JP4744228B2 - Semiconductor substrate cleaning liquid and semiconductor substrate cleaning method - Google Patents

Semiconductor substrate cleaning liquid and semiconductor substrate cleaning method Download PDF

Info

Publication number
JP4744228B2
JP4744228B2 JP2005231538A JP2005231538A JP4744228B2 JP 4744228 B2 JP4744228 B2 JP 4744228B2 JP 2005231538 A JP2005231538 A JP 2005231538A JP 2005231538 A JP2005231538 A JP 2005231538A JP 4744228 B2 JP4744228 B2 JP 4744228B2
Authority
JP
Japan
Prior art keywords
acid
cleaning
compound
cleaning liquid
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005231538A
Other languages
Japanese (ja)
Other versions
JP2006080501A (en
Inventor
寛 冨田
裕司 山田
浩玲 山田
典夫 石川
優美子 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Kanto Chemical Co Inc
Original Assignee
Toshiba Corp
Kanto Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Kanto Chemical Co Inc filed Critical Toshiba Corp
Priority to JP2005231538A priority Critical patent/JP4744228B2/en
Publication of JP2006080501A publication Critical patent/JP2006080501A/en
Application granted granted Critical
Publication of JP4744228B2 publication Critical patent/JP4744228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は洗浄液および洗浄方法に関するものであって、特にシリコン等の半導体基板表面の洗浄液および洗浄方法に関する。
また、本発明はとくに半導体製造工程において前工程(Front End Of Line、以下FEOLと略す)と呼ばれる配線パターン作成前の工程に用いる洗浄液に関するものである。
The present invention relates to a cleaning solution and a cleaning method, and more particularly to a cleaning solution and a cleaning method for a surface of a semiconductor substrate such as silicon.
The present invention also relates to a cleaning liquid used in a step before creating a wiring pattern called a front end (hereinafter referred to as FEOL) in a semiconductor manufacturing process.

ICの高集積化に伴い、微量の不純物がデバイスの性能、歩留まりに大きく影響を及ぼすため、厳しいコンタミネーションコントロールが要求されている。すなわち、基板の汚染を厳しくコントロールすることが要求されており、そのため半導体製造の各工程で各種洗浄液が使用されている。
半導体製造プロセスはトランジスタ形成工程であるFEOLと配線形成工程である後工程(Back End Of Line、一般にBEOLと略す)に大別される。
Along with the high integration of ICs, strict contamination control is required because a very small amount of impurities greatly affects the performance and yield of the device. That is, it is required to strictly control the contamination of the substrate. For this reason, various cleaning solutions are used in each process of semiconductor manufacturing.
The semiconductor manufacturing process is roughly divided into a FEOL which is a transistor forming process and a post-process (Back End Of Line, generally abbreviated as BEOL) which is a wiring forming process.

一般に、配線パターン作成前のFEOLに用いる半導体基板用洗浄液として、粒子除去を目的として、アンモニア水−過酸化水素水−水(SC−1洗浄液)、金属除去を目的として、塩酸−過酸化水素水−水(SC−2洗浄液)、希フッ酸、有機物除去を目的として、硫酸−過酸化水素水、硫酸−オゾン−水、オゾン−水、SC−1洗浄液、酸化膜除去を目的として、フッ酸−フッ化アンモニウム−水、希フッ酸、フッ酸−過酸化水素水−水などが、目的に応じて単独で、または複数の種類の洗浄液が組み合わされて使用されている。   Generally, as a semiconductor substrate cleaning solution used for FEOL before wiring pattern creation, ammonia water-hydrogen peroxide solution-water (SC-1 cleaning solution) for the purpose of particle removal, and hydrochloric acid-hydrogen peroxide solution for the purpose of metal removal. -For the purpose of removing water (SC-2 cleaning solution), dilute hydrofluoric acid and organic substances, sulfuric acid-hydrogen peroxide solution, sulfuric acid-ozone-water, ozone-water, SC-1 cleaning solution, hydrofluoric acid for the purpose of removing oxide film -Ammonium fluoride-water, dilute hydrofluoric acid, hydrofluoric acid-hydrogen peroxide water-water, etc. are used alone or in combination with a plurality of types of cleaning liquids depending on the purpose.

微粒子、有機物、金属の全てを除去する工程として、RCA洗浄やその改良であるSC−1洗浄→希フッ酸洗浄→SC−2洗浄等の洗浄工程が用いられてきたが、工程数が多いという問題の他、近年半導体素子の微細化、高密度化に伴い、残留微粒子低減への要求が大きくなると共に、各材料の薄膜化が進み、薬液によるシリコン基板や熱酸化膜のエッチング量が0.1nm以下と厳しく制限されるようになった。これに伴い、SC−1洗浄液では、微細な微粒子の除去が充分に行うことができず、また、アンモニア等のアルカリベースでは基板のエッチングが大きいため、種々の化合物の添加により洗浄性向上やエッチング量低減を図ったり、アンモニア濃度や洗浄温度を低温化する等が試みられている。このような改良技術としては、以下のような報告がある。   As a process for removing all of fine particles, organic substances, and metals, a cleaning process such as RCA cleaning and its improvement, SC-1 cleaning → diluted hydrofluoric acid cleaning → SC-2 cleaning, has been used, but the number of processes is said to be large. In addition to the problems, with recent miniaturization and higher density of semiconductor elements, the demand for reducing residual fine particles has increased, and the thinning of each material has progressed. Strictly limited to 1 nm or less. Along with this, the SC-1 cleaning liquid cannot sufficiently remove fine fine particles, and the etching of the substrate is large on an alkali base such as ammonia. Attempts have been made to reduce the amount and to lower the ammonia concentration and the washing temperature. As such improved technology, there are the following reports.

SC−1洗浄液にホスホン酸系または縮合リン酸化合物系の錯化剤を添加することにより、アルカリ性領域において微粒子のみならず金属が基板に吸着するのを抑制することができ、SC−1洗浄後に基板に残留するFe、Al、Zn金属の量を下げる組成物が開示されているが(特許文献1)、SC−1洗浄剤以上に微粒子除去性が向上するものではなく、また基板のエッチング量を低減するものでもない。   By adding a phosphonic acid-based or condensed phosphate compound-based complexing agent to the SC-1 cleaning liquid, it is possible to suppress not only fine particles but also metals from adsorbing to the substrate in the alkaline region. Although a composition for reducing the amount of Fe, Al, and Zn metal remaining on the substrate has been disclosed (Patent Document 1), it does not improve the fine particle removal performance more than the SC-1 cleaning agent, and the etching amount of the substrate It is not a thing to reduce.

また、SC−1洗浄液に、エチレンオキサイド付加型界面活性剤や錯化剤を添加して、窒化ケイ素およびシリカ粒子の微粒子除去性を向上するとともに、SC−1洗浄後に基板表面に残留するFe、Cuの量を70℃の温度で10原子/cm以下に低減できること、基板のエッチング量が1nm以下であることが報告されているが(特許文献2)、過酸化水素によりシリコン基板表面が酸化されるため酸化膜の除去工程が必要とされる場合があるほか、アルカリ性であるため近年の半導体素子の微細化に伴うエッチング量の基準0.1nm以下を満足できるものではなく、さらに等電位点がアルカリ側であるアルミナ粒子の除去は困難である。
さらに、SC−1洗浄液ベースではないが、アルカリ性水溶液として、水酸化アンモニウム水溶液に特定の非イオン系界面活性剤を添加することにより、シリコン基板を腐食することなく、大気中の塵埃からなる粒子の除去性の優れた組成物が開示されている(特許文献3)が、エッチング量の低減も充分ではなく、エッチングが問題とならない基板に使用する場合であっても、金属除去性およびシリカ粒子、アルミナ粒子、窒化ケイ素粒子等の粒子除去性について確認されていない。
Further, an ethylene oxide addition type surfactant or complexing agent is added to the SC-1 cleaning liquid to improve the fine particle removability of silicon nitride and silica particles, and Fe remaining on the substrate surface after SC-1 cleaning, It has been reported that the amount of Cu can be reduced to 10 9 atoms / cm 2 or less at a temperature of 70 ° C., and the etching amount of the substrate is 1 nm or less (Patent Document 2). In addition to being oxidized, an oxide film removal step may be required, and since it is alkaline, it does not satisfy the standard of 0.1 nm or less for the etching amount associated with the recent miniaturization of semiconductor elements, and is further equipotential It is difficult to remove alumina particles whose points are on the alkali side.
Furthermore, although not based on the SC-1 cleaning solution, by adding a specific nonionic surfactant to the aqueous ammonium hydroxide solution as an alkaline aqueous solution, the particles of dust in the atmosphere are not corroded without corroding the silicon substrate. Although a composition having excellent removability has been disclosed (Patent Document 3), the amount of etching is not sufficiently reduced, and even when used for a substrate where etching is not a problem, metal removability and silica particles, No removal of particles such as alumina particles and silicon nitride particles has been confirmed.

一方、中性に近い水溶液として、酢酸とアンモニア水を混合して調製したpH5.0の液にアニオン系界面活性剤を添加することにより、Al、W、Feの各粒子の除去性が改善されることが報告されている(特許文献4)。当該技術では、シリコン基板のエッチング性については問題がないと考えられるが、金属除去性について確認されておらず、シリカ粒子、アルミナ粒子、窒化ケイ素粒子等の粒子除去性や基板への有機成分の吸着についても報告されていない。
また、無機の酸を用いた酸性水溶液として、フッ酸等の水溶液にアニオン系界面活性剤を添加することにより、ポリスチレン微粒子を用いた実験で粒子付着数が減少すること、負になっているゼータ電位の絶対値が大きいほど、付着数が少ないことが報告されているが(特許文献5)、フッ酸をベースとした場合には基板のエッチングが問題となり、また、エッチングが問題とならない基板に使用する場合であっても、ポリスチレン微粒子より除去が困難であるシリカ粒子、アルミナ粒子、窒化ケイ素粒子等の粒子除去性および金属除去性についても報告されていない。
On the other hand, by adding an anionic surfactant to a pH 5.0 solution prepared by mixing acetic acid and aqueous ammonia as a nearly neutral aqueous solution, the removability of each particle of Al, W, and Fe is improved. (Patent Document 4). In this technology, it is considered that there is no problem with the etching property of the silicon substrate, but the metal removability has not been confirmed, and the removability of particles such as silica particles, alumina particles, and silicon nitride particles, and the organic components on the substrate. No adsorption has been reported.
In addition, by adding an anionic surfactant to an aqueous solution such as hydrofluoric acid as an acidic aqueous solution using an inorganic acid, the number of adhered particles decreases in experiments using polystyrene fine particles, and negative zeta It has been reported that the larger the absolute value of the potential, the smaller the number of adhesions (Patent Document 5). However, when hydrofluoric acid is used as a base, etching of the substrate becomes a problem, and etching is not a problem. Even when it is used, there has been no report on particle removability and metal removability of silica particles, alumina particles, silicon nitride particles and the like, which are more difficult to remove than polystyrene fine particles.

さらに、有機酸を用いた酸性水溶液として、分散剤および界面活性剤の少なくともいずれかひとつを添加することにより、シリカ粒子、アルミナ粒子を効果的に除去でき、かつ洗浄後のFe吸着濃度を下げた組成物が、本発明の発明者等によって報告されている(特許文献6)が、窒化ケイ素粒子の除去性については報告されていない。
また近年、洗浄液成分が基板に吸着することが問題とされるようになったことに伴い、基板表面に吸着している有機酸または有機物をオゾンを含む水によって洗浄することにより、分解除去する方法が報告されているが(特許文献7)、金属不純物、微粒子および有機物の除去のために、有機酸とフッ酸の水溶液で洗浄するものであるため、フッ酸により基板がエッチングされるという問題は解決されておらず、また、エッチングが問題とならない基板に使用する場合であっても、粒子の除去については開示されていない。
Furthermore, by adding at least one of a dispersant and a surfactant as an acidic aqueous solution using an organic acid, silica particles and alumina particles can be effectively removed, and the Fe adsorption concentration after washing is lowered. Although the composition of the present invention has been reported by the inventors of the present invention (Patent Document 6), there is no report on the removability of silicon nitride particles.
Also, in recent years, with the problem that the components of the cleaning liquid are adsorbed on the substrate, a method for decomposing and removing organic acids or organic substances adsorbed on the substrate surface with water containing ozone. Has been reported (Patent Document 7), but the problem that the substrate is etched by hydrofluoric acid is because it is washed with an aqueous solution of organic acid and hydrofluoric acid in order to remove metal impurities, fine particles and organic matter. Even if it is used for a substrate that has not been solved and etching is not a problem, the removal of particles is not disclosed.

