JP5358910B2 - Carbonated water manufacturing apparatus and manufacturing method - Google Patents

Carbonated water manufacturing apparatus and manufacturing method Download PDF

Info

Publication number
JP5358910B2
JP5358910B2 JP2007209203A JP2007209203A JP5358910B2 JP 5358910 B2 JP5358910 B2 JP 5358910B2 JP 2007209203 A JP2007209203 A JP 2007209203A JP 2007209203 A JP2007209203 A JP 2007209203A JP 5358910 B2 JP5358910 B2 JP 5358910B2
Authority
JP
Japan
Prior art keywords
gas
water
carbon dioxide
dissolved
phase chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007209203A
Other languages
Japanese (ja)
Other versions
JP2009040656A (en
Inventor
裕人 床嶋
博志 森田
英之 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007209203A priority Critical patent/JP5358910B2/en
Publication of JP2009040656A publication Critical patent/JP2009040656A/en
Application granted granted Critical
Publication of JP5358910B2 publication Critical patent/JP5358910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and method for easily and quickly producing highly concentrated carbonated water; and to provide a method of washing an electronic member, using carbonated water produced with the apparatus. <P>SOLUTION: The production of carbonated water is carried out by the followings: raw water is supplied to a liquid phase chamber 1b in a deaeration membrane module 1 through raw water piping 11; the inside pressure of a gas phase chamber 1c is lowered by actuating a vacuum pump 3; a gas dissolved in the raw water is discharged to the outside of the system by permeating a gas permeation membrane 1a, and passing through the gas phase chamber and gas-discharge piping 13; the deaerated water flows into a liquid phase chamber 2b in a carbon dioxide dissolving membrane module 2 through a deaerated water piping 12; at the same time, carbon dioxide is supplied from a carbon dioxide gas feeder 4 to the gas phase chamber 1c through carbon dioxide gas piping 15; a prescribed amount of carbon dioxide gas is dissolved into the deaerated water in the liquid phase chamber 2b after permeating a gas permeation membrane 2a; then the deaerated water dissolved with the carbon dioxide, flows out of carbonated water piping 14. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、炭酸水の製造装置及び製造方法に係り、詳しくは、水に炭酸ガスを溶解させる炭酸ガス溶解部を有する炭酸水の製造装置と、この製造装置を用いた炭酸水の製造方法に関する。 The present invention relates to a manufacturing apparatus and how the carbonated water, particularly, the apparatus for producing carbonated water with a carbonic acid gas dissolver to dissolve the carbonic acid gas in water, producing side of carbonated water using the manufacturing apparatus about the law.

半導体用シリコン基板、液晶用ガラス基板などの電子材料部材を、超純水で洗浄することが行われている。しかしながら、超純水は絶縁性が高いため、洗浄時に超純水と電子材料部材との摩擦によって該電子材料部材が帯電することがある。このように電子材料部材が帯電すると、該電子材料部材に微細な回路パターンが設けられている場合に、回路が破壊されてしまうという問題がある。   Electronic material members such as a semiconductor silicon substrate and a liquid crystal glass substrate are washed with ultrapure water. However, since ultrapure water has high insulating properties, the electronic material member may be charged by friction between the ultrapure water and the electronic material member during cleaning. When the electronic material member is charged in this way, there is a problem that the circuit is destroyed when a fine circuit pattern is provided on the electronic material member.

このような帯電を防止するために、洗浄水として、超純水に炭酸ガスを溶解させた炭酸水を用いることが知られている。この炭酸水は超純水よりも導電性が高いため、洗浄時における電子材料部材の帯電を防止することができる。   In order to prevent such charging, it is known to use carbonated water in which carbon dioxide gas is dissolved in ultrapure water as cleaning water. Since this carbonated water has higher conductivity than ultrapure water, charging of the electronic material member during cleaning can be prevented.

例えば、特開2001−293344号には、炭酸水の製造方法の一例が記載されている。同号の方法は、中空糸膜の中空部に温水を流すと共に、該中空糸膜の外表面側に炭酸ガスを供給し、該炭酸ガスを中空部内の温水に溶解させて炭酸水を製造する方法において、この温水を中空糸膜の中空部内に繰り返し流すことにより、温水中に炭酸ガスを徐々に溶解させるものである。   For example, JP 2001-293344 describes an example of a method for producing carbonated water. In the method of the same number, warm water is allowed to flow through the hollow portion of the hollow fiber membrane, carbon dioxide gas is supplied to the outer surface side of the hollow fiber membrane, and the carbon dioxide gas is dissolved in the warm water in the hollow portion to produce carbonated water. In the method, the warm water is repeatedly flowed into the hollow portion of the hollow fiber membrane, whereby carbon dioxide gas is gradually dissolved in the warm water.

