JP4090361B2 - Method and apparatus for producing ozone-containing ultrapure water - Google Patents

Method and apparatus for producing ozone-containing ultrapure water Download PDF

Info

Publication number
JP4090361B2
JP4090361B2 JP2003037735A JP2003037735A JP4090361B2 JP 4090361 B2 JP4090361 B2 JP 4090361B2 JP 2003037735 A JP2003037735 A JP 2003037735A JP 2003037735 A JP2003037735 A JP 2003037735A JP 4090361 B2 JP4090361 B2 JP 4090361B2
Authority
JP
Japan
Prior art keywords
ultrapure water
ozone
water
nitrogen
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003037735A
Other languages
Japanese (ja)
Other versions
JP2004243260A (en
Inventor
茂 富永
健一 藤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roki Techno Co Ltd
Original Assignee
Roki Techno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roki Techno Co Ltd filed Critical Roki Techno Co Ltd
Priority to JP2003037735A priority Critical patent/JP4090361B2/en
Publication of JP2004243260A publication Critical patent/JP2004243260A/en
Application granted granted Critical
Publication of JP4090361B2 publication Critical patent/JP4090361B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明が属する技術分野】
この発明は、主として、半導体ウェハの酸化膜生成及び半導体デバイスなどの洗浄に使用されるオゾン含有超純水の製造方法及び製造装置に係り、詳記すれば、超純水へのオゾンガスの溶解効率を著しく高めたオゾン含有超純水の製造方法及び製造装置に関する。
【0002】
【従来の技術】
オゾン含有超純水は、溶存オゾンの酸化力を利用して、化学反応生成物の製造や洗浄及び酸化膜の生成などに利用されている。
【0003】
半導体製造工程のウェットステーションと呼ばれる洗浄方法では、一般にRCA洗浄が行われるが、この方法においては、アンモニア/過酸化水素水、塩酸/過酸化水素水及びフッ素等の薬液でウェハーを洗浄している。、近年、RCA洗浄の最終リンス工程で、有機物の除去を目的として、オゾン含有超純水が一部で使用されている。また、RCA洗浄に代わって、高濃度のオゾン含有超純水を使用する試みもなされている。
【0004】
従来、超純水は、例えば図1に示すように、市水などを活性炭、逆浸透膜を通過させて脱気し、イオン交換して超純水をタンク内に収容し、UV酸化、イオン交換、UF膜を通過させて循環させて有機物の除去を行った後、ユースポイントから取り出すようになっている。超純水タンクでは、ユースポイントで超純水が使用されると水面が低下し、超純水タンクへの超純水の供給量が多くなると水面が上昇する。そこで、水面が低下するときは窒素ガスを注入し、水面が上昇するときは窒素ガスを排気することによって、超純水と空気(特に酸素)の接触を遮断している。このようにUV酸化時間を長くするため、超純水を循環させて使用しているので、窒素ガスが超純水に多量に溶解する。
【0005】
この超純水にオゾンガスを溶解させる場合、市水や純水にオゾンガスを溶解させる場合と比べて、オゾンの溶解効率が悪化し、オゾン発生機の容量を大きくしなければならないという驚くべき事実を見出した。
【0006】
【発明が解決しようとする課題】
この発明は、このような知見に基づいてなされたものであり、超純水でも市水や純水と同じようにオゾンガスの溶解効率を上昇させ、オゾン発生機を小型化し得る超純水の製造方法及び製造装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明者らは鋭意研究の結果、超純水中の窒素ガス量を減少させることによって、オゾンガスの溶解効率が著しく向上するという驚くべき事実を見出し、本発明に到達した。
【0008】
即ち、本発明の製造方法は、ハウジングにチューブ状脱気膜を内装した脱気膜の外側を、結露を防止するため空気が流通し得るように構成し、該チューブ状脱気膜内を超純水を通過させて、超純水内の窒素を14ppm以下に除去し、該窒素を除去した超純水にオゾンガスを導入することを特徴とする。
【0009】
前記窒素は、好ましくは14ppm以下、特に好ましくは13ppm以下に除去する。
【0010】
前記超純水は、超純水タンク内の水面の変動に伴う圧力変化を、窒素ガスを超純水タンク内に導入することにより調整することによって窒素を含有している超純水を使用するのが良い。
【0011】