このように様々な洗浄液が開発されてきたが、シリコン基板をエッチングせず、また、エッチングが問題とならない基板に使用する場合であっても、シリカ粒子、アルミナ粒子、窒化ケイ素粒子の各粒子を同時に除去できるとともに、洗浄後に基板に吸着する金属が少ないFEOL用洗浄液および洗浄方法は未だ報告されていない。   Various cleaning liquids have been developed in this way, but even when the silicon substrate is not etched and used for a substrate where etching is not a problem, silica particles, alumina particles, and silicon nitride particles are used. A cleaning solution and a cleaning method for FEOL that can be removed at the same time and have less metal adsorbed on the substrate after cleaning have not been reported yet.

特開平5−275405号公報JP-A-5-275405 特開2003−221600号公報JP 2003-221600 A 特開2003−109930号公報JP 2003-109930 A 特開平6−132267号公報JP-A-6-132267 特開平6−41770号公報JP-A-6-41770 特開2001−7071号公報JP 2001-7071 A 特開2000−49132号公報JP 2000-49132 A

すなわち、本発明の課題は、従来技術の問題点を解消して、シリカ粒子とアルミナ粒子と窒化ケイ素粒子からなる粒子汚染と金属汚染を同時に除去でき、かつ、基板のエッチングが生じることがなく、洗浄中に基板に有機成分が吸着することが少ない洗浄液、および基板の洗浄中に基板に吸着した有機成分を除去することができる洗浄方法を開発することにある。   That is, the problem of the present invention is that the problems of the prior art are solved, particle contamination and metal contamination consisting of silica particles, alumina particles and silicon nitride particles can be simultaneously removed, and etching of the substrate does not occur. An object of the present invention is to develop a cleaning liquid that hardly adsorbs organic components on the substrate during cleaning, and a cleaning method that can remove the organic components adsorbed on the substrate during cleaning of the substrate.

本発明者等は、塩酸などの無機酸をベースに用い添加剤による粒子汚染除去を検討する中で、塩酸などの無機酸の水溶液に、1分子中にスルホン酸基を少なくとも2以上有する化合物やフィチン酸、縮合リン酸化合物を加えてなる洗浄液は、基板をエッチングすることなく、室温においてシリカ粒子、アルミナ粒子及び窒化ケイ素粒子に対しても高い除去性を示し、洗浄後の基板に吸着する金属の量が十分に少ないこと、および該洗浄液を使用し、その後オゾン水または過酸化水素水にて洗浄する方法により、基板に吸着する有機成分をより一層低減できること、また、エッチングが問題とならない基板についてはフッ酸の添加により微粒子の除去性を向上し得ること、さらにまた、本洗浄液組成物の洗浄前に基板をオゾン水または過酸化水素水による処理を行うことで、基板表面を親水性とし、有機成分の基板表面への吸着量を低減できることを見出し、さらに研究を進めた結果、本発明を完成するに至った。   The present inventors examined the removal of particle contamination by additives using an inorganic acid such as hydrochloric acid as a base, and in an aqueous solution of an inorganic acid such as hydrochloric acid, a compound having at least two sulfonic acid groups in one molecule, A cleaning liquid to which phytic acid and condensed phosphoric acid compounds are added shows high removability to silica particles, alumina particles and silicon nitride particles at room temperature without etching the substrate, and is a metal adsorbed on the cleaned substrate. The amount of the organic component adsorbed on the substrate can be further reduced by the method of using the cleaning solution and then cleaning with ozone water or hydrogen peroxide solution, and the substrate on which etching does not cause a problem. In addition, it is possible to improve the removability of fine particles by adding hydrofluoric acid. Furthermore, before cleaning the cleaning liquid composition, the substrate is treated with ozone water or peroxide water. By performing the treatment with water, a surface of the substrate hydrophilic, found that can reduce the amount of adsorption to the substrate surface of the organic components, result of further research, they have completed the present invention.

すなわち、本発明は、1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸および縮合リン酸化合物からなる群から選択される1種または2種以上と、無機酸と、水とを含有してなる、半導体基板洗浄液組成物に関する。 また、本発明は、1分子中にスルホン酸基を少なくとも2以上有する化合物が、ナフタレンスルホン酸とホルムアルデヒドとの縮合物である、前記の半導体基板洗浄液組成物に関する。   That is, the present invention contains one or more selected from the group consisting of a compound having at least two or more sulfonic acid groups in one molecule, phytic acid and a condensed phosphoric acid compound, an inorganic acid, and water. The present invention relates to a semiconductor substrate cleaning liquid composition. The present invention also relates to the above semiconductor substrate cleaning liquid composition, wherein the compound having at least two or more sulfonic acid groups in one molecule is a condensate of naphthalenesulfonic acid and formaldehyde.

本発明は、無機酸が、塩酸、硫酸、硝酸、リン酸および過塩素酸からなる群から選択される、1種または2種以上である、前記の半導体基板洗浄液組成物に関する。
また、本発明は、1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸および縮合リン酸化合物からなる群から選択される1種または2種以上が、合計で0.00001〜10質量%の範囲である、前記の半導体基板洗浄液組成物に関する。
さらに本発明は、フッ化水素酸をさらに含有する、前記の半導体基板洗浄液組成物に関する。
さらにまた本発明は、1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸および縮合リン酸化合物からなる群から選択される1種または2種以上と、無機酸と、水とを含有してなる組成物であって、水を加えることにより前記の半導体基板洗浄液となる組成物に関する。
The present invention relates to the semiconductor substrate cleaning liquid composition, wherein the inorganic acid is one or more selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and perchloric acid.
Further, in the present invention, one or more selected from the group consisting of a compound having at least two or more sulfonic acid groups in one molecule, phytic acid and a condensed phosphoric acid compound is 0.00001 to 10 mass in total. % Of the semiconductor substrate cleaning liquid composition.
Furthermore, the present invention relates to the above semiconductor substrate cleaning liquid composition further containing hydrofluoric acid.
Furthermore, the present invention contains one or more selected from the group consisting of a compound having at least two or more sulfonic acid groups in one molecule, phytic acid and a condensed phosphoric acid compound, an inorganic acid, and water. It is related with the composition which becomes said semiconductor substrate washing | cleaning liquid by adding water.

さらに、本発明は、1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸および縮合リン酸化合物からなる群から選択される1種または2種以上と、無機酸と、水とを含有してなる半導体基板洗浄液組成物により半導体基板を洗浄する第一の工程と、第一の工程に引き続いて、純水あるいはオゾンガスを溶解したオゾン水または過酸化水素水を用いて当該半導体基板を洗浄する第二の工程とからなる、半導体基板の洗浄方法に関する。
本発明は、また、第一の工程を、a)無機酸の1種又は2種以上を含有する水溶液で洗浄、b)1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸および縮合リン酸化合物からなる群から選択される1種または2種以上を含有する水溶液で洗浄の2つの工程に分けて行う、前記の半導体基板の洗浄方法に関する。
Further, the present invention contains one or more selected from the group consisting of a compound having at least two or more sulfonic acid groups in one molecule, phytic acid and a condensed phosphoric acid compound, an inorganic acid, and water. A first step of cleaning the semiconductor substrate with the semiconductor substrate cleaning liquid composition, and subsequent to the first step, the semiconductor substrate is cleaned using pure water or ozone water or hydrogen peroxide solution in which ozone gas is dissolved. The present invention relates to a method for cleaning a semiconductor substrate, comprising a second step.
The present invention also includes the first step: a) washing with an aqueous solution containing one or more inorganic acids, b) a compound having at least two sulfonic acid groups in one molecule, phytic acid and condensation. The present invention relates to the above-described method for cleaning a semiconductor substrate, which is performed in two steps of cleaning with an aqueous solution containing one or more selected from the group consisting of phosphoric acid compounds.

本発明は、1分子中にスルホン酸基を少なくとも2以上有する化合物が、ナフタレンスルホン酸とホルムアルデヒドとの縮合物である、前記半導体基板の洗浄方法に関する。
また、本発明は、無機酸が、塩酸、硫酸、硝酸、リン酸および過塩素酸からなる群から選択される、1種または2種以上である、前記半導体基板の洗浄方法に関する。
さらに本発明は、1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸および縮合リン酸化合物からなる群から選択される1種または2種以上が、合計で0.00001〜10質量%の範囲である、前記半導体基板の洗浄方法に関する。
本発明は、さらに、第一の工程を加温して行う、前記の半導体基板の洗浄方法に関する。
The present invention relates to the method for cleaning a semiconductor substrate, wherein the compound having at least two or more sulfonic acid groups in one molecule is a condensate of naphthalenesulfonic acid and formaldehyde.
The present invention also relates to the method for cleaning a semiconductor substrate, wherein the inorganic acid is one or more selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and perchloric acid.
Furthermore, in the present invention, one or more selected from the group consisting of a compound having at least two or more sulfonic acid groups in one molecule, phytic acid and condensed phosphoric acid compound is 0.00001 to 10% by mass in total. This is a method for cleaning the semiconductor substrate.
The present invention further relates to the method for cleaning a semiconductor substrate, wherein the first step is performed by heating.

本発明は、第一の工程前に、純水にオゾンガスを溶解したオゾン水または過酸化水素水で洗浄する、前記の半導体基板の洗浄方法に関する。
また、本発明は、第一の工程と第二の工程の間に純水による洗浄を行う、前記の半導体基板の洗浄方法に関する。
さらに、本発明は、第一の工程前に、フッ化水素酸で洗浄する、前記の半導体基板の洗浄方法に関する。
さらにまた、本発明は、第一工程の半導体基板洗浄液組成物がフッ化水素酸をさらに含有する、前記の半導体基板の洗浄方法に関する。
本発明は、また、第一工程の半導体基板洗浄液組成物が過酸化水素をさらに含有する、前記の半導体基板の洗浄方法に関する。
また本発明は、1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸および縮合リン酸化合物からなる群から選択される1種または2種以上と、無機酸と、水とを含有してなる組成物にさらに水を加えることによって得た組成物を用いる、前記半導体基板の洗浄方法に関する。
The present invention relates to the method for cleaning a semiconductor substrate, wherein cleaning is performed with ozone water or hydrogen peroxide solution in which ozone gas is dissolved in pure water before the first step.
The present invention also relates to the method for cleaning a semiconductor substrate, wherein cleaning with pure water is performed between the first step and the second step.
Furthermore, the present invention relates to the method for cleaning a semiconductor substrate, wherein the semiconductor substrate is cleaned with hydrofluoric acid before the first step.
Furthermore, the present invention relates to the semiconductor substrate cleaning method, wherein the semiconductor substrate cleaning liquid composition in the first step further contains hydrofluoric acid.
The present invention also relates to the above semiconductor substrate cleaning method, wherein the semiconductor substrate cleaning liquid composition in the first step further contains hydrogen peroxide.
The present invention also includes one or more selected from the group consisting of a compound having at least two sulfonic acid groups in one molecule, phytic acid and a condensed phosphoric acid compound, an inorganic acid, and water. The present invention relates to a method for cleaning a semiconductor substrate, wherein a composition obtained by further adding water to the composition is used.