また、シリコンウェハ等の電子材料部材の洗浄においては、回路パターンの微細化が進むに従い、電子材料部材の表面に許容される凹凸(平坦度)は、数Å程度と極めて小さくなっている。このため、超純水中に極微量存在するOHイオンによる侵食に起因する平坦度の増大も問題視されている。
特開2001−293344号
Further, in cleaning an electronic material member such as a silicon wafer, the unevenness (flatness) allowed on the surface of the electronic material member is extremely small, about several inches, as the circuit pattern becomes finer. For this reason, an increase in flatness due to erosion by OH ions existing in a very small amount in ultrapure water is also regarded as a problem.
JP 2001-293344 A

特開2001−293344号の方法では、温水を中空糸膜の中空部に繰り返し流して徐々に温水中の溶存炭酸ガス濃度を高めているため、高濃度の炭酸水を迅速に製造することができない。   In the method of Japanese Patent Laid-Open No. 2001-293344, hot water is repeatedly flowed into the hollow portion of the hollow fiber membrane to gradually increase the dissolved carbon dioxide concentration in the hot water, so that high-concentration carbonated water cannot be rapidly produced. .

本発明は、高濃度の炭酸水を簡易かつ迅速に製造することができる炭酸水の製造装置及び製造方法を提供することを目的とする。 The present invention aims to provide a manufacturing apparatus and how the carbonated water can be produced with high concentration of carbonated water easily and quickly.

本発明(請求項1)の炭酸水の製造装置は、水に溶解している溶存ガスを脱気する溶存ガス脱気部と、この脱気された水に炭酸ガスを溶解させる炭酸ガス溶解部とを有する炭酸水の製造装置であって、製造される炭酸水の標準状態(1atm)かつ25℃における溶存炭酸ガス濃度が500mg/L以上であり、該炭酸水が、フッ酸含有液で表面処理した後のシリコンウェハの洗浄水であることを特徴とするものである。 The apparatus for producing carbonated water of the present invention (Claim 1) includes a dissolved gas degassing unit for degassing a dissolved gas dissolved in water, and a carbon dioxide gas dissolving unit for dissolving carbon dioxide gas in the degassed water. a manufacturing apparatus of carbonated water with bets state, and are dissolved carbon dioxide concentration of 500 mg / L or more under standard conditions (1 atm) and 25 ° C. of carbonated water is produced, carbon acid water, a hydrofluoric acid-containing solution the wash water der Rukoto the silicon wafer after surface treatment in which features.

請求項2の炭酸水の製造装置は、請求項1において、前記炭酸ガス溶解部は、内部が気体透過膜によって気相室と液相室に区画された膜モジュールを有しており、該膜モジュールは、該液相室に前記脱気部で脱気された脱気水を供給すると共に、該気相室に前記炭酸ガスを供給し、該炭酸ガスを該気体透過膜を介して該脱気水に供給することにより、該炭酸ガスを該脱気水に溶解させるものであることを特徴とする。   The apparatus for producing carbonated water according to claim 2 is the apparatus for producing carbonated water according to claim 1, wherein the carbon dioxide gas dissolving unit has a membrane module having an interior partitioned into a gas phase chamber and a liquid phase chamber by a gas permeable membrane. The module supplies degassed water degassed by the degassing unit to the liquid phase chamber, supplies the carbon dioxide gas to the gas phase chamber, and removes the carbon dioxide gas through the gas permeable membrane. The carbon dioxide gas is dissolved in the degassed water by supplying it to the air water.

請求項3の炭酸水の製造装置は、請求項1又は2において、前記溶存ガス脱気部は、内部が気体透過膜によって気相室と液相室に区画された膜モジュールを有しており、該膜モジュールは、該液相室に前記水を供給し、該水に溶解している溶存ガスを該気体透過膜を介して該気相室に排出することにより、該溶存ガスを脱気するものであることを特徴とする。   The apparatus for producing carbonated water according to claim 3 is characterized in that, in claim 1 or 2, the dissolved gas deaeration unit has a membrane module whose interior is partitioned into a gas phase chamber and a liquid phase chamber by a gas permeable membrane. The membrane module deaerates the dissolved gas by supplying the water to the liquid phase chamber and discharging the dissolved gas dissolved in the water to the gas phase chamber through the gas permeable membrane. It is a thing to do.

本発明(請求項)の炭酸水の製造方法は、請求項1ないしのいずれか1項の炭酸水の製造装置を用いて炭酸水を製造することを特徴とする。 The method for producing carbonated water of the present invention (Claim 4 ) is characterized by producing carbonated water using the carbonated water production apparatus according to any one of Claims 1 to 3 .

