JP4119040B2 - Functional water production method and apparatus - Google Patents

Functional water production method and apparatus Download PDF

Info

Publication number
JP4119040B2
JP4119040B2 JP16917599A JP16917599A JP4119040B2 JP 4119040 B2 JP4119040 B2 JP 4119040B2 JP 16917599 A JP16917599 A JP 16917599A JP 16917599 A JP16917599 A JP 16917599A JP 4119040 B2 JP4119040 B2 JP 4119040B2
Authority
JP
Japan
Prior art keywords
gas
liquid separation
separation membrane
water
degassing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16917599A
Other languages
Japanese (ja)
Other versions
JP2000354857A (en
Inventor
幸福 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP16917599A priority Critical patent/JP4119040B2/en
Publication of JP2000354857A publication Critical patent/JP2000354857A/en
Application granted granted Critical
Publication of JP4119040B2 publication Critical patent/JP4119040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Physical Water Treatments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体、液晶及び電子部品などの電子部品部材類の洗浄に使用される水素溶解水やオゾン溶解水のような機能水を製造する方法及びその装置に関するものである。
【0002】
【従来の技術】
従来、シリコンウエハなどの半導体デバイス基板、液晶表示装置基板などの電子部品部材類の洗浄には、純水又は超純水に有効ガスを溶解せしめた機能水、例えば、水素溶解水又はオゾン溶解水が効果的であることが多数報告されている。例えば、水素溶解水は被洗浄物表面に付着した微粒子を除去するのに有効であり、オゾン溶解水は被洗浄物表面に付着した有機物や金属不純物を除去するのに有効であることが知られている(特開平9-255998号公報、特開平10-64867号公報、特開平10-128253 号公報、特開平10-128254 号公報) 。
【0003】
このように、純水又は超純水は、有効ガス溶解手段において有効ガスが溶解されるが、高純度の機能水を得る目的で、その前に純水又は超純水に溶解しているガスを脱ガス手段において除去するのが通常である。このような脱ガス方法としては、中空糸構造の気液分離膜を多数並列に配した気液分離膜モジュールを用いる膜脱気法、中空の塔の内部を高真空にして塔上部から被処理水を落下させる真空脱気塔を用いる脱気法及び水素ガスが供給された被処理水をパラジウム樹脂に通過せしめて溶存酸素と水素を反応させる方法などがある。
【0004】
膜脱気方法では、その脱ガス度は気液分離膜内のガス側の真空度が大きく係わっており、通常、このガス側は−700mmHg 程度まで真空にされる。これにより、該気液分離膜の気相側には純水などの被処理水から除去された溶存ガスが高濃度で存在するようになり、その結果分圧の法則からも脱ガス効率が低下する。これを解決するには、真空ポンプの容量を大型化する方法があるが、消費エネルギーの増大や装置の大型化を招きコストアップとなる点で好ましくない。そこで、通常、ガス側に引き込まれたガス濃度を下げるために、該ガス側に窒素などの掃引ガスを真空ポンプの負荷が増大しないような微少流量で供給し、脱ガス効率の向上を図っている。
【0005】
また、膜脱気においては、後工程の有効ガス溶解工程において、純水又は超純水中に有効ガス以外のガスが存在することにより有効ガスの溶存濃度が制限される点、及び電子部品部材類の洗浄方法の一つである枚葉式洗浄法では溶存水素濃度をより高くすることで洗浄効果が上がることが確認されている点などから、該膜脱気の脱ガス度は極力高いことが好ましい。
【0006】
【発明が解決しようとする課題】
しかしながら、掃引ガスとして窒素を用いる膜脱気においては、次のような問題がある。すなわち、超純水は脱気工程前では大気が飽和溶解しており、その溶解量は水温によって異なるが、例えば水温が20℃の場合には、大気成分である窒素、酸素及び二酸化炭素の溶解量はそれぞれ、15.3ppm 、9.3ppm 及び0.6ppm である。このような超純水を前述の如く、脱ガス効率を上げるために窒素を掃引ガスとして使用すると、脱ガスされた超純水は例えば、水温が20℃の場合には、窒素及び酸素の溶解量はそれぞれ、2.04ppm 及び0.18ppm となり、脱酸素超純水は得られても脱窒素超純水は得られない。このように、機能水中に窒素が存在すると、電子部品部材類などの洗浄で広く用いられている超音波洗浄槽にて硝酸イオンや硝酸を生成し、超純水の比抵抗の低下、アニオン成分の増加及びpHの低下などの水質劣化を引き起こす。
【0007】
また、従来の機能水製造装置では、窒素などの掃引ガスのガス供給手段と水素やオゾンなどの有効ガスのガス供給手段を別途に設置する必要があり、また、これに伴う制御弁、配管及びガス貯留槽など関連設備にコストが懸かるなど装置の簡素化や低コスト化という点で問題となっていた。
【0008】
従って、本発明の目的は、掃引ガスとして窒素を使用せず、且つ真空ポンプの容量を増大させることなくそのままで脱ガス効率を向上させることのできる機能水製造方法を提供することにある。
【0009】
また、本発明の他の目的は、ガス供給系を簡略化、低コスト化された機能水製造装置を提供することにある。
【0010】
【課題を解決するための手段】
かかる実情において、本発明者は鋭意検討を行った結果、純水又は超純水中の溶存ガスを掃引ガスが供給される脱ガス用気液分離膜にて除去し、次いで、脱ガスされた純水又は超純水中に有効ガスを溶解させて機能水を製造する方法において、掃引ガスに有効ガスと同一のガスを使用すれば、掃引ガスとして窒素を使用することなく、且つ真空ポンプの容量もそのままで脱ガス効率を向上させることができると共に、ガス供給系を統一することができ、機能水製造装置を簡略化、低コスト化できることなどを見出し、本発明を完成するに至った。
【0011】
すなわち、本発明(1)は、純水又は超純水中の溶存ガスを掃引ガスが供給される脱ガス用気液分離膜にて除去し、次いで、脱ガスされた純水又は超純水中に有効ガスを溶解させて機能水を製造する方法において、前記掃引ガスと前記有効ガスが同一ガスであることを特徴とする機能水製造方法を提供するものである。かかる構成を採ることにより、有効ガスは窒素ガス以外の水素ガス及びオゾンガス等であるため、掃引ガスに窒素が使用されることはなく、このため、脱ガス工程では真空ポンプの容量もそのままで酸素、窒素及び二酸化炭素などの大気成分がほとんど除去でき脱ガス効率を向上させることができる。また、溶解工程では高濃度の有効ガスの溶解が可能となり、高純度の機能水が得られ、洗浄の際の窒素等の残存に伴う諸問題が解決される。