本発明は、1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸および縮合リン酸化合物からなる群から選択される1種または2種以上と、無機酸とが相俟って、基板をエッチングすることなく種々の微粒子および金属を除去でき、また基板への有機成分の吸着も少ないという、優れた作用効果を奏するものである。そのメカニズムは必ずしも明らかではないが、1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸及び縮合リン酸化合物等は、吸着サイトとなる官能基(スルホン酸基やリン酸基)を1分子中に複数有するため、半導体基板を洗浄した際に、基板、各種膜およびそれらに付着している微粒子に安定して吸着して、それらにマイナスの電荷を与えることにより、微粒子と、基板または各種膜の両方に電気的に反発力を働かせ、基板から粒子を除去すると考えられる。
この場合の基板とは主としてSi基板であり、Si基板上に有する各種のSiN膜、SiO膜、Poly Si膜、AL膜などを構造上有したSi基板である。このメカニズムは無機酸、有機酸いずれと組みあわせても同様と考えられるが、有機酸はカルボキシル基を有し、1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸および縮合リン酸化合物からなる群から選択される1種または2種以上と同様にSi基板や粒子に吸着をする。そのため、粒子や基板への吸着が競争的に起こり、これらの化合物の吸着を阻害することになるため、無機酸との組み合わせの方がより効果的に微粒子除去が行い得るものと考えられる。
The present invention provides a substrate in which one or more selected from the group consisting of a compound having at least two or more sulfonic acid groups in one molecule, phytic acid and a condensed phosphoric acid compound, and an inorganic acid are combined. Various fine particles and metals can be removed without etching, and the organic component is hardly adsorbed on the substrate. The mechanism is not necessarily clear, but compounds having at least two sulfonic acid groups in one molecule, phytic acid, condensed phosphoric acid compounds, and the like have 1 functional group (sulfonic acid group or phosphoric acid group) serving as an adsorption site. Since there are multiple in the molecule, when the semiconductor substrate is washed, it is stably adsorbed to the substrate, various films and the fine particles adhering to them, and a negative charge is given to them. It is considered that the particles are removed from the substrate by electrically applying a repulsive force to both of the various films.
The substrate in this case is mainly a Si substrate, which is a Si substrate having a structure including various SiN films, SiO 2 films, Poly Si films, AL 2 O 3 films, and the like provided on the Si substrate. This mechanism is considered to be the same when combined with either an inorganic acid or an organic acid, but the organic acid has a carboxyl group, a compound having at least two or more sulfonic acid groups in one molecule, phytic acid, and a condensed phosphate compound. It adsorbs to Si substrate and particle | grains similarly to 1 type, or 2 or more types selected from the group which consists of. For this reason, adsorption to the particles and the substrate occurs competitively and inhibits the adsorption of these compounds. Therefore, it is considered that the combination with the inorganic acid can more effectively remove the fine particles.

また、本発明において、1分子中にスルホン酸基を少なくとも2以上有する化合物やフィチン酸、縮合リン酸化合物等は基板に吸着して、その吸着量によっては有機物汚染を起こすが、従来の有機酸水溶液からなる洗浄液と比較して、有機物の濃度は低く、環境への負荷は小さい。さらに、本発明のオゾン水または過酸化水素水を用いる洗浄方法を連続して行った場合は、この有機物汚染がオゾンまたは過酸化水素により分解除去されるため、有機物汚染は検出限界以下にまで低減し得るものである。
また、実際の工程では酸化膜や窒化膜などの下地をある程度エッチングしても良い場合があり、この場合は本洗浄液組成物に低濃度のフッ化水素酸を添加することでより効率よく粒子の除去が可能である。
また、本洗浄液組成物工程の前に、低濃度のフッ化水素酸水溶液の工程を設けることにより効率よく粒子の除去が可能である。
本洗浄液組成物の工程の前工程として、フッ化水素酸水溶液などの基板表面を疎水性とする工程がある場合、有機物の吸着が増えることが予想されるが、この様な場合は、本洗浄液組成物による洗浄工程の直前にオゾン水または過酸化水素水で洗浄する工程を設けることにより、基板表面を親水性として有機物の吸着量を低減することができる。
Further, in the present invention, a compound having at least two sulfonic acid groups in one molecule, phytic acid, condensed phosphoric acid compound, etc. are adsorbed on the substrate, and depending on the amount of adsorption, organic matter contamination may occur. Compared to a cleaning solution composed of an aqueous solution, the concentration of organic substances is low, and the burden on the environment is small. Furthermore, when the cleaning method using the ozone water or hydrogen peroxide solution of the present invention is continuously performed, the organic matter contamination is decomposed and removed by ozone or hydrogen peroxide, so the organic matter contamination is reduced below the detection limit. It is possible.
Further, in actual processes, the base such as an oxide film or a nitride film may be etched to some extent. In this case, by adding a low concentration of hydrofluoric acid to the cleaning liquid composition, the particles can be more efficiently removed. Removal is possible.
In addition, it is possible to efficiently remove particles by providing a low concentration hydrofluoric acid aqueous solution step before the cleaning liquid composition step.
If there is a step of making the substrate surface hydrophobic, such as a hydrofluoric acid aqueous solution, as a pre-process of the cleaning liquid composition process, it is expected that the adsorption of organic substances will increase. By providing a step of cleaning with ozone water or hydrogen peroxide solution immediately before the cleaning step with the composition, the substrate surface can be made hydrophilic and the amount of organic matter adsorbed can be reduced.

本発明の洗浄液の調製に用いる無機酸は、硫酸、硝酸、リン酸および過塩素酸からなる群から選択される1種または2種以上であって、いずれもシリコン基板またはガラス基板を腐食しない酸であるので、本発明の組成物はシリコン基板やガラス基板をエッチングすることがない。
また、本発明の組成物は、等電位点が酸側であるシリカ粒子、中性付近に等電位点を持つ窒化ケイ素粒子及び等電位点がアルカリ側であるアルミナ粒子など、様々な粒子を除去することができる。
加えて、本洗浄液組成物にフッ化水素酸を添加する場合には、下地の酸化膜や窒化膜をライトエッチングすることでリフトオフ効果により、効率よく粒子を除去することができる。
最初にフッ化水素酸でシリコン基板上の自然酸化膜をエッチングし、自然酸化膜上の粒子をリフトオフすることで粒子が基板から離れ、かつ分散効果を有する添加剤の作用により粒子の再付着を防止することが可能となる。
The inorganic acid used for the preparation of the cleaning liquid of the present invention is one or more selected from the group consisting of sulfuric acid, nitric acid, phosphoric acid and perchloric acid, both of which are acids that do not corrode the silicon substrate or the glass substrate. Therefore, the composition of the present invention does not etch a silicon substrate or a glass substrate.
In addition, the composition of the present invention removes various particles such as silica particles having an equipotential point on the acid side, silicon nitride particles having an equipotential point near neutrality, and alumina particles having an equipotential point on the alkali side. can do.
In addition, when hydrofluoric acid is added to the cleaning liquid composition, particles can be efficiently removed by lift-off effect by light etching the underlying oxide film or nitride film.
First, the natural oxide film on the silicon substrate is etched with hydrofluoric acid, and the particles on the natural oxide film are lifted off to separate the particles from the substrate and to reattach the particles by the action of an additive having a dispersion effect. It becomes possible to prevent.

また本発明は、基板を、1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸および縮合リン酸化合物からなる群から選択される1種または2種以上と、無機酸と、水とを含有してなる半導体基板洗浄液組成物で半導体基板を洗浄する第一の工程と、第一の工程に引き続いて、純水あるいはオゾンガスを溶解したオゾン水または過酸化水素水にて、当該半導体基板を洗浄する第二の工程とを施すことを特徴とした半導体基板の洗浄方法であって、第二工程によって基板表面に吸着した有機物汚染を容易に除去することができる。
さらに、本洗浄液組成物の処理後、オゾン水または過酸化水素水で処理することにより基板表面を親水性に仕上げ、スピン乾燥時のウォーターマーク発生を防止することができる。
また、洗浄液に使用される1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸および縮合リン酸化合物からなる群から選択される1種または2種以上の合計濃度が低いので、基板への吸着が小さいのみならず、環境への負荷も低いものである。
In the present invention, the substrate may be one or more selected from the group consisting of a compound having at least two or more sulfonic acid groups in one molecule, phytic acid and a condensed phosphate compound, an inorganic acid, water, A first step of cleaning the semiconductor substrate with a semiconductor substrate cleaning liquid composition comprising: and following the first step, the semiconductor substrate with pure water or ozone water or hydrogen peroxide solution in which ozone gas is dissolved The semiconductor substrate cleaning method is characterized in that the organic contamination adsorbed on the substrate surface by the second step can be easily removed.
Further, after the cleaning liquid composition is processed, the surface of the substrate is made hydrophilic by processing with ozone water or hydrogen peroxide water, and the generation of watermarks during spin drying can be prevented.
In addition, since the total concentration of one or more selected from the group consisting of a compound having at least two or more sulfonic acid groups in one molecule used in the cleaning liquid, phytic acid, and condensed phosphoric acid compound is low, Not only is adsorption small, but also the load on the environment is low.

本発明の洗浄液は、主として半導体基板の洗浄に用いられるものであり、半導体基板としては、シリコン基板の他、SiGe基板、SiGeC基板、SiC基板、その他の化合物半導体基板にも使用することができるものである。また、本発明の洗浄剤は、シリコン基板の他、ガラス基板も腐食しないため、ガラス基板の洗浄用として使用することも可能である。
本発明に用いる無機酸類は、塩酸、硫酸、硝酸、リン酸、過塩素酸および炭酸のようなシリコン基板をエッチングしない酸類の他、水の電気分解により得られる酸性水も含むものとする。廃液の処理やコストの面からは中和処理だけで良い塩酸、硫酸、硝酸が特に好ましい。
洗浄液中の酸類の濃度としては0.002〜30質量%、好ましくは0.005〜10質量%、特に好ましくは0.01〜5.0質量%である。
無機酸類の濃度が低すぎては洗浄効果が十分に発揮されず、高濃度にした場合、濃度に見合う効果が期待できず、コストの面からマイナスである。
また、エッチングが問題とならない基板、例えば、酸化膜や窒化膜などの下地を数オングストローム程度エッチングしても良い場合は、本発明の洗浄液組成物に低濃度のフッ化水素酸を添加することで効率よく粒子の除去が可能である。フッ化水素酸の濃度は、好ましくは0.01〜1質量%、より好ましくは0.02〜0.5質量%である。
さらに、本発明の洗浄液組成物の工程の前に、前記濃度のフッ化水素酸水溶液による処理を行うことによっても、効率よく粒子の除去が可能である。
The cleaning liquid of the present invention is mainly used for cleaning a semiconductor substrate. As a semiconductor substrate, a silicon substrate, a SiGe substrate, a SiGeC substrate, a SiC substrate, and other compound semiconductor substrates can be used. It is. Moreover, since the cleaning agent of the present invention does not corrode the glass substrate in addition to the silicon substrate, it can be used for cleaning the glass substrate.
Inorganic acids used in the present invention include acids that do not etch a silicon substrate such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, perchloric acid, and carbonic acid, as well as acidic water obtained by electrolysis of water. Hydrochloric acid, sulfuric acid, and nitric acid that only require neutralization are particularly preferred from the viewpoint of waste liquid treatment and cost.
The concentration of acids in the cleaning liquid is 0.002 to 30% by mass, preferably 0.005 to 10% by mass, and particularly preferably 0.01 to 5.0% by mass.
If the concentration of the inorganic acid is too low, the cleaning effect is not sufficiently exhibited. If the concentration is high, an effect commensurate with the concentration cannot be expected, which is negative in terms of cost.
In addition, when a substrate where etching is not a problem, for example, an underlayer such as an oxide film or a nitride film may be etched by several angstroms, a low concentration of hydrofluoric acid can be added to the cleaning liquid composition of the present invention. It is possible to remove particles efficiently. The concentration of hydrofluoric acid is preferably 0.01 to 1% by mass, more preferably 0.02 to 0.5% by mass.
Furthermore, the particles can be efficiently removed by performing the treatment with the hydrofluoric acid aqueous solution having the concentration before the step of the cleaning liquid composition of the present invention.

本発明に用いる1分子中にスルホン酸基を少なくとも2以上有する化合物としては、ナフタレンスルホン酸とホルムアルデヒドとの縮合物及びその塩、ポリスチレンスルホン酸及びその塩、ポリビニルスルホン酸及びその塩、リグニンスルホン酸及びその塩などである。なかでもナフタレンスルホン酸とホルムアルデヒドとの縮合物及びその塩は粒子汚染除去能力が高く、安価であり本発明に用いる1分子中にスルホン酸基を少なくとも2以上有する化合物として好ましいものである。
これらのほとんどはナトリウム塩として販売されているが、イオン交換樹脂などで処理し、ナトリウムを除去することにより、半導体製造用として使用可能である。
The compound having at least two or more sulfonic acid groups in one molecule used in the present invention includes a condensate of naphthalenesulfonic acid and formaldehyde and salts thereof, polystyrene sulfonic acid and salts thereof, polyvinyl sulfonic acid and salts thereof, and lignin sulfonic acid. And salts thereof. Among these, a condensate of naphthalene sulfonic acid and formaldehyde and a salt thereof have a high particle contamination removing ability, are inexpensive, and are preferable as compounds having at least two sulfonic acid groups in one molecule used in the present invention.
Most of these are sold as sodium salts, but can be used for semiconductor production by treating with an ion exchange resin or the like to remove sodium.

