JP2007000699A - Production method of nitrogen gas-dissolved water - Google Patents

Production method of nitrogen gas-dissolved water Download PDF

Info

Publication number
JP2007000699A
JP2007000699A JP2005180831A JP2005180831A JP2007000699A JP 2007000699 A JP2007000699 A JP 2007000699A JP 2005180831 A JP2005180831 A JP 2005180831A JP 2005180831 A JP2005180831 A JP 2005180831A JP 2007000699 A JP2007000699 A JP 2007000699A
Authority
JP
Japan
Prior art keywords
nitrogen gas
water
dissolved
gas
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005180831A
Other languages
Japanese (ja)
Other versions
JP4756327B2 (en
Inventor
Takumi Tada
匠 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2005180831A priority Critical patent/JP4756327B2/en
Publication of JP2007000699A publication Critical patent/JP2007000699A/en
Application granted granted Critical
Publication of JP4756327B2 publication Critical patent/JP4756327B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method of nitrogen gas-dissolved water by which nitrogen gas-dissolved water used for a wet washing process in industries handling electronic materials like semiconductors or liquid crystals can be produced efficiently and economically by reducing an amount of nitrogen used. <P>SOLUTION: In this production method of nitrogen gas-dissolved water by dissolving nitrogen gas in ultra-pure water, the ultrapure water is subjected to deoxidation treatment by a palladium catalyst. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、窒素ガス溶解水の製造方法に関する。さらに詳しくは、本発明は、半導体、液晶などの電子材料を扱う産業において行われるウェット洗浄工程に使用される窒素ガス溶解水を、窒素ガスの使用量を低減して、効率的かつ経済的に製造することができる窒素ガス溶解水の製造方法に関する。   The present invention relates to a method for producing nitrogen gas-dissolved water. More specifically, the present invention relates to nitrogen gas-dissolved water used in a wet cleaning process performed in an industry that handles electronic materials such as semiconductors and liquid crystals, reducing the amount of nitrogen gas used efficiently and economically. The present invention relates to a method for producing nitrogen gas-dissolved water that can be produced.

従来より、半導体用シリコン基板、液晶用ガラス基板、フォトマスク用石英基板などの電子材料のような、極めて清浄な表面が求められる被洗浄物の洗浄用水として、微粒子、コロイダル物質、有機物、金属、陰イオンなどが可能な限りに除去された超純水が用いられている。   Conventionally, fine water, colloidal substances, organic substances, metals, as cleaning water for objects to be cleaned such as electronic materials such as silicon substrates for semiconductors, glass substrates for liquid crystals, quartz substrates for photomasks, etc. Ultrapure water from which anions and the like are removed as much as possible is used.

超純水は、一般的には、工業用水、井水、表層水、排水などの原水を、前処理装置、一次純水装置及び二次純水装置で構成される超純水製造装置で処理して生産される。図7は、超純水製造装置の工程系統図の一例である。前処理装置においては、凝集沈殿装置、加圧浮上装置、砂ろ過装置、膜ろ過装置などを用いて、原水の除濁が行われる。次いで、一次純水装置において、活性炭ろ過装置、逆浸透膜装置、イオン交換装置、電気脱塩装置、脱気装置、精密ろ過膜装置、酸化処理装置などを任意の順序で用いて、前処理水中のイオン、有機物、気体などの溶存不純物が除去される。さらに、二次純水装置(サブシステム)において、紫外線照射装置、混床式ポリッシャ、限外ろ過膜装置や逆浸透膜装置のような膜処理装置などを用いて、一次純水中に微量に残留する微粒子、コロイダル物質、有機物、金属、イオンなどの不純物が除去されて超純水が得られる。ユースポイントにおいて、未使用の純水、希薄排水、濃厚排水が分別回収され、純水と希薄排水は循環して再精製され、濃厚排水は排水処理される。   Ultrapure water generally treats raw water such as industrial water, well water, surface water, and wastewater with an ultrapure water production system that consists of a pretreatment device, a primary pure water device, and a secondary pure water device. Produced. FIG. 7 is an example of a process flow diagram of the ultrapure water production apparatus. In the pretreatment device, turbidity of the raw water is performed using a coagulation sedimentation device, a pressurized flotation device, a sand filtration device, a membrane filtration device, or the like. Next, in the primary pure water device, the activated carbon filtration device, the reverse osmosis membrane device, the ion exchange device, the electric desalination device, the deaeration device, the microfiltration membrane device, the oxidation treatment device, etc. are used in any order, and the pretreated water Dissolved impurities such as ions, organic substances and gases are removed. Furthermore, in the secondary pure water device (subsystem), using ultra-violet irradiation device, mixed bed polisher, membrane treatment device such as ultrafiltration membrane device and reverse osmosis membrane device, etc. Impurities such as residual fine particles, colloidal substances, organic substances, metals, and ions are removed to obtain ultrapure water. At the point of use, unused pure water, diluted waste water, and concentrated waste water are collected separately, and pure water and diluted waste water are circulated and re-purified, and the concentrated waste water is treated with waste water.