また、本発明の製造装置は、ウジングにチューブ状脱気膜を内装した超純水から窒素を除去する脱気装置と、該脱気膜の外側を結露を防止するため空気が流通し得るようにする装置と、該チューブ状脱気膜内を超純水を通過させて、超純水内の窒素を14ppm以下に除去した超純水にオゾンガスを導入するオゾン溶解器と、を具備することを特徴とする。
【0012】
本発明の脱気装置は、チューブ状脱気膜の外側は結露を防止するため空気が流通し得るように構成しているので、チューブ状脱気膜の外側の減圧に真空ポンプ等を使用する必要がなくなるので、メンテナンス費用を含めたコスト的利点が極めて大きい。
【0013】
要するに本発明は、超純水中の窒素ガスを好ましくは14ppm以下に除去することによって、オゾンガスの溶解性を著しく向上させたことを要旨とするものであるが、このような効果の生じる理由は、理論的に十分解明されていない。
【0014】
【発明の実施の形態】
次に本発明の実施の形態を説明する。
【0015】
オゾンガスの溶解効率は、水への注入オゾン量と水中の溶存オゾン量との比で求められる。水中の溶存オゾン量は、製造する溶存オゾン超純水(オゾン含有超純水)の流量(リットル/分)に溶存オゾン濃度(mg/リットル)を乗じて求められる。
【0016】
従って、一定の溶存オゾン量を得るためには、溶解効率が高いほど、注入オゾン量が少なく済むから、オゾンガス発生機の容量を小型にできる。
【0017】
図2は、本発明の一実施例を示すブロック図であり、オゾン溶解器1とユースポイント2との間に、脱気膜3を収容したハウジング5を設けている。脱気膜は、図3に示すようにUF膜とユースポイントとの間に設けても良い。
【0018】
脱気膜3は、気体透過性・液体不透過性の膜であり、図4に示すように、パイプ状の脱気膜3の内側に超純水を流し、脱気膜3の外側を減圧機4によって減圧にして、超純水中の窒素を真空側に除去するものである。本発明においては、このように減圧機4によって減圧にすることなく、脱気膜3の外側を、単に空気が流通するように構成するだけで良い。
【0019】
上記のようにして窒素ガスを除去した超純水を、図2に示すように、オゾン溶解器1を通過させて、オゾン発生機6からのオゾンガスを溶解させる。
【0020】
オゾン溶解器1は、図5に示すように、エゼクタ方式であっても、図5に示すように溶解膜方式であっても差し支えない。
【0021】
エゼクタ方式は、図5に示すように、配管路の途中を狭め、流速を早めたエゼクタ7の配管路にオゾンガスを注入することによって、ガスを微細気泡化して、水とオゾンガスの接触面積を大きくして溶解させる方式で、後段に未溶解オゾンガスと水とを分離する気液分離機8が設置されている。未溶解オゾンガスは、図2に示すオゾン分解器9によって分解されて大気中に放出される。
【0022】
溶解膜式は、例えば図6に示すように、チューブ状多孔膜エレメントとハウジングで一体に形成された膜式オゾン溶解器を使用して行われる。チューブ状多孔膜10の上端と下端は、固定材11に嵌合固定され、同固定材11を固定したハウジング12側部下端には、オゾンガス供給口13が、ハウジング側部上端には、オゾンガス排出口14が形成されている。超純水は、ハウジング12下端の入口16から導入され、チューブ状多孔膜10内を通ってオゾンガスを溶解させて、ハウジング上端の出口17から排出されるようになっている。
【0023】
チューブ状多孔膜10は、疎水性樹脂から形成され、チューブの外側と内側に貫通した多数の微細孔15が形成され、チューブの水圧が高くても、水の表面張力のために、水が微細孔15を通ってチューブの外側に漏れないようになっている。従って、チューブの内側の水は、微細孔15でチューブの外側のオゾンガスと接触しており、接触界面でオゾンガスが水に溶解し、オゾン水を生成するようになっている。
【0024】
本発明の方法及び装置によって、オゾンガスの溶解効率が高くなる理由は、理論的に十分解明されていないが、一応下記のような理由が考えられている。
【0025】
オゾンガスの成分は、酸素ガスとオゾンガスであるが、気液接触界面では、オゾン分圧により、ガス側からオゾンが超純水中に物質移動するが、超純水の溶存窒素は、ガス側では窒素ガス分圧がほぼゼロであるため、液中からガス側に移動する。窒素がガス側に移動すると、相対的にオゾンガスの分圧が低下し、オゾンの溶解量が低下するため、溶解効率が低下する。図7(A)は、エゼクタの場合の界面拡大をしめすものであり、図7(B)は、膜式の場合の界面拡大を示すものである。
【0026】
次に、実施例を挙げて本発明を更に説明するが、本発明はこの実施例に限定されない。
【0027】
実施例
図8に記載の装置を使用し、出力0.6A、出力1.2A及び出力3Aのオゾン発生機6からのオゾンガスを、0.5リットル/分の流量で導入しながら、次表1に記載の溶存窒素濃度(ppm)の超純水を、1.5リットル/分で流して、超純水に溶解した溶存オゾン濃度(ppm)を測定した。結果を次表2と図9に示す。尚、出力0.6Aのときのオゾン注入量は60mg/分であり、出力1.2Aのときのオゾン注入量は85mg/分であり、出力3Aのときのオゾン注入量は100mg/分であった。
【0028】
溶存オゾン濃度と溶存窒素濃度の測定方法は、下記のようにして行った。また、次表1に記載の窒素濃度とするのに、次表1に記載の方法によって窒素を除去した。
【0029】
溶存オゾン濃度:エゼクタ7でオゾンガスを超純水に溶解させ、気液分離器8で未溶解ガスと溶存オゾン水とを分離した直後に、溶存オゾン濃度計で測定した。
【0030】
溶存窒素濃度:超純水を脱気膜3に通過させない場合と、脱気膜の外側を大気開放、減圧機4で吸引通過させた場合とについて、超純水サンプリングポイントから超純水を200ccのサンプリング瓶に採取し、直ちに密閉して測定用試料とした。溶存窒素量は、亜硝酸態窒素測定機(GCT−6N住化分析センター製)で測定した。
【0031】
【表1】