フィチン酸は米糠中などに含まれるリン酸基含有のキレート作用を持つ有機化合物であり、食品添加物などを目的として工業原料で販売されており、試薬としても容易に入手できる。
縮合リン酸類はオルトリン酸の縮合物であり、ピロリン酸、メタリン酸、トリポリリン酸およびその塩があるが、塩類は多くはナトリウム塩であるので、電子工業用として用いるには金属イオンを含まない、フリーの酸かアンモニウム塩が好ましい。
Phytic acid is an organic compound having a chelating action containing a phosphate group contained in rice bran and the like, and is sold as an industrial raw material for the purpose of food additives and can be easily obtained as a reagent.
Condensed phosphoric acid is a condensate of orthophosphoric acid, and there are pyrophosphoric acid, metaphosphoric acid, tripolyphosphoric acid and their salts, but since many of them are sodium salts, they do not contain metal ions for use in the electronics industry. Free acids or ammonium salts are preferred.

これら1分子中にスルホン酸基を少なくとも2以上有する化合物やフィチン酸、縮合リン酸類の洗浄液中の濃度は好ましくは0.00001〜10質量%、さらに好ましくは0.0005〜2質量%であり、特に好ましくは0.001〜1質量%である。濃度が低い場合は、粒子汚染の除去能力が十分でなく、また高すぎてもそれに見合う効果が期待できない。
1分子中にスルホン酸基を少なくとも2以上有する化合物やフィチン酸、縮合リン酸類を添加した無機酸水溶液で洗浄した場合、1分子中にスルホン酸基を少なくとも2以上有する化合物やフィチン酸等の有機化合物が基板表面に吸着する可能性がある。吸着した有機化合物の多くは純水による洗浄で除去されるが、吸着した有機化合物の残留の可能性がある場合には、オゾンを加えた水溶液または過酸化水素水によって基板を洗浄することにより、有機物を除去することができる。オゾン水溶液のオゾン濃度は、0.00005〜0.0025質量%、好ましくは0.0001〜0.0025質量%であり、過酸化水素水の濃度は、0.01〜35質量%、好ましくは0.1〜10質量%である。
オゾン水で処理する方が、過酸化水素水での処理に比べシリコン基板表面の酸化の問題が少なく好ましいが、基板の酸化膜の除去が必要ない場合は、過酸化水素水の使用も可能である。
また、本洗浄液組成物工程の直後にオゾン水または過酸化水素水による処理を行うよりも、第一の工程、即ち、本洗浄液組成物工程後、純水によるリンスを行った後、第二の工程、即ち、オゾン水または過酸化水素水処理を行うと、微粒子や金属の分散に寄与する本洗浄液組成物がオゾン等により分解され難くなり、洗浄性も向上するため好ましい。
さらに、本洗浄液組成物による洗浄工程の後工程だけでなく、前工程として、オゾン水または過酸化水素水による工程を設けることにより、基板表面を親水性とすることが可能となり、これにより本洗浄液組成物による有機物吸着を抑止することが可能となるので好ましい。
本願発明の洗浄剤は、上述の濃度で使用することが好ましいが、各成分濃度を10〜100倍とした高濃度品も安定であるから、保存、運搬等には高濃度品とすることが好ましく、該高濃度品を使用時に希釈して使用することも可能である。
The concentration of the compound having at least two sulfonic acid groups in one molecule, phytic acid, and condensed phosphoric acid in the cleaning solution is preferably 0.00001 to 10% by mass, more preferably 0.0005 to 2% by mass, Most preferably, it is 0.001-1 mass%. If the concentration is low, the ability to remove particle contamination is not sufficient, and if it is too high, an effect commensurate with it cannot be expected.
When washed with an inorganic acid aqueous solution to which a compound having at least two or more sulfonic acid groups in one molecule, phytic acid or condensed phosphoric acid is added, an organic compound such as a compound having at least two or more sulfonic acid groups in one molecule or phytic acid Compounds may be adsorbed on the substrate surface. Most of the adsorbed organic compounds are removed by washing with pure water, but if there is a possibility that the adsorbed organic compounds remain, wash the substrate with an aqueous solution added with ozone or hydrogen peroxide water, Organic matter can be removed. The ozone concentration of the ozone aqueous solution is 0.00005 to 0.0025% by mass, preferably 0.0001 to 0.0025% by mass, and the concentration of the hydrogen peroxide solution is 0.01 to 35% by mass, preferably 0. .1 to 10% by mass.
Treatment with ozone water is preferable compared to the treatment with hydrogen peroxide solution because there are fewer problems of oxidation of the silicon substrate surface. However, if it is not necessary to remove the oxide film on the substrate, hydrogen peroxide solution can be used. is there.
Rather than performing treatment with ozone water or hydrogen peroxide water immediately after the main cleaning liquid composition step, after the main cleaning liquid composition step, after rinsing with pure water, It is preferable to perform the process, that is, the treatment with ozone water or hydrogen peroxide solution, because the cleaning liquid composition that contributes to the dispersion of fine particles and metal is hardly decomposed by ozone and the like, and the cleaning properties are improved.
Furthermore, it is possible to make the substrate surface hydrophilic by providing a step with ozone water or hydrogen peroxide water as a pre-process as well as a subsequent process of the cleaning process with the cleaning liquid composition. Since it becomes possible to suppress organic substance adsorption | suction by a composition, it is preferable.
The cleaning agent of the present invention is preferably used at the above-mentioned concentrations, but high-concentration products with each component concentration 10 to 100 times are also stable. Preferably, the high-concentration product can be used after being diluted.

また、本発明の半導体基板洗浄剤による洗浄は、常温で行うことが可能であるが、加温条件下でも半導体基板をエッチングしないため、微粒子除去性をさらに向上させるためには、30〜80℃、好ましくは50〜70℃に加温して行うことも可能である。洗浄時間は、浸漬洗浄(バッチ式洗浄装置)の場合は、30秒〜30分、好ましくは1〜15分であるが、本願発明の半導体基板洗浄液は、基板をエッチングすることがないため、要求される清浄度に応じて長時間の洗浄を行うことが可能である。半導体基板から除去された微粒子を効率的に排出するために、本洗浄液組成物に長時間浸漬する代わりに水洗リンスに切り替えたり、あるいは本洗浄液組成物を注入し続けて微粒子をオーバーフローさせることも可能である。また、枚葉式洗浄装置および超音波等を用いることにより、洗浄時間を短縮することも可能である。
さらに、本洗浄液組成物工程を加温することに加え、前工程、例えば、純水によるリンス工程等も加温処理することで、洗浄液組成物の加温効果が相乗的に作用し、洗浄性はさらに向上するので好ましい。
In addition, the cleaning with the semiconductor substrate cleaning agent of the present invention can be performed at room temperature, but the semiconductor substrate is not etched even under heating conditions. It is also possible to carry out heating preferably at 50 to 70 ° C. In the case of immersion cleaning (batch type cleaning apparatus), the cleaning time is 30 seconds to 30 minutes, preferably 1 to 15 minutes. However, the semiconductor substrate cleaning liquid of the present invention does not etch the substrate, so it is required. Long-term cleaning can be performed according to the degree of cleanliness. In order to efficiently discharge the fine particles removed from the semiconductor substrate, it is possible to switch to a water rinse instead of immersing in the cleaning liquid composition for a long time, or to continuously inject the cleaning liquid composition to overflow the fine particles. It is. In addition, it is possible to shorten the cleaning time by using a single wafer cleaning apparatus and ultrasonic waves.
Furthermore, in addition to heating the cleaning liquid composition process, the heating effect of the cleaning liquid composition acts synergistically by heating the previous process, for example, a rinsing process with pure water. Is preferable because it further improves.

さらに、レジスト膜除去のための硫酸+過酸化水素水洗浄やシリコン窒化膜エッチングのためのリン酸洗浄を行う場合には、本洗浄液組成物による第一の洗浄工程を、2段階の工程に分けて行うことも可能である。かかる場合には、最初に無機酸水溶液による洗浄を行った後、1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸および縮合リン酸化合物から選択される化合物を含む水溶液で洗浄すると、洗浄工程を省略できるだけでなく、粒子の除去率が向上するので好ましい。2段階とすることで除去率が向上する理由は、無機酸がその後の工程に持ち込まれることにより、「無機酸」洗浄+「本洗浄液組成物」洗浄の相乗効果が得られるためと考えられる。無機酸水溶液は、場合に応じて過酸化水素を含んでいても良い。第一の工程を2段階に分けて行う場合の無機酸の濃度は、添加剤の工程に「無機酸」洗浄の洗浄液が持ち込まれて本発明の洗浄液組成物の適する濃度となればよく、従って、より高濃度、例えば、硫酸の場合は、85〜98質量%、リン酸の場合は80〜90質量%であってもよい。硫酸と過酸化水素が併用される場合には、過酸化水素の濃度は、2〜15質量%が好ましい。   Furthermore, when performing cleaning with sulfuric acid + hydrogen peroxide solution for resist film removal or phosphoric acid cleaning for silicon nitride film etching, the first cleaning step with this cleaning liquid composition is divided into two steps. It is also possible to do this. In such a case, after first washing with an aqueous inorganic acid solution, washing with an aqueous solution containing a compound selected from a compound having at least two sulfonic acid groups in one molecule, phytic acid and a condensed phosphate compound, Not only can the washing step be omitted, but the particle removal rate is improved, which is preferable. The reason why the removal rate is improved by using two stages is considered to be that an inorganic acid is brought into a subsequent process, thereby obtaining a synergistic effect of “inorganic acid” cleaning + “main cleaning liquid composition” cleaning. The inorganic acid aqueous solution may contain hydrogen peroxide depending on the case. The concentration of the inorganic acid in the case where the first step is divided into two steps is not limited as long as the cleaning solution of the “inorganic acid” cleaning is brought into the additive step so that the concentration becomes suitable for the cleaning solution composition of the present invention. The concentration may be higher, for example, 85 to 98% by mass for sulfuric acid and 80 to 90% by mass for phosphoric acid. When sulfuric acid and hydrogen peroxide are used in combination, the concentration of hydrogen peroxide is preferably 2 to 15% by mass.

以下に本発明の実施例と比較例とを共に示し、本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。   Examples of the present invention and comparative examples are shown below, and the present invention will be described in detail. However, the present invention is not limited to these examples.

洗浄液の調製
表1に示す組成の洗浄液を調製した。アンモニア、過酸化水素、酸、添加剤の残りは水である。
Preparation of cleaning liquid A cleaning liquid having the composition shown in Table 1 was prepared. Ammonia, hydrogen peroxide, acid, and the remainder of the additive is water.

Figure 0004744228
Figure 0004744228

評価試験1:洗浄液によるシリコン酸化膜およびポリシリコン膜のエッチング性
酸化膜付きシリコン基板を比較例、実施例の洗浄液に25℃で、60分間浸漬処理し、その処理前後の膜厚を干渉式膜厚計にて測定し、洗浄液による酸化膜、ポリシリコン膜のエッチング量を比較した。結果を表2に示す。
Evaluation Test 1: Etching of Silicon Oxide Film and Polysilicon Film with Cleaning Liquid A silicon substrate with an oxide film is immersed in the cleaning liquids of Comparative Examples and Examples at 25 ° C. for 60 minutes, and the film thickness before and after the processing is determined as an interference film. The thickness was measured with a thickness gauge, and the etching amounts of the oxide film and the polysilicon film by the cleaning liquid were compared. The results are shown in Table 2.

Figure 0004744228
Figure 0004744228

比較例1のSC−1洗浄液はシリコン酸化膜やポリシリコン膜をエッチングするが、本発明の洗浄液はシリコン酸化膜やポリシリコン膜をエッチングしない。   The SC-1 cleaning solution of Comparative Example 1 etches the silicon oxide film and the polysilicon film, but the cleaning solution of the present invention does not etch the silicon oxide film and the polysilicon film.