【0012】
また、本発明(2)は、前記掃引ガスと前記有効ガスが、水素ガス又はオゾンガスであることを特徴とする前記(1)記載の機能水製造方法を提供するものである。かかる構成を採ることにより、前記(1)記載の発明と同様の効果を奏する他、水素ガス溶解水又はオゾン溶解水は不純物汚染がないことからその水素又はオゾンの溶解濃度を高めて、それぞれの有効ガスの酸化還元電位を安定して得ることができる。また、電子部品部材類の枚葉式洗浄法では特に洗浄効果を上げることができる。
【0013】
また、本発明(3)は、純水又は超純水を脱ガスする少なくとも1本を備える掃引ガスが供給される脱ガス用気液分離膜モジュールと、前記脱ガス用気液分離膜モジュールの二次側に位置して脱ガスされた純水又は超純水に有効ガスを溶解させ機能水とする少なくとも1本を備えるガス溶解用気液分離膜モジュールと、前記脱ガス用気液分離膜モジュールのガス側に前記掃引ガスを、前記ガス溶解用気液分離膜モジュールのガス側に前記有効ガスを同一ガスで供給するガス供給手段とを備えることを特徴とする機能水製造装置を提供するものである。かかる構成を採ることにより、脱ガス工程及びガス溶解工程で用いられるガスを同一供給源から同一配管で供給できるため、装置を簡略化、低コスト化できる。
【0014】
また、本発明(4)は、前記ガス溶解用気液分離膜モジュールのガス側入口と前記ガス供給手段は一次配管で、前記脱ガス用気液分離膜モジュールのガス側と前記ガス溶解用気液分離膜モジュールのガス側出口は二次配管でそれぞれ連接され、前記二次配管には流量調整可能な圧力調整手段が設置され、該圧力調整手段の前記ガス溶解用気液分離膜モジュール側のガス圧力よりも、前記脱ガス用気液分離膜モジュール側のガス圧力が低くなるように調整されることを特徴とする前記(3)記載の機能水製造装置を提供するものである。かかる構成を採ることにより、前記(3)記載の発明と同様の効果を奏する他、脱ガス用気液分離膜モジュールのガス側が真空ポンプにより負圧となっていても、ガス溶解用気液分離膜モジュールのガス側が負圧になったり、所望の圧力に到達しないといったことがない。また、脱ガス用気液分離膜モジュールのガス側には真空ポンプの負荷とならないような微少流量のガスを流すことができ、ガス溶解用気液分離膜モジュールのガス側には、所望のガス溶解濃度に相当するガス圧を確保できる。
【0015】
【発明の実施の形態】
本発明において、純水は一般的に原水を濾過装置、逆浸透膜装置、イオン交換装置、精密フィルター等の一次純水処理系の装置で処理して得た水(一次純水)である。また、超純水とは、一般に、上記純水を更に、紫外線照射装置、混床式イオン交換ポリッシャー、限外濾過装置や逆浸透膜装置などの膜処理装置等の2次純水処理系で処理して得られる水である。
【0016】
本発明において、純水又は超純水(以下、単に「超純水」ということもある)中の溶存ガスを脱ガスする脱ガス用気液分離膜としては、中空糸構造の気液分離膜が挙げられ、該中空糸構造は中空糸の内側をガス側、外側を液側又はその逆として使用されており、脱ガスの場合には、ガス側を負圧とすることで液側に供給される超純水中の溶存ガスをガス側に引き込むものである。該脱ガス用気液分離膜は通常、中空糸膜を多数並列に配した気液分離膜モジュールとして使用される。ガス側の真空度は高いほど脱ガス除去率が高まるが、その分真空ポンプの容量が大きくなるため、通常、−700mmHg程度である。
【0017】
掃引ガスとしては、窒素ガスを除く水素ガス及びオゾンガスなどが挙げられる。掃引ガスは、前記脱ガス用気液分離膜のガス側に引き込まれたガス濃度を下げてガス分圧を低下させる目的で供給され、真空ポンプの負荷が増大しないような微少流量で流して脱ガスを追い出し、脱ガス効率を高めている。掃引ガスとして、後のガス溶解工程で溶解ガスとして使用されるガスと同一のガスを使用することにより、超純水中に溶存する大気成分を窒素で0.18mg/L、酸素で0.18mg/L程度まで除去することが可能となる。これにより、近年のサブミクロンデザインルールが適用されるLSI用洗浄水に適合でき、電子部品部材類の機能水によるすすぎ工程で、該機能水由来の汚染物質が表面に付着することはない。また、被処理水の超純水中に若干量の掃引ガスが溶け込むものの、これは後工程で溶かし込む有効ガスであり問題はない。
【0018】
上記の方法で脱ガスされた純水又は超純水に溶解させる有効ガスとしては、水素ガス又はオゾンガスなどが挙げられ、このうち、前記掃引ガスと同一のガスが使用される。
【0019】
ガス溶解工程において、超純水に有効ガスを溶解させる方式としては、特に制限されず、中空糸構造の気液分離膜を用いる方式、エゼクターを用いる方式及びラインミキサーを用いる方式などが挙げられ、このうち中空糸構造の気液分離膜を用いる方式が好ましい。該中空糸構造は前記脱ガス用気液分離膜に使用される中空糸と同様のものであるが、ガス溶解の場合、ガス側は加圧状態であり、これにより液側に供給される超純水に有効ガスを溶解させる。有効ガスの溶解濃度は圧力に比例することから、所望の溶解濃度を有する機能水を得るために、加圧度は減圧弁で適宜の圧力に調整される。
【0020】
機能水としてオゾン溶解水を得る場合、オゾンを得る方法としては、水を電気分解してオゾンガスを得る水電解方式及び酸素又は空気中で無声放電を生じさせてオゾンガスを得る無声放電方式などが挙げられる。水電解方式は手近にある超純水をオゾンガスの原料とすることができ、オゾンガスの供給が容易になる点で有利である。
【0021】
水素溶解水としては、脱ガスされた超純水を原料とした水電解カソード水、水電解水素ガスやハウスガス等を脱ガスされた超純水中に溶解せしめた水素溶解水などが挙げられる。このうち、水電解水素ガスを脱ガスされた超純水中に溶解せしめた水素溶解水が、水電解方式は手近にある超純水を水素ガスの原料とすることができると共に、該水素ガスは更にフィルター法や冷凍法を併用することで生成ガス中の水蒸気分まで低減させることができ、高純度(100%)水素ガスの供給が容易になる点で有利である。
【0022】
次に、本発明の第1の実施の形態における機能水製造装置について、図1を参照して説明する。図1は第1の実施の形態例の機能水製造装置をブロック図で示す。図1中、機能水製造装置20aは超純水を脱ガスする脱ガス用気液分離膜モジュール1と、ガス溶解用気液分離膜モジュール2と、ガス供給源4を有し、脱ガス用気液分離膜モジュール1の液側出口とガス溶解用気液分離膜モジュール2の液側入り口とは脱ガス水供給管8で連接され、脱ガス用気液分離膜モジュール1の液側入り口には超純水供給管7が、ガス溶解用気液分離膜モジュール2の液側出口には機能水供給管9がそれぞれ連接されている。また、ガス供給源4から延出され減圧弁5を備えるガス供給配管10は分岐して一方が有効ガス供給管12となってガス溶解用気液分離膜モジュール2のガス側21入り口に連接され、他方が流量調整機能付き圧力調整部6を備える掃引ガス供給管13となって脱ガス用気液分離膜モジュール1の液側11入り口に連接される。また、ガス溶解用気液分離膜モジュール2のガス側21出口には有効ガス排出管19b、脱ガス用気液分離膜モジュール1のガス側11出口には真空ポンプを備える真空引き配管19aがそれぞれ連接されている。
【0023】
超純水は超純水供給管7により脱ガス用気液分離膜モジュール1の液側に供給される。脱ガス用気液分離膜モジュール1ではガス側11が真空ポンプで−700mmHg程度に減圧され、且つガス供給源4から供給され減圧弁5及び流量調整機能付き圧力調整部6で所定の圧力及び微少流量に調整された有効ガスと同一の掃引ガスが流されているから、超純水中の窒素、酸素及び二酸化炭素などの溶存ガスはガス側11に引き込まれ超純水は効率よく脱ガスされる。
【0024】