Figure 0004090361
【0032】
【表2】
Figure 0004090361
【0033】
上記表2及び図7の記載から明らかなように、溶存窒素濃度14ppm以下、特に13ppm以下とすると、出力0.6Aのオゾン発生機であっても、出力1.2A以上のオゾン発生機を使用した場合と同等以上の溶存オゾン濃度を示す。
【0034】
また、超純水の溶存窒素濃度が13ppm以下であれば、オゾンガスの溶解効率がほぼ一定となるから、真空引きする必要がなく、大気圧の状態で十分である。
【0035】
図3に示す膜式脱気装置では、超純水から蒸発した水分が膜の外側に結露して脱気能力が低下するので、膜外側を吸引する必要があるが、加圧若しくは若干減圧にして、膜外側の空気が流通するようにすれば、高減圧度に吸引しなくとも、水分の結露が防止でき、必要な溶存窒素の除去が可能となる。従って、吸引装置が簡便化できるので、メンテナンス費用を含めて経済的利点が大きい。
【0036】
【発明の効果】
本発明によれば、オゾン溶解効率の悪かった超純水でも、窒素を除去することによって、市水や純水と同じようにオゾンガスの溶解効率を上昇させることができるので、従来と比べてオゾン発生機を小型化できるという絶大な効果を奏する。
【図面の簡単な説明】
【図1】従来の超純水の製造方法の一例を示すブロック図である。
【図2】本発明の一実施例を示すブロック図である。
【図3】本発明の他の実施例を示すブロック図である。
【図4】本発明に使用する脱気装置の一例を示す断面図である。
【図5】本発明に使用するオゾン溶解器の一例を示す概略断面図である。
【図6】本発明に使用するオゾン溶解器の他の例を示す断面図である。
【図7】(A)はエゼクタの場合の界面拡大、(B)は膜式の場合の界面拡大を示す説明図である。
【図8】実施例で使用した本発明装置のブロック図である。
【図9】本発明の実施例で得た溶存窒素濃度とオゾン水濃度との関係を示す線図である。
【符号の説明】
1………オゾン溶解器
2………ユースポイント
3………脱気膜
4………減圧機
7………エゼクタ
8………気液分離器
9………オゾン分解器
10………チューブ状多孔膜
12………ハウジング
13………オゾンガス供給口
14………オゾンガス排出口
15………微細孔[0001]
[Technical field to which the invention belongs]
The present invention mainly relates to a production method and a production apparatus for ozone-containing ultrapure water used for generating an oxide film on a semiconductor wafer and cleaning a semiconductor device, and more specifically, ozone gas dissolution efficiency in ultrapure water. The present invention relates to a method and an apparatus for producing ozone-containing ultrapure water in which the water content is significantly increased.
[0002]
[Prior art]
Ozone-containing ultrapure water is used for the production and cleaning of chemical reaction products and the production of oxide films, etc., using the oxidizing power of dissolved ozone.
[0003]
In a cleaning method called a wet station in a semiconductor manufacturing process, RCA cleaning is generally performed. In this method, a wafer is cleaned with a chemical solution such as ammonia / hydrogen peroxide solution, hydrochloric acid / hydrogen peroxide solution, and fluorine. . In recent years, ozone-containing ultrapure water has been partially used for the purpose of removing organic substances in the final rinsing process of RCA cleaning. Attempts have also been made to use high-concentration ozone-containing ultrapure water instead of RCA cleaning.
[0004]
Conventionally, as shown in FIG. 1, for example, ultrapure water is degassed by passing city water through an activated carbon or reverse osmosis membrane, and ion exchange is performed to store the ultrapure water in a tank. The organic matter is removed by exchanging and circulating through the UF membrane, and then taken out from the use point. In the ultrapure water tank, when the ultrapure water is used at the point of use, the water level decreases, and when the amount of ultrapure water supplied to the ultrapure water tank increases, the water level increases. Therefore, the contact between ultrapure water and air (particularly oxygen) is blocked by injecting nitrogen gas when the water level drops and exhausting nitrogen gas when the water level rises. Since ultrapure water is circulated and used in order to lengthen the UV oxidation time in this way, a large amount of nitrogen gas dissolves in the ultrapure water.
[0005]
The surprising fact that when ozone gas is dissolved in this ultrapure water, the ozone dissolution efficiency deteriorates and the capacity of the ozone generator must be increased compared to when ozone gas is dissolved in city water or pure water. I found it.
[0006]
[Problems to be solved by the invention]