評価試験2 粒子汚染の洗浄
シリカ粒子、アルミナ粒子、窒化ケイ素粒子の各粒子をそれぞれ分散させた液を調製し、スピンナーを用いてシリコンウェーハに塗布することにより、ウェーハ表面を各粒子で汚染させた。当該ウェーハ表面の粒子数をウェーハ表面検査装置Surscan4500(ケーエルエーテンコール社製)を用いて測定した後、比較例及び実施例に記載の洗浄液に25℃で3分間浸漬処理した。この後、各ウェーハを超純水にて流水リンス処理し、乾燥を行った後、再びウェーハ表面検査装置により処理後の表面の粒子数を測定して、各粒子に対する除去能力を評価した。
結果を表3〜5に示す。
Evaluation Test 2 Cleaning of Particle Contamination A liquid in which silica particles, alumina particles, and silicon nitride particles are dispersed is prepared and applied to a silicon wafer using a spinner to contaminate the wafer surface with each particle. . The number of particles on the wafer surface was measured using a wafer surface inspection device Surscan 4500 (manufactured by KLA Tencor), and then immersed in the cleaning liquid described in Comparative Examples and Examples at 25 ° C. for 3 minutes. Thereafter, each wafer was rinsed with ultrapure water and dried, and then the number of particles on the surface after the treatment was again measured by a wafer surface inspection device to evaluate the removal ability for each particle.
The results are shown in Tables 3-5.

Figure 0004744228
Figure 0004744228

Figure 0004744228
Figure 0004744228

Figure 0004744228
Figure 0004744228

評価試験3.金属の洗浄
Mg、Ca、Fe、Ni、Cu、Znを1013atoms/cmのレベルで含む液を調製し、スピンナーを用いてシリコンウェーハに塗布することにより、ウェーハ表面を汚染した後、比較例2、実施例1の各洗浄液に25℃で3min浸漬処理した。その後、各ウェーハを超純水にて流水リンス処理し、乾燥を行った後、全反射蛍光X線装置 TREX610T(テクノス社製)を用いて、Ca、Fe、Ni、Cu、Znの表面濃度を測定した。その後、フッ酸水溶液を用いた液滴分解法により、各ウェーハからMgを回収し、ICP−MSにより、Mgの濃度を分析した。これらの手順により、各メタルに対する除去能力を評価した。結果を表6に示す。
Evaluation test 3. Metal cleaning After preparing a liquid containing Mg, Ca, Fe, Ni, Cu, Zn at a level of 10 13 atoms / cm 2 and applying it to a silicon wafer using a spinner, the wafer surface was contaminated and then compared. The respective cleaning liquids of Example 2 and Example 1 were immersed for 3 minutes at 25 ° C. Thereafter, each wafer was rinsed with ultrapure water and dried, and then the surface concentration of Ca, Fe, Ni, Cu, and Zn was determined using a total reflection fluorescent X-ray apparatus TREX610T (manufactured by Technos). It was measured. Thereafter, Mg was recovered from each wafer by a droplet decomposition method using a hydrofluoric acid aqueous solution, and the concentration of Mg was analyzed by ICP-MS. By these procedures, the removal ability for each metal was evaluated. The results are shown in Table 6.

Figure 0004744228
Figure 0004744228

1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸、縮合リン酸化合物からなる群から選択される1種または2種以上の添加による金属汚染に対する除去性の低下などはみられず、粒子汚染、金属汚染ともに良好な除去性を示した。
また、上記洗浄剤を用いた洗浄方法により、半導体基板上の粒子を効果的に除去できる。また、本発明は上記洗浄剤を用いた洗浄を加えた後、オゾン水または過酸化水素水による洗浄を施した場合、オゾン水または過酸化水素水洗浄を実施しない純水リンス洗浄よりも半導体基板上に吸着した炭素量を低減することが可能となる。具体的には本発明の洗浄剤にて半導体基板を洗浄した後、純水リンスにて洗浄した場合、水溶性の上記添加物を用いていることにより、基板上には炭素(C)の吸着が起こる。オゾン水または過酸化水素水による洗浄を加えた場合には、前述炭素濃度を検出限界以下まで除去することができる。
There is no reduction in metal removability due to the addition of one or more selected from the group consisting of compounds having at least two sulfonic acid groups in one molecule, phytic acid, and condensed phosphate compounds, Both particle contamination and metal contamination showed good removability.
Moreover, the particle | grains on a semiconductor substrate can be effectively removed with the washing | cleaning method using the said washing | cleaning agent. Further, in the present invention, when cleaning with ozone water or hydrogen peroxide solution is performed after cleaning using the above-described cleaning agent, the semiconductor substrate is more than pure water rinse cleaning in which ozone water or hydrogen peroxide solution cleaning is not performed. It is possible to reduce the amount of carbon adsorbed on the top. Specifically, when the semiconductor substrate is washed with the cleaning agent of the present invention and then washed with pure water rinse, the use of the water-soluble additive makes it possible to adsorb carbon (C) on the substrate. Happens. When cleaning with ozone water or hydrogen peroxide water is added, the carbon concentration can be removed to below the detection limit.

評価試験4 フッ酸を加えた場合の洗浄性
添加剤としてナフタレンスルホン酸とホルムアルデヒドの縮合物を100ppmとなるように純水で希釈し、ここに塩酸とフッ化水素酸をそれぞれ0.5質量%および0.1質量%となるよう添加した洗浄液Aを作成した。
添加剤としてナフタレンスルホン酸とホルムアルデヒドの縮合物を100ppmとなるように純水で希釈し、ここに塩酸を0.5質量%となるよう添加した洗浄液Bを作成した。
フッ化水素酸を0.1質量%となるよう希釈した洗浄液Cを作成した。
塩酸を0.5質量%となるように希釈した洗浄液Dを作成した。
Evaluation test 4 Detergency when hydrofluoric acid is added As a additive, a condensate of naphthalenesulfonic acid and formaldehyde is diluted with pure water to 100 ppm, and hydrochloric acid and hydrofluoric acid are each added in an amount of 0.5% by mass. And the cleaning liquid A added so that it might become 0.1 mass% was created.
As a additive, a condensate of naphthalenesulfonic acid and formaldehyde was diluted with pure water so as to be 100 ppm, and a cleaning liquid B was prepared by adding hydrochloric acid to 0.5% by mass.
A cleaning solution C was prepared by diluting hydrofluoric acid to 0.1% by mass.
A cleaning solution D was prepared by diluting hydrochloric acid to 0.5% by mass.

(1)オゾン水処理がない場合
窒化ケイ素粒子を分散させた薬液中にシリコン基板を浸漬する方法により、シリコン基板上に窒化ケイ素粒子を強制汚染させたサンプルを作成した。ウェーハ表面検査装置によりイニシャルの粒子数を測定した。このサンプルウェーハをそれぞれ洗浄液A〜Dに3分浸漬処理したのち、純水洗浄およびスピン乾燥を行い、ウェーハ表面検査装置により処理後の粒子数を測定して、これら洗浄液による粒子除去能力を評価した。結果を表7に示す。
実施例11:洗浄液A 3分→ 純水リンス 15分 → スピン乾燥
実施例12:洗浄液B 3分→ 純水リンス 15分 → スピン乾燥
比較例7: 洗浄液C 3分→ 純水リンス 15分 → スピン乾燥
比較例8: 洗浄液D 3分→ 純水リンス 15分 → スピン乾燥
(1) When there is no ozone water treatment The sample which forcedly contaminated the silicon nitride particle on the silicon substrate was created by the method of immersing a silicon substrate in the chemical | medical solution which disperse | distributed the silicon nitride particle. The number of initial particles was measured by a wafer surface inspection apparatus. Each sample wafer was immersed in the cleaning liquids A to D for 3 minutes, washed with pure water and spin-dried, and the number of particles after processing was measured with a wafer surface inspection device to evaluate the particle removal ability of these cleaning liquids. . The results are shown in Table 7.
Example 11: Cleaning liquid A 3 minutes → pure water rinse 15 minutes → spin drying Example 12: Cleaning liquid B 3 minutes → pure water rinse 15 minutes → spin drying Comparative Example 7: Cleaning liquid C 3 minutes → pure water rinse 15 minutes → spin Drying comparison example 8: Cleaning liquid D 3 minutes → pure water rinse 15 minutes → spin drying

Figure 0004744228
Figure 0004744228

添加剤と塩酸およびフッ化水素酸からなる洗浄液A(実施例11)で最も除去能力が高く、フッ化水素酸を含まない洗浄液B(実施例12)およびフッ化水素酸のみの洗浄液C(比較例7)でもある程度の除去能力があるが洗浄液Aよるも劣り、塩酸のみの洗浄液D(比較例8)ではほとんど除去できていないという結果が示された。フッ化水素酸がシリコン基板上の自然酸化膜をエッチングし、自然酸化膜上の粒子をリフトオフすることで粒子が基板から離れ、かつ添加剤の作用により粒子の再付着を防止することが可能となる。   Cleaning solution A (Example 11) consisting of an additive, hydrochloric acid and hydrofluoric acid has the highest removal capability, and cleaning solution B containing no hydrofluoric acid (Example 12) and cleaning solution C containing only hydrofluoric acid (Comparison) Even in Example 7), although there was some removal capability, it was inferior to that of the cleaning liquid A, and it was shown that the cleaning liquid D containing only hydrochloric acid (Comparative Example 8) could hardly be removed. Hydrofluoric acid etches the natural oxide film on the silicon substrate and lifts off the particles on the natural oxide film, so that the particles can be separated from the substrate and the re-adhesion of the particles can be prevented by the action of the additive. Become.

(2)オゾン水処理を行った場合
(1)の各洗浄液を用いて、窒化ケイ素粒子を強制汚染させたサンプルウェーハを3分間
処理した後、オゾン水(オゾン濃度5ppm)に1分間浸漬し、この後に純水洗浄およびスピン乾燥を行い、ウェーハ表面検査装置により処理後の粒子数を測定して、これら洗浄液による粒子除去能力を評価した。結果を表8に示す。
実施例13:洗浄液A 3分→ オゾン水1分 → 純水リンス 15分 → スピン乾燥
実施例14:洗浄液B 3分→ オゾン水1分 → 純水リンス 15分 → スピン乾燥
比較例9: 洗浄液C 3分→ オゾン水1分 → 純水リンス 15分 → スピン乾燥
比較例10:洗浄液D 3分→ オゾン水1分 → 純水リンス 15分 → スピン乾燥
(2) When ozone water treatment is performed After using the cleaning liquid of (1) to treat a sample wafer forcibly contaminated with silicon nitride particles for 3 minutes, it is immersed in ozone water (ozone concentration 5 ppm) for 1 minute, Thereafter, pure water cleaning and spin drying were performed, and the number of particles after processing was measured by a wafer surface inspection device to evaluate the particle removal ability of these cleaning solutions. The results are shown in Table 8.
Example 13: Cleaning liquid A 3 minutes → Ozone water 1 minute → Pure water rinse 15 minutes → Spin drying Example 14: Cleaning liquid B 3 minutes → Ozone water 1 minute → Pure water rinse 15 minutes → Spin drying Comparative Example 9: Cleaning liquid C 3 minutes-> ozone water 1 minute-> pure water rinse 15 minutes-> spin drying Comparative Example 10: Cleaning solution D 3 minutes-> ozone water 1 minute-> pure water rinse 15 minutes-> spin drying

Figure 0004744228
Figure 0004744228

オゾン水で処理することにより基板表面を親水性に仕上げることで、スピン乾燥時のウォーターマーク発生を防止することができたため、特にフッ化水素酸を含む洗浄液A(実施例13)および洗浄液C(比較例9)において、処理後の粒子を低減でき、より優れた粒子除去能力示された。   Since the surface of the substrate is made hydrophilic by treating with ozone water, the generation of watermarks during spin drying can be prevented. In particular, the cleaning liquid A containing hydrofluoric acid (Example 13) and the cleaning liquid C ( In Comparative Example 9), the number of particles after the treatment could be reduced, and a better particle removal ability was shown.