超純水製造装置で用いられる脱気装置としては、真空脱気、膜脱気、窒素脱気、加熱脱気、触媒樹脂脱気、これらの組み合わせなどがある。脱気により、超純水又は超純水製造過程の水から主に溶存酸素(DO)を除去する。通常、脱気装置としてよく用いられる真空脱気、膜脱気においては、溶存酸素とともに溶解している種々の溶存気体も除去される。なお、脱気により水中の重炭酸イオン及び炭酸イオンを炭酸ガスとして除去することができるが、これらの脱気装置とは別に脱炭酸塔を設ける場合もある。このような超純水製造装置で生産された超純水は、そのままで、あるいは、オゾンガス、水素ガス、炭酸ガス、窒素ガスなどの種々のガスを溶解させて、半導体用シリコン基板、液晶用ガラス基板などの電子材料用の洗浄水、リンス水として用いられる。   Examples of the degassing apparatus used in the ultrapure water production apparatus include vacuum degassing, membrane degassing, nitrogen degassing, heat degassing, catalyst resin degassing, and combinations thereof. By deaeration, dissolved oxygen (DO) is mainly removed from ultrapure water or water in the process of producing ultrapure water. Usually, in vacuum degassing and membrane degassing often used as a degassing apparatus, various dissolved gases dissolved together with dissolved oxygen are also removed. In addition, although the bicarbonate ion and carbonate ion in water can be removed as carbon dioxide gas by deaeration, a decarboxylation tower may be provided separately from these deaeration devices. The ultrapure water produced by such an ultrapure water production apparatus can be used as it is or by dissolving various gases such as ozone gas, hydrogen gas, carbon dioxide gas, nitrogen gas, etc. Used as cleaning water and rinse water for electronic materials such as substrates.

電子材料の表面から、微粒子などの異物を除去することは、製品の品質、歩留まりを確保する上で極めて重要である。電子材料などを超音波洗浄する場合、ガスを溶解した洗浄水を用いると、良好な洗浄効果が得られることが分かってきた。一般に、溶存ガス濃度が高いほど望ましいが、過飽和になると過剰な気泡が発生し、それが超音波伝播の妨げになったり、被洗浄物の表面に付着して、洗浄ムラの原因になったりする。微粒子の除去には、水素ガスを溶解した洗浄水を用いる超音波洗浄が最も効果的であるが、ガスの取り扱いの容易さから、窒素ガスを溶解した窒素ガス溶解水が使われることも多くなった。   Removing foreign matters such as fine particles from the surface of the electronic material is extremely important for ensuring product quality and yield. In the case of ultrasonic cleaning of electronic materials and the like, it has been found that a good cleaning effect can be obtained by using cleaning water in which a gas is dissolved. In general, the higher the dissolved gas concentration, the better. However, when it becomes supersaturated, excessive bubbles are generated, which interferes with ultrasonic wave propagation and adheres to the surface of the object to be cleaned, causing uneven cleaning. . Ultrasonic cleaning using cleaning water in which hydrogen gas is dissolved is the most effective for removing fine particles, but nitrogen gas-dissolved water in which nitrogen gas is dissolved is often used because of easy gas handling. It was.

原水中の溶存ガスを脱気処理により完全に除去したのち、ガス透過膜モジュールを用い、特定のガスを必要量だけ供給して溶解させることにより、原水に所定濃度のガスを溶解した水を、気泡を発生させることなく製造することができる。図8は、従来の窒素ガス溶解水の製造装置の一例の工程系統図である。超純水タンク22からポンプ23により送り出された超純水が、膜脱気装置24において溶存ガスが完全に除去され、膜式ガス溶解装置25において所定量の窒素ガスが溶解され、所定濃度の窒素ガス溶解水が製造される。   After completely removing the dissolved gas in the raw water by degassing treatment, the gas permeable membrane module is used to supply and dissolve only the required amount of a specific gas, thereby dissolving the water having a predetermined concentration of gas dissolved in the raw water, It can be manufactured without generating bubbles. FIG. 8 is a process flow diagram of an example of a conventional apparatus for producing nitrogen gas dissolved water. The ultrapure water pumped out from the ultrapure water tank 22 by the pump 23 completely removes the dissolved gas in the membrane deaerator 24, dissolves a predetermined amount of nitrogen gas in the membrane gas dissolver 25, and has a predetermined concentration. Nitrogen gas-dissolved water is produced.