脱ガスされた超純水は脱ガス水供給配管8を通ってガス溶解用気液分離膜モジュール2の液側に供給される。ガス溶解用気液分離膜モジュール2ではガス側21がガス供給源4からガス供給配管10及び有効ガス供給管12を通って供給され減圧弁5で所定の圧力、例えば0kg/cm2以上に調整された有効ガスが流されているから、超純水中に所定濃度の有効ガスが溶解され、水素溶解水又はオゾン溶解水などの機能水としてユースポイントに供給される。
【0025】
本実施の形態例によれば、有効ガスは窒素ガス以外の水素ガス及びオゾンガス等であるため、掃引ガスに窒素が使用されることはなく、このため、脱ガス工程では真空ポンプの容量もそのままで酸素、窒素及び二酸化炭素などの大気成分がほとんど除去でき脱ガス効率を向上させることができる。また、溶解工程では高濃度の有効ガスの溶解が可能となり、高純度の機能水が得られ、洗浄の際の窒素等の残存に伴う諸問題が解決される。得られる水素ガス溶解水又はオゾン溶解水は不純物汚染がないことからその水素又はオゾンの溶解濃度を高めて、それぞれの有効ガスの酸化還元電位を安定して得ることができ、特に電子部品部材類の枚葉式洗浄法では洗浄効果を上げることができる。また、脱ガス工程及びガス溶解工程で用いられるガスを同一供給源から同一配管で供給できるため、装置を簡略化、低コスト化できる。また、脱ガス用気液分離膜モジュールのガス側が真空ポンプにより負圧となっていても、ガス溶解用気液分離膜モジュールのガス側が負圧になったり、所望の圧力に到達しないといったことがなく、所望のガス溶解濃度に相当するガス圧を確保できる。
【0026】
次に、本発明の第2の実施の形態における機能水製造装置について、図2を参照して説明する。図2は第2の実施の形態例の機能水製造装置をブロック図で示す。図2中、図1と同一構成要素には同一符号を付してその説明を省略し、図1と異なる点について主に説明する。すなわち、図2の機能水製造装置20bにおいて図1と異なるところは、ガス供給源4から真空ポンプ3に至るガス供給系が直列に接続されている点である。すなわち、機能水製造装置20bはガス供給源4とガス溶解用気液分離膜モジュール2のガス側21入り口は減圧弁5を有するガス供給配管14(一次配管)で連接され、脱ガス用気液分離膜モジュール1のガス側11入り口とガス溶解用気液分離膜モジュール2のガス側21出口は流量調整機能付き圧力調整部6を備える掃引ガス供給配管15(二次配管)で連接されている。従って、脱ガス用気液分離膜モジュール1のガス側11に供給される掃引ガスは、ガス供給源4からのガスがガス溶解用気液分離膜モジュール2で超純水に有効ガスを溶解せしめた後、更に流量調整されたものである。
【0027】
本実施の形態例において、脱ガス用気液分離膜モジュール1における脱ガス及びガス溶解用気液分離膜モジュール2におけるガス溶解の作用などは第1の実施の形態例と同様である。第2の実施の形態例によれば、第1の実施の形態例と同様の効果を奏する。
【0028】
次に、本発明の第3の実施の形態における機能水製造装置について、図3を参照して説明する。図3は第3の実施の形態例の機能水製造装置をブロック図で示す。図3中、図2と同一構成要素には同一符号を付してその説明を省略し、図2と異なる点について主に説明する。すなわち、図3の機能水製造装置20cにおいて図2と異なるところは、ガス供給源を電気分解式ガス発生装置30とし、機能水は水素溶解水とした点である。すなわち、電気分解式ガス発生装置30は電解槽31と、電解用電源32を備えてなり、電解槽31には超純水供給配管7から分岐した電解用原料水(超純水)供給配管16が連接され、電解槽31の水素ガス生成槽とガス溶解用気液分離膜モジュール2のガス側21入り口は減圧弁を備える水素ガス供給配管18により連接されている。この場合、超純水に溶解させる水素ガスの溶存濃度を上げるには電解電流値を高めればよい。符号17は酸素ガス排出配管である。
【0029】
本実施の形態例において、脱ガス用気液分離膜モジュール1における脱ガス作用及びガス溶解用気液分離膜モジュール2におけるガス溶解作用などは第1の実施の形態例と同様である。第3の実施の形態例によれば、第1の実施の形態例と同様の効果を奏する他、手近にある超純水を水素ガスの原料とすることができ、水素ガスの供給が容易になる点で有利である。
【0030】
次に、本発明の第4の実施の形態における機能水製造装置について、図4を参照して説明する。図4は第4の実施の形態例の機能水製造装置をブロック図で示す。図4中、図2と同一構成要素には同一符号を付してその説明を省略し、図2と異なる点について主に説明する。すなわち、図4の機能水製造装置20dにおいて図2と異なるところは、1個の脱ガス用気液分離膜モジュール1の代わりに、複数の脱ガス用気液分離膜モジュール1、1、1を並列に配した脱ガス用気液分離膜モジュール群1Aとし、1個のガス溶解用気液分離膜モジュール2の代わりに、複数のガス溶解用気液分離膜モジュール2、2、2を並列に配したガス溶解用気液分離膜モジュール群2Aとした点である。
【0031】
本実施の形態例において、脱ガス用気液分離膜モジュール1における脱ガス作用及びガス溶解用気液分離膜モジュール2におけるガス溶解作用などは第1の実施の形態例と同様である。第4の実施の形態例によれば、第1の実施の形態例と同様の効果を奏する他、大流量の処理が可能となる。
【0032】
本発明の機能水製造装置においては、上記実施の形態例以外にも、適宜の設計変更が可能である。すなわち、流量調整機能付き圧力調整部6は、通常、減圧弁と該減圧弁の下流側に自動又は手動の流量調整弁を備えるが、これに限定されず、減圧弁を省略して自動又は手動の流量調整弁のみを備えるもの、減圧弁や流量調整弁を省略して配管の径を小さくすることで流量を調整するものなど使用できる。また、掃引ガスが連続又は不連続で供給される。
【0033】
【実施例】
次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
実施例1
図2に示すような機能水製造装置を使用し、下記装置仕様及び運転条件で機能水を製造した。結果を表1に示す。
・超純水;通常の超純水製造装置で得られる超純水であり、20℃での溶存酸素濃度9ppm、溶存窒素濃度15ppm
・脱ガス用気液分離膜モジュール:中空糸構造の気液分離膜モジュール(「リキセル4”X−40メンブレン」ヘキスト社製)
ガス側真空度;−700mmHg 、掃引ガス流量:2.5NL/分
・ガス溶解用気液分離膜モジュール:中空糸構造の気液分離膜モジュール(「リキセル4”X−40メンブレン」ヘキスト社製)
ガス側圧力;0.2kgf/cm2
・流量調整機能付き圧力調整部;減圧弁と自動流量調整弁で行う
・有効ガス及び掃引ガス;水素ガス
・機能水流量;2.4m3/時間
・機能水圧力(ガス溶解用気液分離膜モジュール出口圧力);2.0kgf/cm2
(尚、水素ガスの溶解度は20℃、水素分圧760mmHg で1.62mg/L純水である。)
【0034】
比較例1
図5に示すような機能水製造装置を使用し、掃引ガスとして窒素ガスを使用し、有効ガスとして水素ガスを使用する以外は、実施例1と同様の方法で行った。図5中、図2と同一構成要素には同一符号を付した。また、4aは有効ガス供給源、4bは掃引ガス供給源である。結果を表1に示す。
【0035】
実施例2
有効ガス及び掃引ガスの水素ガスに代えてオゾンガスを使用し、ガス溶解用気液分離膜モジュールのガス側圧力を0.2kgf/cm2とした以外は、実施例1と同様の方法で行った。結果を表1に示す。
(尚、オゾンの溶解度は15℃、オゾン分圧760mmHg で25.9mg/L純水である。)
【0036】
比較例2
図5に示すような機能水製造装置を使用し、掃引ガスとして窒素ガスを使用し、有効ガスとしてオゾンガスを使用する以外は、実施例2と同様の方法で行った。結果を表1に示す。
【0037】
【表1】