評価試験5 フッ酸前処理による洗浄性
枚葉式洗浄装置において、窒化ケイ素粒子を強制汚染させたサンプルウェーハに対してまず0.1質量%フッ化水素酸水溶液を20秒間吐出し、続いて添加剤としてナフタレンスルホン酸とホルムアルデヒドの縮合物を100ppmとなるように純水で希釈しここに塩酸を0.5質量%となるよう添加した洗浄液Bを60秒間吐出し、最後に純水を60秒間吐出して水洗し、スピン乾燥する実施例15を行った。
また、枚葉式洗浄装置において、窒化ケイ素粒子を強制汚染させたサンプルウェーハに対してまず添加剤としてナフタレンスルホン酸とホルムアルデヒドの縮合物を100ppmとなるように純水で希釈しここに塩酸を0.5質量%となるよう添加した洗浄液Bを60秒間吐出し、最後に純水を60秒間吐出して水洗し、スピン乾燥する実施例16を行った。
次に、枚葉式洗浄装置において、窒化ケイ素粒子を強制汚染させたサンプルウェーハに対してまず0.1質量%フッ化水素酸水溶液を20秒間吐出し、続いて添加剤としてナフタレンスルホン酸とホルムアルデヒドの縮合物を100ppmとなるように純水で希釈しここに塩酸を0.5質量%となるよう添加した洗浄液Bを60秒間吐出し、さらにオゾン水(5ppm)を30秒間吐出して、最後に純水を60秒間吐出して水洗し、スピン乾燥する実施例17を行った。
いずれのサンプルウェーハも乾燥後にウェーハ表面検査装置により処理後の粒子数を測定して、これら洗浄方法による粒子除去能力を評価した。結果を表9に示す。
Evaluation test 5 Detergency by hydrofluoric acid pretreatment In a single wafer cleaning apparatus, a 0.1% by mass hydrofluoric acid aqueous solution was first discharged onto a sample wafer forcibly contaminated with silicon nitride particles for 20 seconds and then added. As the agent, a condensate of naphthalene sulfonic acid and formaldehyde was diluted with pure water to 100 ppm, and the cleaning solution B added with hydrochloric acid to 0.5% by mass was discharged for 60 seconds, and finally pure water was discharged for 60 seconds. Example 15 was carried out by discharging, washing with water, and spin drying.
In a single wafer cleaning apparatus, a sample wafer forcibly contaminated with silicon nitride particles is first diluted with pure water so that a condensate of naphthalenesulfonic acid and formaldehyde as an additive becomes 100 ppm, and hydrochloric acid is added to the sample wafer. Example 16 was carried out in which the cleaning liquid B added to a concentration of 5% by mass was discharged for 60 seconds, and finally pure water was discharged for 60 seconds, washed with water, and spin-dried.
Next, in a single wafer cleaning apparatus, a 0.1% by mass hydrofluoric acid aqueous solution is first discharged for 20 seconds onto a sample wafer forcibly contaminated with silicon nitride particles, followed by naphthalenesulfonic acid and formaldehyde as additives. The condensate was diluted with pure water to 100 ppm, and the cleaning liquid B added with hydrochloric acid to 0.5 mass% was discharged for 60 seconds, and ozone water (5 ppm) was further discharged for 30 seconds. In Example 17, pure water was discharged for 60 seconds, washed with water, and spin-dried.
Each sample wafer was dried, and the number of particles after processing was measured by a wafer surface inspection device, and the particle removal ability by these cleaning methods was evaluated. The results are shown in Table 9.

Figure 0004744228
Figure 0004744228

最初にフッ化水素酸でシリコン基板上の自然酸化膜をエッチングし、自然酸化膜上の粒子をリフトオフすることで粒子が基板から離れ、かつ添加剤の作用により粒子の再付着を防止することが可能となる。さらに、オゾン水で処理することにより基板表面を親水性に仕上げ、スピン乾燥時のウォーターマーク発生を防止することができ、より優れた粒子除去能力示された。   First, the natural oxide film on the silicon substrate is etched with hydrofluoric acid, and the particles on the natural oxide film are lifted off to prevent the particles from separating from the substrate and to prevent the particles from reattaching due to the action of the additive. It becomes possible. Furthermore, the surface of the substrate was made hydrophilic by treating with ozone water, and the generation of watermarks during spin drying could be prevented, indicating a more excellent particle removal ability.

評価試験6 半導体基板洗浄液組成物による洗浄の2段階化による効果
(1)半導体基板洗浄液組成物の無機酸が硫酸の場合
窒化ケイ素粒子を分散させた薬液を回転しているシリコンウェーハ上に滴下することで、ウェーハ表面に窒化ケイ素粒子を強制汚染させたウェーハを作成した。
バッチ式洗浄装置にて以下の処理を行い、処理後の粒子数を測定して各処理による除去率を求めた。以下の処理は、窒化ケイ素粒子を強制汚染したウェーハをバッチ式洗浄装置の石英槽に浸漬して行った。
第1の槽には100℃以上に加熱した硫酸と過酸化水素水の混合溶液(硫酸:過酸化水素水=90質量%:3質量%)を、第2の槽には60〜70℃の温純水を注入した。実施例18では、第2の槽にナフタレンスルホン酸とホルムアルデヒドの縮合物を槽内の濃度が100ppmとなるように注入した。結果を表10に示す。
比較例11:第1の槽に10分間浸漬→第2の槽に浸漬し、10分間温純水リンス→アンモニア溶液と過酸化水素水を2分間注入→15分間純水リンス→スピン乾燥
実施例18:第1の槽に10分間浸漬→添加剤を注入した第2の槽に浸漬し、10分間温純水リンス→アンモニア溶液と過酸化水素水を2分間注入→15分間純水リンス→スピン乾燥
Evaluation test 6 Effect of two-step cleaning with semiconductor substrate cleaning liquid composition (1) When inorganic acid of semiconductor substrate cleaning liquid composition is sulfuric acid A chemical solution in which silicon nitride particles are dispersed is dropped onto a rotating silicon wafer. As a result, a wafer was produced in which silicon nitride particles were forcibly contaminated on the wafer surface.
The following process was performed in a batch type cleaning apparatus, the number of particles after the process was measured, and the removal rate by each process was obtained. The following treatment was performed by immersing a wafer forcibly contaminated with silicon nitride particles in a quartz tank of a batch type cleaning apparatus.
A mixed solution of sulfuric acid and hydrogen peroxide water heated to 100 ° C. or higher (sulfuric acid: hydrogen peroxide solution = 90 mass%: 3 mass%) is used in the first tank, and a temperature of 60 to 70 ° C. is used in the second tank. Warm pure water was injected. In Example 18, a condensate of naphthalenesulfonic acid and formaldehyde was injected into the second tank so that the concentration in the tank would be 100 ppm. The results are shown in Table 10.
Comparative Example 11: Immersion in the first tank for 10 minutes → Immerse in the second tank, rinse for 10 minutes with warm pure water → Inject ammonia solution and hydrogen peroxide for 2 minutes → Rinse with pure water for 15 minutes → Spin drying Example 18: Immerse in the first tank for 10 minutes → Immerse in the second tank into which the additive has been injected and rinse for 10 minutes with warm pure water → Inject ammonia solution and hydrogen peroxide for 2 minutes → 15 minutes with pure water rinse → Spin dry

Figure 0004744228
Figure 0004744228

以上のように、半導体基板洗浄液組成物による洗浄を2段階化、すなわち、硫酸+過酸化水素水で処理した後に、添加剤を含む温純水でリンスした方が粒子の除去率が向上した。これは、第1の槽でウェーハに付着した硫酸が第2の槽に持ち込まれ、添加剤が硫酸酸性下で粒子に作用して効果的に粒子が除去されたと考えられる。今回は温純水を使用したが、室温の純水も使用できる。また、アンモニア溶液の代わりに有機系アルカリ溶液を使用してもよい。第2の槽でアルカリ+過酸化水素水処理を行い、吸着した添加剤の除去を行ったが、次工程にオゾン水を使う洗浄工程など添加剤を除去できる工程がある場合には、これを省略することができる。硫酸の酸化力によって添加剤が分解され、効果が減少する場合には予め添加剤の濃度を高濃度に設定してもよい。   As described above, cleaning with the semiconductor substrate cleaning liquid composition is performed in two stages, that is, after treatment with sulfuric acid + hydrogen peroxide solution, rinsing with warm pure water containing an additive improves the particle removal rate. This is probably because sulfuric acid adhering to the wafer in the first tank was brought into the second tank, and the additive acted on the particles under sulfuric acid acidity to effectively remove the particles. Although warm pure water was used this time, room temperature pure water can also be used. Further, an organic alkaline solution may be used instead of the ammonia solution. The alkali + hydrogen peroxide solution was treated in the second tank, and the adsorbed additive was removed. If there is a process that can remove the additive, such as a cleaning process using ozone water, in the next process, Can be omitted. When the additive is decomposed by the oxidizing power of sulfuric acid and the effect is reduced, the concentration of the additive may be set to a high concentration in advance.

(2)半導体基板洗浄液組成物の無機酸がリン酸の場合
強制汚染ウェーハの作成は(1)と同じ方法で行った。
バッチ式洗浄装置にて以下の処理を行い、処理後の粒子数を測定して各処理による除去率を求めた。以下の処理は、窒化ケイ素粒子を強制汚染したウェーハをバッチ式洗浄装置の石英槽に浸漬して行った。
第1の槽には100℃以上に加熱したリン酸の混合溶液(85質量%)を、第2の槽には60〜70℃の温純水を注入した。実施例19では、第2の槽にナフタレンスルホン酸とホルムアルデヒドの縮合物を槽内の濃度が100ppmとなるように注入した。結果を表11に示す。
比較例12:第1の槽に10分間浸漬→第2の槽に浸漬し、10分間温純水リンス→アンモニア溶液と過酸化水素水を2分間注入→15分間純水リンス→スピン乾燥
実施例19:第1の槽に10分間浸漬→添加剤を注入した第2の槽に浸漬し、10分間温純水リンス→アンモニア溶液と過酸化水素水を2分間注入→15分間純水リンス→スピン乾燥
(2) When the inorganic acid of the semiconductor substrate cleaning liquid composition is phosphoric acid, the forcedly contaminated wafer was prepared by the same method as (1).
The following process was performed in a batch type cleaning apparatus, the number of particles after the process was measured, and the removal rate by each process was obtained. The following treatment was performed by immersing a wafer forcibly contaminated with silicon nitride particles in a quartz tank of a batch type cleaning apparatus.
A mixed solution (85% by mass) of phosphoric acid heated to 100 ° C. or higher was poured into the first tank, and hot pure water at 60 to 70 ° C. was poured into the second tank. In Example 19, a condensate of naphthalenesulfonic acid and formaldehyde was injected into the second tank so that the concentration in the tank would be 100 ppm. The results are shown in Table 11.
Comparative Example 12: Immersion in the first tank for 10 minutes → Immersion in the second tank, 10 minutes warm pure water rinse → Inject ammonia solution and hydrogen peroxide solution for 2 minutes → 15 minutes pure water rinse → spin drying Example 19: Immerse in the first tank for 10 minutes → Immerse in the second tank into which the additive has been injected and rinse for 10 minutes with warm pure water → Inject ammonia solution and hydrogen peroxide for 2 minutes → 15 minutes with pure water rinse → Spin dry

Figure 0004744228
Figure 0004744228

以上のように、半導体基板洗浄液組成物による洗浄を2段階化、すなわち、リン酸で処理した後に、添加剤を含む温純水でリンスした方が粒子の除去率が向上した。これは、第1の槽でウェーハに付着したリン酸が第2の槽に持ち込まれ、添加剤がリン酸酸性下で粒子に作用して効果的に粒子が除去されたと考えられる。今回は温純水を使用したが、室温の純水も使用できる。また、アンモニア溶液の代わりに有機系アルカリ溶液を使用してもよい。第2の槽でアルカリ+過酸化水素水処理を行い、吸着した添加剤の除去を行ったが、次工程にオゾン水を使う洗浄工程など添加剤を除去できる工程がある場合には、これを省略することができる。   As described above, cleaning with the semiconductor substrate cleaning liquid composition is performed in two stages, that is, after treatment with phosphoric acid, rinsing with warm pure water containing an additive improves the particle removal rate. This is considered that the phosphoric acid adhering to the wafer in the first tank was brought into the second tank, and the additive acted on the particles under phosphoric acid acid to effectively remove the particles. Although warm pure water was used this time, room temperature pure water can also be used. Further, an organic alkaline solution may be used instead of the ammonia solution. The alkali + hydrogen peroxide solution was treated in the second tank, and the adsorbed additive was removed. If there is a process that can remove the additive, such as a cleaning process using ozone water, in the next process, Can be omitted.