This invention has been made on the basis of such knowledge, and even in ultrapure water, as with city water and pure water, the ozone gas dissolution efficiency is increased, and the production of ultrapure water that can reduce the size of the ozone generator. An object is to provide a method and a manufacturing apparatus.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, as a result of intensive studies, the present inventors have found the surprising fact that the ozone gas dissolution efficiency is remarkably improved by reducing the amount of nitrogen gas in ultrapure water. did.
[0008]
That is, in the manufacturing method of the present invention, the outside of the deaeration membrane in which the tubular deaeration membrane is housed in the housing is configured so that air can flow in order to prevent condensation, and the inside of the tubular deaeration membrane is exceeded. by passing the pure water, the nitrogen in the ultrapure water was removed below 14 ppm, it characterized that you introduce ozone gas in ultrapure water to remove the nitrogen.
[0009]
The nitrogen is preferably removed to 14 ppm or less, particularly preferably 13 ppm or less.
[0010]
The ultrapure water uses ultrapure water containing nitrogen by adjusting the pressure change accompanying the fluctuation of the water surface in the ultrapure water tank by introducing nitrogen gas into the ultrapure water tank. Is good.
[0011]
The manufacturing apparatus of the present invention, a deaerator for removing nitrogen from ultra pure water interior tubular degassing membrane housings, air to prevent dew condensation outside the dehydration gas film may flow And an ozone dissolver that introduces ozone gas into ultrapure water in which ultrapure water is passed through the tubular degassing membrane and nitrogen in the ultrapure water is removed to 14 ppm or less. It is characterized by that.
[0012]
Degassing apparatus of the present invention, since the outer tubing shaped degassing membrane air to prevent dew condensation is configured to be able to flow, using a vacuum pump or the like to vacuum the outer side of the tubular degassing membrane Therefore, the cost advantage including the maintenance cost is extremely large.
[0013]
In short, the gist of the present invention is that the solubility of ozone gas is remarkably improved by removing nitrogen gas in ultrapure water to preferably 14 ppm or less. Theoretically, it is not well understood.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described.
[0015]
The dissolution efficiency of ozone gas is determined by the ratio of the amount of ozone injected into water and the amount of dissolved ozone in water. The amount of dissolved ozone in water is obtained by multiplying the flow rate (liter / minute) of dissolved ozone ultrapure water (ozone-containing ultrapure water) to be produced by the dissolved ozone concentration (mg / liter).
[0016]
Therefore, in order to obtain a constant dissolved ozone amount, the higher the dissolution efficiency, the smaller the amount of injected ozone, so the capacity of the ozone gas generator can be reduced.
[0017]
FIG. 2 is a block diagram showing an embodiment of the present invention, in which a housing 5 containing a degassing membrane 3 is provided between the ozone dissolver 1 and the use point 2. The deaeration membrane may be provided between the UF membrane and the use point as shown in FIG.
[0018]
The deaeration membrane 3 is a gas permeable / liquid impermeable membrane, and as shown in FIG. 4, ultrapure water is allowed to flow inside the pipe-like deaeration membrane 3 and the outside of the deaeration membrane 3 is decompressed. The pressure is reduced by the machine 4 to remove nitrogen in the ultrapure water to the vacuum side. In the present invention, without reducing the pressure in this way by the pressure reducer 4, the outer degassing membrane 3, only a single air configured to flow not good.
[0019]
As shown in FIG. 2, the ultrapure water from which nitrogen gas has been removed as described above is passed through the ozone dissolver 1 to dissolve the ozone gas from the ozone generator 6.