半導体用シリコン基板、液晶用ガラス基板などの電子材料の洗浄では、前段の超純水製造装置の脱酸素工程において真空脱気塔を用い、あるいは、脱気膜の気相側を真空ポンプなどにより減圧し、かつ窒素ガスで置換するなどの方法により脱酸素処理を行い、窒素ガス溶解水などの機能水の原水としていた。従来は、脱塩、脱酸素などの超純水製造工程と機能水製造工程は、それぞれ独立した工程として検討され、全体として経済性の観点から検討されることは少なかった。   When cleaning electronic materials such as silicon substrates for semiconductors and glass substrates for liquid crystals, a vacuum degassing tower is used in the deoxygenation process of the ultrapure water production apparatus in the previous stage, or the gas phase side of the degassing film is removed by a vacuum pump or the like Deoxygenation was performed by a method such as decompression and replacement with nitrogen gas to obtain raw water of functional water such as nitrogen gas-dissolved water. Conventionally, the ultrapure water production process and the functional water production process, such as desalting and deoxygenation, have been studied as independent processes, and have been rarely studied from the viewpoint of economy as a whole.

本発明は、半導体、液晶などの電子材料を扱う産業において行われるウェット洗浄工程に使用される窒素ガス溶解水を、窒素ガスの使用量を低減して、効率的かつ経済的に製造することができる窒素ガス溶解水の製造方法を提供することを目的としてなされたものである。   INDUSTRIAL APPLICABILITY The present invention can efficiently and economically manufacture nitrogen gas-dissolved water used in a wet cleaning process performed in an industry that handles electronic materials such as semiconductors and liquid crystals by reducing the amount of nitrogen gas used. The object of the present invention is to provide a method for producing nitrogen gas-dissolved water.

本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、超純水に溶解している窒素ガスを窒素ガス溶解水の窒素ガス源として利用することにより、窒素ガス溶解水の製造に必要な窒素ガスの量を大幅に低減し、窒素ガス溶解装置を小型化することができ、さらに超純水中の酸素ガスをパラジウム触媒を用いて還元除去することにより、超純水中の窒素ガスを溶存させたまま酸素ガスのみを選択的に除去し得ることを見いだし、この知見に基づいて本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor has produced nitrogen gas-dissolved water by using nitrogen gas dissolved in ultrapure water as a nitrogen gas source of nitrogen gas-dissolved water. The amount of nitrogen gas required for the process can be greatly reduced, the size of the nitrogen gas dissolving device can be reduced, and oxygen gas in the ultrapure water can be reduced and removed using a palladium catalyst. It has been found that only oxygen gas can be selectively removed while dissolving nitrogen gas, and the present invention has been completed based on this finding.

すなわち、本発明は、
(1)超純水に窒素ガスを溶解して窒素ガス溶解水を製造する方法において、超純水がパラジウム触媒による脱酸素処理を受けた超純水であることを特徴とする窒素ガス溶解水の製造方法、
(2)パラジウム触媒による脱酸素処理が、超純水製造装置で生産された超純水に対して行われる(1)記載の窒素ガス溶解水の製造方法、
(3)パラジウム触媒による脱酸素処理が、超純水製造装置の中の一工程として行われる(1)記載の窒素ガス溶解水の製造方法、
(4)パラジウム触媒による脱酸素処理の後段側において、さらに脱酸素処理が行われる(1)ないし(3)のいずれか1項に記載の窒素ガス溶解水の製造方法、及び、
(5)後段における脱酸素処理が、膜分離である(4)記載の窒素ガス溶解水の製造方法、
を提供するものである。
That is, the present invention
(1) In a method for producing nitrogen gas-dissolved water by dissolving nitrogen gas in ultra-pure water, the ultra-pure water is ultra-pure water that has been subjected to deoxygenation treatment with a palladium catalyst. Manufacturing method,
(2) The method for producing nitrogen gas-dissolved water according to (1), wherein deoxygenation treatment with a palladium catalyst is performed on ultrapure water produced by an ultrapure water production apparatus;
(3) The method for producing nitrogen gas-dissolved water according to (1), wherein the deoxidation treatment with a palladium catalyst is performed as one step in the ultrapure water production apparatus,
(4) The method for producing nitrogen gas-dissolved water according to any one of (1) to (3), wherein a deoxygenation process is further performed on the downstream side of the deoxygenation process using a palladium catalyst;
(5) The method for producing nitrogen gas-dissolved water according to (4), wherein the deoxygenation treatment in the latter stage is membrane separation,
Is to provide.