Figure 0004119040
【0038】
表1より、掃引ガスと有効ガスを同一ガスとして脱ガス及びガス溶解を行えば、掃引ガスとして窒素を使用した従来例に比較して、同条件下、有効ガスが高濃度で溶解できる。
【0039】
【発明の効果】
請求項1の発明によれば、有効ガスは窒素ガス以外の水素ガス及びオゾンガス等であるため、掃引ガスに窒素が使用されることはなく、このため、脱ガス工程では真空ポンプの容量もそのままで酸素、窒素及び二酸化炭素などの大気成分がほとんど除去でき脱ガス効率を向上させることができる。また、溶解工程では高濃度の有効ガスの溶解が可能となり、高純度の機能水が得られ、洗浄の際の窒素等の残存に伴う諸問題が解決される。
【0040】
請求項2の発明によれば、水素ガス溶解水又はオゾン溶解水は不純物汚染がないことからその水素又はオゾンの溶解濃度を高めて、それぞれの有効ガスの酸化還元電位を安定して得ることができる。また、電子部品部材類の枚葉式洗浄法では特に洗浄効果を上げることができる。
【0041】
請求項3の発明によれば、脱ガス工程及びガス溶解工程で用いられるガスを同一供給源から同一配管で供給できるため、装置を簡略化、低コスト化できる。
【0042】
請求項4の発明によれば、脱ガス用気液分離膜モジュールのガス側が真空ポンプにより負圧となっていても、ガス溶解用気液分離膜モジュールのガス側が負圧になったり、所望の圧力に到達しないといったことがない。また、脱ガス用気液分離膜モジュールのガス側には真空ポンプの負荷とならないような微少流量のガスを流すことができ、ガス溶解用気液分離膜モジュールのガス側には、所望のガス溶解濃度に相当するガス圧を確保できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態例の機能水製造装置のブロック図を示す。
【図2】本発明の第2の実施の形態例の機能水製造装置のブロック図を示す。
【図3】本発明の第3の実施の形態例の機能水製造装置のブロック図を示す。
【図4】本発明の第4の実施の形態例の機能水製造装置のブロック図を示す。
【図5】比較例(従来例)で使用した機能水製造装置のブロック図を示す。
【符号の説明】
1 脱ガス用気液分離膜モジュール
2 ガス溶解用気液分離膜モジュール
3 真空ポンプ
4 ガス供給源
5 減圧弁
6 流量調整機能付き圧力調整部
7 超純水供給配管
8 脱ガス水供給配管
9 機能水供給配管
10、14 ガス供給配管
11、21 ガス側
12 (分岐された)有効ガス供給配管
13、15 掃引ガス供給配管
16 電解用原料水供給配管
17 酸素ガス排出配管
18 水素ガス供給配管
30 電気分解式ガス発生装置
31 電解槽
32 電解用電源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for producing functional water such as hydrogen-dissolved water and ozone-dissolved water used for cleaning electronic component members such as semiconductors, liquid crystals, and electronic components.
[0002]
[Prior art]
Conventionally, for cleaning electronic component members such as a semiconductor device substrate such as a silicon wafer and a liquid crystal display device substrate, functional water in which an effective gas is dissolved in pure water or ultrapure water, for example, hydrogen-dissolved water or ozone-dissolved water. Many have been reported to be effective. For example, it is known that hydrogen-dissolved water is effective for removing fine particles adhering to the surface of the object to be cleaned, and ozone-dissolved water is effective for removing organic substances and metal impurities adhering to the surface of the object to be cleaned. (JP-A-9-255998, JP-A-10-64867, JP-A-10-128253, JP-A-10-128254).
[0003]
As described above, pure water or ultrapure water is a gas dissolved in pure water or ultrapure water before the effective gas is dissolved in the effective gas dissolving means, but for the purpose of obtaining high purity functional water. Is usually removed in a degassing means. As such a degassing method, a membrane degassing method using a gas-liquid separation membrane module in which a large number of gas-liquid separation membranes having a hollow fiber structure are arranged in parallel, and the inside of the hollow tower is made high vacuum to be treated from the top of the tower There are a deaeration method using a vacuum deaeration tower for dropping water and a method for reacting dissolved oxygen and hydrogen by passing water to be treated supplied with hydrogen gas through a palladium resin.
[0004]
In the membrane degassing method, the degree of degassing is largely related to the degree of vacuum on the gas side in the gas-liquid separation membrane. Normally, the gas side is evacuated to about -700 mmHg. As a result, dissolved gas removed from the water to be treated such as pure water is present at a high concentration on the gas phase side of the gas-liquid separation membrane, and as a result, the degassing efficiency is also reduced from the law of partial pressure. To do. In order to solve this, there is a method of increasing the capacity of the vacuum pump, but this is not preferable in terms of increasing the energy consumption and increasing the size of the apparatus and increasing the cost. Therefore, in order to reduce the concentration of gas drawn into the gas side, normally, a sweep gas such as nitrogen is supplied to the gas side at a minute flow rate so that the load of the vacuum pump does not increase, and the degassing efficiency is improved. Yes.
[0005]
Further, in membrane deaeration, the dissolved concentration of the effective gas is limited by the presence of a gas other than the effective gas in the pure water or ultrapure water in the subsequent effective gas dissolving step, and the electronic component member In the single wafer cleaning method, which is one type of cleaning method, it has been confirmed that the cleaning effect is improved by increasing the concentration of dissolved hydrogen, so the degassing degree of the membrane degassing is as high as possible. Is preferred.
[0006]
[Problems to be solved by the invention]
However, membrane degassing using nitrogen as the sweep gas has the following problems. That is, the ultrapure water is saturated and dissolved in the atmosphere before the deaeration process, and the amount of dissolution varies depending on the water temperature. For example, when the water temperature is 20 ° C., dissolution of nitrogen, oxygen, and carbon dioxide, which are atmospheric components, The amounts are 15.3 ppm, 9.3 ppm and 0.6 ppm, respectively. As described above, when nitrogen is used as a sweep gas in order to increase the degassing efficiency as described above, the degassed ultrapure water dissolves nitrogen and oxygen when the water temperature is 20 ° C., for example. The amounts are 2.04 ppm and 0.18 ppm, respectively. Even if deoxygenated ultrapure water is obtained, denitrogenated ultrapure water cannot be obtained. In this way, when nitrogen is present in the functional water, nitrate ions and nitric acid are generated in an ultrasonic cleaning tank widely used for cleaning electronic parts, etc., reducing the specific resistance of ultrapure water, anion components Cause water quality degradation such as increase in pH and decrease in pH.
[0007]
Further, in the conventional functional water production apparatus, it is necessary to separately provide a gas supply means for sweeping gas such as nitrogen and a gas supply means for effective gas such as hydrogen and ozone, and a control valve, piping and It has been a problem in terms of simplification of the equipment and cost reduction, such as costs for related equipment such as gas storage tanks.
[0008]
Therefore, an object of the present invention is to provide a functional water production method that can improve the degassing efficiency without using nitrogen as a sweep gas and without increasing the capacity of a vacuum pump.
[0009]
Another object of the present invention is to provide a functional water production apparatus in which the gas supply system is simplified and the cost is reduced.
[0010]
[Means for Solving the Problems]
In such a situation, the present inventor conducted intensive studies, and as a result, the dissolved gas in pure water or ultrapure water was removed by a gas-liquid separation membrane for degassing supplied with a sweep gas, and then degassed. In the method of producing functional water by dissolving an effective gas in pure water or ultrapure water, if the same gas as the effective gas is used as the sweep gas, nitrogen is not used as the sweep gas, and the vacuum pump It has been found that the degassing efficiency can be improved without changing the capacity, the gas supply system can be unified, the functional water production apparatus can be simplified and the cost can be reduced, and the present invention has been completed.
[0011]
That is, the present invention (1) removes dissolved gas in pure water or ultrapure water by a gas-liquid separation membrane for degassing supplied with a sweep gas, and then degassed pure water or ultrapure water. In a method for producing functional water by dissolving an effective gas therein, the functional water production method is characterized in that the sweep gas and the effective gas are the same gas. By adopting such a configuration, since the effective gas is hydrogen gas other than nitrogen gas, ozone gas, or the like, nitrogen is not used for the sweep gas. Therefore, in the degassing process, the capacity of the vacuum pump remains unchanged. In addition, almost all atmospheric components such as nitrogen and carbon dioxide can be removed, and the degassing efficiency can be improved. Further, in the dissolution step, a high-concentration effective gas can be dissolved, high-purity functional water can be obtained, and various problems associated with remaining nitrogen and the like during cleaning can be solved.
[0012]
Moreover, this invention (2) provides the functional water manufacturing method as described in said (1) characterized by the said sweep gas and said effective gas being hydrogen gas or ozone gas. By adopting such a configuration, in addition to the same effects as the invention described in (1) above, hydrogen gas-dissolved water or ozone-dissolved water has no impurity contamination, so that the concentration of dissolved hydrogen or ozone is increased. The redox potential of the effective gas can be obtained stably. In addition, the single wafer cleaning method for electronic component members can particularly improve the cleaning effect.
[0013]
Further, the present invention (3) includes a degassing gas-liquid separation membrane module to which a sweep gas including at least one degassing pure water or ultrapure water is supplied, and the degassing gas-liquid separation membrane module. A gas-dissolving gas-liquid separation membrane module comprising at least one effective gas dissolved in degassed pure water or ultrapure water located on the secondary side and used as functional water, and the degassing gas-liquid separation membrane Provided is a functional water production apparatus comprising gas supply means for supplying the sweep gas on the gas side of the module and the effective gas on the gas side of the gas-liquid separation membrane module for gas dissolution. Is. By adopting such a configuration, the gas used in the degassing step and the gas dissolving step can be supplied from the same supply source through the same pipe, so that the apparatus can be simplified and reduced in cost.
[0014]