[0020]
The ozone dissolver 1 may be an ejector type as shown in FIG. 5 or a dissolved film type as shown in FIG.
[0021]
As shown in FIG. 5, the ejector system narrows the middle of the pipe line and injects ozone gas into the pipe line of the ejector 7 whose flow velocity is increased, thereby making the gas fine bubbles and increasing the contact area between water and ozone gas. Then, a gas-liquid separator 8 that separates undissolved ozone gas and water is installed in the subsequent stage. Undissolved ozone gas is decomposed by the ozonolysis device 9 shown in FIG. 2 and released into the atmosphere.
[0022]
For example, as shown in FIG. 6, the dissolution membrane type is performed using a membrane type ozone dissolver formed integrally with a tubular porous membrane element and a housing. An upper end and a lower end of the tubular porous membrane 10 are fitted and fixed to a fixing material 11. An ozone gas supply port 13 is provided at the lower end of the housing 12 side where the fixing material 11 is fixed, and an ozone gas exhaust is provided at the upper end of the housing side portion. An outlet 14 is formed. Ultrapure water is introduced from the inlet 16 at the lower end of the housing 12, dissolves ozone gas through the tubular porous membrane 10, and is discharged from the outlet 17 at the upper end of the housing.
[0023]
The tubular porous membrane 10 is formed of a hydrophobic resin and has a large number of micropores 15 penetrating the outside and inside of the tube. Even if the water pressure of the tube is high, the water is fine due to the surface tension of the water. It does not leak to the outside of the tube through the hole 15. Accordingly, the water inside the tube is in contact with the ozone gas outside the tube through the fine holes 15, and the ozone gas is dissolved in water at the contact interface to generate ozone water.
[0024]
The reason why the ozone gas dissolution efficiency is increased by the method and apparatus of the present invention has not been sufficiently clarified theoretically, but the following reasons are considered.
[0025]
The components of ozone gas are oxygen gas and ozone gas. At the gas-liquid contact interface, ozone moves into the ultrapure water from the gas side due to the partial pressure of ozone, but the dissolved nitrogen in the ultrapure water Since the nitrogen gas partial pressure is almost zero, it moves from the liquid to the gas side. When nitrogen moves to the gas side, the partial pressure of ozone gas is relatively lowered and the amount of ozone dissolved is lowered, so that the dissolution efficiency is lowered. FIG. 7A shows the interface enlargement in the case of the ejector, and FIG. 7B shows the interface enlargement in the case of the membrane type.
[0026]
Next, the present invention will be further described with reference to examples, but the present invention is not limited to these examples.
[0027]
EXAMPLE Using the apparatus shown in FIG. 8, while introducing ozone gas from the ozone generator 6 with an output of 0.6 A, an output of 1.2 A and an output of 3 A at a flow rate of 0.5 liter / min, the following table 1 Then, the concentration of dissolved ozone (ppm) dissolved in the ultrapure water was measured by flowing the ultrapure water having a dissolved nitrogen concentration (ppm) described in 1. The results are shown in the following Table 2 and FIG. The ozone injection amount at an output of 0.6 A is 60 mg / min, the ozone injection amount at an output of 1.2 A is 85 mg / min, and the ozone injection amount at an output of 3 A is 100 mg / min. It was.
[0028]