評価試験7 オゾン水または過酸化水素水処理による効果
前処理として未使用のSiウェーハをバッチ式自動洗浄装置で希フッ酸洗浄とオゾン水洗浄を行い、ウェーハ表面の自然酸化膜と有機物を除去した。このウェーハを用いて以下の処理を行った後、ウェーハ加熱GC/MS分析法によりウェーハ表面の残留有機物量を測定した。測定された各分子量のカウントをC1634として換算し、全有機物量とした。
以下の処理は、ウェーハをバッチ式洗浄装置の石英槽に浸漬して行った。添加剤と塩酸は、槽内の濃度が添加剤のナフタレンスルホン酸ホルムアルデヒド縮合物100ppmおよび塩酸0.5質量%となるように純水とともに処理槽内に注入した。オゾン水は、オゾン濃度5ppmとなるようにオゾンガスを溶解させた純水を20L/minで槽内に注入した。過酸化水素水は、過酸化水素濃度が槽内で1質量%になるように純水とともに注入した。
実施例20:添加剤と塩酸を2分間注入→オゾン水を5分間注入→15分間純水リンス→スピン乾燥
実施例21:添加剤と塩酸を2分間注入→過酸化水素水を5分間注入→15分間純水リンス→スピン乾燥
処理後に測定した全有機物量を表12に示す。
Evaluation test 7 Effect of treatment with ozone water or hydrogen peroxide solution Unused Si wafer as a pretreatment was cleaned with dilute hydrofluoric acid and ozone water using a batch-type automatic cleaning device to remove the natural oxide film and organic matter on the wafer surface. . After performing the following processing using this wafer, the amount of residual organic substances on the wafer surface was measured by a wafer heating GC / MS analysis method. The measured count of each molecular weight was converted as C 16 H 34 to obtain the total amount of organic matter.
The following treatment was performed by immersing the wafer in a quartz tank of a batch type cleaning apparatus. The additive and hydrochloric acid were poured into the treatment tank together with pure water so that the concentration in the tank was 100 ppm of the naphthalenesulfonic acid formaldehyde condensate and 0.5% by mass of hydrochloric acid. As the ozone water, pure water in which ozone gas was dissolved so as to have an ozone concentration of 5 ppm was injected into the tank at 20 L / min. The hydrogen peroxide solution was injected together with pure water so that the hydrogen peroxide concentration was 1% by mass in the tank.
Example 20: Injection of additive and hydrochloric acid for 2 minutes → Injection of ozone water for 5 minutes → Rinse with pure water for 15 minutes → Spin drying Example 21: Injection of additive and hydrochloric acid for 2 minutes → Injection of hydrogen peroxide solution for 5 minutes → Table 12 shows the total amount of organic substances measured after pure water rinsing and spin drying for 15 minutes.

Figure 0004744228
Figure 0004744228

以上のように、処理後のウェーハ表面から定量された全有機物量は、オゾン水または過酸化水素水を用いる処理がリファレンスよりも低く、オゾン水または過酸化水素水を用いる処理により、基板表面の有機物残量の低減が可能となる。   As described above, the total amount of organic substances quantified from the surface of the wafer after processing is lower than the reference in the treatment using ozone water or hydrogen peroxide solution, and the treatment of the substrate surface by the treatment using ozone water or hydrogen peroxide solution. It is possible to reduce the remaining organic matter.

評価試験8 オゾン水または過酸化水素水による前処理効果
(1)親水性処理の効果
ウェーハの前処理と全有機物量測定は評価試験7と同じ方法で行った。評価試験7において、希フッ酸洗浄を追加する処理を以下のように行った。フッ酸はフッ化水素酸濃度が槽内で1.5質量%になるように純水とともに注入した。
実施例22:フッ酸を2分間注入→10分間純水リンス→添加剤と塩酸を2分間注入→オゾン水を5分間注入→15分間純水リンス→スピン乾燥
実施例23:フッ酸を2分間注入→10分間純水リンス→オゾン水を2分間注入→5分間純水リンス→添加剤と塩酸を2分間注入→オゾン水を5分間注入→15分間純水リンス→スピン乾燥
処理後に測定した全有機物量を表13に示す。
Evaluation test 8 Effect of pretreatment with ozone water or hydrogen peroxide solution (1) Effect of hydrophilic treatment Pretreatment of the wafer and measurement of the total amount of organic substances were carried out in the same manner as in evaluation test 7. In the evaluation test 7, a treatment for adding dilute hydrofluoric acid cleaning was performed as follows. Hydrofluoric acid was injected with pure water so that the concentration of hydrofluoric acid was 1.5% by mass in the tank.
Example 22: Injection of hydrofluoric acid for 2 minutes → Rinse with pure water for 10 minutes → Injection of additives and hydrochloric acid for 2 minutes → Injection of ozone water for 5 minutes → Rinse with pure water for 15 minutes → Spin drying Example 23: Hydrofluoric acid for 2 minutes Injection-> 10 minutes pure water rinse-> ozone water injected for 2 minutes-> 5 minutes pure water rinse-> additive and hydrochloric acid injected for 2 minutes-> ozone water injected for 5 minutes-> 15 minutes pure water rinse-> all measured after spin drying treatment Table 13 shows the amount of organic substances.

Figure 0004744228
Figure 0004744228

以上のように、処理後のウェーハ表面から定量された全有機物量は、実施例22および実施例23ともにリファレンスよりも低く抑えられているが、本願洗浄液組成物の注入前にオゾン水を注入した実施例23の方が低減していることがわかった。希フッ酸注入後はウェーハ表面が疎水性になっているため有機物の吸着が多いが、本願洗浄液組成物を注入する前にオゾン水を注入し、親水性とすることで添加剤の吸着量を低減し、最終的な残留有機物量を低く抑えることができる。本実施例では実施例22および実施例23ともに本願洗浄液組成物注入後のオゾン水リンスを5分間行っていているが、実施例23では有機物の吸着を抑えることでリンス時間を短縮することも可能である。なお、実施例23において純水リンスでオゾン水を排出してから本願洗浄液組成物を注入する理由は、オゾン水が本願洗浄液組成物中に注入されると本願洗浄液組成物中の添加剤が分解されてしまうためである。   As described above, the total amount of organic substances quantified from the surface of the wafer after processing was suppressed to be lower than that of the reference in both Example 22 and Example 23, but ozone water was injected before injection of the cleaning liquid composition of the present application. It was found that Example 23 was reduced. After injecting dilute hydrofluoric acid, the surface of the wafer becomes hydrophobic, so there is much adsorption of organic matter, but before injecting the cleaning solution composition of the present application, ozone water is injected to make the adsorbent adsorbed by making it hydrophilic. And the final amount of residual organic matter can be kept low. In this example, ozone water rinsing after injection of the cleaning liquid composition of this application is performed for 5 minutes in both Example 22 and Example 23. However, in Example 23, it is possible to shorten the rinsing time by suppressing the adsorption of organic substances. It is. In addition, in Example 23, the reason for injecting the cleaning liquid composition after discharging ozone water with pure water rinse is that the additive in the cleaning liquid composition of the present application is decomposed when ozone water is injected into the cleaning liquid composition of the present application. It is because it will be done.

(2)洗浄温度の効果
評価試験6(1)の方法で窒化ケイ素を強制汚染させたウェーハを作成した。ウェーハ表面検査装置で処理前の粒子数を測定した。バッチ式洗浄装置にて以下の処理を行い、処理後の粒子数を測定して各処理による除去率を求めた。
以下の処理は、窒化ケイ素粒子を強制汚染したウェーハをバッチ式洗浄装置の石英槽に浸漬して行った。添加剤と塩酸は、槽内の濃度がナフタレンスルホン酸ホルムアルデヒド縮合物100ppmおよび塩酸0.5質量%となるように純水とともに処理槽内に注入した。オゾン水は、オゾン濃度5ppmとなるようにオゾンガスを溶解させた純水を20L/minで槽内に注入した。温純水としてはクリーン温水器で60〜70℃に加熱した純水を20L/minで槽内に注入した。
実施例24:添加剤、塩酸および純水を2分間注入→オゾン水を5分間注入→純水リンス15分間→スピン乾燥
実施例25:温純水を3分間注入→添加剤と塩酸および温純水を同時に2分間注入→オゾン水を5分間注入→純水リンス15分間→スピン乾燥
処理前後に測定した粒子数と除去率を表14に示す。
(2) Effect of cleaning temperature A wafer in which silicon nitride was forcibly contaminated was prepared by the method of Evaluation Test 6 (1). The number of particles before processing was measured with a wafer surface inspection apparatus. The following process was performed in a batch type cleaning apparatus, the number of particles after the process was measured, and the removal rate by each process was obtained.
The following treatment was performed by immersing a wafer forcibly contaminated with silicon nitride particles in a quartz tank of a batch type cleaning apparatus. The additive and hydrochloric acid were poured into the treatment tank together with pure water so that the concentration in the tank was 100 ppm of naphthalenesulfonic acid formaldehyde condensate and 0.5% by mass of hydrochloric acid. As the ozone water, pure water in which ozone gas was dissolved so as to have an ozone concentration of 5 ppm was injected into the tank at 20 L / min. As warm pure water, pure water heated to 60 to 70 ° C. with a clean water heater was poured into the tank at 20 L / min.
Example 24: Additive, hydrochloric acid and pure water are injected for 2 minutes → Ozone water is injected for 5 minutes → Pure water rinse is 15 minutes → Spin drying Example 25: Warm pure water is injected for 3 minutes → Additive, hydrochloric acid and hot pure water are simultaneously 2 Table 14 shows the number of particles and the removal rate measured before and after spin-injection for 5 minutes, ozone water for 5 minutes, pure water rinse for 15 minutes, and spin drying treatment.

Figure 0004744228
Figure 0004744228

以上のように、温純水を用いて添加剤注入時の温度を上げることで、常温よりも除去率を向上させることが可能である。   As described above, it is possible to improve the removal rate from room temperature by increasing the temperature at the time of injecting the additive using warm pure water.

(3)オゾン水洗浄前の水洗効果
強制汚染ウェーハの作成と薬液処理は(2)と同じ方法で行った。(2)の実施例24において、添加剤処理後にオゾン水を注入する前に純水を注入する処理、およびオゾン水を注入する前に浸漬状態を保つ処理を行った。
実施例24:添加剤、塩酸および純水を2分間注入→オゾン水を5分間注入→15分間純水リンス→スピン乾燥
実施例26:添加剤、塩酸および純水を2分間注入→純水を5分間注入→オゾン水を5分間注入→15分間純水リンス→スピン乾燥
実施例27:添加剤、塩酸および純水を2分間注入→5分間浸漬→オゾン水を5分間注入→15分間純水リンス→スピン乾燥
処理前後に測定した粒子数と除去率を表15に示す。
(3) Washing effect before cleaning with ozone water Forced contamination wafer preparation and chemical treatment were performed in the same manner as (2). In Example 24 of (2), a process of injecting pure water before injecting ozone water after the additive treatment and a process of keeping the immersion state before injecting ozone water were performed.
Example 24: Injection of additive, hydrochloric acid and pure water for 2 minutes → injection of ozone water for 5 minutes → pure water rinse for 15 minutes → spin drying
Example 26: Injecting additive, hydrochloric acid and pure water for 2 minutes → Injecting pure water for 5 minutes → Injecting ozone water for 5 minutes → Rinse pure water for 15 minutes → Spin drying Example 27: Additive, hydrochloric acid and pure water Table 15 shows the number of particles and removal rate measured before and after 2 minutes injection → 5 minutes immersion → ozone water injection for 5 minutes → 15 minutes pure water rinse → spin drying treatment.

Figure 0004744228
Figure 0004744228

以上のように、添加剤注入直後にオゾン水を注入するよりも、純水でリンスした方が除去率が向上した。これは、オゾンの酸化力で添加剤が分解され、粒子除去能率が低下した可能性がある。また、添加剤注入直後にオゾン水または純水の注入を停止して浸漬する場合、かえって除去率が低下した。添加剤は基板と粒子表面に吸着して、基板と粒子が反発するようにゼータ電位を制御するが、これは速やかに進行するため、吸着後は純水を注入して速やかに排出させる方が粒子の除去には好ましい。   As described above, the removal rate was improved by rinsing with pure water rather than injecting ozone water immediately after the additive injection. This is because the additive is decomposed by the oxidizing power of ozone, and the particle removal efficiency may be lowered. Further, when the injection of ozone water or pure water was stopped immediately after the additive injection, the removal rate was rather lowered. The additive is adsorbed on the substrate and the particle surface, and the zeta potential is controlled so that the substrate and the particle are repelled, but since this proceeds quickly, it is better to inject pure water and quickly discharge after adsorption. Preferred for particle removal.

本発明による洗浄液組成物は、シリコン基板及びガラス基板を腐食することなく、シリカ粒子、アルミナ粒子、窒化ケイ素粒子のような種々の粒子とともに、金属を除去することができる洗浄液組成物である。   The cleaning liquid composition according to the present invention is a cleaning liquid composition capable of removing metal together with various particles such as silica particles, alumina particles, and silicon nitride particles without corroding the silicon substrate and the glass substrate.