本発明者は、水に溶解する窒素ガス等の溶存ガスを脱気してからこの脱気水に炭酸ガスを溶解させることにより、溶存炭酸ガス濃度が高く、かつ大気圧下で洗浄液として用いたときに、溶存炭酸ガスが気泡として発現することがない濃度に抑制された炭酸水が得られることを見出した。   The present inventor degassed dissolved gas such as nitrogen gas dissolved in water and then dissolved carbon dioxide in this degassed water, so that the dissolved carbon dioxide concentration was high and used as a cleaning liquid under atmospheric pressure. It was found that carbonated water suppressed to a concentration at which dissolved carbon dioxide gas does not appear as bubbles is obtained.

請求項1〜の炭酸水の製造装置及び請求項の炭酸水の製造方法によると、溶存ガス脱気部で水に溶解している溶存ガスを脱気し、次に炭酸ガス溶解部でこの脱気された水に炭酸ガスを溶解させるため、この脱気水に多量の炭酸ガスを簡易かつ迅速に溶解させることができる。これにより、高濃度の炭酸水を簡易かつ迅速に製造することができる。 According to the carbonated water manufacturing apparatus of claims 1 to 3 and the carbonated water manufacturing method of claim 4 , the dissolved gas dissolved in water is degassed in the dissolved gas degassing part, and then in the carbon dioxide gas dissolving part. Since carbon dioxide gas is dissolved in the degassed water, a large amount of carbon dioxide gas can be easily and quickly dissolved in the degassed water. Thereby, high concentration carbonated water can be manufactured simply and rapidly.

請求項2の通り、炭酸ガス溶解部が、内部が気体透過膜によって気相室と液相室に区画された膜モジュールを有するものであるのが好ましい。この場合、装置のコンパクト化が可能であると共に、炭酸ガスを無駄なく水に溶解させることができる。   As claimed in claim 2, it is preferable that the carbon dioxide gas dissolving part has a membrane module which is partitioned into a gas phase chamber and a liquid phase chamber by a gas permeable membrane. In this case, the apparatus can be made compact and the carbon dioxide gas can be dissolved in water without waste.

請求項3の通り、溶存ガス脱気部が、内部が気体透過膜によって気相室と液相室に区画された膜モジュールを有するものであるのが好ましい。この場合、水に溶解している溶存ガスを容易に脱気することができる。   As described in claim 3, it is preferable that the dissolved gas deaeration unit has a membrane module that is partitioned into a gas phase chamber and a liquid phase chamber by a gas permeable membrane. In this case, the dissolved gas dissolved in water can be easily degassed.

また、本発明者は、高濃度の炭酸水を電子材料部材の洗浄に用いることにより、電子材料部材の表面の凹凸(平坦度)の増大が抑制されることを見出した。これは、超純水に炭酸ガスを高濃度に溶解させることにより、水中に存在するOHイオン濃度が低下し、OHイオンによる電子材料部材の侵食が少なくなるためであると推察される。 Moreover, this inventor discovered that the increase in the unevenness | corrugation (flatness) of the surface of an electronic material member was suppressed by using high concentration carbonated water for washing | cleaning of an electronic material member. This is presumed to be because, by dissolving carbon dioxide gas in ultrapure water at a high concentration, the concentration of OH ions existing in the water is reduced, and erosion of the electronic material member by OH ions is reduced.

本発明の炭酸の製造装置を用いて炭酸水を製造し、該炭酸水を用いて電子材料部材の表面を洗浄することにより、電子材料部材の表面の凹凸(平坦度)の増大が抑制される。 To produce a carbonated water using the apparatus for producing carbonated water according to the present invention, by cleaning the surface of electronic materials member using a carbon acid water, increase of the unevenness of the surface of the electronic material member (flatness) is suppressed The

子材料部材の表面の一部又は全部がシリコンよりなる電子材料部材の洗浄に、この炭酸水を用いてもよい。この場合、表面のシリコンを荒らすことなく洗浄することができる。 The cleaning of the part or electronic material member entirely made of silicon on the surface of electronic materials member may use this carbonated water. In this case, cleaning can be performed without roughening the silicon on the surface.

子材料部材は、フッ酸含有液で表面処理した後のシリコンウェハであってもよく、のフッ酸含有液は、フッ酸とフッ酸以外の酸を含有する水溶液であってもよい。この場合にあっても、この炭酸水により、シリコンウェハの表面を荒らすことなく、この表面に残留しているフッ素含有液を十分に除去することができる。 Electronic material member may be a silicon wafer after surface treatment with hydrofluoric acid-containing solution, this hydrofluoric acid-containing solution may be an aqueous solution containing an acid other than hydrofluoric acid and hydrofluoric acid. Even in this case, the carbonate-containing water can sufficiently remove the fluorine-containing liquid remaining on the surface of the silicon wafer without roughening the surface of the silicon wafer.

酸水の溶存炭酸ガス濃度は500mg/L以上である。 Dissolved carbon dioxide concentration of the carbonated water is Ru der than 500 mg / L.