The measuring method of dissolved ozone concentration and dissolved nitrogen concentration was performed as follows. Further, in order to obtain the nitrogen concentration shown in the following table 1, nitrogen was removed by the method shown in the following table 1.
[0029]
Dissolved ozone concentration: Immediately after the ozone gas was dissolved in ultrapure water by the ejector 7 and the undissolved gas and the dissolved ozone water were separated by the gas-liquid separator 8, the concentration was measured with a dissolved ozone concentration meter.
[0030]
Dissolved nitrogen concentration: 200 cc of ultrapure water from the ultrapure water sampling point when the ultrapure water is not passed through the deaeration membrane 3 and when the outside of the deaeration membrane is opened to the atmosphere and sucked by the decompressor 4. Were collected in a sampling bottle and immediately sealed to prepare a sample for measurement. The amount of dissolved nitrogen was measured with a nitrite nitrogen measuring machine (GCT-6N Sumika Chemical Analysis Center).
[0031]
[Table 1]
Figure 0004090361
[0032]
[Table 2]
Figure 0004090361
[0033]
As is clear from the description in Table 2 and FIG. 7, when the dissolved nitrogen concentration is 14 ppm or less, particularly 13 ppm or less, an ozone generator with an output of 1.2 A or more is used even if the ozone generator has an output of 0.6 A. The dissolved ozone concentration is equal to or higher than that of the case.
[0034]
Further, if the dissolved nitrogen concentration of ultrapure water is 13 ppm or less, the ozone gas dissolution efficiency becomes substantially constant, and it is not necessary to evacuate, and the atmospheric pressure is sufficient.
[0035]
In the membrane type deaerator shown in FIG. 3, the water evaporated from the ultrapure water is condensed on the outside of the membrane and the deaeration ability is lowered, so it is necessary to suck the outside of the membrane. If air outside the membrane is circulated, moisture condensation can be prevented and the necessary dissolved nitrogen can be removed without suction at a high degree of vacuum. Therefore, since the suction device can be simplified, the economic advantage including the maintenance cost is great.
[0036]
【The invention's effect】
According to the present invention, even with ultrapure water having poor ozone dissolution efficiency, by removing nitrogen, ozone gas dissolution efficiency can be increased in the same manner as city water and pure water. There is a great effect that the generator can be downsized.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an example of a conventional method for producing ultrapure water.
FIG. 2 is a block diagram showing an embodiment of the present invention.
FIG. 3 is a block diagram showing another embodiment of the present invention.
FIG. 4 is a cross-sectional view showing an example of a deaeration device used in the present invention.
FIG. 5 is a schematic sectional view showing an example of an ozone dissolver used in the present invention.
FIG. 6 is a cross-sectional view showing another example of an ozone dissolver used in the present invention.
7A is an explanatory diagram showing interface enlargement in the case of an ejector, and FIG. 7B is an explanatory diagram showing interface enlargement in the case of a membrane type.
FIG. 8 is a block diagram of the device of the present invention used in the examples.
FIG. 9 is a diagram showing the relationship between dissolved nitrogen concentration and ozone water concentration obtained in an example of the present invention.
[Explanation of symbols]
1 ... Ozone dissolver 2 ... Use point 3 ... Degassing membrane 4 ... Depressurizer 7 ... Ejector 8 ... Gas-liquid separator 9 ... Ozone decomposer 10 ......... Tubular porous membrane 12 ... Housing 13 ... Ozone gas supply port 14 ... Ozone gas discharge port 15 ... Micropores