本発明の窒素ガス溶解水の製造方法によれば、半導体用シリコン基板、液晶用ガラス基板、フォトマスク用石英基板などの電子材料のウェット洗浄工程に使用される窒素ガス溶解水を、原水に溶解している窒素ガスを利用することにより、新たな窒素ガスの使用量を低減し、小型化した窒素ガス溶解装置を用いて、短時間で、効率的かつ経済的に製造することができる。   According to the method for producing dissolved nitrogen gas water of the present invention, dissolved nitrogen gas dissolved water used in a wet cleaning process of electronic materials such as a semiconductor silicon substrate, a liquid crystal glass substrate, and a photomask quartz substrate is dissolved in raw water. By using the nitrogen gas that is being used, the amount of new nitrogen gas used can be reduced, and it can be manufactured efficiently and economically in a short time by using a miniaturized nitrogen gas dissolving apparatus.

本発明の窒素ガス溶解水の製造方法においては、超純水に窒素ガスを溶解して窒素ガス溶解水を製造する方法において、超純水がパラジウム触媒による脱酸素処理を受けた超純水である。   In the method for producing nitrogen gas-dissolved water of the present invention, in the method for producing nitrogen gas-dissolved water by dissolving nitrogen gas in ultra-pure water, the ultra-pure water is an ultra-pure water that has been subjected to deoxidation treatment by a palladium catalyst. is there.

超純水製造装置の性能によって、得られる超純水の水質は比抵抗値で満足すべきとしても、溶存酸素ガスが多い超純水となるときがある。このような超純水に特定のガスを溶解させて洗浄水を調製する際には、所望の溶存ガス濃度を得るために、溶存酸素ガスをあらかじめ除去したのちに特定のガスを溶解させる必要がある。   Depending on the performance of the ultrapure water production apparatus, even if the quality of the obtained ultrapure water should be satisfied by the specific resistance value, it may become ultrapure water with a lot of dissolved oxygen gas. When preparing cleaning water by dissolving a specific gas in such ultrapure water, it is necessary to dissolve the specific gas after removing the dissolved oxygen gas in advance in order to obtain a desired dissolved gas concentration. is there.

本発明の窒素ガス溶解水の製造方法においては、パラジウム触媒を用いた脱酸素処理を行うことにより、窒素ガス溶解水の原水中の溶存酸素ガスを除去する。パラジウム触媒を用いた脱酸素処理においては、原水に水素源を添加し、あるいは、原水に紫外線を照射して、パラジウム触媒と接触させることにより、O2+2H2→2H2O の還元反応により溶存酸素ガスが水となって除去される。原水に添加する水素源としては、例えば、水素ガス、水素ガス溶解水、ヒドラジンなどの水素を発生する化合物などを挙げることができる。真空脱気、膜脱気などの通常用いられる脱気手段によると、溶存酸素ガスのほかに、溶存窒素ガスも除去されてしまう。本発明方法によれば、溶存窒素ガスが除去されることなく溶存酸素ガスのみを選択的に除去し、原水中の溶存窒素ガスを窒素ガス溶解水製造の窒素ガス源として利用することができるので、使用する窒素ガスの量を減少し、窒素ガス溶解装置を小型化し、窒素ガス溶解時間を短縮することができる。特に、原水タンクが窒素シールされているときには、原水に窒素ガスが多量に溶け込んでいるので、その溶存窒素ガスをそのまま利用することができる。25℃で大気と平衡状態にある原水には、8mg/L程度の酸素ガスと14mg/L程度の窒素ガスが溶解している。真空脱気により脱酸素処理すると、得られる脱酸素水の溶存窒素ガス濃度は1mg/L程度ないしはそれ以下にまで低下する。そのために、真空脱気による脱酸素水を用いて窒素ガス溶解水を製造すると、必要な窒素ガスの量が多く、溶解装置も大きくなり不経済である。 In the method for producing nitrogen gas-dissolved water of the present invention, the dissolved oxygen gas in the raw water of the nitrogen gas-dissolved water is removed by performing deoxygenation treatment using a palladium catalyst. In deoxygenation treatment using a palladium catalyst, a hydrogen source is added to the raw water, or the raw water is irradiated with ultraviolet light and brought into contact with the palladium catalyst, so that it is dissolved by a reduction reaction of O 2 + 2H 2 → 2H 2 O. Oxygen gas is removed as water. Examples of the hydrogen source added to the raw water include hydrogen gas, hydrogen gas-dissolved water, and a compound that generates hydrogen such as hydrazine. Conventionally used degassing means such as vacuum degassing and membrane degassing also remove dissolved nitrogen gas in addition to dissolved oxygen gas. According to the method of the present invention, only the dissolved oxygen gas can be selectively removed without removing the dissolved nitrogen gas, and the dissolved nitrogen gas in the raw water can be used as a nitrogen gas source for producing nitrogen gas dissolved water. The amount of nitrogen gas used can be reduced, the nitrogen gas dissolving apparatus can be miniaturized, and the nitrogen gas dissolving time can be shortened. In particular, when the raw water tank is sealed with nitrogen, a large amount of nitrogen gas is dissolved in the raw water, so that the dissolved nitrogen gas can be used as it is. In raw water in equilibrium with the atmosphere at 25 ° C., about 8 mg / L oxygen gas and about 14 mg / L nitrogen gas are dissolved. When deoxygenation is performed by vacuum degassing, the concentration of dissolved nitrogen gas in the obtained deoxygenated water is reduced to about 1 mg / L or less. For this reason, if nitrogen gas-dissolved water is produced using deoxygenated water by vacuum degassing, the amount of necessary nitrogen gas is large and the dissolving device becomes large, which is uneconomical.