In the present invention (4), the gas side inlet of the gas-liquid separation membrane module for gas dissolution and the gas supply means are primary pipes, the gas side of the gas-liquid separation membrane module for degassing, and the gas dissolution gas The gas side outlets of the liquid separation membrane module are connected to each other by a secondary pipe, and the secondary pipe is provided with pressure adjusting means capable of adjusting the flow rate, and the pressure adjusting means on the gas dissolving gas-liquid separation membrane module side is installed. The functional water production apparatus according to the above (3), characterized in that the gas pressure on the gas-liquid separation membrane module side for degassing is adjusted to be lower than the gas pressure. By adopting such a configuration, the same effect as that of the invention described in the above (3) can be obtained, and even if the gas side of the gas-liquid separation membrane module for degassing is under a negative pressure by a vacuum pump, gas-liquid separation for gas dissolution The gas side of the membrane module does not become a negative pressure or does not reach a desired pressure. In addition, a minute flow rate gas that does not become a load of the vacuum pump can flow on the gas side of the gas-liquid separation membrane module for degassing, and a desired gas can be supplied on the gas side of the gas-liquid separation membrane module for gas dissolution. A gas pressure corresponding to the dissolved concentration can be secured.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, pure water is generally water (primary pure water) obtained by treating raw water with a primary pure water treatment system such as a filtration device, a reverse osmosis membrane device, an ion exchange device, or a precision filter. In addition, ultrapure water is generally a secondary pure water treatment system such as an ultraviolet irradiation device, a mixed bed ion exchange polisher, a membrane treatment device such as an ultrafiltration device or a reverse osmosis membrane device. Water obtained by treatment.
[0016]
In the present invention, a gas-liquid separation membrane having a hollow fiber structure is used as a gas-liquid separation membrane for degassing for degassing dissolved gas in pure water or ultrapure water (hereinafter sometimes simply referred to as “ultra-pure water”). The hollow fiber structure is used with the inside of the hollow fiber as the gas side and the outside as the liquid side or vice versa. In the case of degassing, the gas side is supplied with a negative pressure to the liquid side. The dissolved gas in the ultrapure water is drawn into the gas side. The gas-liquid separation membrane for degassing is usually used as a gas-liquid separation membrane module in which many hollow fiber membranes are arranged in parallel. The higher the degree of vacuum on the gas side, the higher the degassing removal rate. However, since the capacity of the vacuum pump increases accordingly, it is usually about -700 mmHg.
[0017]
Examples of the sweep gas include hydrogen gas excluding nitrogen gas and ozone gas. The sweep gas is supplied for the purpose of lowering the gas concentration drawn to the gas side of the gas-liquid separation membrane for degassing and lowering the gas partial pressure. It expels gas and increases degassing efficiency. By using the same gas used as the dissolved gas in the subsequent gas dissolving step as the sweep gas, the atmospheric components dissolved in the ultrapure water are 0.18 mg / L for nitrogen and 0.18 mg for oxygen. It becomes possible to remove to about / L. Thereby, it can be adapted to the LSI cleaning water to which the recent submicron design rule is applied, and the contaminants derived from the functional water do not adhere to the surface in the rinsing process of the electronic component members with the functional water. Further, although a slight amount of sweep gas dissolves in the ultrapure water to be treated, this is an effective gas to be dissolved in a subsequent process and there is no problem.
[0018]
Examples of the effective gas dissolved in the pure water or ultrapure water degassed by the above method include hydrogen gas and ozone gas. Among these, the same gas as the sweep gas is used.
[0019]
In the gas dissolving step, the method for dissolving the effective gas in ultrapure water is not particularly limited, and includes a method using a gas-liquid separation membrane having a hollow fiber structure, a method using an ejector, a method using a line mixer, and the like. Among these, a method using a gas-liquid separation membrane having a hollow fiber structure is preferable. The hollow fiber structure is the same as the hollow fiber used in the gas-liquid separation membrane for degassing. However, in the case of gas dissolution, the gas side is in a pressurized state, whereby the superfiber supplied to the liquid side. An effective gas is dissolved in pure water. Since the dissolved concentration of the effective gas is proportional to the pressure, the degree of pressurization is adjusted to an appropriate pressure with a pressure reducing valve in order to obtain functional water having a desired dissolved concentration.
[0020]
In the case of obtaining ozone-dissolved water as functional water, examples of methods for obtaining ozone include a water electrolysis method in which water is electrolyzed to obtain ozone gas and a silent discharge method in which silent discharge is generated in oxygen or air to obtain ozone gas. It is done. The water electrolysis method is advantageous in that the ultrapure water at hand can be used as a raw material for ozone gas, and the supply of ozone gas is facilitated.
[0021]
Examples of the hydrogen-dissolved water include water electrolysis cathode water made from degassed ultrapure water, hydrogen-dissolved water obtained by dissolving water electrolysis hydrogen gas, house gas, etc. in degassed ultrapure water. . Of these, hydrogen-dissolved water in which water electrolysis hydrogen gas is dissolved in ultrapure water that has been degassed can be used as a raw material for hydrogen gas in the water electrolysis system, and the hydrogen gas Further, the combined use of the filter method and the refrigeration method is advantageous in that it can reduce the water vapor content in the product gas and facilitate the supply of high purity (100%) hydrogen gas.
[0022]
Next, the functional water manufacturing apparatus in the 1st Embodiment of this invention is demonstrated with reference to FIG. FIG. 1 is a block diagram showing a functional water production apparatus according to a first embodiment. In FIG. 1, the functional water production apparatus 20a has a degassing gas-liquid separation membrane module 1 for degassing ultrapure water, a gas-dissolving gas-liquid separation membrane module 2, and a gas supply source 4. The liquid-side outlet of the gas-liquid separation membrane module 1 and the liquid-side inlet of the gas-dissolving gas-liquid separation membrane module 2 are connected by a degassing water supply pipe 8 and are connected to the liquid-side inlet of the degassing gas-liquid separation membrane module 1. The ultrapure water supply pipe 7 and the functional water supply pipe 9 are connected to the liquid side outlet of the gas-liquid separation membrane module 2 for gas dissolution. Further, the gas supply pipe 10 extending from the gas supply source 4 and including the pressure reducing valve 5 branches and one side becomes an effective gas supply pipe 12 and is connected to the gas side 21 entrance of the gas dissolving gas-liquid separation membrane module 2. The other is a sweep gas supply pipe 13 having a pressure adjusting unit 6 with a flow rate adjusting function, and is connected to the liquid side 11 inlet of the gas-liquid separation membrane module 1 for degassing. Further, an effective gas discharge pipe 19b is provided at the gas side 21 outlet of the gas dissolving gas-liquid separation membrane module 2, and a vacuum suction pipe 19a provided with a vacuum pump is provided at the gas side 11 outlet of the degassing gas-liquid separation membrane module 1, respectively. It is connected.
[0023]
The ultrapure water is supplied to the liquid side of the degassing gas-liquid separation membrane module 1 through the ultrapure water supply pipe 7. In the gas-liquid separation membrane module 1 for degassing, the gas side 11 is depressurized to about −700 mmHg by a vacuum pump, and is supplied from a gas supply source 4 and is supplied with a depressurizing valve 5 and a pressure adjusting unit 6 having a flow rate adjusting function to obtain a predetermined pressure and a minute amount Since the same sweep gas as the effective gas adjusted to the flow rate is flowing, dissolved gases such as nitrogen, oxygen and carbon dioxide in the ultrapure water are drawn into the gas side 11 and the ultrapure water is efficiently degassed. The
[0024]
The degassed ultrapure water is supplied to the liquid side of the gas-dissolving gas-liquid separation membrane module 2 through the degas water supply pipe 8. In the gas-liquid separation membrane module 2 for gas dissolution, the gas side 21 is supplied from the gas supply source 4 through the gas supply pipe 10 and the effective gas supply pipe 12 and adjusted by the pressure reducing valve 5 to a predetermined pressure, for example, 0 kg / cm 2 or more. Since the effective gas thus flowed is supplied, the effective gas having a predetermined concentration is dissolved in the ultrapure water and supplied to the use point as functional water such as hydrogen-dissolved water or ozone-dissolved water.
[0025]
According to the present embodiment, since the effective gas is hydrogen gas other than nitrogen gas, ozone gas, or the like, nitrogen is not used as the sweep gas, and therefore the capacity of the vacuum pump remains unchanged in the degassing process. With this, almost all atmospheric components such as oxygen, nitrogen and carbon dioxide can be removed, and the degassing efficiency can be improved. Further, in the dissolution step, a high-concentration effective gas can be dissolved, high-purity functional water can be obtained, and various problems associated with remaining nitrogen and the like during cleaning can be solved. Since the obtained hydrogen gas-dissolved water or ozone-dissolved water is free from impurity contamination, the dissolved concentration of hydrogen or ozone can be increased, and the redox potential of each effective gas can be stably obtained. The single wafer cleaning method can improve the cleaning effect. In addition, since the gas used in the degassing step and the gas dissolving step can be supplied from the same supply source through the same pipe, the apparatus can be simplified and reduced in cost. In addition, even if the gas side of the gas-liquid separation membrane module for degassing is made negative by a vacuum pump, the gas side of the gas-liquid separation membrane module for gas dissolution becomes negative or does not reach a desired pressure. And a gas pressure corresponding to a desired gas dissolution concentration can be secured.
[0026]
Next, the functional water manufacturing apparatus in the 2nd Embodiment of this invention is demonstrated with reference to FIG. FIG. 2 is a block diagram showing a functional water production apparatus according to the second embodiment. In FIG. 2, the same components as those in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and differences from FIG. 1 will be mainly described. 2 is different from FIG. 1 in that the gas supply system from the gas supply source 4 to the vacuum pump 3 is connected in series. That is, in the functional water production apparatus 20b, the gas supply source 4 and the gas side 21 inlet of the gas-dissolving gas-liquid separation membrane module 2 are connected by a gas supply pipe 14 (primary pipe) having a pressure reducing valve 5, and degassing gas-liquid. The gas side 11 inlet of the separation membrane module 1 and the gas side 21 outlet of the gas-dissolving gas-liquid separation membrane module 2 are connected by a sweep gas supply pipe 15 (secondary pipe) provided with a pressure adjusting unit 6 with a flow rate adjusting function. . Accordingly, the sweep gas supplied to the gas side 11 of the degassing gas-liquid separation membrane module 1 is such that the gas from the gas supply source 4 causes the gas-dissolving gas-liquid separation membrane module 2 to dissolve the effective gas in ultrapure water. After that, the flow rate is further adjusted.
