JP4872613B2 - Gas dissolving cleaning water manufacturing apparatus and manufacturing method - Google Patents

Gas dissolving cleaning water manufacturing apparatus and manufacturing method Download PDF

Info

Publication number
JP4872613B2
JP4872613B2 JP2006306843A JP2006306843A JP4872613B2 JP 4872613 B2 JP4872613 B2 JP 4872613B2 JP 2006306843 A JP2006306843 A JP 2006306843A JP 2006306843 A JP2006306843 A JP 2006306843A JP 4872613 B2 JP4872613 B2 JP 4872613B2
Authority
JP
Japan
Prior art keywords
gas
dissolved
water
specific gas
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006306843A
Other languages
Japanese (ja)
Other versions
JP2008119611A (en
Inventor
裕人 床嶋
博志 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006306843A priority Critical patent/JP4872613B2/en
Publication of JP2008119611A publication Critical patent/JP2008119611A/en
Application granted granted Critical
Publication of JP4872613B2 publication Critical patent/JP4872613B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガス溶解洗浄水の製造装置及び製造方法に関する。さらに詳しくは、本発明は、半導体用のシリコンウェハ、フラットパネルディスプレイ用のガラス基板などの高度な清浄度を必要とする電子部品などの洗浄に用いる特定ガスを所定濃度に溶解したガス溶解洗浄水を、使用する特定ガスの量を節減し、効率よく、安定かつ安全に供給することができるガス溶解洗浄水の製造装置及び製造方法に関する。   The present invention relates to a manufacturing apparatus and a manufacturing method for gas-dissolved cleaning water. More specifically, the present invention relates to a gas-dissolved cleaning water in which a specific gas used for cleaning electronic parts such as silicon wafers for semiconductors and glass substrates for flat panel displays that require high cleanliness is dissolved at a predetermined concentration. The present invention relates to an apparatus and a method for producing dissolved gas cleaning water that can reduce the amount of a specific gas to be used, and can supply the gas efficiently, stably and safely.

従来は、電子部品となる基板の洗浄は、RCA洗浄と呼ばれるウェット洗浄が主流であった。RCA洗浄は、硫酸と過酸化水素水の混合液(SPM)を120〜150℃に加熱して用いたり、アンモニアと過酸化水素水の混合液(APM)を60〜80℃に加温して用いたり、あるいは、塩酸と過酸化水素水の混合液(HPM)を60〜80℃に加温して用いたりする洗浄方法である。この洗浄方法を採用した場合の高濃度の薬液や洗浄剤の多大なコスト、それを濯ぐおびただしい量の純水、超純水のコスト、薬品蒸気を排気し、新たに清浄な空気を調製する空調コストなどを低減し、さらに水の大量使用、薬品の大量廃棄、排ガスの放出などの環境への負荷を低減するために、さまざまな簡略化の取り組みがなされ、成果を挙げてきた。その代表例が、水素などの特定ガスを溶解した洗浄水による超音波洗浄技術である。   Conventionally, wet cleaning called RCA cleaning has been the mainstream for cleaning substrates serving as electronic components. For RCA cleaning, a mixed solution of sulfuric acid and hydrogen peroxide solution (SPM) is heated to 120 to 150 ° C, or a mixed solution of ammonia and hydrogen peroxide solution (APM) is heated to 60 to 80 ° C. This is a cleaning method in which a mixed liquid (HPM) of hydrochloric acid and hydrogen peroxide water is heated to 60 to 80 ° C. and used. When this cleaning method is used, the high cost of high concentration chemicals and cleaning agents, the voluminous amount of pure water and ultrapure water used to rinse them, the chemical vapor is exhausted, and new clean air is prepared. Various simplification efforts have been made and achieved results in order to reduce air-conditioning costs and the like, as well as to reduce environmental burdens such as mass use of water, mass disposal of chemicals, and emission of exhaust gas. A typical example is an ultrasonic cleaning technique using cleaning water in which a specific gas such as hydrogen is dissolved.

特定ガスを高濃度に溶解させることが、この新しい洗浄技術の要点となっている。さらに、安定して高い洗浄効果を保つためには、高濃度かつ使用の場での飽和濃度以下に溶存ガス濃度を制御することが必要である。また、水素を飽和濃度以上に溶解させた場合には、大気圧下に溶存水素が気泡化して系内に滞留する危険性が増すために、安全面でも飽和濃度以下に溶解することが望ましい。また、大量のガス溶解洗浄水が必要な洗浄工程において、節水を実現するためには、洗浄排水を循環利用することが求められる。洗浄排水中の異物の除去と溶存ガス濃度の調整により、循環システムを構築することが望ましい。このような技術ニーズに対し、原水である純水若しくは超純水に溶存するガス(主に窒素)を脱気処理により除去した後に、溶解させたいガスを飽和濃度以下の量だけ供給して溶解する技術が、本発明者らによって開発された。この方法の有用性が認識され、ウェット洗浄向けの新技術として広く普及してきた。   The key point of this new cleaning technique is to dissolve a specific gas at a high concentration. Furthermore, in order to stably maintain a high cleaning effect, it is necessary to control the dissolved gas concentration to a high concentration and below the saturation concentration at the place of use. In addition, when hydrogen is dissolved to a saturation concentration or higher, there is an increased risk that dissolved hydrogen will be bubbled and stay in the system at atmospheric pressure. In order to save water in a cleaning process that requires a large amount of gas-dissolved cleaning water, it is required to circulate and use the cleaning waste water. It is desirable to construct a circulation system by removing foreign substances in the washing wastewater and adjusting the dissolved gas concentration. In response to such technical needs, gas (mainly nitrogen) dissolved in pure water or ultrapure water, which is raw water, is removed by degassing treatment, and then the gas to be dissolved is supplied in an amount equal to or lower than the saturated concentration. The technology to do this has been developed by the present inventors. The usefulness of this method has been recognized and has become widespread as a new technology for wet cleaning.

例えば、洗浄用の水素含有超純水を、余剰が生じて廃棄することなく、使用水量が変動する場合にも、安定した溶存水素濃度の水素含有超純水をユースポイントに供給することができる水素含有超純水の供給装置として、水素含有超純水を用いる電子材料の洗浄工程において、ユースポイントで使われなかった余剰の水素含有超純水及び補給される超純水の混合水を保持する密閉式の水槽、水槽に保持された水を送水するポンプ、送水される水の溶存ガスを除去する脱気部、水素供給部から供給される水素を脱気後の水に溶解させる溶解部、フィルター及びユースポイントを経て水槽に戻る循環配管を有し、水素含有超純水を循環させながらユースポイントにおいて必要量の水素含有超純水を供給する水素含有超純水の供給装置が提案されている(特許文献1)。   For example, it is possible to supply hydrogen-containing ultrapure water having a stable dissolved hydrogen concentration to a use point even when the amount of water used is fluctuated without causing surplus generation and disposal of hydrogen-containing ultrapure water for cleaning. As a hydrogen-containing ultrapure water supply device, in the cleaning process of electronic materials using hydrogen-containing ultrapure water, it retains a mixture of excess hydrogen-containing ultrapure water that was not used at the point of use and ultrapure water to be replenished A sealed water tank, a pump for feeding water held in the water tank, a degassing part for removing dissolved gas from the water being sent, and a dissolving part for dissolving hydrogen supplied from the hydrogen supply part in the degassed water A supply device for hydrogen-containing ultrapure water that has a circulation pipe that returns to the water tank through a filter and a use point, and supplies the required amount of hydrogen-containing ultrapure water at the use point while circulating the hydrogen-containing ultrapure water has been proposed. The That (Patent Document 1).

この装置によれば、高濃度かつ飽和濃度以下の特定ガスを溶解したガス溶解洗浄水を効率よく製造することができる。しかし、この装置では、原水である純水、超純水から大部分の溶存ガスを除くための脱気工程が必ず必要であり、適当な真空ポンプなどの減圧機構が必要となっていた。また、溶存ガスとして相当量の水素を排出する必要があり、安全確保上問題となっていた。   According to this apparatus, it is possible to efficiently produce gas-dissolved cleaning water in which a specific gas having a high concentration and a saturation concentration or less is dissolved. However, this apparatus always requires a degassing step for removing most of the dissolved gas from pure water and ultrapure water as raw water, and a pressure reducing mechanism such as an appropriate vacuum pump is required. In addition, it is necessary to discharge a considerable amount of hydrogen as a dissolved gas, which has been a problem for ensuring safety.