以下、図面を参照して本発明の実施の形態を説明する。図1は実施の形態に係る炭酸水の製造装置及び製造方法を説明する系統図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram illustrating a carbonated water production apparatus and production method according to an embodiment.

脱気膜モジュール1内は、気体透過膜1aによって液相室1bと気相室1cに区画されている。同様に、炭酸ガス溶解膜モジュール2内も、気体透過膜2aによって液相室2bと気相室2cに区画されている。   The inside of the deaeration membrane module 1 is divided into a liquid phase chamber 1b and a gas phase chamber 1c by a gas permeable membrane 1a. Similarly, the carbon dioxide-dissolving membrane module 2 is also divided into a liquid phase chamber 2b and a gas phase chamber 2c by a gas permeable membrane 2a.

これら気体透過膜1a,2aとしては、水を透過させず、かつ水に溶解しているガスを透過させるものであれば特に制限はなく、例えば、ポリプロピレン、ポリジメチルシロキサン、ポリカーボネート−ポリジメチルシロキサンブロック共重合体、ポリビニルフェノール−ポリジメチルシロキサン−ポリスルホンブロック共重合体、ポリ(4−メチルペンテン−1)、ポリ(2,6−ジメチルフェニレンオキシド)、ポリテトラフルオロエチレンなどの高分子膜などを挙げることができる。   These gas permeable membranes 1a and 2a are not particularly limited as long as they do not allow water to permeate and allow gas dissolved in water to permeate. For example, polypropylene, polydimethylsiloxane, polycarbonate-polydimethylsiloxane block Examples include copolymers, polyvinylphenol-polydimethylsiloxane-polysulfone block copolymers, polymer films such as poly (4-methylpentene-1), poly (2,6-dimethylphenylene oxide), and polytetrafluoroethylene. be able to.

流量計11aを備えた原水配管11が、脱気膜モジュール1の液相室1bに接続されている。脱気膜モジュール1の気相室1cは、排気配管13を介して真空ポンプ3の吸込口に接続されている。   A raw water pipe 11 provided with a flow meter 11 a is connected to the liquid phase chamber 1 b of the deaeration membrane module 1. The gas phase chamber 1 c of the deaeration membrane module 1 is connected to the suction port of the vacuum pump 3 via the exhaust pipe 13.

真空ポンプ3には特に制限はないが、例えば、水封式真空ポンプや水蒸気除去機能を備えたスクロールポンプなどのように、水蒸気を吸気できるものが好ましい。   Although there is no restriction | limiting in particular in the vacuum pump 3, What can take in water vapor | steam like a water-sealed vacuum pump or a scroll pump provided with the water vapor removal function, for example is preferable.

この脱気膜モジュール1の液相室1bと炭酸ガス溶解膜モジュール2の液相室2bとが、脱気水配管12によって接続されている。この溶解膜モジュール2の液相室2bに、炭酸水配管14が接続されている。この溶解膜モジュール2の気相室2cが、流量調節弁15aを備えた炭酸ガス配管15を介して、炭酸ガスボンベ等の炭酸ガス供給器4に接続されている。   The liquid phase chamber 1 b of the degassing membrane module 1 and the liquid phase chamber 2 b of the carbon dioxide-dissolving membrane module 2 are connected by a degassing water pipe 12. A carbonated water pipe 14 is connected to the liquid phase chamber 2 b of the dissolved membrane module 2. The gas phase chamber 2c of the dissolved membrane module 2 is connected to a carbon dioxide supply device 4 such as a carbon dioxide cylinder through a carbon dioxide pipe 15 provided with a flow rate control valve 15a.

炭酸水配管14の材質としては、pH4程度の弱酸に対して耐久性を有する材質であることが好ましい。このpH4程度とは、1000mg/L程度の炭酸水のpHに相当する。この炭酸水配管14としては、特に1500mg/L程度の炭酸水に対して耐久性を有する材料であることが好ましい。   The material of the carbonated water pipe 14 is preferably a material having durability against a weak acid having a pH of about 4. This pH of about 4 corresponds to the pH of carbonated water of about 1000 mg / L. The carbonated water pipe 14 is preferably a material having durability against carbonated water of about 1500 mg / L.

このように構成された炭酸ガスの製造装置を用いて炭酸ガスを製造する場合、原水を、原水配管11を経由して脱気膜モジュール1の液相室1bに供給する。このとき、原水配管11内を通る原水の流量が流量計11aで測定される。また、真空ポンプ3を作動させて気相室1c内を減圧する。これにより、液相室1b内の原水に溶解している溶存ガスが、気体透過膜1aを透過し、気相室及び排気配管13を経由して系外に排出される。このようにして、原水が脱気される。   When carbon dioxide is produced using the carbon dioxide production apparatus configured as described above, raw water is supplied to the liquid phase chamber 1 b of the degassing membrane module 1 via the raw water pipe 11. At this time, the flow rate of the raw water passing through the raw water pipe 11 is measured by the flow meter 11a. Further, the vacuum pump 3 is operated to depressurize the gas phase chamber 1c. Thereby, the dissolved gas dissolved in the raw water in the liquid phase chamber 1 b passes through the gas permeable membrane 1 a and is discharged out of the system via the gas phase chamber and the exhaust pipe 13. In this way, the raw water is degassed.