図1は、本発明の窒素ガス溶解水の製造方法の一態様の工程系統図である。原水に水素ガスが添加され、パラジウム触媒塔に導かれる。水素ガスは、パラジウム触媒塔に直接注入することもできる。パラジウム触媒塔において溶存酸素ガスの大部分が除去され、溶存酸素ガス濃度50〜100μg/L程度の脱酸素水が得られる。脱酸素水は、二次純水装置へ送られ、紫外線照射装置、混床式ポリッシャ、膜処理装置などで処理されて超純水となる。超純水は、そのままユースポイントに送られて使用されるほかに、窒素ガス溶解装置に送られて窒素ガスが溶解され、窒素ガス溶解水としてユースポイントに送られて使用される。   FIG. 1 is a process flow diagram of one embodiment of the method for producing nitrogen gas-dissolved water of the present invention. Hydrogen gas is added to the raw water and led to a palladium catalyst tower. Hydrogen gas can also be injected directly into the palladium catalyst tower. Most of the dissolved oxygen gas is removed in the palladium catalyst tower, and deoxygenated water having a dissolved oxygen gas concentration of about 50 to 100 μg / L is obtained. The deoxygenated water is sent to a secondary pure water device and processed by an ultraviolet irradiation device, a mixed bed polisher, a membrane processing device or the like to become ultrapure water. In addition to being sent to the use point as it is, the ultrapure water is sent to the nitrogen gas dissolving device to dissolve the nitrogen gas, and sent to the use point as nitrogen gas dissolved water.

本発明方法においては、パラジウム触媒による脱酸素処理を、超純水製造装置で生産された超純水に対して行うことができる。図2は、本発明方法の他の態様の工程系統図である。凝集沈殿、砂ろ過などの処理をされた前処理水が、一次純水装置と二次純水装置からなる超純水製造装置で処理され、超純水となって装置から流出する。本態様においては、一次純水装置と二次純水装置にはパラジウム触媒による脱酸素処理装置が設けられていないので、流出する超純水には大気と平衡状態にある酸素ガスと窒素ガスが溶解している。超純水は、パラジウム触媒塔へ送られ、水素ガスが注入され、溶存酸素ガスが還元されて水となって除去される。溶存酸素ガスが除去された脱酸素水は、イオン交換樹脂塔と膜ろ過装置に送られる。パラジウム触媒から極微量のパラジウムイオンが溶出するとしても、イオン交換樹脂で捕捉することができ、パラジウム触媒、イオン交換樹脂などに由来する微粒子を膜ろ過装置で除去することができる。精製された超純水は、窒素ガス溶解装置で窒素ガスを溶解し窒素ガス溶解水が得られる。   In the method of the present invention, deoxygenation treatment with a palladium catalyst can be performed on ultrapure water produced by an ultrapure water production apparatus. FIG. 2 is a process flow diagram of another embodiment of the method of the present invention. Pretreated water that has been subjected to coagulation sedimentation, sand filtration, or the like is processed by an ultrapure water production apparatus including a primary pure water apparatus and a secondary pure water apparatus, and flows out of the apparatus as ultrapure water. In this aspect, since the primary pure water device and the secondary pure water device are not provided with a deoxidation treatment device using a palladium catalyst, the outflowing ultrapure water contains oxygen gas and nitrogen gas in equilibrium with the atmosphere. Is dissolved. Ultrapure water is sent to a palladium catalyst tower, hydrogen gas is injected, and dissolved oxygen gas is reduced and removed as water. The deoxygenated water from which the dissolved oxygen gas has been removed is sent to an ion exchange resin tower and a membrane filtration device. Even if a very small amount of palladium ion is eluted from the palladium catalyst, it can be captured by the ion exchange resin, and fine particles derived from the palladium catalyst, the ion exchange resin and the like can be removed by the membrane filtration device. The purified ultrapure water dissolves nitrogen gas with a nitrogen gas dissolving device to obtain nitrogen gas-dissolved water.