Claims (3)

ハウジングにチューブ状脱気膜を内装した脱気膜の外側を、結露を防止するため空気が流通し得るように構成し、該チューブ状脱気膜内を超純水を通過させて、超純水内の窒素を14ppm以下に除去し、該窒素を除去した超純水にオゾンガスを導入することを特徴とするオゾン含有超純水の製造方法。 The outer side of the deaeration membrane with a tubular deaeration membrane installed in the housing is configured to allow air to flow in order to prevent dew condensation, and ultrapure water is passed through the tubular deaeration membrane. nitrogen in the water is removed below 14 ppm, the production method of the ozone-containing ultrapure water which is characterized that you introduce ozone gas in ultrapure water to remove the nitrogen. 前記超純水は、超純水タンク内の水面の変動に伴う圧力変化を、窒素ガスを超純水タンク内に導入することにより調整することによって窒素を含有している請求項記載の製造方法。The ultrapure water is the production of ultrapure water in the tank of the pressure change due to the water surface fluctuations, claim 1, which contains nitrogen by adjusting by introducing nitrogen gas into the ultrapure water tank Method. ウジングにチューブ状脱気膜を内装した超純水から窒素を除去する脱気装置と、該脱気膜の外側を結露を防止するため空気が流通し得るようにする装置と、該チューブ状脱気膜内を超純水を通過させて、超純水内の窒素を14ppm以下に除去した超純水にオゾンガスを導入するオゾン溶解器と、を具備することを特徴とするオゾン含有超純水の製造装置。 A deaerator for removing nitrogen housings from ultra pure water interior tubular degassing membrane, and a device for air to be circulated in order to prevent condensation outside the dehydration gas film, the tube-shaped An ozone dissolver for introducing ozone gas into ultrapure water in which ultrapure water is passed through the degassing membrane and nitrogen in the ultrapure water is removed to 14 ppm or less. Water production equipment.
JP2003037735A 2003-02-17 2003-02-17 Method and apparatus for producing ozone-containing ultrapure water Expired - Lifetime JP4090361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037735A JP4090361B2 (en) 2003-02-17 2003-02-17 Method and apparatus for producing ozone-containing ultrapure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037735A JP4090361B2 (en) 2003-02-17 2003-02-17 Method and apparatus for producing ozone-containing ultrapure water