[0027]
In the present embodiment, the effects of degassing in the gas-liquid separation membrane module 1 for degassing and gas dissolution in the gas-liquid separation membrane module 2 for dissolving gas are the same as those in the first embodiment. According to the second embodiment, the same effects as in the first embodiment can be obtained.
[0028]
Next, the functional water manufacturing apparatus in the 3rd Embodiment of this invention is demonstrated with reference to FIG. FIG. 3 is a block diagram showing a functional water production apparatus according to the third embodiment. In FIG. 3, the same components as those in FIG. 2 are denoted by the same reference numerals, description thereof is omitted, and differences from FIG. 2 will be mainly described. 3 differs from FIG. 2 in that the gas supply source is an electrolysis gas generator 30 and the functional water is hydrogen-dissolved water. That is, the electrolytic gas generator 30 includes an electrolytic bath 31 and an electrolysis power source 32, and the electrolytic raw water (ultra pure water) supply pipe 16 branched from the ultra pure water supply pipe 7 is supplied to the electrolytic bath 31. Are connected, and the hydrogen gas generation tank of the electrolytic cell 31 and the gas side 21 inlet of the gas dissolving gas-liquid separation membrane module 2 are connected by a hydrogen gas supply pipe 18 equipped with a pressure reducing valve. In this case, in order to increase the dissolved concentration of hydrogen gas dissolved in ultrapure water, the electrolysis current value may be increased. Reference numeral 17 denotes an oxygen gas discharge pipe.
[0029]
In the present embodiment, the degassing action in the degassing gas-liquid separation membrane module 1 and the gas dissolving action in the gas dissolving gas-liquid separation membrane module 2 are the same as those in the first embodiment. According to the third embodiment, in addition to the same effects as the first embodiment, ultra-pure water at hand can be used as a raw material for hydrogen gas, and hydrogen gas can be easily supplied. This is advantageous.
[0030]
Next, the functional water manufacturing apparatus in the 4th Embodiment of this invention is demonstrated with reference to FIG. FIG. 4 is a block diagram showing a functional water production apparatus according to a fourth embodiment. In FIG. 4, the same components as those in FIG. 2 are denoted by the same reference numerals, and the description thereof will be omitted. Differences from FIG. 2 will be mainly described. That is, the functional water production apparatus 20d in FIG. 4 is different from FIG. 2 in that a plurality of degassing gas-liquid separation membrane modules 1, 1, 1 are provided instead of one degassing gas-liquid separation membrane module 1. A gas-liquid separation membrane module group 1A for degassing arranged in parallel is used. In place of one gas-dissolving gas-liquid separation membrane module 2, a plurality of gas-dissolving gas-liquid separation membrane modules 2, 2, 2 are arranged in parallel. It is the point made into the arranged gas-liquid separation membrane module group 2A for gas dissolution.
[0031]
In the present embodiment, the degassing action in the degassing gas-liquid separation membrane module 1 and the gas dissolving action in the gas dissolving gas-liquid separation membrane module 2 are the same as those in the first embodiment. According to the fourth embodiment, in addition to the same effects as the first embodiment, a large flow rate can be processed.
[0032]
In the functional water production apparatus of the present invention, appropriate design changes can be made in addition to the above embodiment. That is, the pressure adjusting unit 6 with a flow rate adjusting function usually includes a pressure reducing valve and an automatic or manual flow rate adjusting valve on the downstream side of the pressure reducing valve. It is possible to use the one having only the flow rate adjusting valve, or the one that adjusts the flow rate by reducing the diameter of the pipe by omitting the pressure reducing valve or the flow rate adjusting valve. Further, the sweep gas is supplied continuously or discontinuously.
[0033]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.
Example 1
Using the functional water production apparatus as shown in FIG. 2, functional water was produced under the following apparatus specifications and operating conditions. The results are shown in Table 1.
-Ultrapure water: Ultrapure water obtained with ordinary ultrapure water production equipment, dissolved oxygen concentration at 20 ℃ 9ppm, dissolved nitrogen concentration 15ppm
-Gas-liquid separation membrane module for degassing: Gas-liquid separation membrane module with a hollow fiber structure ("Liquicel 4" X-40 membrane "manufactured by Hoechst)
Gas side vacuum degree: -700mmHg, sweep gas flow rate: 2.5NL / min, gas-liquid separation membrane module for gas dissolution: Gas-liquid separation membrane module with hollow fiber structure ("Liquicel 4" X-40 membrane "manufactured by Hoechst)
Gas side pressure: 0.2kgf / cm 2
・ Pressure adjustment unit with flow rate adjustment function; Performed by pressure reducing valve and automatic flow rate adjustment valve ・ Effective gas and sweep gas; Hydrogen gas ・ Functional water flow rate: 2.4 m 3 / hour ・ Functional water pressure (gas-liquid separation membrane module for gas dissolution Outlet pressure); 2.0kgf / cm 2
(The solubility of hydrogen gas is 1.62mg / L pure water at 20 ° C and hydrogen partial pressure of 760mmHg.)
[0034]
Comparative Example 1
The functional water production apparatus as shown in FIG. 5 was used, and the same method as in Example 1 was performed except that nitrogen gas was used as the sweep gas and hydrogen gas was used as the effective gas. In FIG. 5, the same components as those in FIG. 4a is an effective gas supply source, and 4b is a sweep gas supply source. The results are shown in Table 1.
[0035]
Example 2
The same procedure as in Example 1 was performed, except that ozone gas was used instead of the effective gas and the sweep gas hydrogen gas, and the gas side pressure of the gas-liquid separation membrane module for gas dissolution was 0.2 kgf / cm 2 . The results are shown in Table 1.
(The solubility of ozone is 25.9mg / L pure water at 15 ° C and ozone partial pressure of 760mmHg.)
[0036]
Comparative Example 2
A functional water production apparatus as shown in FIG. 5 was used, the same method as in Example 2 was used, except that nitrogen gas was used as the sweep gas and ozone gas was used as the effective gas. The results are shown in Table 1.
[0037]
[Table 1]
Figure 0004119040
[0038]
From Table 1, if the sweep gas and the effective gas are the same gas, degassing and gas dissolution are performed, and the effective gas can be dissolved at a higher concentration under the same conditions as compared with the conventional example using nitrogen as the sweep gas.
[0039]
【The invention's effect】
According to the invention of claim 1, since the effective gas is hydrogen gas other than nitrogen gas, ozone gas, or the like, nitrogen is not used for the sweep gas, and therefore the capacity of the vacuum pump remains unchanged in the degassing step. With this, almost all atmospheric components such as oxygen, nitrogen and carbon dioxide can be removed, and the degassing efficiency can be improved. Further, in the dissolution step, a high-concentration effective gas can be dissolved, high-purity functional water can be obtained, and various problems associated with remaining nitrogen and the like during cleaning can be solved.
[0040]
According to the invention of claim 2, since hydrogen gas-dissolved water or ozone-dissolved water is free from impurity contamination, the dissolved concentration of hydrogen or ozone can be increased to stably obtain the redox potential of each effective gas. it can. In addition, the single wafer cleaning method for electronic component members can particularly improve the cleaning effect.
[0041]
According to invention of Claim 3, since the gas used by a degassing process and a gas melt | dissolution process can be supplied from the same supply source by the same piping, an apparatus can be simplified and cost-reduced.
[0042]
According to the invention of claim 4, even if the gas side of the gas-liquid separation membrane module for degassing is negative pressure by the vacuum pump, the gas side of the gas-liquid separation membrane module for gas dissolution becomes negative pressure, There is no such thing as not reaching pressure. In addition, a minute flow rate gas that does not become a load of the vacuum pump can flow on the gas side of the gas-liquid separation membrane module for degassing, and a desired gas can be supplied on the gas side of the gas-liquid separation membrane module for gas dissolution. A gas pressure corresponding to the dissolved concentration can be secured.
[Brief description of the drawings]
FIG. 1 is a block diagram of a functional water production apparatus according to a first embodiment of the present invention.
FIG. 2 is a block diagram of a functional water production apparatus according to a second embodiment of the present invention.
FIG. 3 is a block diagram of a functional water production apparatus according to a third embodiment of the present invention.
FIG. 4 is a block diagram of a functional water production apparatus according to a fourth embodiment of the present invention.
FIG. 5 is a block diagram of a functional water production apparatus used in a comparative example (conventional example).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gas-liquid separation membrane module for degassing 2 Gas-liquid separation membrane module for gas dissolution 3 Vacuum pump 4 Gas supply source 5 Pressure-reducing valve 6 Pressure adjustment part with flow rate adjustment function 7 Ultrapure water supply pipe 8 Degas water supply pipe 9 Function Water supply pipes 10, 14 Gas supply pipes 11, 21 Gas side 12 (Branched) effective gas supply pipes 13, 15 Sweep gas supply pipes 16 Electrolytic raw water supply pipes 17 Oxygen gas discharge pipes 18 Hydrogen gas supply pipes 30 Electricity Decomposable gas generator 31 Electrolysis tank 32 Power supply for electrolysis