本発明方法においては、パラジウム触媒による脱酸素処理を、超純水製造装置の中の一工程として行うことができる。図3及び図4は、本発明方法の他の態様の工程系統図である。図3に示す態様においては、一次純水装置内にパラジウム触媒装置が設けられ、図4に示す態様においては、二次純水装置内にパラジウム触媒装置が設けられている。いずれの提要においても、超純水製造装置の中の一工程としてパラジウム触媒による脱酸素処理が行われるので、超純水製造装置から流出する超純水は溶存酸素ガス濃度が低く、そのまま窒素ガス溶解装置へ送って窒素ガスを溶解し、窒素ガス溶解水とすることができる。   In the method of the present invention, deoxygenation treatment with a palladium catalyst can be performed as one step in the ultrapure water production apparatus. 3 and 4 are process flow diagrams of another embodiment of the method of the present invention. In the embodiment shown in FIG. 3, the palladium catalyst device is provided in the primary pure water device, and in the embodiment shown in FIG. 4, the palladium catalyst device is provided in the secondary pure water device. In any of these proposals, deoxygenation treatment with a palladium catalyst is performed as a process in the ultrapure water production apparatus, so the ultrapure water flowing out of the ultrapure water production apparatus has a low dissolved oxygen gas concentration, and nitrogen gas is left as it is. Nitrogen gas can be dissolved by sending it to a dissolving device to obtain nitrogen gas-dissolved water.

本発明の窒素ガス溶解水の製造方法においては、パラジウム触媒による脱酸素処理の後段側において、さらに脱酸素処理を行うことができる。後段における脱酸素処理の方法に特に制限はなく、例えば、触媒などを用いる化学的脱酸素処理、真空脱気、膜分離などによる物理的脱酸素処理などを挙げることができる。これらの中で、膜分離は脱酸素水の汚染のおそれがなく、効率的に溶存酸素ガス濃度を低下させることができるので好適に用いることができる。膜分離による脱酸素処理に際して、水中の溶存窒素ガスの一部が失われるが、パラジウム触媒による脱酸素処理を行うことなく、膜分離のみによって脱酸素処理を行う場合に比べて、溶存窒素ガスの損失ははるかに少ない。パラジウム触媒による脱酸素処理で溶存酸素ガス濃度が50〜100μg/L程度になった脱酸素水を膜分離することにより、溶存酸素ガス濃度を10μg/L程度まで低下させることができる。このような低溶存酸素ガス濃度の脱酸素水から製造される窒素ガス溶解水は、溶存酸素ガス濃度が低い窒素ガス溶解水が要求されるユースポイントにおいて好適に用いることができる。   In the method for producing nitrogen gas-dissolved water of the present invention, the deoxygenation treatment can be further performed on the downstream side of the deoxygenation treatment using a palladium catalyst. There is no particular limitation on the method of deoxygenation in the latter stage, and examples thereof include chemical deoxygenation using a catalyst and the like, physical deoxygenation by vacuum degassing, membrane separation, and the like. Among these, membrane separation can be preferably used because there is no fear of deoxygenated water contamination and the concentration of dissolved oxygen gas can be efficiently reduced. In the deoxygenation process by membrane separation, a part of the dissolved nitrogen gas in the water is lost, but compared with the case of deoxygenation process only by membrane separation without performing deoxygenation process by palladium catalyst. The loss is much less. By performing membrane separation of deoxygenated water having a dissolved oxygen gas concentration of about 50 to 100 μg / L by deoxygenation treatment with a palladium catalyst, the dissolved oxygen gas concentration can be reduced to about 10 μg / L. Nitrogen gas-dissolved water produced from deoxygenated water having such a low dissolved oxygen gas concentration can be suitably used at a point of use where a nitrogen gas-dissolved water having a low dissolved oxygen gas concentration is required.

本発明の窒素ガス溶解水の製造方法に使用するパラジウム触媒は、常温常圧でO2+2H2→2H2O の還元反応に対して触媒作用を示すものであれば特に制限はなく、例えば、金属パラジウム、酸化パラジウム、水酸化パラジウムなどのパラジウム化合物のほかに、イオン交換樹脂、アルミナ、活性炭、ゼオライト、ステンレススチールなどの担体にパラジウムを担持させた触媒などを挙げることができる。 The palladium catalyst used in the method for producing nitrogen gas-dissolved water of the present invention is not particularly limited as long as it exhibits a catalytic action for a reduction reaction of O 2 + 2H 2 → 2H 2 O at room temperature and normal pressure. In addition to palladium compounds such as metal palladium, palladium oxide, and palladium hydroxide, a catalyst in which palladium is supported on a carrier such as ion exchange resin, alumina, activated carbon, zeolite, and stainless steel can be given.