本発明者らは、真空ポンプなどの減圧機構を使用することなく、安全に所望のガス濃度のガス溶解洗浄水を製造することができ、使用済みのガス溶解洗浄水の水と特定ガスを再利用することができ、半導体用のシリコンウェハ、フラットパネルディスプレイ用のガラス基板などの高度な清浄度を必要とする電子部品などの洗浄に好適に使用することができるガス溶解洗浄水の製造装置として、特定ガスを大気圧を超える加圧下に水に溶解するガス溶解装置と、ガス溶解装置からのガス溶解水を、ガス溶解時の圧力より低い圧力に減圧し、溶存ガスの一部を除去するガス部分除去装置とを有するガス溶解洗浄水の製造装置が有用であることを見いだした。このガス溶解洗浄水の製造装置についても有用性が広く認識され、回収循環システムにも適用されて、ウェット洗浄向けの新技術として普及してきた。   The present inventors can safely produce gas-dissolved cleaning water having a desired gas concentration without using a decompression mechanism such as a vacuum pump, and recycle the used gas-dissolved cleaning water and the specific gas. As an apparatus for producing gas-dissolved cleaning water that can be used suitably and can be used for cleaning of electronic parts that require high cleanliness, such as silicon wafers for semiconductors and glass substrates for flat panel displays , Gas dissolving device that dissolves specific gas in water under pressure exceeding atmospheric pressure, and gas dissolving water from gas dissolving device is reduced to a pressure lower than the pressure at the time of gas dissolution, and a part of dissolved gas is removed It has been found that an apparatus for producing gas-dissolved cleaning water having a gas partial removal device is useful. The usefulness of this gas-dissolved cleaning water production apparatus has been widely recognized, and it has been applied to a recovery and circulation system and has become popular as a new technology for wet cleaning.

このガス溶解洗浄水の製造装置によって、特定ガスの濃度が高く、かつ過飽和でないガス溶解洗浄水を安定して製造し、循環再利用することが可能となった。しかし、この装置では、供給される特定ガスの圧力が低圧の場合などにおいては、より高濃度の特定ガス溶解水を得ようとしたとき、特定ガスの加圧溶解と、過飽和分の除去の組み合せを直列多段に組む必要があり、供給ガス量が多くなるという問題があった。
特開平11−77021号公報
With this gas-dissolved cleaning water manufacturing apparatus, it is possible to stably manufacture and reuse the gas-dissolved cleaning water having a high concentration of the specific gas and not being supersaturated. However, in this device, when the pressure of the supplied specific gas is low, etc., when trying to obtain a higher concentration of the specific gas dissolved water, a combination of the pressure gas dissolution and the supersaturation removal is combined. Need to be assembled in series in multiple stages, and there is a problem that the amount of supplied gas increases.
JP-A-11-77021

本発明は、半導体用のシリコンウェハ、フラットパネルディスプレイ用のガラス基板などの高度な清浄度を必要とする電子部品などの洗浄に用いる特定ガスを所定濃度に溶解したガス溶解洗浄水を、使用するガスの量を節減し、効率よく、安定かつ安全に供給することができるガス溶解洗浄水の製造装置及び製造方法を提供することを目的としてなされたものである。   The present invention uses gas-dissolved cleaning water obtained by dissolving a specific gas used for cleaning electronic parts that require high cleanliness, such as silicon wafers for semiconductors and glass substrates for flat panel displays, at a predetermined concentration. The object of the present invention is to provide an apparatus and a method for producing gas-dissolved cleaning water that can reduce the amount of gas and can supply gas efficiently and stably.

本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、特定ガスを加圧溶解し、その後過飽和分を除去する装置の一次側に、予備溶解部として気体透過膜モジュールを配し、その気相室に特定ガスを通気させることにより効率よく高濃度の特定ガス溶解水が得られ、また、過飽和分を除去する過飽和分除去部に気体透過膜モジュールを用いた場合、その気相室から排出される特定ガスを多く含む排気ガスを予備溶解部の気体透過膜モジュールに導入することにより、さらなる高濃度化と供給ガス量の節約を図ることができ、さらに、加圧溶解部若しくは予備溶解部の一次側又は過飽和分除去部の二次側の溶存ガス濃度に応じて加圧溶解部、予備溶解部又は過飽和分除去部へ給気するガス圧又はガス量を調整することにより、所定濃度の特定ガス溶解水を給気ガスの無駄なく製造することができることを見いだし、この知見に基づいて本発明を完成するに至った。   As a result of intensive research to solve the above problems, the present inventors have arranged a gas permeable membrane module as a pre-dissolving part on the primary side of the apparatus that dissolves a specific gas under pressure and then removes the supersaturation. When the gas is passed through the gas phase chamber, specific gas-dissolved water with a high concentration can be obtained efficiently, and when a gas permeable membrane module is used for the supersaturated content removal section that removes the supersaturated content, By introducing exhaust gas containing a large amount of specific gas discharged from the phase chamber into the gas permeable membrane module of the pre-dissolution part, it is possible to further increase the concentration and save the amount of supply gas. Alternatively, by adjusting the gas pressure or the amount of gas supplied to the pressurized dissolution unit, the preliminary dissolution unit or the supersaturation removal unit according to the dissolved gas concentration on the primary side of the preliminary dissolution unit or the secondary side of the supersaturation removal unit , Predetermined concentration It found that it is possible to manufacture without waste of the supply gas specific gas dissolved water, and have completed the present invention based on this finding.

すなわち、本発明は、
(1)特定ガスを大気圧に対して加圧条件下で水に過飽和に溶解させる加圧溶解部と、特定ガスの過飽和分を除去する過飽和分除去部を有するガス溶解洗浄水の製造装置において、加圧溶解部の一次側に気体透過膜モジュールを備えた予備溶解部を有し、その気相室に特定ガスを給気して、かつ、予備溶解部の気体透過膜モジュールに給気する特定ガスの一部又は全部に、過飽和分除去部にて除去された排気ガスを用いることを特徴とするガス溶解洗浄水の製造装置、
)過飽和分除去部にて除去された排気ガスが、過飽和分除去部の気体透過膜モジュールの気相室に、その気相室の圧力を大気圧を超えることなく特定ガスを給気した後に過飽和分除去部から排気される排気ガスである()記載のガス溶解洗浄水の製造装置、
)特定ガスを溶解させたガス溶解洗浄水で被洗浄物を洗浄した後の排水を貯留する貯留槽、該貯留槽の水を圧送するポンプ、水中に存在する洗浄に実質的に影響を与える異物を除去する浄化手段、特定ガスを加圧溶解させる加圧溶解部、特定ガスの過飽和分を除去する過飽和分除去部を有する洗浄水の循環機構を有するガス溶解洗浄水の製造装置を用いるガス溶解洗浄水の製造方法において、加圧溶解部の一次側に気体透過膜モジュールを備えた予備溶解部を有し、その気相室に特定ガスを給気して、加圧溶解部の一次側又は過飽和分除去部の二次側の溶存ガス濃度を測定し、その測定値に応じて、加圧溶解部に給気する特定ガスの流量又は圧力を調整し、所定濃度の特定ガス溶解水を発生させるに際して、予備溶解部の気体透過膜モジュールに給気する特定ガスの一部又は全部に、過飽和分除去部にて除去された排気ガスを用いることを特徴とするガス溶解洗浄水の製造方法、
)過飽和分除去部にて除去された排気ガスが、過飽和分除去部の気体透過膜モジュールの気相室に、その気相室の圧力を大気圧を超えることなく特定ガスを給気した後に過飽和分除去部から排気される排気ガスである()記載のガス溶解洗浄水の製造方法、及び、
)予備溶解部の一次側又は過飽和分除去部の二次側の溶存ガス濃度を測定し、その測定値に応じて予備溶解部又は過飽和分除去部に給気する特定ガスの流量を調整し、所定濃度の特定ガス溶解水を発生させる()記載のガス溶解洗浄水の製造方法、
を提供するものである。
That is, the present invention
(1) In a gas-dissolved cleaning water manufacturing apparatus having a pressure-dissolving part that dissolves a specific gas in water in a supersaturated state under pressure under atmospheric pressure, and a supersaturated-content removing part that removes a supersaturated part of the specific gas. , Having a preliminary dissolution part equipped with a gas permeable membrane module on the primary side of the pressure dissolution part, supplying a specific gas to the gas phase chamber, and supplying the gas permeable membrane module of the preliminary dissolution part An apparatus for producing dissolved gas cleaning water, characterized in that the exhaust gas removed by the supersaturated content removal unit is used for part or all of the specific gas ,
( 2 ) Exhaust gas removed by the supersaturated content removing unit supplied a specific gas to the gas phase chamber of the gas permeable membrane module of the supersaturated content removing unit without exceeding the atmospheric pressure of the gas phase chamber. The apparatus for producing gas-dissolved cleaning water according to ( 1 ), which is exhaust gas that is later exhausted from the supersaturation removing unit,
( 3 ) A storage tank for storing wastewater after washing the object to be cleaned with a gas-dissolved cleaning water in which a specific gas is dissolved, a pump for pumping the water in the storage tank, and a cleaning effect in water. A purification apparatus for removing foreign substances to be applied, a pressure dissolving section for pressurizing and dissolving a specific gas, and an apparatus for producing gas-dissolved cleaning water having a cleaning water circulation mechanism having a supersaturated content removing section for removing a supersaturated content of a specific gas In the method for producing gas-dissolved cleaning water, the primary side of the pressure- dissolving unit has a pre-dissolution unit equipped with a gas permeable membrane module, and a specific gas is supplied to the gas-phase chamber, The dissolved gas concentration on the secondary side of the side or supersaturated content removal unit is measured, and according to the measured value, the flow rate or pressure of the specific gas supplied to the pressurized dissolution unit is adjusted, and the specific gas dissolved water with a predetermined concentration upon generating the gas permeation Makumo of predissolved portion Some or all of the specific gas for supply to Yuru, the method of manufacturing a gas dissolved cleaning water, which comprises using the exhaust gas are removed by supersaturated partial removal unit,
( 4 ) The exhaust gas removed by the supersaturated content removal unit supplied a specific gas to the gas phase chamber of the gas permeable membrane module of the supersaturated content removal unit without exceeding the atmospheric pressure of the gas phase chamber. ( 3 ) the method for producing gas-dissolved cleaning water, which is exhaust gas that is later exhausted from the supersaturated content removal section;
( 5 ) Measure the dissolved gas concentration on the primary side of the pre-dissolving part or the secondary side of the super-saturation removing part, and adjust the flow rate of the specific gas supplied to the pre-dissolving part or super-saturation removing part according to the measured value And ( 3 ) a method for producing gas-dissolved cleaning water, wherein specific gas-dissolved water having a predetermined concentration is generated.
Is to provide.