Publications (2)

Publication Number Publication Date
JP2004243260A JP2004243260A (en) 2004-09-02
JP4090361B2 true JP4090361B2 (en) 2008-05-28

Family

ID=33022442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037735A Expired - Lifetime JP4090361B2 (en) 2003-02-17 2003-02-17 Method and apparatus for producing ozone-containing ultrapure water

Country Status (1)

Country Link
JP (1) JP4090361B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677753U (en) * 1993-04-17 1994-11-01 有限会社東洋医療器 Electric moxibustion device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948962B2 (en) * 2006-10-16 2012-06-06 住友重機械工業株式会社 High concentration ozone water production apparatus and high concentration ozone water production method
JP5582388B2 (en) * 2010-03-12 2014-09-03 三菱レイヨン株式会社 Biological treatment system and biological treatment method
JP5932263B2 (en) * 2011-07-28 2016-06-08 株式会社大栄製作所 Gas dissolving device
CN114380418B (en) * 2021-12-24 2022-10-11 上海汇业机械科技有限公司 Non-negative pressure water supply equipment with filtering and sterilizing functions

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182327A (en) * 1992-12-17 1994-07-05 Tohoku Electric Power Co Inc Ammonia deaeration method
JP3386947B2 (en) * 1995-11-30 2003-03-17 大日本スクリーン製造株式会社 Device for supplying developer to substrate
JP3452471B2 (en) * 1997-09-29 2003-09-29 アルプス電気株式会社 Pure water supply system, cleaning device and gas dissolving device
JP4119040B2 (en) * 1999-06-16 2008-07-16 オルガノ株式会社 Functional water production method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677753U (en) * 1993-04-17 1994-11-01 有限会社東洋医療器 Electric moxibustion device

Also Published As

Publication number Publication date
JP2004243260A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP3662111B2 (en) Cleaning liquid manufacturing method and apparatus therefor
JP5072062B2 (en) Method, apparatus and apparatus for producing hydrogen gas-dissolved cleaning water
US9129797B2 (en) Cleaning method
JP3765354B2 (en) Method for producing hydrogen-containing ultrapure water
US9302298B2 (en) Device for supplying water containing dissolved gas and process for producing water containing dissolved gas
EP0362164A2 (en) Method and apparatus for treating water using electrolytic ozone
JP4090361B2 (en) Method and apparatus for producing ozone-containing ultrapure water
JP5380870B2 (en) Method and apparatus for producing gas-dissolved water
JP2611183B2 (en) Fluid circulation deaerator
JP4151088B2 (en) Hydrogen-containing ultrapure water supply device
JP3789619B2 (en) Ultrapure water production equipment
JP2008080255A (en) Pure water making apparatus
KR101123811B1 (en) Wafer cleaning apparatus and waper cleanign method using the same
JP2000354857A (en) Method and apparatus for making functional water
JP2015180500A (en) Gas dissolved water supply device and manufacturing method of gas dissolved water
JP3928484B2 (en) Functional water recovery method
JP5092968B2 (en) Gas dissolved water supply apparatus and gas dissolved water manufacturing method
JP4587111B2 (en) Ozone dissolved water supply device
JP2012176360A (en) Production unit of gas dissolved water
JP3452471B2 (en) Pure water supply system, cleaning device and gas dissolving device
JP5358910B2 (en) Carbonated water manufacturing apparatus and manufacturing method
JP2012139656A (en) Method and system for making nitrogen gas-dissolved water
JP3899583B2 (en) Pure water production method
JPH0938671A (en) Water treatment and water treating device
JP5037748B2 (en) Ozone water concentration adjustment method and ozone water supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080226

R150 Certificate of patent or registration of utility model

Ref document number: 4090361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term