パラジウム担持触媒のパラジウムの担持量は、通常、担体に対して0.1〜10重量%であることが好ましい。担体としてアニオン交換樹脂を用いた場合には、少ないパラジウム担持量で優れた効果を発揮するので、特に好適に用いることができる。アニオン交換樹脂にパラジウムを担持させたパラジウム担持樹脂は、アニオン交換樹脂を反応塔に充填し、塩化パラジウムの酸性溶液を通水することにより調製することができる。さらに、この反応塔にヒドラジン、ホルマリンなどの還元剤を加えて還元することにより、金属パラジウムを担持した触媒とすることができる。   The amount of palladium supported on the palladium-supported catalyst is usually preferably 0.1 to 10% by weight based on the carrier. When an anion exchange resin is used as a carrier, an excellent effect is exhibited with a small amount of palladium supported, and therefore, it can be used particularly suitably. A palladium-supported resin in which palladium is supported on an anion exchange resin can be prepared by filling an anion exchange resin in a reaction tower and passing an acidic solution of palladium chloride through water. Furthermore, by adding a reducing agent such as hydrazine or formalin to the reaction tower and reducing it, a catalyst carrying metal palladium can be obtained.

パラジウム触媒の形状に特に制限はなく、例えば、粉末状、粒状、ペレット状、あみ状など、いずれの形状でも使用することができる。粉末状の触媒は、反応槽を設けて反応槽に適当量を添加することができ、あるいは、反応塔などに充填して流動床として通水処理することもできる。粒状又はペレット状の触媒は、反応塔などに充填して触媒充填塔とし、連続的に通水処理することができる。パラジウム触媒は、異なる種類のもの、異なる形状のものを2種以上混合して用いることもできる。粒径0.1〜3mm程度の球状又はペレット状のアニオン交換樹脂にパラジウムを担持してなる触媒樹脂は、ハンドリング性が良好であり、特に好適に用いることができる。   There is no restriction | limiting in particular in the shape of a palladium catalyst, For example, any shape, such as a powder form, a granular form, a pellet form, and a net shape, can be used. An appropriate amount of the powdered catalyst can be added to the reaction tank provided in the reaction tank, or the catalyst can be filled in a reaction tower or the like and passed through as a fluidized bed. The granular or pellet-shaped catalyst can be packed in a reaction tower or the like to form a catalyst-packed tower, which can be continuously subjected to water flow treatment. Two or more kinds of palladium catalysts having different shapes and shapes can be mixed and used. A catalyst resin obtained by supporting palladium on a spherical or pellet-shaped anion exchange resin having a particle size of about 0.1 to 3 mm has good handling properties and can be used particularly preferably.

本発明の窒素ガス溶解水の製造方法においては、パラジウム触媒による脱酸素処理を受けた超純水に窒素ガスを溶解する。窒素ガスの溶解方法に特に制限はなく、例えば、充填塔、濡れ壁塔、段塔、スプレー塔、スクラバー、気泡塔、気泡撹拌槽、膜式ガス溶解装置などを用いて溶解することができる。これらの中で、膜式ガス溶解装置を好適に用いることができる。膜式ガス溶解装置は、ガス透過膜によって区画された気室と水室を有するので、気室の圧力の測定値に基づいて気室への窒素ガスの供給量を調整し、気室の圧力を設定値に維持することにより、所定の濃度の窒素ガスを溶解した窒素ガス溶解水を安定して製造することができる。   In the method for producing nitrogen gas-dissolved water of the present invention, nitrogen gas is dissolved in ultrapure water that has undergone deoxidation treatment with a palladium catalyst. There is no restriction | limiting in particular in the melt | dissolution method of nitrogen gas, For example, it can melt | dissolve using a packed tower, a wet wall tower, a plate tower, a spray tower, a scrubber, a bubble tower, a bubble stirring tank, a membrane type gas dissolution apparatus, etc. Among these, a membrane gas dissolving apparatus can be used suitably. Since the membrane gas dissolution apparatus has an air chamber and a water chamber partitioned by a gas permeable membrane, the amount of nitrogen gas supplied to the air chamber is adjusted based on the measured value of the air chamber pressure, and the pressure of the air chamber Is maintained at the set value, nitrogen gas-dissolved water in which nitrogen gas having a predetermined concentration is dissolved can be stably produced.