Claims (4)

純水又は超純水中の溶存ガスを掃引ガスが供給される脱ガス用気液分離膜にて除去し、次いで、脱ガスされた純水又は超純水中に有効ガスを溶解させて機能水を製造する方法において、前記掃引ガスと前記有効ガスが同一ガスであることを特徴とする機能水製造方法。Removes dissolved gas in pure water or ultrapure water with a gas-liquid separation membrane for degassing to which a sweep gas is supplied, and then dissolves the effective gas in the degassed pure water or ultrapure water. The method for producing water, wherein the sweep gas and the effective gas are the same gas. 前記掃引ガスと前記有効ガスが、水素ガス又はオゾンガスであることを特徴とする請求項1記載の機能水製造方法。The functional water production method according to claim 1, wherein the sweep gas and the effective gas are hydrogen gas or ozone gas. 純水又は超純水を脱ガスする少なくとも1本を備える掃引ガスが供給される脱ガス用気液分離膜モジュールと、前記脱ガス用気液分離膜モジュールの二次側に位置して脱ガスされた純水又は超純水に有効ガスを溶解させ機能水とする少なくとも1本を備えるガス溶解用気液分離膜モジュールと、前記脱ガス用気液分離膜モジュールのガス側に前記掃引ガスを、前記ガス溶解用気液分離膜モジュールのガス側に前記有効ガスを同一ガスで供給するガス供給手段とを備えることを特徴とする機能水製造装置。A gas-liquid separation membrane module for degassing to which a sweep gas comprising at least one degassing pure water or ultrapure water is supplied, and a degassing located on the secondary side of the gas-liquid separation membrane module for degassing A gas-dissolving gas-liquid separation membrane module comprising at least one effective gas dissolved in purified water or ultrapure water as functional water, and the sweep gas on the gas side of the degassing gas-liquid separation membrane module A functional water production apparatus comprising gas supply means for supplying the effective gas as the same gas to the gas side of the gas-dissolving gas-liquid separation membrane module. 前記ガス溶解用気液分離膜モジュールのガス側入口と前記ガス供給手段は一次配管で、前記脱ガス用気液分離膜モジュールのガス側入口と前記ガス溶解用気液分離膜モジュールのガス側出口は二次配管でそれぞれ連接され、前記二次配管には流量調整可能な圧力調整手段が設置され、該圧力調整手段の前記ガス溶解用気液分離膜モジュール側のガス圧力よりも、前記脱ガス用気液分離膜モジュール側のガス圧力が低くなるように調整されることを特徴とする請求項3記載の機能水製造装置。The gas-side inlet and the gas supply means of the gas-dissolving gas-liquid separation membrane module are primary pipes, the gas-side inlet of the degassing gas-liquid separation membrane module and the gas-side outlet of the gas-dissolving gas-liquid separation membrane module Are connected to each other by a secondary pipe, and pressure adjusting means capable of adjusting the flow rate is installed in the secondary pipe, and the degassing is performed more than the gas pressure on the gas dissolving gas-liquid separation membrane module side of the pressure adjusting means. The functional water production apparatus according to claim 3, wherein the gas pressure on the gas-liquid separation membrane module side is adjusted to be low.
JP16917599A 1999-06-16 1999-06-16 Functional water production method and apparatus Expired - Fee Related JP4119040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16917599A JP4119040B2 (en) 1999-06-16 1999-06-16 Functional water production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16917599A JP4119040B2 (en) 1999-06-16 1999-06-16 Functional water production method and apparatus