Claims (18)

半導体基板表面の微粒子汚染、金属汚染を除去するのに用いられる洗浄液組成物であって、1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸および縮合リン酸化合物からなる群から選択される1種または2種以上と、無機酸と、水とを含有してなる、前記洗浄液組成物。 A cleaning liquid composition used for removing fine particle contamination and metal contamination on the surface of a semiconductor substrate, wherein the composition is selected from the group consisting of a compound having at least two or more sulfonic acid groups in one molecule, phytic acid and a condensed phosphate compound. The said cleaning liquid composition formed by containing 1 type (s) or 2 or more types, an inorganic acid, and water. 1分子中にスルホン酸基を少なくとも2以上有する化合物が、ナフタレンスルホン酸とホルムアルデヒドとの縮合物である、請求項1に記載の洗浄液組成物。   The cleaning liquid composition according to claim 1, wherein the compound having at least two sulfonic acid groups in one molecule is a condensate of naphthalenesulfonic acid and formaldehyde. 無機酸が、塩酸、硫酸、硝酸、リン酸および過塩素酸からなる群から選択される1種または2種以上である、請求項1または2に記載の洗浄液組成物。   The cleaning liquid composition according to claim 1 or 2, wherein the inorganic acid is one or more selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and perchloric acid. 1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸および縮合リン酸化合物からなる群から選択される1種または2種以上が、合計で0.00001〜10質量%の範囲である、請求項1〜3のいずれか一項に記載の洗浄液組成物。   One or two or more selected from the group consisting of a compound having at least two or more sulfonic acid groups in one molecule, phytic acid and condensed phosphoric acid compound is in the range of 0.00001 to 10% by mass in total. The cleaning liquid composition according to any one of claims 1 to 3. フッ化水素酸をさらに含有する、請求項1〜4のいずれか一項に記載の洗浄液組成物。   The cleaning liquid composition according to any one of claims 1 to 4, further comprising hydrofluoric acid. 1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸および縮合リン酸化合物からなる群から選択される1種または2種以上と、無機酸と、水とを含有してなる組成物であって、水を加えることにより請求項1〜4のいずれか一項に記載の洗浄液となる組成物。   A composition comprising one or more selected from the group consisting of a compound having at least two sulfonic acid groups in one molecule, phytic acid and a condensed phosphoric acid compound, an inorganic acid, and water. And the composition used as the washing | cleaning liquid as described in any one of Claims 1-4 by adding water. 半導体基板表面の微粒子汚染、金属汚染を除去してなる半導体基板の洗浄方法であって、1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸および縮合リン酸化合物からなる群から選択される1種または2種以上と、無機酸と、水とを含有してなる半導体基板洗浄液組成物を用いて半導体基板を洗浄する第一の工程と、第一の工程に引き続いて、純水または純水にオゾンガスを溶解したオゾン水または過酸化水素水を用いて当該半導体基板を洗浄する第二の工程とからなる、前記洗浄方法。 A method for cleaning a semiconductor substrate by removing fine particle contamination and metal contamination on the surface of the semiconductor substrate, wherein the method is selected from the group consisting of a compound having at least two or more sulfonic acid groups in one molecule, phytic acid and a condensed phosphate compound. A first step of cleaning a semiconductor substrate using a semiconductor substrate cleaning liquid composition comprising one or more of the above, an inorganic acid, and water; The cleaning method comprising: a second step of cleaning the semiconductor substrate using ozone water or hydrogen peroxide solution obtained by dissolving ozone gas in pure water. 第一の工程を、a)無機酸の1種又は2種以上を含有する水溶液で洗浄、b)1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸および縮合リン酸化合物からなる群から選択される1種または2種以上を含有する水溶液で洗浄の2つの工程に分けて行う、請求項7に記載の洗浄方法。   The first step is performed by a) washing with an aqueous solution containing one or more inorganic acids, and b) a group consisting of a compound having at least two sulfonic acid groups in one molecule, phytic acid and a condensed phosphoric acid compound. The washing | cleaning method of Claim 7 performed by dividing into two processes of washing | cleaning with the aqueous solution containing 1 type, or 2 or more types selected from these. 1分子中にスルホン酸基を少なくとも2以上有する化合物が、ナフタレンスルホン酸とホルムアルデヒドとの縮合物である、請求項7または8に記載の洗浄方法。   The cleaning method according to claim 7 or 8, wherein the compound having at least two sulfonic acid groups in one molecule is a condensate of naphthalenesulfonic acid and formaldehyde. 無機酸が、塩酸、硫酸、硝酸、リン酸および過塩素酸からなる群から選択される1種または2種以上である、請求項7〜9のいずれか一項に記載の洗浄方法。   The cleaning method according to any one of claims 7 to 9, wherein the inorganic acid is one or more selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and perchloric acid. 1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸および縮合リン酸化合物からなる群から選択される1種または2種以上が、合計で0.00001〜10質量%の範囲である、請求項7〜10のいずれか一項に記載の洗浄方法。   One or two or more selected from the group consisting of a compound having at least two or more sulfonic acid groups in one molecule, phytic acid and condensed phosphoric acid compound is in the range of 0.00001 to 10% by mass in total. The cleaning method according to any one of claims 7 to 10. 第一の工程を加温して行う、請求項7〜11のいずれか一項に記載の洗浄方法。   The washing | cleaning method as described in any one of Claims 7-11 performed by heating a 1st process. 第一の工程前に、純水にオゾンガスを溶解したオゾン水または過酸化水素水で洗浄する、請求項7〜12のいずれか一項に記載の洗浄方法。   The cleaning method according to any one of claims 7 to 12, wherein cleaning is performed with ozone water or hydrogen peroxide solution in which ozone gas is dissolved in pure water before the first step. 第一の工程と第二の工程の間に純水による洗浄を行う、請求項7〜13のいずれか一項に記載の洗浄方法。   The cleaning method according to claim 7, wherein cleaning with pure water is performed between the first step and the second step. 第一の工程前に、フッ化水素酸で洗浄する、請求項7〜14のいずれか一項に記載の洗浄方法。   The washing | cleaning method as described in any one of Claims 7-14 which wash | cleans with hydrofluoric acid before a 1st process. 第一工程の半導体基板洗浄液組成物がフッ化水素酸をさらに含有する、請求項7〜14のいずれか一項に記載の洗浄方法。   The cleaning method according to any one of claims 7 to 14, wherein the semiconductor substrate cleaning liquid composition in the first step further contains hydrofluoric acid. 第一工程の半導体基板洗浄液組成物が過酸化水素をさらに含有する、請求項7〜14のいずれか一項に記載の洗浄方法。   The cleaning method according to claim 7, wherein the semiconductor substrate cleaning liquid composition in the first step further contains hydrogen peroxide. 1分子中にスルホン酸基を少なくとも2以上有する化合物、フィチン酸および縮合リン酸化合物からなる群から選択される1種または2種以上と、無機酸と、水とを含有してなる組成物にさらに水を加えることによって得た組成物を用いる、請求項7〜14のいずれか一項に記載の洗浄方法。   A composition comprising one or more selected from the group consisting of a compound having at least two or more sulfonic acid groups in one molecule, phytic acid and a condensed phosphoric acid compound, an inorganic acid, and water. Furthermore, the washing | cleaning method as described in any one of Claims 7-14 using the composition obtained by adding water.
JP2005231538A 2004-08-10 2005-08-10 Semiconductor substrate cleaning liquid and semiconductor substrate cleaning method Active JP4744228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005231538A JP4744228B2 (en) 2004-08-10 2005-08-10 Semiconductor substrate cleaning liquid and semiconductor substrate cleaning method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004233670 2004-08-10
JP2004233670 2004-08-10
JP2005231538A JP4744228B2 (en) 2004-08-10 2005-08-10 Semiconductor substrate cleaning liquid and semiconductor substrate cleaning method

Publications (2)

Publication Number Publication Date
JP2006080501A JP2006080501A (en) 2006-03-23
JP4744228B2 true JP4744228B2 (en) 2011-08-10

Family

ID=36159669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005231538A Active JP4744228B2 (en) 2004-08-10 2005-08-10 Semiconductor substrate cleaning liquid and semiconductor substrate cleaning method

Country Status (1)

Country Link
JP (1) JP4744228B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4176779B2 (en) 2006-03-29 2008-11-05 東京エレクトロン株式会社 Substrate processing method, recording medium, and substrate processing apparatus
US9058975B2 (en) * 2006-06-09 2015-06-16 Lam Research Corporation Cleaning solution formulations for substrates
US8075697B2 (en) * 2007-02-08 2011-12-13 Fontana Technology Particle removal method and composition
JP4578531B2 (en) * 2008-02-01 2010-11-10 東京エレクトロン株式会社 Substrate processing method, recording medium, and substrate processing apparatus
JP4516141B2 (en) * 2008-06-02 2010-08-04 東京エレクトロン株式会社 Substrate processing method, recording medium, and substrate processing apparatus
JPWO2010125942A1 (en) * 2009-04-28 2012-10-25 株式会社Sumco Cleaning method of silicon sludge
JP5544256B2 (en) * 2010-09-21 2014-07-09 花王株式会社 Hard surface cleaning method
JP6433674B2 (en) * 2014-04-07 2018-12-05 株式会社トクヤマ Cleaning method for polycrystalline silicon
US11028340B2 (en) 2017-03-06 2021-06-08 Fujimi Incorporated Composition for surface treatment, method for producing the same, surface treatment method using composition for surface treatment, and method for producing semiconductor substrate
SG11201908804VA (en) * 2017-03-31 2019-10-30 Kanto Kagaku Cleaning solution composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2533792B2 (en) * 1988-06-09 1996-09-11 富士写真フイルム株式会社 Cleaning solution for automatic developing machine for lithographic printing plate making and cleaning method
JP2857042B2 (en) * 1993-10-19 1999-02-10 新日本製鐵株式会社 Cleaning liquid for silicon semiconductor and silicon oxide
JPH09151394A (en) * 1995-11-28 1997-06-10 Konica Corp Wash liquid for automatic developing machine for photosensitive lithographic printing plate
JPH09283480A (en) * 1996-04-08 1997-10-31 Nippon Steel Corp Washing method of semiconductor substrate
JP3454302B2 (en) * 1998-07-31 2003-10-06 三菱住友シリコン株式会社 Semiconductor substrate cleaning method
JP4516176B2 (en) * 1999-04-20 2010-08-04 関東化学株式会社 Substrate cleaning solution for electronic materials
JP4094323B2 (en) * 2002-04-03 2008-06-04 株式会社ルネサステクノロジ Substrate cleaning method and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP2006080501A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP4744228B2 (en) Semiconductor substrate cleaning liquid and semiconductor substrate cleaning method
KR101232249B1 (en) Semiconductor substrate cleaning liquid and semiconductor substrate cleaning process
JP4221191B2 (en) Cleaning liquid composition after CMP
JP3219020B2 (en) Cleaning agent
US20080156349A1 (en) Method for cleaning silicon wafer
KR100533194B1 (en) Cleaning solution
JP2001500922A (en) Post-cleaning treatment
JP2003289060A (en) Cleaning liquid for substrate for semiconductor device and cleaning method
EP1389496A1 (en) Method for cleaning surface of substrate
JP2005194294A (en) Cleaning liquid and method for producing semiconductor device
CN113675073A (en) Wafer cleaning method
JP2007214412A (en) Semiconductor substrate cleaning method
CN112928017A (en) Cleaning method for effectively removing metal on surface of silicon wafer
JP2007073806A (en) Silicon wafer cleansing method
JP2003173998A (en) Method for cleaning semiconductor substrate
US6530381B1 (en) Process for the wet-chemical surface treatment of a semiconductor wafer
CN113195699A (en) Detergent composition and washing method using same
KR101789857B1 (en) Process for treating a semiconductor wafer
JPH09321009A (en) Method for manufacturing semiconductor device
JP2003088817A (en) Method for cleaning surface of substrate
JP2007150196A (en) Cleaning method and manufacturing method of semiconductor wafer
KR20000029749A (en) Aqueous cleaning solution for a semiconductor substrate
CN1546627A (en) Novel cleaning solution for the stripping of silicon nitride film in wet method
JP2002100599A (en) Washing method for silicon wafer
JP2001217215A (en) Composition and method for treating surface of semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4744228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350