オルガノ株式会社 Apparatus and method for manufacturing gas-dissolved water
JP7328840B2 (en) 2019-09-11 2023-08-17 オルガノ株式会社 Gas-dissolved water production device and method
CN114905652A (en) * 2022-05-18 2022-08-16 江苏科尔玛智能装备制造有限公司 PVC calendering anterior segment mixes machine

Similar Documents

Publication Publication Date Title
KR20120003852A (en) Device for supplying water containing dissolved gas and process for producing water containing dissolved gas
US20120325927A1 (en) Cleaning method
US20110030722A1 (en) Cleaning water for electronic material, method for cleaning electronic material and system for supplying water containing dissolved gas
TWI601695B (en) Method for producing ozone gas dissolved water and washing method of electronic material
JP5380870B2 (en) Method and apparatus for producing gas-dissolved water
JP2012143708A (en) Washing method
JP2003062403A (en) Operating method for membrane degasifier
JP2012139656A (en) Method and system for making nitrogen gas-dissolved water
JP5999222B2 (en) Gas dissolved water supply apparatus and gas dissolved water manufacturing method
JP2000189742A (en) Gas dissolving module
JP2007319843A (en) Gas dissolving module
CN110168705B (en) Semiconductor substrate cleaning device and semiconductor substrate cleaning method
KR101123811B1 (en) Wafer cleaning apparatus and waper cleanign method using the same
JP2012176360A (en) Production unit of gas dissolved water
JP4470101B2 (en) Nitrogen-dissolved ultrapure water production method
JP5358910B2 (en) Carbonated water manufacturing apparatus and manufacturing method
JP4090361B2 (en) Method and apparatus for producing ozone-containing ultrapure water
JP5092968B2 (en) Gas dissolved water supply apparatus and gas dissolved water manufacturing method
JP5029441B2 (en) Deterioration detection method of gas permeable membrane and operation method of gas permeable membrane module
JP4893592B2 (en) Gas dissolved water manufacturing apparatus and manufacturing method
JP2009254935A (en) Gas dissolving membrane device and method of manufacturing gas-dissolved solution
EP3725393A1 (en) Filtering membrane cleaning method
JP2011083754A (en) Method and apparatus for manufacturing gas-dissolved water
JPH0568808A (en) Equipment and method for diaphragm vacuum deaeration
JP4998200B2 (en) Gas-dissolved water production unit, production apparatus and production method