本発明のガス溶解洗浄水の製造装置及び製造方法を用いることにより、高濃度の特定ガス溶解洗浄水を効率よく得ることが可能となり、加圧溶解部若しくは予備溶解部の一次側又は過飽和分除去部の二次側の溶存ガス濃度に応じて供給する特定ガスのガス量又はガス圧を調整することにより、所定濃度の特定ガス溶解洗浄水を給気ガスの無駄なく製造することが可能となる。   By using the apparatus and method for producing gas-dissolved cleaning water of the present invention, it becomes possible to efficiently obtain high-concentration specific gas-dissolving cleaning water, and remove the primary side or supersaturated portion of the pressure-dissolving part or the pre-dissolving part. By adjusting the gas amount or the gas pressure of the specific gas supplied according to the dissolved gas concentration on the secondary side of the section, it becomes possible to produce the specific gas-dissolved cleaning water with a predetermined concentration without waste of the supply gas .

本発明のガス溶解洗浄水の製造装置は、特定ガスを大気圧に対して加圧条件下で水に過飽和に溶解させる加圧溶解部と、特定ガスの過飽和分を除去する過飽和分除去部を有するガス溶解洗浄水の製造装置において、加圧溶解部の一次側に気体透過膜モジュールを備えた予備溶解部を有し、その気相室に特定ガスを給気する装置である。本発明装置においては、予備溶解部の気体透過膜モジュールに給気する特定ガスの一部又は全部に、過飽和分除去部にて除去された排気ガスを用いることが好ましい。   The apparatus for producing gas-dissolved cleaning water according to the present invention includes a pressure-dissolving unit that dissolves a specific gas in water in a supersaturated state under a pressurized condition with respect to atmospheric pressure, and a supersaturated-content removing unit that removes a supersaturated component of the specific gas In the apparatus for producing gas-dissolved cleaning water, the apparatus has a preliminary dissolution part having a gas permeable membrane module on the primary side of the pressure-dissolution part, and supplies a specific gas to the gas phase chamber. In the apparatus of the present invention, it is preferable to use the exhaust gas removed by the supersaturation removing unit as a part or all of the specific gas supplied to the gas permeable membrane module in the preliminary dissolution unit.

図1は、本発明のガス溶解洗浄水の製造装置の一態様の工程系統図である。貯留槽1に、洗浄排水返送管2を経由して、洗浄処理槽3において被洗浄物を洗浄した後の排水及び洗浄に使用されなかったガス溶解洗浄水が返送される。貯留槽には、補給水配管4から、補給水が供給される。補給水は超純水であることが好ましいが、別装置で製造された特定ガス溶解水を用いることもできる。貯留槽に窒素配管5を設け、貯留槽上部の空間の特定ガスを窒素によりパージすることができる。特定ガスが水素などの場合、貯留槽の上部空間は高濃度の水素が充満し、安全管理上好ましくない。そこで、窒素配管から窒素を送り、上部空間の水素濃度を4体積%以下に下げることが好ましい。貯留槽は圧力調整機構6を有し、貯留槽内部を陽圧に保つことが好ましい。貯留槽内を陽圧に保つ圧力調整機構を設けることにより、貯留槽での急激な水位低下により貯留槽内が負圧になって破損することを防止することができる。貯留槽1と洗浄処理槽3を、同一の槽で兼用することもできる。この場合、貯留槽兼洗浄処理槽に補給水配管が接続される。ここでも槽の上部空間の水素濃度を4体積%以下にするために、窒素によりパージするか、あるいは十分な排気をとることが好ましい。   FIG. 1 is a process flow diagram of one embodiment of the apparatus for producing gas-dissolved cleaning water of the present invention. The waste water after washing the object to be washed in the washing treatment tank 3 and the gas-dissolved washing water that has not been used for washing are returned to the storage tank 1 via the washing waste water return pipe 2. The storage tank is supplied with makeup water from the makeup water pipe 4. The make-up water is preferably ultrapure water, but specific gas-dissolved water produced by a separate device can also be used. Nitrogen piping 5 is provided in the storage tank, and the specific gas in the space above the storage tank can be purged with nitrogen. When the specific gas is hydrogen or the like, the upper space of the storage tank is filled with high-concentration hydrogen, which is not preferable for safety management. Therefore, it is preferable to send nitrogen from a nitrogen pipe to lower the hydrogen concentration in the upper space to 4% by volume or less. The storage tank preferably has a pressure adjusting mechanism 6 and keeps the inside of the storage tank at a positive pressure. By providing a pressure adjusting mechanism that keeps the inside of the storage tank at a positive pressure, it is possible to prevent the inside of the storage tank from becoming negative pressure and being damaged due to a rapid drop in the water level in the storage tank. The storage tank 1 and the cleaning treatment tank 3 can also be used in the same tank. In this case, a makeup water pipe is connected to the storage tank / cleaning tank. Again, in order to make the hydrogen concentration in the upper space of the tank 4% by volume or less, it is preferable to purge with nitrogen or to exhaust sufficiently.

貯留槽より、圧送ポンプ7により水を送り出し、熱交換器8により水温を調節したのち、純化手段9に通水し、水中に存在する異物を除去する。熱交換器は、主として循環中の昇温分を冷却するために用いられるが、熱交換器を設置して冷却することなく、なりゆきで温まった水を洗浄に用いることもでき、逆に加温することもできる。熱交換器の設置位置に特に制限はないが、純化手段の一次側であることが好ましい。本発明装置に用いる純化手段としては、例えば、限外ろ過膜(UF)装置などを挙げることができる。純化手段に通水することにより、水中に存在する洗浄に実質的に影響を与える異物を一部の水とともに除去することができる。補給水の補給位置は、貯留槽1から純化手段9の二次側の間の任意の位置とすることができるが、異物を効率的に除去する観点からは、純化手段の二次側が好適である。しかし、装置運転上複雑な制御を伴うので、通常は補給水の供給の制御が容易な貯留槽に補給することが好ましい。例えば、貯留槽の水位を一定に保つように補給水量を調整することにより、実質的に系外へ排出される水量と釣り合わせることができ、制御も容易となる。   Water is pumped out from the storage tank by the pressure pump 7 and the water temperature is adjusted by the heat exchanger 8 and then passed through the purification means 9 to remove foreign substances present in the water. Heat exchangers are mainly used to cool the temperature rise during circulation. However, it is possible to use water that has been warmed for cleaning without installing a heat exchanger for cooling. It can also be warmed. Although there is no restriction | limiting in particular in the installation position of a heat exchanger, It is preferable that it is the primary side of a purification means. Examples of the purification means used in the apparatus of the present invention include an ultrafiltration membrane (UF) apparatus. By passing the water through the purification means, foreign substances that substantially affect the cleaning present in the water can be removed together with a part of the water. The replenishment water replenishment position can be any position between the storage tank 1 and the secondary side of the purification means 9, but the secondary side of the purification means is preferable from the viewpoint of efficiently removing foreign substances. is there. However, since complicated control is involved in the operation of the apparatus, it is usually preferable to replenish a storage tank in which supply of makeup water is easily controlled. For example, by adjusting the amount of replenishment water so as to keep the water level in the storage tank constant, it can be balanced with the amount of water discharged substantially outside the system, and control is also facilitated.

純化手段により異物を除去し、純化手段より流出する水は、溶存ガスモニター10により溶存する特定ガス濃度を測定し、加圧溶解の前で補助的に特定ガスを溶解させる予備溶解部11、特定ガスを大気圧よりも高い圧力で溶解させる加圧溶解部16、大気圧を超えない圧力下で過飽和に溶解したガスを特定ガスも含めて除去する過飽和分除去部20の順に送る。予備溶解部11の気体透過膜モジュールの気相室には特定ガスを給気し、加圧溶解の前に予備的に特定ガスを溶解する。ここで給気する特定ガスは、特定ガス供給源から単独で給気することもでき、あるいは、過飽和分除去部から排出される特定ガスを多く含んだ排気ガスの一部又は全部を用いることもできる。また、過飽和分除去部からの排気ガスを給気する場合でも、必要に応じて特定ガス供給源からも給気することができる。予備溶解部への給気流量は、流量制御弁12、13により制御され、流量計14で指示される。前段の溶存ガスモニター10、又は、過飽和分除去部の二次側の溶存ガスモニター21の測定値に応じて流量制御弁を制御することにより、所定濃度の特定ガス溶解水を、給気ガスの無駄なく供給することが可能となる。予備溶解部より排出される排気ガスは、ガス燃焼触媒塔15を通して無害化し、系外に排出する。   Foreign matter is removed by the purifying means, and the water flowing out from the purifying means is measured by the dissolved gas monitor 10 to measure the concentration of the specific gas, and the pre-dissolving portion 11 for dissolving the specific gas auxiliaryly before the pressure dissolution. The pressure dissolution unit 16 that dissolves the gas at a pressure higher than the atmospheric pressure and the supersaturated content removal unit 20 that removes the gas dissolved in supersaturation under a pressure not exceeding the atmospheric pressure including the specific gas are sent in this order. A specific gas is supplied to the gas phase chamber of the gas permeable membrane module of the pre-dissolving unit 11, and the specific gas is preliminarily dissolved before the pressure dissolution. The specific gas supplied here can be supplied independently from a specific gas supply source, or a part or all of the exhaust gas containing a large amount of the specific gas discharged from the supersaturated content removal unit can be used. it can. Moreover, even when supplying the exhaust gas from the supersaturated content removing section, it can be supplied from a specific gas supply source as necessary. The supply air flow rate to the preliminary melting part is controlled by the flow control valves 12 and 13 and is instructed by the flow meter 14. By controlling the flow rate control valve according to the measured value of the dissolved gas monitor 10 in the previous stage or the dissolved gas monitor 21 on the secondary side of the supersaturated content removal unit, the specific gas dissolved water having a predetermined concentration is supplied to the supply gas. It becomes possible to supply without waste. The exhaust gas discharged from the pre-dissolving section is rendered harmless through the gas combustion catalyst tower 15 and discharged out of the system.

予備溶解部から流出する水は、加圧溶解部16の気体透過膜モジュールに供給する。加圧溶解部の気体透過膜モジュールの気相室は、特定ガス供給源17から送られる特定ガスによって、大気圧よりも高い圧力で、かつ、その場所の水圧よりも低い圧力に保ち、特定ガスが大気圧における飽和濃度以上に、気泡化することなく溶解する。加圧溶解部の気体透過膜モジュールの気相室の圧力は、圧力調整弁18により制御され、圧力計19で指示される。前段の溶存ガスモニター10又は溶存ガスモニター21の測定値に応じて圧力調整弁18を制御することにより、所定濃度の特定ガス溶解水を、給気ガスの無駄なく供給することが可能となる。   The water flowing out from the preliminary dissolution unit is supplied to the gas permeable membrane module of the pressure dissolution unit 16. The gas phase chamber of the gas permeable membrane module of the pressurized dissolution unit is maintained at a pressure higher than atmospheric pressure and lower than the water pressure of the place by the specific gas sent from the specific gas supply source 17. Dissolves above the saturation concentration at atmospheric pressure without foaming. The pressure in the gas phase chamber of the gas permeable membrane module of the pressure dissolution unit is controlled by the pressure regulating valve 18 and is indicated by the pressure gauge 19. By controlling the pressure regulating valve 18 according to the measured value of the dissolved gas monitor 10 or the dissolved gas monitor 21 in the previous stage, it is possible to supply the specific gas dissolved water having a predetermined concentration without waste of the supplied gas.

貯留槽に返送される洗浄排水の溶存ガス濃度は、超音波照射時間、被洗浄物とそれを保持する治具の揺動挙動などの洗浄条件により変動する。例えば、高濃度のまま返送されれば、給気ガス量は少なくても、所定濃度の特定ガス溶解洗浄水を得ることができる。そこで、特定ガスを溶解させる一次側で溶存する特定ガス濃度を測定し、その測定値に応じて給気ガス量を増減させることにより、給気ガスの無駄がなく、所定濃度の特定ガス溶解洗浄水を供給することが可能となる。また、洗浄処理槽へ供給する特定ガス溶解水の溶存ガス濃度が最も重要であることから、過飽和分を除去した後の溶存ガス濃度を測定し、その測定値に応じて、それぞれの部位への供給ガス量を増減させることも有効である。   The dissolved gas concentration of the cleaning wastewater returned to the storage tank varies depending on the cleaning conditions such as the ultrasonic irradiation time, the swinging behavior of the object to be cleaned and the jig holding it. For example, if it is returned in a high concentration, a specific gas-dissolved cleaning water with a predetermined concentration can be obtained even if the amount of supplied gas is small. Therefore, by measuring the concentration of the specific gas dissolved on the primary side that dissolves the specific gas, and increasing or decreasing the amount of the supplied gas according to the measured value, there is no waste of the supplied gas, and the specific gas dissolving cleaning with a predetermined concentration It becomes possible to supply water. In addition, since the dissolved gas concentration of the specific gas dissolved water supplied to the cleaning tank is the most important, measure the dissolved gas concentration after removing the supersaturated component, and depending on the measured value, Increasing or decreasing the amount of supplied gas is also effective.

給気ガス量の制御には、予備溶解部又は過飽和分除去部への給気ガスの流量を制御する方法と、加圧溶解部への給気ガスの圧力又は給気ガスの流量を制御する方法がある。予備溶解部又は過飽和分除去部で制御する場合は制御の安定性がよく、加圧溶解部で制御する場合は応答性がよい。給気ガス量の制御は、予備溶解部のみで行うことができ、加圧溶解部のみで行うこともでき、あるいは、予備溶解部と加圧溶解部の両方で制御することもでき、状況に応じて適宜選択することができる。   For the control of the amount of supplied gas, a method for controlling the flow rate of the supply gas to the preliminary dissolution unit or the supersaturated content removal unit, and the pressure of the supply gas to the pressurized dissolution unit or the flow rate of the supply gas are controlled. There is a way. When the control is performed by the preliminary dissolution part or the supersaturated content removal part, the control stability is good, and when the control is performed by the pressure dissolution part, the responsiveness is good. Control of the amount of supplied gas can be performed only in the pre-melting section, can be performed only in the pressure-melting section, or can be controlled in both the pre-melting section and the pressure-melting section. It can be appropriately selected depending on the case.

加圧溶解部から流出する特定ガス溶解水は、過飽和分除去部20の気体透過膜モジュールに供給する。過飽和分除去部の気体透過膜モジュールの気相室を大気圧又は大気圧より微減圧に保つことにより、大気圧下で飽和溶解度以上に溶解している溶存ガスを気体透過膜を通じて気相室に移動し、水中から除去することができる。気相室を微減圧に保つ手段に特に制限はないが、気流アスピレータなどが容易に適用することができ好適である。微減圧に保つ手段の適用位置は、過飽和分除去部の気相室出口直後がその目的からふさわしいが、排気ガスを再利用することを考えると、ガス燃焼触媒塔15の一次側又は二次側が好適である。過飽和分除去部から流出する特定ガス溶解洗浄水は、溶存ガスモニター21により溶存する特定ガス濃度を測定し、所望の溶存ガス濃度が得られていることを確認して洗浄処理槽3に送る。ここで、前段の溶存ガスモニター10と後段の溶存ガスモニター21は、例えば、一定時間ごとに流路が切り替わるようにして、1台の溶存ガスモニターにより、予備溶解部11の一次側の水と過飽和分除去部20の二次側の水の両方の溶存する特定ガス濃度を測定し得るように兼用することもできる。   The specific gas-dissolved water flowing out from the pressure dissolving unit is supplied to the gas permeable membrane module of the supersaturated component removing unit 20. By keeping the gas phase chamber of the gas permeable membrane module of the supersaturated content removal section at atmospheric pressure or slightly reduced pressure from atmospheric pressure, dissolved gas dissolved at the atmospheric pressure or higher than the saturation solubility into the gas phase chamber through the gas permeable membrane. Can move and be removed from the water. There is no particular limitation on the means for keeping the gas phase chamber at a slightly reduced pressure, but an airflow aspirator or the like can be easily applied and is preferable. The application position of the means for maintaining the slightly reduced pressure is suitable for the purpose immediately after the gas phase chamber outlet of the supersaturated content removal unit, but considering that the exhaust gas is reused, the primary side or the secondary side of the gas combustion catalyst tower 15 is Is preferred. The specific gas-dissolved cleaning water flowing out from the supersaturated content removal unit measures the specific gas concentration dissolved by the dissolved gas monitor 21, confirms that the desired dissolved gas concentration is obtained, and sends it to the cleaning treatment tank 3. Here, the dissolved gas monitor 10 at the front stage and the dissolved gas monitor 21 at the rear stage are configured such that, for example, the flow path is switched at regular intervals, and the water on the primary side of the preliminary dissolution unit 11 is obtained by one dissolved gas monitor. It can also be used so that the concentration of the specific gas in which both the water on the secondary side of the supersaturated content removal unit 20 is dissolved can be measured.

本発明の特定ガス溶解洗浄水の製造装置は、過飽和分除去部が、気体透過膜モジュールを有し、その気相室に大気圧を超えることなく特定ガスを給気する特定ガス給気配管を接続してなることが好ましい。本発明装置においては、過飽和分除去部にて除去された排気ガスが、過飽和分除去部の気体透過膜モジュールの気相室に、その気相室の圧力を大気圧を超えることなく特定ガスを給気した後に過飽和分除去部から排気される排気ガスであることが好ましい。   The apparatus for producing the specific gas-dissolved cleaning water of the present invention includes a specific gas supply pipe for supplying the specific gas to the gas phase chamber without exceeding the atmospheric pressure, in which the supersaturation removing unit has a gas permeable membrane module. It is preferable to be connected. In the apparatus of the present invention, the exhaust gas removed by the supersaturated content removing unit supplies the specific gas to the gas phase chamber of the gas permeable membrane module of the supersaturated content removing unit without causing the pressure of the gas phase chamber to exceed atmospheric pressure. It is preferable that the exhaust gas is exhausted from the supersaturated content removal section after the air is supplied.

図2は、本発明の特定ガス溶解洗浄水の製造装置の他の態様の工程系統図である。本態様の装置は、図1に示す装置の過飽和分除去部に、流量制御弁22と流量計23を設置し、気体透過膜モジュールの気相室に、特定ガス供給源から大気圧を超えることのない圧力で特定ガスを給気する。このとき、特定ガス溶解水の特定ガス濃度に応じて、この給気ガス流量を制御することにより、無駄のない給気ガスの制御が可能となる。   FIG. 2 is a process flow diagram of another aspect of the apparatus for producing specific gas-dissolved cleaning water of the present invention. In the apparatus of this aspect, the flow control valve 22 and the flow meter 23 are installed in the supersaturated content removal unit of the apparatus shown in FIG. 1, and the atmospheric pressure from the specific gas supply source is exceeded in the gas phase chamber of the gas permeable membrane module. A specific gas is supplied at a pressure with no pressure. At this time, by controlling the supply gas flow rate according to the specific gas concentration of the specific gas dissolved water, it is possible to control the supply gas without waste.

本発明のガス溶解洗浄水の製造方法においては、特定ガスを溶解させたガス溶解洗浄水で被洗浄物を洗浄した後の排水を貯留する貯留槽、該貯留槽の水を圧送するポンプ、水中に存在する洗浄に実質的に影響を与える異物を除去する浄化手段、特定ガスを加圧溶解させる加圧溶解部、特定ガスの過飽和分を除去する過飽和分除去部を有する洗浄水の循環機構を有する特定ガス溶解洗浄水の製造装置を用いる特定ガス溶解洗浄水の製造方法において、加圧溶解部の一次側又は過飽和分除去部の二次側の溶存ガス濃度を測定し、その測定値に応じて、加圧溶解部に給気する特定ガスの流量若しくは圧力又は過飽和分除去部に給気する特定ガスの流量を調整し、所定濃度の特定ガス溶解水を発生させる。本発明方法においては、図1又は図2に工程系統図を示した本発明のガス溶解洗浄水の製造装置を用いる。   In the method for producing gas-dissolved cleaning water according to the present invention, a storage tank for storing waste water after cleaning an object to be cleaned with a gas-dissolved cleaning water in which a specific gas is dissolved, a pump for pumping water from the storage tank, A cleaning water circulation mechanism having a purifying means for removing foreign substances that substantially affect the cleaning present in the gas, a pressure dissolving section for pressurizing and dissolving the specific gas, and a supersaturated content removing section for removing the supersaturated content of the specific gas. In the specific gas-dissolved cleaning water manufacturing method using the specific gas-dissolved cleaning water manufacturing apparatus, the dissolved gas concentration on the primary side of the pressure-dissolving part or the secondary side of the supersaturated content removing part is measured, and according to the measured value Then, the flow rate or pressure of the specific gas supplied to the pressurized dissolution unit or the flow rate of the specific gas supplied to the supersaturated component removal unit is adjusted to generate specific gas dissolved water having a predetermined concentration. In the method of the present invention, the apparatus for producing gas-dissolved cleaning water of the present invention whose process system diagram is shown in FIG. 1 or 2 is used.

本発明方法においては、加圧溶解部の一次側に気体透過膜モジュールを備えた予備溶解部を有し、その気相室に特定ガスを給気することが好ましい。加圧溶解部の一次側に予備溶解部を設けて、加圧溶解の前に予備的に特定ガスを溶解することにより、効率よく高濃度の特定ガスを溶解したガス溶解洗浄水を製造することができる。   In the method of the present invention, it is preferable to have a preliminary dissolution part equipped with a gas permeable membrane module on the primary side of the pressure dissolution part, and supply a specific gas to the gas phase chamber. Providing a pre-dissolving part on the primary side of the pressure-dissolving part, and preliminarily dissolving the specific gas before the pressure-dissolving, thereby efficiently producing gas-dissolved washing water in which a high-concentration specific gas is dissolved Can do.

本発明方法においては、過飽和分除去部の気体透過膜モジュールの気相室に、その気相室の圧力を大気圧を超えることなく特定ガスを給気することができる。過飽和分除去部より流出する特定ガス溶解水の濃度に応じて、気相室に給気する特定ガスの流量を制御することにより、給気する特定ガスの流量を無駄なく制御することができる。   In the method of the present invention, the specific gas can be supplied to the gas phase chamber of the gas permeable membrane module of the supersaturated content removing section without exceeding the pressure of the gas phase chamber at atmospheric pressure. By controlling the flow rate of the specific gas supplied to the gas phase chamber in accordance with the concentration of the specific gas dissolved water flowing out from the supersaturated content removal unit, the flow rate of the specific gas supplied can be controlled without waste.

本発明方法においては、予備溶解部の気体透過膜モジュールに給気する特定ガスの一部又は全部に、過飽和分除去部にて除去された排気ガスを用いることが好ましい。過飽和分除去部にて除去された排気ガスは、過飽和分除去部の気体透過膜モジュールの気相室に、その気相室の圧力を大気圧を超えることなく特定ガスを給気した後に過飽和分除去部から排気される排気ガスとすることができる。過飽和分除去部にて除去された特定ガスを含む排気ガスを、予備溶解部の気体透過膜モジュールに給気することにより、特定ガスを無駄に排出することなく、効率よく利用することができる。   In the method of the present invention, it is preferable to use the exhaust gas removed by the supersaturation removing unit as a part or all of the specific gas supplied to the gas permeable membrane module in the preliminary dissolution unit. Exhaust gas removed by the supersaturation removal unit is supplied to the gas phase chamber of the gas permeable membrane module of the supersaturation removal unit after supplying the specific gas without exceeding the atmospheric pressure of the gas phase chamber. The exhaust gas exhausted from the removal unit can be used. By supplying the exhaust gas containing the specific gas removed by the supersaturated content removal unit to the gas permeable membrane module of the preliminary dissolution unit, the specific gas can be efficiently used without being wasted.

本発明方法においては、予備溶解部の一次側又は過飽和分除去部の二次側の溶存ガス濃度を測定し、その測定値に応じて予備溶解部又は過飽和分除去部に給気する特定ガスの流量を調整し、所定濃度の特定ガス溶解水を発生させることが好ましい。予備溶解部の一次側又は過飽和分除去部の二次側の溶存ガス濃度の測定値に応じて、予備溶解部又は過飽和分除去部に給気する特定ガスの流量を調整することにより、特定ガスの無駄な給気を避けて、効率よく利用することができる。   In the method of the present invention, the dissolved gas concentration on the primary side of the pre-dissolving part or the secondary side of the supersaturated part removing part is measured, and the specific gas supplied to the pre-dissolving part or supersaturated part removing part is measured according to the measured value. It is preferable to adjust the flow rate to generate specific gas-dissolved water having a predetermined concentration. By adjusting the flow rate of the specific gas supplied to the preliminary dissolution part or supersaturated content removal unit according to the measured value of the dissolved gas concentration on the primary side of the preliminary dissolution part or the secondary side of the supersaturated content removal part, the specific gas It can be used efficiently by avoiding unnecessary air supply.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
図2に工程を示す装置を用いて、水素溶解洗浄水を製造した。
貯留槽1に、洗浄排水返送管2を経由して、洗浄処理槽3において被洗浄物を洗浄した後の排水及び洗浄に使用されなかった水素溶解洗浄水が返送される。貯留槽には、補給水配管4から、補給水が供給される。貯留槽には窒素配管5が設けられ、貯留槽上部の空間の水素が窒素によりパージされる。貯留槽は圧力調整機構6を有し、貯留槽内部が陽圧に保たれる。
貯留槽より、圧送ポンプ7により、送水量80L/min、送水圧力0.2MPaで水を送り出した。熱交換器8により冷却して水温を25℃に調節したのち、フィルター[栗田工業(株)、UFモジュール、KU−1510HUT]9に通して、水中に存在する異物を除去した。溶存水素モニター10により溶存水素濃度を測定し、気体透過膜モジュールを備えた予備溶解部11に通水した。予備溶解部の気体透過膜モジュールの気相室には、過飽和分除去部20において除去された水素を含む排気ガスを給気した。水素を含む排気ガスの流量は、流量制御弁12を全開、13を全閉とし、過飽和分除去部の排気ガスを全量供給するように制御した。予備溶解部より排出される排気ガスは、水素燃焼触媒塔15を通して無害化し、大気中に排出した。
予備溶解部から流出する水は、加圧溶解部16の気体透過膜モジュールに供給した。加圧溶解部の気体透過膜モジュールの気相室には、水素発生器17で発生する水素を、圧力調整弁18と圧力計19を用いて、圧力0.1MPaで供給した。
加圧溶解部から流出する水素溶解水は、過飽和分除去部20の気体透過膜モジュールに供給した。過飽和分除去部の気体透過膜モジュールの気相室には、水素発生器17で発生する水素を、流量制御弁22と流量計23を用いて、洗浄処理槽の運転中は0.720L(標準状態)/min(通水流量に対して0.5飽和分の水素に相当)供給し、洗浄処理槽の停止中は、水素の供給を停止(通水流量に対して0飽和分の水素に相当)した。
過飽和分除去部から流出する水素溶解洗浄水は、溶存水素モニター21により溶存水素濃度を測定し、洗浄処理槽3に送った。
上記の条件による運転により、洗浄処理槽に供給される水素溶解洗浄水の溶存水素濃度は、目標とする1.25mg/Lを保つことができた。予備溶解部の一次側の水の溶存水素濃度は、洗浄処理中は0.2mg/Lであり、洗浄を実施していない待機中は0.8mg/Lであった。これは、洗浄中は洗浄処理槽で洗浄水に超音波が印加されたり、被洗浄物とそれを保持する治具が揺動したりすることにより、溶存している水素が洗浄処理槽から気相へ移動し溶存濃度が低下することに起因すると考えられる。供給した水素量をまとめると、洗浄処理中は1.5飽和分(2.15L(標準状態)/min)、待機中は1.0飽和分(1.43L(標準状態)/min)で、溶存水素濃度1.25mg/Lの水素溶解洗浄水を供給することができた。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
Hydrogen-dissolved cleaning water was produced using an apparatus whose process is shown in FIG.
The storage tank 1 is returned with the hydrogen-dissolved cleaning water that has not been used for the drainage and cleaning after the object to be cleaned is cleaned in the cleaning processing tank 3 via the cleaning drainage return pipe 2. The storage tank is supplied with makeup water from the makeup water pipe 4. The storage tank is provided with a nitrogen pipe 5, and hydrogen in the space above the storage tank is purged with nitrogen. The storage tank has a pressure adjusting mechanism 6 and the inside of the storage tank is kept at a positive pressure.
Water was sent out from the storage tank by a pressure feed pump 7 at a water feed rate of 80 L / min and a water feed pressure of 0.2 MPa. After cooling with the heat exchanger 8 and adjusting the water temperature to 25 ° C., the filter was passed through a filter [Kurita Kogyo Co., Ltd., UF module, KU-1510HUT] 9 to remove foreign substances present in the water. The dissolved hydrogen concentration was measured by the dissolved hydrogen monitor 10, and water was passed through the pre-dissolution part 11 equipped with the gas permeable membrane module. The gas phase chamber of the gas permeable membrane module in the pre-dissolution part was supplied with exhaust gas containing hydrogen removed in the supersaturated content removal part 20. The flow rate of the exhaust gas containing hydrogen was controlled such that the flow control valve 12 was fully opened and 13 was fully closed, and the exhaust gas in the supersaturated content removal unit was supplied in its entirety. The exhaust gas discharged from the pre-dissolved part was rendered harmless through the hydrogen combustion catalyst tower 15 and discharged into the atmosphere.
The water flowing out from the preliminary dissolution unit was supplied to the gas permeable membrane module of the pressure dissolution unit 16. Hydrogen generated by the hydrogen generator 17 was supplied to the gas phase chamber of the gas permeable membrane module in the pressure dissolving section using a pressure regulating valve 18 and a pressure gauge 19 at a pressure of 0.1 MPa.
The hydrogen-dissolved water flowing out from the pressure dissolving part was supplied to the gas permeable membrane module of the supersaturated content removing part 20. In the gas-phase chamber of the gas permeable membrane module of the supersaturated component removal section, hydrogen generated by the hydrogen generator 17 is used by the flow control valve 22 and the flow meter 23, and 0.720 L (standard) during the operation of the cleaning treatment tank. State) / min (corresponding to 0.5 saturated hydrogen with respect to the water flow rate) and while the cleaning tank is stopped, the hydrogen supply is stopped (to 0 hydrogen with respect to the flow rate). Equivalent).
The hydrogen-dissolved cleaning water flowing out from the supersaturated content removal unit was measured for the dissolved hydrogen concentration by the dissolved hydrogen monitor 21 and sent to the cleaning treatment tank 3.
By the operation under the above conditions, the dissolved hydrogen concentration of the hydrogen-dissolved cleaning water supplied to the cleaning treatment tank was able to maintain the target 1.25 mg / L. The dissolved hydrogen concentration of the water on the primary side of the pre-dissolved part was 0.2 mg / L during the cleaning process, and 0.8 mg / L during the standby period when no cleaning was performed. This is because during cleaning, ultrasonic waves are applied to the cleaning water in the cleaning tank, or the object to be cleaned and the jig holding it are swung, so that dissolved hydrogen is removed from the cleaning tank. This is thought to be due to the fact that it moves to the phase and the dissolved concentration decreases. The amount of supplied hydrogen is summarized as follows: 1.5 saturation (2.15 L (standard state) / min) during the cleaning process, 1.0 saturation (1.43 L (standard state) / min) during standby, Hydrogen-dissolved washing water having a dissolved hydrogen concentration of 1.25 mg / L could be supplied.

比較例1
図3に示す加圧溶解部24、26と、過飽和分除去部25、27の組み合わせ2組を有する水素溶解洗浄水の製造装置を用いて、水素溶解洗浄水を製造した。図2に示す装置の予備溶解部から過飽和分除去部までを、図3に示す加圧溶解部と過飽和分除去部の組み合わせ2組で置き換えた以外、その他の装置は同一である。
図3に示す加圧溶解部と過飽和分除去部を有する装置を用いて、溶存水素濃度1.25mg/L以上で送水することとした。水素の圧力が0.1MPaであり、また、洗浄処理中の返送濃度が0.2mg/Lまで落ちていたため、溶存水素濃度1.25mg/Lの水素溶解洗浄水を得るためには、加圧溶解部と過飽和分除去部の組み合わせを直列2段に配置する必要があった。給気する水素量は、加圧溶解部が2か所あるので、全部で2.0飽和分が必要であった。このとき送水する水素溶解洗浄水の溶存水素濃度は、洗浄処理中は1.25mg/Lとなり、洗浄を実施していない待機中は1.40mg/Lとなった。
実施例1及び比較例1の結果を、第1表に示す。
Comparative Example 1
Hydrogen-dissolved cleaning water was manufactured using a hydrogen-dissolved cleaning water manufacturing apparatus having two combinations of the pressure-dissolving sections 24 and 26 and the supersaturated content removing sections 25 and 27 shown in FIG. Other devices are the same except that the pre-melting portion to the supersaturated content removing portion of the device shown in FIG. 2 are replaced with two combinations of the pressure dissolving portion and the supersaturated content removing portion shown in FIG.
Using an apparatus having a pressure dissolving part and a supersaturated content removing part shown in FIG. 3, it was decided to feed water at a dissolved hydrogen concentration of 1.25 mg / L or more. Since the hydrogen pressure was 0.1 MPa and the return concentration during the cleaning process had dropped to 0.2 mg / L, pressurization was necessary to obtain hydrogen-dissolved cleaning water having a dissolved hydrogen concentration of 1.25 mg / L. It was necessary to arrange the combination of the dissolving portion and the supersaturated portion removing portion in two stages in series. The amount of hydrogen to be supplied required 2.0 saturated portions in total because there were two pressure dissolution sections. The dissolved hydrogen concentration of the hydrogen-dissolved cleaning water sent at this time was 1.25 mg / L during the cleaning process, and 1.40 mg / L during the standby period when cleaning was not performed.
The results of Example 1 and Comparative Example 1 are shown in Table 1.

Figure 0004872613
Figure 0004872613

第1表に見られるように、本発明のガス溶解洗浄水の製造装置を用いることにより、洗浄処理中で25%、洗浄を実施しない待機中で50%の水素供給量を削減することが可能となることが分かる。   As can be seen in Table 1, by using the gas-dissolved cleaning water manufacturing apparatus of the present invention, it is possible to reduce the hydrogen supply amount by 25% during the cleaning process and by 50% during the standby without cleaning. It turns out that it becomes.

本発明の特定ガス溶解洗浄水の製造装置及び製造方法を用いることにより、特定ガスを所定濃度に調整して、高濃度の特定ガス溶解洗浄水を効率よく、安定かつ安全に供給することができる。とりわけ、大流量の洗浄水を循環再利用するような場合に本発明装置及び本発明方法は好適であり、実用性が高い。   By using the apparatus and method for producing the specific gas-dissolved cleaning water of the present invention, the specific gas can be adjusted to a predetermined concentration, and the high-concentration specific gas-dissolved cleaning water can be supplied efficiently, stably and safely. . In particular, the apparatus and method of the present invention are suitable and highly practical when recycling a large flow of wash water.

本発明のガス溶解洗浄水の製造装置の一態様の工程系統図である。It is a process flow diagram of one mode of a manufacturing device of gas dissolution washing water of the present invention. 本発明のガス溶解洗浄水の製造装置の他の態様の工程系統図である。It is a process flow diagram of other modes of a manufacturing device of gas dissolution washing water of the present invention. 比較例で用いた装置の部分工程系統図である。It is a partial process systematic diagram of the apparatus used by the comparative example.

符号の説明Explanation of symbols

1 貯留槽
2 洗浄排水返送管
3 洗浄処理槽
4 補給水配管
5 窒素配管
6 圧力調整機構
7 圧送ポンプ
8 熱交換器
9 純化手段
10 溶存ガスモニター
11 予備溶解部
12 流量制御弁
13 流量制御弁
14 流量計
15 ガス燃焼触媒塔
16 加圧溶解部
17 特定ガス供給源
18 圧力調整弁
19 圧力計
20 過飽和分除去部
21 溶存ガスモニター
22 流量制御弁
23 流量計
24 加圧溶解部
25 過飽和分除去部
26 加圧溶解部
27 過飽和分除去部
(なお、実施例の説明においては、特定ガス又はガスを水素と読み替え、純化手段をフィルターと読み替えるものとする。)
DESCRIPTION OF SYMBOLS 1 Storage tank 2 Cleaning drainage return pipe 3 Cleaning process tank 4 Supplementary water piping 5 Nitrogen piping 6 Pressure adjustment mechanism 7 Pressure feed pump 8 Heat exchanger 9 Purifying means 10 Dissolved gas monitor 11 Preliminary dissolution part 12 Flow control valve 13 Flow control valve 14 Flow meter 15 Gas combustion catalyst tower 16 Pressurization dissolution part 17 Specified gas supply source 18 Pressure adjustment valve 19 Pressure gauge 20 Supersaturation removal part 21 Dissolved gas monitor 22 Flow control valve 23 Flowmeter 24 Pressure dissolution part 25 Supersaturation removal part 26 Pressure dissolution section 27 Supersaturated content removal section (Note that in the description of the examples, the specific gas or gas is read as hydrogen, and the purification means is read as a filter.)

Claims (5)

特定ガスを大気圧に対して加圧条件下で水に過飽和に溶解させる加圧溶解部と、特定ガスの過飽和分を除去する過飽和分除去部を有するガス溶解洗浄水の製造装置において、加圧溶解部の一次側に気体透過膜モジュールを備えた予備溶解部を有し、その気相室に特定ガスを給気して、かつ、予備溶解部の気体透過膜モジュールに給気する特定ガスの一部又は全部に、過飽和分除去部にて除去された排気ガスを用いることを特徴とするガス溶解洗浄水の製造装置。 Pressurization in a gas-dissolved cleaning water manufacturing apparatus having a pressure-dissolving part that dissolves a specific gas in water under pressure under atmospheric pressure and a supersaturation removing part that removes a supersaturated part of the specific gas The primary part of the dissolution part has a preliminary dissolution part equipped with a gas permeable membrane module, supplies a specific gas to the gas phase chamber , and supplies a specific gas supplied to the gas permeable membrane module of the preliminary dissolution part An apparatus for producing gas-dissolved cleaning water, characterized in that the exhaust gas removed by the supersaturated content removal unit is used in part or in whole . 過飽和分除去部にて除去された排気ガスが、過飽和分除去部の気体透過膜モジュールの気相室に、その気相室の圧力を大気圧を超えることなく特定ガスを給気した後に過飽和分除去部から排気される排気ガスである請求項記載のガス溶解洗浄水の製造装置。 After the exhaust gas removed by the supersaturated content removal section is supplied to the gas phase chamber of the gas permeable membrane module of the supersaturated content removal section without supplying the specific gas without exceeding the atmospheric pressure, the supersaturated content is removed. an exhaust gas discharged from the removal unit according to claim 1 gas dissolved cleaning water production apparatus according. 特定ガスを溶解させたガス溶解洗浄水で被洗浄物を洗浄した後の排水を貯留する貯留槽、該貯留槽の水を圧送するポンプ、水中に存在する洗浄に実質的に影響を与える異物を除去する浄化手段、特定ガスを加圧溶解させる加圧溶解部、特定ガスの過飽和分を除去する過飽和分除去部を有する洗浄水の循環機構を有するガス溶解洗浄水の製造装置を用いるガス溶解洗浄水の製造方法において、加圧溶解部の一次側に気体透過膜モジュールを備えた予備溶解部を有し、その気相室に特定ガスを給気して、加圧溶解部の一次側又は過飽和分除去部の二次側の溶存ガス濃度を測定し、その測定値に応じて、加圧溶解部に給気する特定ガスの流量又は圧力を調整し、所定濃度の特定ガス溶解水を発生させるに際して、予備溶解部の気体透過膜モジュールに給気する特定ガスの一部又は全部に、過飽和分除去部にて除去された排気ガスを用いることを特徴とするガス溶解洗浄水の製造方法。 A storage tank for storing waste water after cleaning the object to be cleaned with a gas-dissolved cleaning water in which a specific gas is dissolved, a pump for pumping the water in the storage tank, and a foreign substance that substantially affects the cleaning present in the water. Gas dissolving cleaning using a gas dissolving cleaning water production apparatus having a cleaning water circulation mechanism having a purifying means for removing, a pressure dissolving section for pressurizing and dissolving a specific gas, and a supersaturated content removing section for removing a supersaturated portion of the specific gas In the method for producing water, the primary side of the pressurized dissolution unit has a preliminary dissolution unit equipped with a gas permeable membrane module, and the gas phase chamber is supplied with a specific gas, and the primary side or supersaturation of the pressurized dissolution unit Measure the dissolved gas concentration on the secondary side of the minute removal unit, adjust the flow rate or pressure of the specific gas supplied to the pressurized dissolution unit according to the measured value, and generate the specific gas dissolved water with a predetermined concentration At the time, the gas permeable membrane module of the preliminary dissolution part Some or all of the specific gas to supply air, a manufacturing method of the gas dissolved cleaning water, which comprises using the exhaust gas are removed by supersaturated content removing unit. 過飽和分除去部にて除去された排気ガスが、過飽和分除去部の気体透過膜モジュールの気相室に、その気相室の圧力を大気圧を超えることなく特定ガスを給気した後に過飽和分除去部から排気される排気ガスである請求項記載のガス溶解洗浄水の製造方法。 After the exhaust gas removed by the supersaturated content removal section is supplied to the gas phase chamber of the gas permeable membrane module of the supersaturated content removal section without supplying the specific gas without exceeding the atmospheric pressure, the supersaturated content is removed. The method for producing gas-dissolved cleaning water according to claim 3 , wherein the gas-dissolved cleaning water is exhaust gas exhausted from the removing section. 予備溶解部の一次側又は過飽和分除去部の二次側の溶存ガス濃度を測定し、その測定値に応じて予備溶解部又は過飽和分除去部に給気する特定ガスの流量を調整し、所定濃度の特定ガス溶解水を発生させる請求項記載のガス溶解洗浄水の製造方法。
Measure the dissolved gas concentration on the primary side of the pre-dissolution part or the secondary side of the supersaturation removal part, adjust the flow rate of the specific gas supplied to the preliminary dissolution part or supersaturation removal part according to the measured value, The method for producing gas-dissolved cleaning water according to claim 3 , wherein specific gas-dissolved water having a concentration is generated.
JP2006306843A 2006-11-13 2006-11-13 Gas dissolving cleaning water manufacturing apparatus and manufacturing method Active JP4872613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006306843A JP4872613B2 (en) 2006-11-13 2006-11-13 Gas dissolving cleaning water manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006306843A JP4872613B2 (en) 2006-11-13 2006-11-13 Gas dissolving cleaning water manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JP2008119611A JP2008119611A (en) 2008-05-29
JP4872613B2 true JP4872613B2 (en) 2012-02-08

Family

ID=39504950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006306843A Active JP4872613B2 (en) 2006-11-13 2006-11-13 Gas dissolving cleaning water manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP4872613B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107168394A (en) * 2017-06-29 2017-09-15 中国水产科学研究院长江水产研究所 A kind of laboratory can quantify the supersaturated water body generating means of dissolved gas of control

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6596199B2 (en) * 2014-11-28 2019-10-23 株式会社 アイロム Hydrogen water production method and hydrogen water production apparatus
JP7412200B2 (en) * 2020-02-06 2024-01-12 株式会社荏原製作所 Gas solution manufacturing equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07185211A (en) * 1993-12-24 1995-07-25 Miura Co Ltd Method and apparatus for member type aeration
JPH0889771A (en) * 1994-09-19 1996-04-09 Dainippon Ink & Chem Inc Gas dissolver and gas dissolving method
JP2000334283A (en) * 1999-05-26 2000-12-05 Ishikawajima Harima Heavy Ind Co Ltd Ozone dissolving method and device
JP4119040B2 (en) * 1999-06-16 2008-07-16 オルガノ株式会社 Functional water production method and apparatus
JP2002028462A (en) * 2000-01-12 2002-01-29 Sekisui Chem Co Ltd Ozone treating device
JP4368188B2 (en) * 2003-12-09 2009-11-18 大日本スクリーン製造株式会社 Substrate processing equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107168394A (en) * 2017-06-29 2017-09-15 中国水产科学研究院长江水产研究所 A kind of laboratory can quantify the supersaturated water body generating means of dissolved gas of control
CN107168394B (en) * 2017-06-29 2019-04-16 中国水产科学研究院长江水产研究所 A kind of dissolved gas supersaturation water body generating device that laboratory can quantitatively control

Also Published As

Publication number Publication date
JP2008119611A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
JP5251184B2 (en) Gas dissolved water supply system
JP5072062B2 (en) Method, apparatus and apparatus for producing hydrogen gas-dissolved cleaning water
KR101514863B1 (en) Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gases
JP6386338B2 (en) Ammonia-containing wastewater treatment apparatus and treatment method
TW200536624A (en) Circulated type gas-soluble water supplying device and the running method of said device
JP2014093357A (en) Method for manufacturing ozone gas dissolved water and method for cleaning electronic material
JP2012119491A (en) Photoresist removing method
KR20190077228A (en) Gas solution manufacturing apparatus
JP4872613B2 (en) Gas dissolving cleaning water manufacturing apparatus and manufacturing method
JP6427378B2 (en) Ammonia dissolved water supply system, ammonia dissolved water supply method, and ion exchange apparatus
EP0915060B1 (en) Method and apparatus for supplying ozonated ultrapure water
JP6271109B1 (en) Water treatment membrane cleaning apparatus and method, and water treatment system
JP2008006332A (en) Method for manufacturing specific-gas-dissolved water, and apparatus and method for circulating specific-gas-dissolved water
JP2000271549A (en) Gas-dissolved water supply device
JP4151088B2 (en) Hydrogen-containing ultrapure water supply device
JP5222059B2 (en) Apparatus for manufacturing a supply liquid for ultrasonic processing apparatus, method for manufacturing a supply liquid for ultrasonic processing apparatus, and ultrasonic processing system
JP2005186067A (en) Ozone-containing ultrapure water supply method and apparatus
JP2005013788A (en) AIR CLEANER AND METHOD FOR CONTROLLING pH VALUE OF TREATING LIQUID
JP4438077B2 (en) Method for preparing gas-dissolved water for cleaning electronic materials
JP2017202474A (en) Ozone dissolved water production apparatus
JPH11138182A (en) Ozonized ultrapure water feeder
JP5552792B2 (en) Gas dissolved water production apparatus and production method
JP5358910B2 (en) Carbonated water manufacturing apparatus and manufacturing method
KR101818048B1 (en) Circulated Ozonate Water Generator
JP2003290639A (en) Oxygen injection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4872613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250