ここで、気相室1c内は、10kPa以下、特に5kPa以下に減圧されていることが好ましい。   Here, the inside of the gas phase chamber 1c is preferably decompressed to 10 kPa or less, particularly 5 kPa or less.

このようにして液相室1b内で脱気された脱気水は、脱気水配管12を経由して炭酸ガス溶解膜モジュール2の液相室2b内に流入する。また、炭酸ガス供給器4から、炭酸ガス配管15を経由して気相室2cに炭酸ガスを供給する。このとき、流量計11aで測定された原水の流量に基づいて流量調節弁15aの開度を調節し、気相室2cへの炭酸ガスの供給量を制御する。これにより、所定量の炭酸ガスが、気体透過膜2aを透過し、液相室2b内の脱気水に溶解する。   The deaerated water deaerated in the liquid phase chamber 1 b in this way flows into the liquid phase chamber 2 b of the carbon dioxide-dissolving membrane module 2 via the deaerated water pipe 12. Further, carbon dioxide gas is supplied from the carbon dioxide supply device 4 to the gas phase chamber 2 c via the carbon dioxide gas pipe 15. At this time, the opening degree of the flow control valve 15a is adjusted based on the flow rate of the raw water measured by the flow meter 11a to control the supply amount of carbon dioxide gas to the gas phase chamber 2c. Thereby, a predetermined amount of carbon dioxide gas permeates the gas permeable membrane 2a and dissolves in the deaerated water in the liquid phase chamber 2b.

この炭酸ガスを溶解させた脱気水は、炭酸水配管14から流出する。このようにして、炭酸水が製造される。   The deaerated water in which the carbon dioxide gas is dissolved flows out from the carbonated water pipe 14. In this way, carbonated water is produced.

この炭酸水の製造装置及び製造方法によると、最大、炭酸ガスの飽和溶解度である約1500mg/l(25℃)程度まで、炭酸ガスを溶解させることができる。   According to this carbonated water production apparatus and production method, carbon dioxide gas can be dissolved to a maximum of about 1500 mg / l (25 ° C.), which is the saturation solubility of carbon dioxide gas.

このようにして製造された炭酸水は、電子材料部材の洗浄、特にOHイオンによるエッチングが懸念される電子材料部材の洗浄に好適に使用される。この電子材料部材としては、表面の一部又は全部がシリコンよりなる電子材料部材、特に、フッ酸含有液で表面処理した後のシリコンウェハなどが挙げられる。とりわけ、シリコン表面の僅かな荒れも品質を著しく劣化させるHigh−kゲート形成工程におけるシリコン表面の洗浄に有用である。 Thus carbonated water produced by the cleaning of electronic material member, in particular OH - is preferably used to clean electronic materials member etching by ions is concerned. Examples of the electronic material member include an electronic material member whose surface is partly or entirely made of silicon, particularly a silicon wafer after surface treatment with a hydrofluoric acid-containing liquid. In particular, even a slight roughness of the silicon surface is useful for cleaning the silicon surface in a high-k gate forming process that significantly deteriorates the quality.

このように、電子材料部材の洗浄に使用する場合、炭酸水に溶解されている炭酸ガスの濃度は、標準状態(1atm)かつ25℃において、500mg/L以上、好ましくは1000〜1500mg/Lである。500mg/L以上であると、電子材料部材の表面がOHイオンによって荒らされる(エッチングされる)ことが十分に抑制される。 Thus, when used for cleaning electronic material members, the concentration of carbon dioxide dissolved in carbonated water is 500 mg / L or more, preferably 1000 to 1500 mg / L at standard conditions (1 atm) and 25 ° C. Oh Ru. When it is 500 mg / L or more, the surface of the electronic material member is sufficiently suppressed from being damaged (etched) by OH ions.

上記実施の形態は本発明の一例であり、本発明は上記実施の形態に限定されるものではない。   The above embodiment is an example of the present invention, and the present invention is not limited to the above embodiment.

例えば、上記実施の形態では、流量計11aで測定された原水の流量に基づいて流量調節弁15aの開度を調節し、気相室2cへの炭酸ガスの供給量を制御することにより、炭酸水の溶存炭酸ガス濃度を制御しているが、溶存炭酸ガス濃度の制御方法はこれに限定されるものではない。例えば、炭酸ガス溶解膜モジュール2の気相室の圧力を制御して、脱気水に溶解させる炭酸ガスの量を調節することにより、炭酸水中の溶存炭酸ガス濃度を制御してもよい。また、真空ポンプを制御して脱気膜モジュール1の気相室1c内の圧力を調節し、脱気水の脱気の程度を調節してもよい。この場合、炭酸ガス溶解膜モジュール2において、脱気した分だけ炭酸ガスを溶解させることにより、炭酸水の溶存炭酸ガス濃度が制御される。   For example, in the above-described embodiment, the opening of the flow rate control valve 15a is adjusted based on the flow rate of the raw water measured by the flow meter 11a, and the amount of carbon dioxide gas supplied to the gas phase chamber 2c is controlled. Although the dissolved carbon dioxide concentration of water is controlled, the method for controlling the dissolved carbon dioxide concentration is not limited to this. For example, the concentration of dissolved carbon dioxide in the carbonated water may be controlled by controlling the pressure in the gas phase chamber of the carbon dioxide-dissolved membrane module 2 and adjusting the amount of carbon dioxide dissolved in the deaerated water. Further, the degree of deaeration of the deaerated water may be adjusted by controlling the pressure in the gas phase chamber 1c of the deaeration membrane module 1 by controlling the vacuum pump. In this case, the dissolved carbon dioxide concentration in the carbonated water is controlled by dissolving the carbon dioxide in the carbon dioxide-dissolving membrane module 2 by the amount deaerated.

上記実施の形態では、脱気膜モジュールを用いて原水の脱気を行ったが、これに限定されるものではなく、例えば、真空脱気、蒸留等によって原水の脱気を行ってもよい。   In the above embodiment, the raw water is deaerated using the deaeration membrane module. However, the raw water is not limited to this, and the raw water may be deaerated by, for example, vacuum deaeration or distillation.

上記実施の形態では、炭酸ガス溶解膜モジュールを用いて脱気水に炭酸ガスを溶解させたが、これに限定されるものではなく、例えば、バブリング、ラインミキシング、液化炭酸の注入等によって脱気水に炭酸ガスを溶解させてもよい。   In the above embodiment, the carbon dioxide gas is dissolved in the deaerated water using the carbon dioxide-dissolving membrane module. However, the present invention is not limited to this. Carbon dioxide gas may be dissolved in water.

以下、実施例及び比較例を参照して、本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

[実施例1]
図1の装置を用いて炭酸水を製造した。装置及び測定条件の詳細は以下の通りである。
[Example 1]
Carbonated water was produced using the apparatus shown in FIG. Details of the apparatus and measurement conditions are as follows.

脱気膜(気体透過膜1a):セルガード(株)製「リキセル G284」
溶解膜(気体透過膜2a):セルガード(株)製「リキセル G284」
原水:窒素ガスを飽和濃度まで溶解した超純水
原水送水量:20L/min
水温:25℃
脱気室の気相室の圧力:2kPa(98%脱気に相当)
炭酸ガス供給量:15.3L(標準状態)/min
ここで、この炭酸ガス供給量は、上記原水送水量の原水から溶存炭酸ガス濃度1500mg/Lの炭酸水を製造するのに必要な炭酸ガス供給量を計算によって求めた値である。
Degassing membrane (gas permeable membrane 1a): “Lixel G284” manufactured by Celgard Co., Ltd.
Dissolved membrane (gas permeable membrane 2a): “Lixel G284” manufactured by Celgard Co., Ltd.
Raw water: Ultra-pure water in which nitrogen gas is dissolved to saturation concentration Raw water feed rate: 20 L / min
Water temperature: 25 ° C
Pressure in the gas phase chamber of the deaeration chamber: 2 kPa (equivalent to 98% deaeration)
Carbon dioxide supply rate: 15.3 L (standard state) / min
Here, the carbon dioxide supply amount is a value obtained by calculating the carbon dioxide supply amount necessary to produce carbonated water having a dissolved carbon dioxide concentration of 1500 mg / L from the raw water of the raw water supply amount.

このようにして製造した炭酸水を、洗浄槽(容積40L)に供給した。このとき、炭酸水から気泡は発生しなかった。この洗浄槽内のpHを測定した結果、pH3.9程度であった。   The carbonated water produced in this way was supplied to a washing tank (volume 40 L). At this time, no bubbles were generated from the carbonated water. As a result of measuring the pH in this washing tank, it was about pH 3.9.

また、0.5%フッ酸含有水溶液(DHF)に浸漬して表面処理を施したシリコンウェハを、直ちにこの洗浄槽内に投入し、洗浄槽に炭酸水をオーバーフローさせた状態で10分間保持した。その後、シリコンウェハを洗浄槽から取り出し、乾燥させた。処理後のウェハ平坦度は3Åであった。   Further, the silicon wafer immersed in a 0.5% hydrofluoric acid-containing aqueous solution (DHF) and subjected to surface treatment was immediately put into the cleaning tank, and held for 10 minutes with carbonated water overflowing into the cleaning tank. . Thereafter, the silicon wafer was taken out of the cleaning tank and dried. The wafer flatness after processing was 3 mm.

このように、実施例1によると、過飽和にすることなく、高濃度の炭酸水を製造することができた。また、リンスによるウェハ表面の荒れを十分に抑制することができた。   Thus, according to Example 1, high concentration carbonated water was able to be manufactured, without being oversaturated. Further, the surface roughness of the wafer due to rinsing could be sufficiently suppressed.

[比較例1]
脱気膜モジュールによる原水の脱気を省略したこと以外は実施例1と同様にして、実験を行った。
[Comparative Example 1]
The experiment was performed in the same manner as in Example 1 except that the degassing of the raw water by the degassing membrane module was omitted.

その結果、炭酸水を洗浄槽に導入したときに気泡が発生した。また、シリコンウェハを洗浄槽内に投入したときに、この気泡がウェハ表面に付着し、平坦度は測定できないほど荒れていた。   As a result, bubbles were generated when carbonated water was introduced into the washing tank. Further, when the silicon wafer was put into the cleaning tank, the bubbles adhered to the wafer surface, and the flatness was so rough that it could not be measured.

このように、比較例1によると、シリコンウェハ表面を均一にリンスすることができなかった。シリコンウェハ表面は、実施例1と比べて著しく荒れていた。   Thus, according to Comparative Example 1, the silicon wafer surface could not be rinsed uniformly. The surface of the silicon wafer was extremely rough as compared with Example 1.

なお、炭酸水を用いずに、従来通り超純水でシリコンウェハを洗浄したところ、平坦度は5Å程度であり、実施例1と比べて荒れていた。   In addition, when the silicon wafer was washed with ultrapure water as usual without using carbonated water, the flatness was about 5 mm, which was rough as compared with Example 1.

実施の形態に係るガス溶解水の炭酸水の製造装置及び製造方法を説明する図面である。It is drawing explaining the manufacturing apparatus and manufacturing method of carbonated water of the gas dissolution water which concern on embodiment.

1 脱気膜モジュール
2 炭酸ガス溶解膜モジュール
1a,2a 気体透過膜
1b,2b 液相室
1c,2c 気相室
3 真空ポンプ
4 炭酸ガス供給器
11a 流量計
DESCRIPTION OF SYMBOLS 1 Deaeration membrane module 2 Carbon dioxide gas melt | dissolution membrane module 1a, 2a Gas permeable membrane 1b, 2b Liquid phase chamber 1c, 2c Gas phase chamber 3 Vacuum pump 4 Carbon dioxide gas supply device 11a Flow meter

Claims (4)

水に溶解している溶存ガスを脱気する溶存ガス脱気部と、
この脱気された水に炭酸ガスを溶解させる炭酸ガス溶解部と
を有する炭酸水の製造装置であって、製造される炭酸水の標準状態(1atm)かつ25℃における溶存炭酸ガス濃度が500mg/L以上であり、該炭酸水が、フッ酸含有液で表面処理した後のシリコンウェハの洗浄水であることを特徴とする炭酸水の製造装置。
A dissolved gas degassing part for degassing dissolved gas dissolved in water;
An apparatus for producing carbonated water having a carbon dioxide gas dissolving part for dissolving carbon dioxide gas in the degassed water, wherein the concentration of dissolved carbon dioxide at a standard state (1 atm) and 25 ° C. of the produced carbonated water is 500 mg / der above L is, carbon acid water producing apparatus of the carbonated water, wherein the wash water der Rukoto the silicon wafer after surface treatment with hydrofluoric acid-containing solution.
請求項1において、前記炭酸ガス溶解部は、内部が気体透過膜によって気相室と液相室に区画された膜モジュールを有しており、
該膜モジュールは、該液相室に前記脱気部で脱気された脱気水を供給すると共に、該気相室に前記炭酸ガスを供給し、該炭酸ガスを該気体透過膜を介して該脱気水に供給することにより、該炭酸ガスを該脱気水に溶解させるものであることを特徴とする炭酸水の製造装置。
In Claim 1, the carbon dioxide gas dissolving part has a membrane module whose inside is partitioned into a gas phase chamber and a liquid phase chamber by a gas permeable membrane,
The membrane module supplies degassed water degassed by the degassing unit to the liquid phase chamber, and also supplies the carbon dioxide gas to the gas phase chamber, and passes the carbon dioxide gas through the gas permeable membrane. An apparatus for producing carbonated water, wherein the carbon dioxide gas is dissolved in the deaerated water by supplying the deaerated water.
請求項1又は2において、前記溶存ガス脱気部は、内部が気体透過膜によって気相室と液相室に区画された膜モジュールを有しており、
該膜モジュールは、該液相室に前記水を供給し、該水に溶解している溶存ガスを該気体透過膜を介して該気相室に排出することにより、該溶存ガスを脱気するものであることを特徴とする炭酸水の製造装置。
In Claim 1 or 2, the dissolved gas deaeration part has a membrane module that is partitioned into a gas phase chamber and a liquid phase chamber by a gas permeable membrane,
The membrane module degasses the dissolved gas by supplying the water to the liquid phase chamber and discharging the dissolved gas dissolved in the water to the gas phase chamber through the gas permeable membrane. An apparatus for producing carbonated water,
請求項1ないしのいずれか1項の炭酸水の製造装置を用いて炭酸水を製造することを特徴とする炭酸水の製造方法。 A method for producing carbonated water, comprising producing carbonated water using the carbonated water production apparatus according to any one of claims 1 to 3 .
JP2007209203A 2007-08-10 2007-08-10 Carbonated water manufacturing apparatus and manufacturing method Active JP5358910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007209203A JP5358910B2 (en) 2007-08-10 2007-08-10 Carbonated water manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007209203A JP5358910B2 (en) 2007-08-10 2007-08-10 Carbonated water manufacturing apparatus and manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012166756A Division JP2013008976A (en) 2012-07-27 2012-07-27 Cleaning method of electronic material member

Publications (2)

Publication Number Publication Date
JP2009040656A JP2009040656A (en) 2009-02-26
JP5358910B2 true JP5358910B2 (en) 2013-12-04

Family

ID=40441807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007209203A Active JP5358910B2 (en) 2007-08-10 2007-08-10 Carbonated water manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP5358910B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088799A (en) * 2009-10-26 2011-05-06 Mitsubishi Electric Corp Method of manufacturing semiconductor device and laser machining device
JP5999222B2 (en) * 2015-05-29 2016-09-28 栗田工業株式会社 Gas dissolved water supply apparatus and gas dissolved water manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691061B2 (en) * 1990-06-28 1994-11-14 新日本製鐵株式会社 Silicon wafer cleaning method
JP3914624B2 (en) * 1997-12-24 2007-05-16 栗田工業株式会社 How to reuse cleaning water for electronic materials
JP2002058725A (en) * 2000-08-21 2002-02-26 Mitsubishi Rayon Eng Co Ltd Method for manufacturing carbonated water
JP2003088738A (en) * 2001-09-17 2003-03-25 Mitsubishi Rayon Co Ltd Carbonated warm water production apparatus
JP2003334433A (en) * 2002-05-16 2003-11-25 Kurita Water Ind Ltd Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water
JP2004313749A (en) * 2003-04-02 2004-11-11 Mitsubishi Rayon Co Ltd Apparatus and method for producing carbonated water

Also Published As

Publication number Publication date
JP2009040656A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
US9129797B2 (en) Cleaning method
US8999069B2 (en) Method for producing cleaning water for an electronic material
JP5072062B2 (en) Method, apparatus and apparatus for producing hydrogen gas-dissolved cleaning water
US11817309B2 (en) Method of producing heated ozone water, heated ozone water, and semiconductor wafer-cleaning liquid
JP2013258391A (en) Generation method of chemical liquid for substrate processing, generation unit of chemical liquid for substrate processing, and substrate processing system
TWI601695B (en) Method for producing ozone gas dissolved water and washing method of electronic material
JP2010234298A (en) Device for supplying water containing dissolved gas and method for producing water containing dissolved gas
JP3765354B2 (en) Method for producing hydrogen-containing ultrapure water
JP2007000699A (en) Production method of nitrogen gas-dissolved water
JP2012143708A (en) Washing method
JP5320665B2 (en) Ultrapure water production apparatus and method
TW201838930A (en) Cleaning water supply device
JP5380870B2 (en) Method and apparatus for producing gas-dissolved water
JP5358910B2 (en) Carbonated water manufacturing apparatus and manufacturing method
JP6428806B2 (en) Semiconductor substrate cleaning apparatus and semiconductor substrate cleaning method
JP3296407B2 (en) Cleaning method and cleaning device for electronic component members
JP3639102B2 (en) Wet processing equipment
JP4470101B2 (en) Nitrogen-dissolved ultrapure water production method
JP2010046570A (en) Apparatus for manufacturing feed liquid for ultrasonic treatment apparatus, method for manufacturing feed liquid for ultrasonic treatment apparatus and ultrasonic treatment system
JP2012176360A (en) Production unit of gas dissolved water
JPH10128254A (en) Washing method for electronic members and device therefor
JP2013008976A (en) Cleaning method of electronic material member
JP5092968B2 (en) Gas dissolved water supply apparatus and gas dissolved water manufacturing method
JP2012139656A (en) Method and system for making nitrogen gas-dissolved water
JP2009254935A (en) Gas dissolving membrane device and method of manufacturing gas-dissolved solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5358910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250