Publications (2)

Publication Number Publication Date
JP2000354857A JP2000354857A (en) 2000-12-26
JP4119040B2 true JP4119040B2 (en) 2008-07-16

Family

ID=15881646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16917599A Expired - Fee Related JP4119040B2 (en) 1999-06-16 1999-06-16 Functional water production method and apparatus

Country Status (1)

Country Link
JP (1) JP4119040B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101255895B1 (en) * 2009-12-10 2013-04-17 가부시키가이샤 코아테크노로지 Method for manufacturing nano-bubble water containing saturated gas

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4299974B2 (en) * 2001-02-01 2009-07-22 株式会社東芝 Chemical decontamination method and apparatus for structural parts of radiation handling facilities
JP3814719B2 (en) * 2001-12-18 2006-08-30 株式会社ササクラ Production method and production apparatus for ozone-dissolved water
JP4090361B2 (en) * 2003-02-17 2008-05-28 株式会社ロキテクノ Method and apparatus for producing ozone-containing ultrapure water
JP4944558B2 (en) * 2006-10-12 2012-06-06 アプリシアテクノロジー株式会社 Etching solution regeneration method, etching method and etching apparatus
JP4872613B2 (en) * 2006-11-13 2012-02-08 栗田工業株式会社 Gas dissolving cleaning water manufacturing apparatus and manufacturing method
KR101856854B1 (en) * 2016-08-05 2018-05-10 전재선 Apparatus for hydrogen-dissolving water
JP6361802B1 (en) * 2017-07-26 2018-07-25 栗田工業株式会社 Gas dissolved water production apparatus and gas dissolved water production method using the same
JP6973534B2 (en) 2020-03-10 2021-12-01 栗田工業株式会社 Dilute chemical supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101255895B1 (en) * 2009-12-10 2013-04-17 가부시키가이샤 코아테크노로지 Method for manufacturing nano-bubble water containing saturated gas

Also Published As

Publication number Publication date
JP2000354857A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
JP5072062B2 (en) Method, apparatus and apparatus for producing hydrogen gas-dissolved cleaning water
JP4109455B2 (en) Hydrogen dissolved water production equipment
US8999069B2 (en) Method for producing cleaning water for an electronic material
JP5908186B2 (en) Water treatment method and water treatment apparatus using membrane
WO2005095280A1 (en) Apparatus for producing ultrapure water
JP2001205204A (en) Apparatus for manufacturing washing liquid for electronic part members
WO2014069203A1 (en) Method for manufacturing ozone-gas-dissolved water and cleaning method for electronic materials
JPH05329470A (en) Clean water producing device
JP4119040B2 (en) Functional water production method and apparatus
US20190217250A1 (en) Ultrapure water production apparatus
WO2017191829A1 (en) Method for starting ultrapure water production apparatus
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
JPH1064867A (en) Method and device for cleaning a variety of electronic component members
JP2008006332A (en) Method for manufacturing specific-gas-dissolved water, and apparatus and method for circulating specific-gas-dissolved water
CN110168705B (en) Semiconductor substrate cleaning device and semiconductor substrate cleaning method
JP4483160B2 (en) Ultrapure water supply equipment
JP3639102B2 (en) Wet processing equipment
JP4826864B2 (en) Ultrapure water production equipment
JP4508701B2 (en) Water treatment system for electronic component parts manufacturing equipment
JP3452471B2 (en) Pure water supply system, cleaning device and gas dissolving device
JP2007083152A (en) Method and apparatus for recovering water from cmp waste water containing high toc
JP3645007B2 (en) Ultrapure water production equipment
JP2019176069A (en) Gas dissolved water supply system
WO2022085227A1 (en) Ultrapure water production system and ultrapure water production method
JP2002001069A (en) Method for producing pure water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees