JPH0691061B2 - Silicon wafer cleaning method - Google Patents

Silicon wafer cleaning method

Info

Publication number
JPH0691061B2
JPH0691061B2 JP16843590A JP16843590A JPH0691061B2 JP H0691061 B2 JPH0691061 B2 JP H0691061B2 JP 16843590 A JP16843590 A JP 16843590A JP 16843590 A JP16843590 A JP 16843590A JP H0691061 B2 JPH0691061 B2 JP H0691061B2
Authority
JP
Japan
Prior art keywords
cleaning
silicon wafer
contaminants
silicon
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16843590A
Other languages
Japanese (ja)
Other versions
JPH0459700A (en
Inventor
進 大塚
正 佐近
修司 宗平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16843590A priority Critical patent/JPH0691061B2/en
Publication of JPH0459700A publication Critical patent/JPH0459700A/en
Publication of JPH0691061B2 publication Critical patent/JPH0691061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、シリコンウエハの表面を高清浄な状態にする
ための洗浄方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a cleaning method for bringing the surface of a silicon wafer into a highly clean state.

従来の技術 近年、デバイスの高集積化に伴い、その基板となるシリ
コンウエハの表面をより一層清浄化することが強く望ま
れている。
2. Description of the Related Art In recent years, as devices have been highly integrated, it has been strongly desired to further clean the surface of a silicon wafer which is a substrate thereof.

一般にシリコンウエハは、円柱状の単結晶シリコンから
円盤状に切出された後、ラッピング、エッチング、ポリ
ッシング、洗浄の各工程を経て、加工歪や汚染物質が除
去された平滑な表面の製品となる。この最終製品のシリ
コンウエハの表面に遷移金属等の金属系汚染物質がある
と、酸化誘起積層欠陥の発生やライフタイムの低下とい
ったシリコンウエハの品質上の問題が生じ、さらにデバ
イスの電気特性劣化の原因ともなる。また、シリコン粒
子や塵等の微粒子汚染物質(パーティクルとも言われ
る)が存すると、デバイス配線の断線やショートの原因
となる。このため、これら汚染物質を除去して清浄にす
るための洗浄が行われる。
Generally, a silicon wafer is cut into a disk shape from a cylindrical single crystal silicon, and then undergoes lapping, etching, polishing, and cleaning processes to become a product with a smooth surface from which processing strains and contaminants have been removed. . If metal-based contaminants such as transition metals are present on the surface of the silicon wafer of this final product, quality problems of the silicon wafer such as generation of oxidation-induced stacking faults and reduction of lifetime will occur, and further deterioration of the electrical characteristics of the device will occur. It can be a cause. Further, the presence of fine particle contaminants (also referred to as particles) such as silicon particles or dust causes disconnection or short circuit of device wiring. Therefore, cleaning is performed to remove these contaminants and make them clean.

従来のシリコンウエハの洗浄方法としては、RCAのKern
等が発明した「RCA洗浄法」、即ち、希弗酸水溶液で
洗浄する方法、塩酸と過酸化水素の混合水溶液で洗浄
する方法、硫酸と過酸化水素の混合水溶液で洗浄する
方法、アンモニアと過酸化水素の混合水溶液で洗浄す
る方法、あるいはこれらの洗浄液を組合わせて洗浄す
る方法が行われている。これら各洗浄法で使用される洗
浄液には、微粒子汚染や金属系汚染物質を極力低減した
高純度のELグレードといわれる薬品類が使用されてい
る。また、水も超純水が使用されている。
Kern of RCA is the conventional cleaning method for silicon wafers.
Invented "RCA cleaning method", that is, a method of cleaning with a dilute aqueous solution of hydrofluoric acid, a method of cleaning with a mixed solution of hydrochloric acid and hydrogen peroxide, a method of cleaning with a mixed solution of sulfuric acid and hydrogen peroxide, a method of cleaning with ammonia and a peroxide. A method of cleaning with a mixed aqueous solution of hydrogen oxide, or a method of cleaning with a combination of these cleaning solutions is performed. As the cleaning liquid used in each of these cleaning methods, chemicals called EL grade of high purity, in which fine particle contamination and metallic contaminants are reduced as much as possible, are used. Also, ultrapure water is used as water.

従来の洗浄方法のうち、の希弗酸水溶液はシリコンウ
エハ表面に通常10Å程度の厚さで存在する自然酸化膜を
溶解する能力を有するため、酸化膜中の金属系汚染物質
を除去する効果は高い。しかし、Siよりもイオン化傾向
が小さい金属系汚染物質、例えばCuでシリコンウエハ表
面が汚染されている場合、Cuは完全には除去できず、洗
浄液中の不純物Cuの濃度によってはシリコンウエハは再
び汚染される。また、微粒子汚染物質の低減が難しいと
いう問題がある。
Among the conventional cleaning methods, the dilute hydrofluoric acid solution has the ability to dissolve the natural oxide film that normally exists on the silicon wafer surface with a thickness of about 10 Å, so the effect of removing metallic contaminants in the oxide film is not high. However, if the surface of the silicon wafer is contaminated with a metal-based contaminant having a smaller ionization tendency than Si, such as Cu, Cu cannot be completely removed, and the silicon wafer is contaminated again depending on the concentration of the impurity Cu in the cleaning liquid. To be done. In addition, there is a problem that it is difficult to reduce particulate contaminants.

の塩酸と過酸化水素の混合水溶液は塩酸が持つ金属系
汚染物質に対する高溶解力を利用したものであるが、酸
化膜を溶解する能力はない。このため、酸化膜上の金属
系汚染物質、特に還元性の酸に溶解し易い金属系汚染物
質(例えば、Al、Ca、Cr、Fe、Mg、Zn等)を除去する効
果は高い。しかし、酸化性の酸には溶解し易いが、還元
性の酸に溶解し難い金属系汚染物質(例えば、Co、Cu、
Mn、Ni等)の除去効果は低い。また、酸化膜中や酸化膜
とシリコンの界面に存在する金属系汚染物質を除去する
効果も低い。
The mixed aqueous solution of hydrochloric acid and hydrogen peroxide utilizes the high dissolving power of hydrochloric acid with respect to metallic contaminants, but does not have the ability to dissolve an oxide film. Therefore, the effect of removing the metallic contaminants on the oxide film, particularly the metallic contaminants (eg, Al, Ca, Cr, Fe, Mg, Zn, etc.) that are easily dissolved in the reducing acid is high. However, it is easy to dissolve in an oxidizing acid, but difficult to dissolve in a reducing acid (for example, Co, Cu,
The effect of removing Mn, Ni, etc.) is low. Further, the effect of removing the metallic contaminants existing in the oxide film or at the interface between the oxide film and silicon is also low.

の硫酸と過酸化水素の混合水溶液は一般的には有機物
汚染物質やレジスト除去のために用いられる。しかし、
硫酸も金属系汚染物質を溶解する能力は高く、洗浄液
と同等の金属系汚染物質除去能力を持つ。
The mixed aqueous solution of sulfuric acid and hydrogen peroxide is generally used for removing organic contaminants and resist. But,
Sulfuric acid also has a high ability to dissolve metal contaminants, and has the same ability to remove metal contaminants as a cleaning liquid.

のアンモニアと過酸化水素の混合液はシリコン自身を
溶解する働きがあるため、その上に存在する金属系汚染
物質を除去する効果は高い。しかし、塩基性の洗浄液中
で生成する酸化膜は洗浄液中の金属系汚染物質(例え
ば、Al、Fe、Zn等)を取り込み易いという性質があり、
シリコンウエハが再汚染される可能性が高い。しかし、
この方法は微粒子の除去効果が高いため、ウエハメーカ
ーやデバイスメーカーで広く利用されている。
Since the mixed solution of ammonia and hydrogen peroxide has a function of dissolving the silicon itself, it has a high effect of removing the metal-based contaminants existing thereon. However, the oxide film formed in the basic cleaning liquid has a property of easily taking in metal contaminants (for example, Al, Fe, Zn, etc.) in the cleaning liquid,
Silicon wafers are likely to be recontaminated. But,
Since this method has a high effect of removing fine particles, it is widely used by wafer makers and device makers.

また、上記従来法の問題点を解消する方法として、60重
量%の硝酸と0.1重量%以下の弗化水素の混合水溶液中
にシリコンウエハを浸漬して洗浄するスライトエッチ法
が提案されている(Ritsuo Takizawaら、“Extended Ab
stracts of Solid State Devices and Materials"、198
8年、p145)。
As a method for solving the problems of the above conventional method, a light etching method has been proposed in which a silicon wafer is immersed in a mixed aqueous solution of 60 wt% nitric acid and 0.1 wt% or less of hydrogen fluoride for cleaning ( Ritsuo Takizawa et al., “Extended Ab
stracts of Solid State Devices and Materials ", 198
8 years, p145).

しかし、半導体用グレードと呼ばれる最高純度の硝酸で
も、ppbオーダーまたはサブppbオーダーの金属系汚染物
質、例えば、Al、Ca、Cr、Cu、Fe、Mg、Ni、Zn等が含ま
れているので、60%もの高濃度の硝酸を含む洗浄液中の
金属系汚染物質の濃度は高く、また、石英ガラス製の洗
浄槽を使用すると石英ガラス中の金属不純物が溶出し、
その濃度はますます高まる。
However, even the highest purity nitric acid called semiconductor grade contains ppb order or sub ppb order metal contaminants, for example, Al, Ca, Cr, Cu, Fe, Mg, Ni, Zn, etc. The concentration of metallic pollutants in the cleaning liquid containing nitric acid as high as 60% is high, and when a cleaning tank made of quartz glass is used, metallic impurities in the quartz glass are eluted,
Its concentration increases more and more.

そして、高濃度硝酸の強い酸化力によりシリコンウエハ
の表面に酸化膜が形成され、洗浄液中の金属系汚染物質
が酸化膜中に取り込まれ易くなる。従って、スライトエ
ッチ法でもシリコンウエハの高清浄化には限界があると
言わざるをえない。
Then, an oxide film is formed on the surface of the silicon wafer due to the strong oxidizing power of the high-concentration nitric acid, and the metal-based contaminants in the cleaning liquid are easily taken into the oxide film. Therefore, it must be said that there is a limit to the high cleanliness of the silicon wafer even with the slight etching method.

また更には、シリコンウエハを酸化炉にて酸化処理を施
し、該シリコンウエハ表面の金属系汚染物質を酸化膜中
に取り込んだ酸化膜を形成させた後、該シリコンウエハ
を弗酸で処理して酸化膜を溶解し、酸化膜中の金属系汚
染物質を弗酸に溶解して、除去する犠牲酸化といわれる
方法も行われている。しかし、金属系汚染物質によって
はシリコン基板中に拡散(例えば、Cu)したり、弗酸に
不溶のシリサイドを作るもの(例えば、Fe)がある。こ
のため、金属系汚染物質を除去できないばかりか、酸化
誘起積層欠陥の発生やライフタイム、酸化膜の絶縁破壊
の低下原因となることもある。従って、犠牲酸化法でも
シリコンウエハの高清浄化には限界があると言わざるを
えない。
Furthermore, the silicon wafer is subjected to an oxidation treatment in an oxidation furnace to form an oxide film in which metallic contaminants on the surface of the silicon wafer are incorporated into the oxide film, and then the silicon wafer is treated with hydrofluoric acid. A method called sacrificial oxidation in which the oxide film is dissolved and the metallic contaminants in the oxide film are dissolved in hydrofluoric acid and removed is also used. However, some metal-based contaminants diffuse (eg, Cu) into a silicon substrate or form a silicide insoluble in hydrofluoric acid (eg, Fe). For this reason, not only the metal-based contaminants cannot be removed, but also the generation of oxidation-induced stacking faults, the lifetime, and the decrease in dielectric breakdown of the oxide film may be caused. Therefore, it must be said that the sacrificial oxidation method has a limit to the high cleaning of the silicon wafer.

発明が解決しようとする課題 本発明は、シリコンウエハの製造工程とシリコンウエハ
表面の金属系汚染物質の種類、汚染量の関係について、
フレームレス原子吸光分析により調べた。また、シリコ
ンウエハの清浄度を評価する方法の一つであるマイクロ
波反射法によるライフタイム(以下、再結合ライフタイ
ムという)を測定することにより、製品としてのシリコ
ンウエハの再結合ライフタイムと金属系汚染物質の関係
を調べた。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention relates to the relationship between the manufacturing process of a silicon wafer, the type of metal-based contaminant on the surface of the silicon wafer, and the amount of contamination.
It was examined by flameless atomic absorption spectrometry. In addition, by measuring the lifetime (hereinafter referred to as recombination lifetime) by the microwave reflection method, which is one of the methods for evaluating the cleanliness of a silicon wafer, the recombination lifetime of the silicon wafer as a product and the metal The relationship of system pollutants was investigated.

その結果、シリコンウエハ表面の金属系汚染物質は、シ
リコンウエハの製造工程により異なるが、使用する薬品
類に元々含まれていた不純物金属および製造装置を構成
する材料によって、Al、Ca、Cr、Cu、Fe、Mg、Ni、Zn等
で汚染されることが判明した。また、洗浄をアンモニア
と過酸化水素の混合水溶液で行った場合には、シリコン
ウエハはFeで汚染され、再結合ライフタイムが低下する
ことが判明した。
As a result, the metallic contaminants on the surface of the silicon wafer differ depending on the manufacturing process of the silicon wafer, but depending on the impurity metals originally contained in the chemicals used and the materials constituting the manufacturing apparatus, Al, Ca, Cr, Cu. , Fe, Mg, Ni, Zn, etc. were found to be contaminated. It was also found that when cleaning was performed with a mixed aqueous solution of ammonia and hydrogen peroxide, the silicon wafer was contaminated with Fe and the recombination lifetime was reduced.

本発明者がシリコンウエハのラッピング、エッチング、
ポリッシング、洗浄の各工程後の汚染金属、特に遷移金
属であるCr、Cu、Fe、Ni、Znの汚染量を測定した結果を
第1表に示す。ラッピングはpHが10〜11のアルカリ性水
溶液に、砥粒としてアルミナを分散させた研磨液で行
い、エッチングは硝酸と弗酸の混酸で行い、ポリッシン
グはpHが約10のアルカリ性水溶液に、砥粒としてシリカ
を分散させた研磨液で行い、洗浄はアンモニアと過酸化
水素の混合水溶液で行ったものである。
The inventor of the present invention wraps and etches silicon wafers,
Table 1 shows the results of measuring the amounts of contaminant metals, especially transition metals such as Cr, Cu, Fe, Ni, and Zn, after the polishing and cleaning steps. Lapping is performed with an alkaline aqueous solution having a pH of 10 to 11 using a polishing liquid in which alumina is dispersed as abrasive grains, etching is performed with a mixed acid of nitric acid and hydrofluoric acid, and polishing is performed with an alkaline aqueous solution having a pH of about 10 as abrasive grains. The polishing is performed with a polishing liquid in which silica is dispersed, and the cleaning is performed with a mixed aqueous solution of ammonia and hydrogen peroxide.

第1表から分るように、シリコンウエハはラッピング工
程でCr、Cu、Fe、Ni、Znで汚染される。なお、表中のND
は分析定量下限以下の値であることを示す。Crは1.0×1
09atoms/cm2未満、CuおよびFeは2.0×109atoms/cm2
満、Niは2.0×1010atoms/cm2未満である。エッチング工
程では前工程での金属系汚染物質はかなり除去される
が、なおCr、Cu、Fe、Znで汚染されている。ポリッシン
グ工程で再びCr、Cu、Fe、Ni、Znが増加する。洗浄工程
後は定量下限以下の場合が多いが、Cr、Cu、Fe、Ni、Zn
で汚染されているウエハが時折存在する。この他、各工
程のシリコンウエハは、いずれもAl、Ca、Mgで汚染され
ている。
As can be seen from Table 1, silicon wafers are contaminated with Cr, Cu, Fe, Ni and Zn during the lapping process. In addition, ND in the table
Indicates that the value is below the analytical lower limit of quantification. Cr is 1.0 x 1
It is less than 09 atoms / cm 2 , Cu and Fe are less than 2.0 × 10 9 atoms / cm 2 , and Ni is less than 2.0 × 10 10 atoms / cm 2 . In the etching process, the metal-based pollutants in the previous process are considerably removed, but they are still contaminated with Cr, Cu, Fe, and Zn. Cr, Cu, Fe, Ni and Zn increase again in the polishing process. After the cleaning process, it is often below the lower limit of quantification, but Cr, Cu, Fe, Ni, Zn
Occasionally there are wafers that are contaminated with. In addition, the silicon wafer in each process is contaminated with Al, Ca, and Mg.

各工程でシリコンウエハが汚染を受けるのは、次の理由
によると考えられる。
It is considered that the silicon wafer is contaminated in each process for the following reason.

ラッピング工程の研磨液は、砥粒によるシリコン面の
研削と共にシリコンに対しエッチング作用を持たせるた
め、媒体である水に有機アミンを添加し、それにアルミ
ナを分散させたもの、pHが10〜11のアルカリ性となって
いる。また、該研磨液は不純物としてCa、Cr、Cu、Fe、
Mg、Ni、Zn等を多量に含む。例えばFeは500〜1000ppmも
含まれている。このため、研磨での研削とエッチング作
用により活性を表面状態となったシリコン面への研磨剤
中の不純物金属の吸着による汚染、または研磨の際に、
Si表面層に生じる歪み層中の微細な亀裂部に、研磨剤粒
子および研磨剤中の不純物金属がめり込む(深さ:15μ
m以上)ことによる汚染が考えられる(門馬ら、“第7
回半導体・集積回路シンポジウム”、1974年、p.10
3)。
The polishing liquid used in the lapping process is one in which an organic amine is added to water, which is a medium, and alumina is dispersed therein, in order to have an etching action on silicon while grinding the silicon surface with abrasive grains, and a pH of 10-11. It is alkaline. Further, the polishing liquid contains impurities such as Ca, Cr, Cu, Fe,
Contains a large amount of Mg, Ni, Zn, etc. For example, Fe also contains 500 to 1000 ppm. Therefore, during the polishing due to the adsorption of the impurity metal in the polishing agent on the silicon surface which has become the surface state due to the grinding and etching action in the polishing, or during polishing,
Abrasive particles and impurity metal in the abrasive penetrate into the minute cracks in the strained layer on the Si surface layer (depth: 15μ
(more than m) may cause pollution (Kadoma et al., “No. 7”)
"Semiconductor and Integrated Circuits Symposium", 1974, p.10
3).

エッチング(エッチング量:20μm/片面)工程後も、
検出されるCr、Fe等は、ラッピングの際に、Si表面層に
生じる歪み層中の微細な亀裂部にめり込んだ汚染物質と
考えられる。
Even after the etching (etching amount: 20 μm / one side) process,
The detected Cr, Fe, etc. are considered to be contaminants embedded in fine cracks in the strained layer generated in the Si surface layer during lapping.

ポリッシング工程の研磨液は、砥粒によるシリコン面
の研削と共にシリコンに対しエッチング作用を持たせる
ため、媒体である水に水酸化カリウムまたはアンモニア
を添加し、それにシリカを分散させたもので、pHが約10
のアルカリ性となっている。また、該研磨液中には、不
純物としてAl、Ca、Cr、Cu、Fe、Mg、Ni、Zn等が多量に
含まれる。例えばFeは1〜3ppmも含まれている。このた
め、シリコンウエハはラッピング工程での汚染と同じ理
由により、ポリッシング工程でも汚染されると考えられ
る。
The polishing liquid used in the polishing step is one in which potassium hydroxide or ammonia is added to water, which is a medium, and silica is dispersed therein in order to have an etching action on silicon while grinding the silicon surface with abrasive grains. About 10
It is alkaline. Further, the polishing liquid contains a large amount of Al, Ca, Cr, Cu, Fe, Mg, Ni, Zn and the like as impurities. For example, Fe also contains 1 to 3 ppm. Therefore, it is considered that the silicon wafer is also contaminated in the polishing process for the same reason as the contamination in the lapping process.

洗浄工程での汚染、特にFe汚染は、アンモニアと過酸
化水素の混合水溶液の洗浄液中に含まれる極微量の不純
物Feが原因である。該洗浄液中の不純物Fe量が0.5ppbと
いう極微量であっても、シリコンウエハ表面に8×1011
atoms/cm2程度吸着して汚染し、その結果、再結合ライ
フタイムが低下する(大塚ら、“第34回半導体・集積回
路技術シンポジウム予稿集”、1988年、p.37)。
Contamination in the cleaning process, particularly Fe contamination, is caused by a very small amount of impurity Fe contained in the cleaning solution of the mixed aqueous solution of ammonia and hydrogen peroxide. Even if the amount of impurity Fe in the cleaning solution is as small as 0.5 ppb, the surface of the silicon wafer will be 8 × 10 11
Adsorption of about atoms / cm 2 and contamination will reduce the recombination lifetime (Otsuka et al., “34th Semiconductor and Integrated Circuit Technology Symposium Proceedings”, 1988, p.37).

上記のように、シリコンウエハが汚染される状況は色々
である。このため、シリコンウエハ清浄化のための洗浄
に際しては、金属系汚染物質の存在位置を知ることが大
事である。即ち、シリコンウエハ表面の汚染か、シリコ
ン基板中にめり込んでいる汚染かによって、洗浄液にシ
リコンのエッチング性を持たせる必要があるか否かを決
める必要がある。また、金属系汚染物質の形態を知るこ
とも大事である。即ち、金属系汚染物質は金属単体、酸
化物、塩類、シリサイドのような合金、およびケイ酸塩
のいずれかによって、これらを効率的に溶解・除去する
酸の種類、組合わせを選択し、かつ最適な洗浄条件を決
めることが重要である。
As described above, there are various situations where a silicon wafer is contaminated. For this reason, it is important to know the location of the metal-based contaminant when cleaning the silicon wafer for cleaning. That is, it is necessary to determine whether or not the cleaning liquid needs to have the etching property of silicon depending on the contamination of the surface of the silicon wafer or the contamination embedded in the silicon substrate. It is also important to know the form of metallic pollutants. That is, the metal-based pollutant is selected from a simple metal, an oxide, a salt, an alloy such as a silicide, and a silicate, and the kind and combination of acids for efficiently dissolving and removing them are selected, and It is important to determine the optimum cleaning conditions.

本発明は、シリコンウエハの製造工程中に受ける汚染や
製品とする最終の洗浄に際して、Cr、Cu、Fe、Ni、Zn等
の金属系汚染物質および微粒子汚染物質を極めて低減
し、酸化誘起積層欠陥の発生やライフタイムの低下とい
った品質問題がなく、かつデバイスにした場合、酸化膜
の絶縁破壊の低下や電気特性の劣化もない高清浄度のシ
リコンウエハを得ることを目的とする。
The present invention significantly reduces metal contaminants such as Cr, Cu, Fe, Ni, and Zn and particulate contaminants during the final cleaning of the product and contamination received during the manufacturing process of silicon wafers, and induces oxidation-induced stacking faults. It is an object of the present invention to obtain a silicon wafer of high cleanliness, which does not have quality problems such as occurrence of defects and deterioration of lifetime, and does not cause deterioration of dielectric breakdown of an oxide film or deterioration of electrical characteristics when used as a device.

課題を解決するための手段および作用 本発明の要旨はつぎのとうりである。Means and Actions for Solving the Problems The gist of the present invention is as follows.

シリコンウエハを洗浄するに際し、1重量%以上の塩酸
または硫酸を含有し、かつ1〜30重量%の硝酸を含有
し、さらに0.01〜10重量%の弗化水素を含有する水溶液
を洗浄液とすることを特徴とするシリコンウエハの洗浄
方法。
When cleaning a silicon wafer, an aqueous solution containing 1% by weight or more of hydrochloric acid or sulfuric acid, 1 to 30% by weight of nitric acid, and 0.01 to 10% by weight of hydrogen fluoride is used as a cleaning solution. A method for cleaning a silicon wafer, comprising:

本発明法は、シリコンウエハを洗浄するに際し、塩酸ま
たは硫酸、硝酸および弗酸の持つ優れた金属系汚染物質
の溶解力を利用すると共にこれらの酸を効果的に組合わ
せることにより、洗浄能力に優れた洗浄液を提供するも
のである。
According to the method of the present invention, when cleaning a silicon wafer, the ability to dissolve the excellent metallic contaminants of hydrochloric acid or sulfuric acid, nitric acid and hydrofluoric acid is utilized, and the effective combination of these acids improves the cleaning ability. It provides an excellent cleaning liquid.

即ち、本発明は、還元性の酸に良く溶解する金属系汚染
物質は、塩酸または硫酸および弗酸で溶解・除去し、酸
化性の酸に良く溶解する金属系汚染物質は、硝酸で溶解
・除去する。それと同時に、硝酸の持つシリコン酸化作
用を利用してシリコンウエハ表面に酸化膜を形成させ、
更に、弗酸の酸化膜溶解能力を利用することにより、洗
浄液にシリコンをエッチングする能力を持たせ、シリコ
ンウエハの酸化膜上の金属系汚染物質は勿論、酸化膜
中、酸化膜とシリコン基板界面およびシリコン基板中の
金属系汚染物質を効率良く、かつ徹底的に除去するもの
である。
That is, according to the present invention, metal-based contaminants that are soluble in reducing acids are dissolved and removed with hydrochloric acid or sulfuric acid and hydrofluoric acid, and metal-based contaminants that are soluble in oxidizing acids are dissolved with nitric acid. Remove. At the same time, an oxide film is formed on the surface of the silicon wafer by utilizing the silicon oxidation function of nitric acid,
Furthermore, by utilizing the ability of hydrofluoric acid to dissolve the oxide film, the cleaning liquid has the ability to etch silicon, and not only the metallic contaminants on the oxide film of the silicon wafer but also the oxide film and the interface between the silicon substrate and the silicon substrate. Also, it efficiently and thoroughly removes metallic contaminants in the silicon substrate.

本発明において、洗浄液液の塩酸、硫酸、硝酸および弗
化水素の濃度は、それぞれHCl、H2SO4、HNO3およびHFと
しての重量%である。塩酸または硫酸が1重量%未満、
硝酸が1重量%未満で、かつ弗化水素が0.01重量%未満
の場合は、金属系汚染物質のより一層の除去効果が不充
分である。塩酸または硫酸の濃度を増しても、金属系汚
染物質の除去効果は変わらないので、これらの酸の濃度
の上限は特に限定せず1重量%以上とした。
In the present invention, the concentrations of hydrochloric acid, sulfuric acid, nitric acid, and hydrogen fluoride in the cleaning liquid are weight% as HCl, H 2 SO 4 , HNO 3 and HF, respectively. Less than 1% by weight of hydrochloric acid or sulfuric acid,
When the nitric acid content is less than 1% by weight and the hydrogen fluoride content is less than 0.01% by weight, the effect of further removing the metallic contaminants is insufficient. Even if the concentration of hydrochloric acid or sulfuric acid is increased, the effect of removing metal contaminants does not change. Therefore, the upper limit of the concentration of these acids is not particularly limited and is set to 1% by weight or more.

弗化水素の濃度を増して10重量%を越えると、微粒子汚
染物質の増加傾向があるので、弗化水素の濃度は0.01〜
10重量%とした。また、硝酸の濃度を増して30重量%を
越えると、シリコンのエッチング量が過大になり、ウエ
ハ表面が荒れて曇った状態になるので、硝酸の濃度は1
〜30重量%とした。
If the concentration of hydrogen fluoride is increased to more than 10% by weight, the particulate contaminant tends to increase.
It was set to 10% by weight. If the concentration of nitric acid exceeds 30% by weight, the etching amount of silicon becomes excessive and the wafer surface becomes rough and cloudy.
-30% by weight.

本発明において、洗浄温度は特に限定しないが、塩酸ま
たは硫酸および硝酸による金属系汚染物質の溶解を容易
にするために、また、硝酸によるシリコンの酸化、特に
硝酸濃度が低い場合のシリコン酸化能力を促進させるた
めには高温にした方が良い。しかし、必要以上に高温に
すると塩酸、硝酸、弗化水素または水の蒸発が促進され
て洗浄液の組成が本発明の範囲から外れるおそれがあ
る。また、昇温に時間がかかり作業性を著しく損なうよ
うになる。従って、洗浄温度は常温〜80℃の範囲とする
のが望ましい。
In the present invention, the cleaning temperature is not particularly limited, but in order to facilitate the dissolution of metal-based contaminants by hydrochloric acid or sulfuric acid and nitric acid, and also the oxidation of silicon by nitric acid, especially the silicon oxidation ability when the nitric acid concentration is low. It is better to raise the temperature to accelerate it. However, if the temperature is raised to an unnecessarily high temperature, evaporation of hydrochloric acid, nitric acid, hydrogen fluoride or water is promoted, and the composition of the cleaning liquid may be out of the range of the present invention. In addition, it takes time to raise the temperature, and workability is significantly impaired. Therefore, the washing temperature is preferably in the range of normal temperature to 80 ° C.

また、洗浄液の成分として上記以外のもの、例えば弗化
アンモニア等の塩類を添加しても、洗浄能力が損なわれ
ることはない。
In addition, the cleaning ability will not be impaired even if a component other than those mentioned above, for example, a salt such as ammonia fluoride is added as a component of the cleaning liquid.

更に、従来公知の洗浄法と組合わせて行っても良い。例
えばアンモニアと過酸化水素の混合水溶液で洗浄し、さ
らに希弗酸水溶液で洗浄した後、本発明法により洗浄す
るとより効果的である。
Further, it may be carried out in combination with a conventionally known cleaning method. For example, it is more effective to wash with a mixed aqueous solution of ammonia and hydrogen peroxide, further with a dilute aqueous solution of hydrofluoric acid, and then with the method of the present invention.

実施例 約480×1010atoms/cm2のCr、約87×1010atoms/cm2のC
u、約3000×1010atoms/cm2のFe、約150×1010atoms/cm2
のNiにより表面が汚染されたシリコンウエハを第2表に
示す各種洗浄液に浸漬して10分間洗浄した結果を示す。
洗浄後のシリコンウエハは直ちに超純水中で5分間以上
の流水水洗を2回行い、スピンドライヤーにより乾燥し
た後、表面の汚染金属の分析に供した。
Cr embodiment about 480 × 10 10 atoms / cm 2 , about 87 × 10 10 atoms / cm 2 C
u, about 3000 × 10 10 atoms / cm 2 Fe, about 150 × 10 10 atoms / cm 2
The results obtained by immersing the silicon wafer whose surface was contaminated by Ni in the various cleaning solutions shown in Table 2 and cleaning it for 10 minutes are shown.
The washed silicon wafer was immediately washed twice in ultrapure water with running water for 5 minutes or more, dried with a spin dryer, and then subjected to analysis of contaminant metals on the surface.

分析は、硝弗酸溶液によりシリコンウエハの表層1μm
をエッチングして溶解し、該溶解液中の金属元素濃度を
フレーム原子吸光光度分析法により定量した。なお、表
中のNDは分析定量下限以下の値であることを示し、Crは
1.0×109atoms/cm2未満、CuおよびFeは2.0×109atoms/c
m2未満、Niは2.0×1010atoms/cm2未満である。
The analysis was performed using a nitric hydrofluoric acid solution to obtain a surface layer of the silicon wafer of 1 μm.
Was etched and dissolved, and the metal element concentration in the solution was quantified by flame atomic absorption spectrometry. In addition, ND in the table indicates that the value is below the analytical lower limit of quantification, and Cr is
Less than 1.0 × 10 9 atoms / cm 2 , 2.0 × 10 9 atoms / c for Cu and Fe
It is less than m 2 and Ni is less than 2.0 × 10 10 atoms / cm 2 .

シリコンウエハ表面の微粒子は、ウエハ表面微粒子計測
装置により測定し、10個/ウエハ以下を〇印、10個/ウ
エハ超を×印で表示した。またウエハ表面に集光灯の光
を当てて、曇の有無を目視により調べ、曇りのないもの
を〇印、曇りの発生しているものを×印で表示した。
The fine particles on the surface of the silicon wafer were measured by a wafer surface fine particle measuring device, and 10 particles / wafer or less were indicated by a circle, and 10 particles / wafer or more were indicated by a cross. In addition, light from a condenser lamp was applied to the surface of the wafer to visually check whether or not there was fogging, and those with no fogging were indicated with a circle, and those with fogging were indicated with a cross.

本発明の例とその比較例および従来例を第2表に示す。
第2表において、比較例のNNo.1、No6およびNo18は塩酸
または硫酸および硝酸が少ないために、特にFeおよびCu
の残存量が多く、同じくNo17は弗化水素が多すぎるため
微粒子汚染物質が残存した。
Table 2 shows examples of the present invention, comparative examples thereof, and conventional examples.
In Table 2, the comparative examples N No. 1, No 6 and No 18 have a small amount of hydrochloric acid or sulfuric acid and nitric acid, so that they are particularly Fe and Cu.
The residual amount of No. 17 was large, and similarly, No. 17 had too much hydrogen fluoride, so fine particle contaminants remained.

従来例のNo25スライトエッチ法はHNO3:60重量%、HF:0.
1重量%の水溶液で洗浄したものであるが、Cuの除去効
果は高いもののFeの除去効果が低い。
The conventional No25 light etching method is HNO 3 : 60% by weight, HF: 0.
Although washed with a 1 wt% aqueous solution, it has a high Cu removal effect but a low Fe removal effect.

No26アンモニア過酸化水素法はNH3:4.1重量%、H2O2:4.
4重量%の水溶液で洗浄したものであるが、各種洗浄液
の中でも最もFeの除去効果が低く、Cの除去効果も低
い。
No26 ammonia hydrogen peroxide method NH 3: 4.1 wt%, H 2 O 2: 4 .
Although it was washed with a 4% by weight aqueous solution, it has the lowest Fe removal effect and the lowest C removal effect among the various cleaning solutions.

No27塩酸過酸化水素法はHCl:5.1重量%、H2O2:4.4重量
%の水溶液で洗浄したものである。この液は金属系汚染
物質の除去効果の指標となる洗浄液であるが、本発明法
に比べ金属系汚染物質特にFe、Cr、Cuの除去効果が低
い。
The No. 27 hydrochloric acid-hydrogen peroxide method was washed with an aqueous solution of HCl: 5.1% by weight and H 2 O 2 : 4.4% by weight. Although this liquid is a cleaning liquid that serves as an index of the effect of removing metal contaminants, it has a lower effect of removing metal contaminants, especially Fe, Cr, and Cu, as compared with the method of the present invention.

No28希弗酸法はHF:1重量%の水溶液で洗浄したものであ
るが、Fe、Cr、Cu、Niの除去効果が低い。
The No. 28 diluted hydrofluoric acid method was washed with an aqueous solution of HF: 1% by weight, but the effect of removing Fe, Cr, Cu, Ni was low.

本発明例は何れもシリコンウエハ表面の微粒子汚染物質
および金属系汚染物質が極めて低減され、洗浄後の表面
に曇りが発生することもない。
In each of the examples of the present invention, fine particle contaminants and metallic contaminants on the surface of the silicon wafer are extremely reduced, and no haze is generated on the surface after cleaning.

発明の効果 本発明法によりシリコンウエハを洗浄すると、金属系汚
染物質および微粒子汚染物質がともに極めて低減された
高清浄度のシリコンウエハが得られ、酸化膜誘起欠陥の
発生やライフタイムの低下といったシリコンウエハの品
質低下が回避されるとともに、ICやLSIなどの高集積化
したデバイスに使用した場合の電気特性劣化のおそれも
回避される。
EFFECTS OF THE INVENTION When a silicon wafer is cleaned by the method of the present invention, a silicon wafer of high cleanliness in which both metallic contaminants and fine particle contaminants are extremely reduced is obtained, and silicon wafers such as generation of oxide film-induced defects and reduction in lifetime are obtained. The deterioration of the wafer quality is avoided, and the risk of deterioration of electrical characteristics when used in highly integrated devices such as ICs and LSIs is also avoided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宗平 修司 山口県光市大字島田3434番地 新日本製鐵 株式會社光製鐵所内 (56)参考文献 特開 昭64−77130(JP,A) 特開 昭56−112747(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuji Sohei 3434 Shimada, Hikari City, Yamaguchi Prefecture Nippon Steel Co., Ltd. Inside the Hikari Steel Works (56) Reference JP-A-64-77130 (JP, A) 56-112747 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シリコンウエハを洗浄するに際し、1重量
%以上の塩酸または1重量%以上の硫酸を含有し、かつ
1〜30重量%の硝酸を含有し、さらに0.01〜10重量%の
弗化水素を含有する水溶液を洗浄液とすることを特徴と
するシリコンウエハの洗浄方法。
1. When cleaning a silicon wafer, it contains 1% by weight or more of hydrochloric acid or 1% by weight or more of sulfuric acid and 1 to 30% by weight of nitric acid, and further 0.01 to 10% by weight of fluorination. A method for cleaning a silicon wafer, which uses an aqueous solution containing hydrogen as a cleaning solution.
JP16843590A 1990-06-28 1990-06-28 Silicon wafer cleaning method Expired - Lifetime JPH0691061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16843590A JPH0691061B2 (en) 1990-06-28 1990-06-28 Silicon wafer cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16843590A JPH0691061B2 (en) 1990-06-28 1990-06-28 Silicon wafer cleaning method

Publications (2)

Publication Number Publication Date
JPH0459700A JPH0459700A (en) 1992-02-26
JPH0691061B2 true JPH0691061B2 (en) 1994-11-14

Family

ID=15868065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16843590A Expired - Lifetime JPH0691061B2 (en) 1990-06-28 1990-06-28 Silicon wafer cleaning method

Country Status (1)

Country Link
JP (1) JPH0691061B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11920256B2 (en) 2019-08-05 2024-03-05 Nippon Telegraph And Telephone Corporation Method for growing rare earth oxide crystal on a semiconductor substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5358910B2 (en) * 2007-08-10 2013-12-04 栗田工業株式会社 Carbonated water manufacturing apparatus and manufacturing method
JP5304477B2 (en) * 2009-06-23 2013-10-02 信越半導体株式会社 Etching method of silicon wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11920256B2 (en) 2019-08-05 2024-03-05 Nippon Telegraph And Telephone Corporation Method for growing rare earth oxide crystal on a semiconductor substrate

Also Published As

Publication number Publication date
JPH0459700A (en) 1992-02-26

Similar Documents

Publication Publication Date Title
US6146467A (en) Treatment method for semiconductor substrates
JP2857042B2 (en) Cleaning liquid for silicon semiconductor and silicon oxide
JP4221191B2 (en) Cleaning liquid composition after CMP
JP3219020B2 (en) Cleaning agent
JP3046208B2 (en) Cleaning liquid for silicon wafer and silicon oxide
EP0897975B1 (en) Cleaning solution
JP4744228B2 (en) Semiconductor substrate cleaning liquid and semiconductor substrate cleaning method
JP2868885B2 (en) Polishing liquid and polishing method for silicon wafer
JP2002517090A (en) Alkali treatment after etching
JP3957264B2 (en) Semiconductor substrate cleaning method
JP3239998B2 (en) Semiconductor substrate cleaning method
JPH0691061B2 (en) Silicon wafer cleaning method
JPH0818920B2 (en) Silicon wafer cleaning method
JP4857738B2 (en) Semiconductor wafer cleaning method and manufacturing method
JPH1187281A (en) Cleaning of silicon wafer
JPH0583520B2 (en)
JP2776583B2 (en) Semiconductor substrate processing solution and processing method
JP2002100599A (en) Washing method for silicon wafer
JP3257518B2 (en) How to store silicon wafers in liquid
JP2001244228A (en) Liquid and method for washing semiconductor substrate
JPH03218015A (en) Cleaning fluid for semiconductor substrate and manufacture of semiconductor device
JPH0831781A (en) Washing chemicals
JP2001326209A (en) Method for treating surface of silicon substrate
JP2000173956A (en) Polishing agent for semiconductor silicon wafer and polishing method
JP4026384B2 (en) Semiconductor substrate cleaning method