図5は、本発明方法に用いる窒素ガス溶解装置の一態様の工程系統図である。脱酸素処理を受けた超純水が、ガス透過性膜によって区画された気室と水室とを備えた膜式ガス溶解装置1に送られる。膜式ガス溶解装置には、気室に窒素ガスを供給する窒素ガス供給管2と、気室の圧力を測定する圧力計3が設けられている。膜式ガス溶解装置において、ガス透過性膜を透過して窒素ガスが脱酸素処理を受けた超純水に溶解し、窒素ガス溶解水が排出管4から排出される。圧力計の測定値は信号として制御器5に送られ、制御器において設定値との差が自動計算され、信号がバルブ6に送られてバルブの開度により窒素ガス供給量が調整され、気室内の圧力が設定値に維持される。   FIG. 5 is a process flow diagram of one embodiment of the nitrogen gas dissolving apparatus used in the method of the present invention. The ultrapure water that has undergone the deoxygenation treatment is sent to a membrane gas dissolving apparatus 1 having an air chamber and a water chamber partitioned by a gas permeable membrane. The membrane gas dissolving apparatus is provided with a nitrogen gas supply pipe 2 for supplying nitrogen gas to the air chamber and a pressure gauge 3 for measuring the pressure of the air chamber. In the membrane gas dissolving apparatus, the nitrogen gas permeates through the gas permeable membrane and dissolves in the ultrapure water that has undergone the deoxygenation treatment, and the nitrogen gas dissolved water is discharged from the discharge pipe 4. The measured value of the pressure gauge is sent to the controller 5 as a signal, the difference from the set value is automatically calculated in the controller, the signal is sent to the valve 6, and the supply amount of nitrogen gas is adjusted by the opening of the valve. The room pressure is maintained at the set value.

膜式ガス溶解装置の気室が窒素ガスで満たされ、その圧力が標準大気圧である0kPa(ゲージ圧)であると、窒素ガス溶解水の溶存窒素ガス濃度は飽和濃度となる。例えば、温度25℃、大気圧101.3kPaのときは、窒素ガス17.6mg/Lを溶解した窒素ガス溶解水が得られる。気室を完全に真空にして、圧力−101.3kPa(ゲージ圧)とすると、水室から排出される水の溶存窒素ガス濃度は0mg/Lとなる。温度t℃における水に対する窒素ガスの飽和溶解度をαtmg/Lとすると、膜式ガス溶解装置の気室の圧力を−101.3kPa(ゲージ圧)のx倍(0≦x≦1)としたとき、窒素ガス溶解水排出管から排出される窒素ガス溶解水の溶存窒素ガス濃度は、αt(1−x)mg/Lとなる。この関係を利用して、気室の圧力が設定値になるように窒素ガスを供給することにより、所定の溶存窒素ガス濃度の窒素ガス溶解水を製造することができる。 When the air chamber of the membrane gas dissolving apparatus is filled with nitrogen gas and the pressure is 0 kPa (gauge pressure) which is the standard atmospheric pressure, the dissolved nitrogen gas concentration of the nitrogen gas dissolved water becomes a saturated concentration. For example, when the temperature is 25 ° C. and the atmospheric pressure is 101.3 kPa, nitrogen gas-dissolved water in which 17.6 mg / L of nitrogen gas is dissolved is obtained. If the air chamber is completely evacuated and the pressure is -101.3 kPa (gauge pressure), the concentration of dissolved nitrogen gas discharged from the water chamber is 0 mg / L. Assuming that the saturated solubility of nitrogen gas in water at a temperature of t ° C. is α t mg / L, the pressure of the air chamber of the membrane gas dissolution apparatus is x times (0 ≦ x ≦ 1) −101.3 kPa (gauge pressure). Then, the dissolved nitrogen gas concentration of the nitrogen gas dissolved water discharged from the nitrogen gas dissolved water discharge pipe is α t (1-x) mg / L. By utilizing this relationship and supplying nitrogen gas so that the pressure of the air chamber becomes a set value, nitrogen gas-dissolved water having a predetermined dissolved nitrogen gas concentration can be produced.

本態様の装置によれば、窒素ガスで満たされた膜式ガス溶解装置の気室の圧力を調整して設定値に維持することにより、供給される脱酸素処理を受けた超純水の溶存窒素ガス濃度が変動しても、常に所定の溶存窒素ガス濃度の窒素ガス溶解水を安定して製造することができる。従来技術である窒素ガス溶解工程の前に脱気処理を行う方法では、原水中に成りゆき任せで溶解している窒素ガスをいったん除去したのち、必要量の窒素ガスを溶解させていた。脱酸素処理を受けた超純水は、溶存ガスとして窒素ガスのみが成りゆき任せで溶解しているので、これを除去することなく活用することにより、窒素ガス溶解水の製造装置を簡略化し、窒素ガスを無駄なく利用することができる。   According to the apparatus of this aspect, the dissolved oxygen gas that has been subjected to deoxygenation treatment is dissolved by adjusting the pressure of the air chamber of the membrane gas dissolving apparatus filled with nitrogen gas to maintain the set value. Even if the nitrogen gas concentration varies, it is possible to stably produce nitrogen gas-dissolved water having a predetermined dissolved nitrogen gas concentration. In the conventional method of performing the degassing process before the nitrogen gas dissolving step, once the nitrogen gas dissolved in the raw water is removed, the necessary amount of nitrogen gas is dissolved. Since ultrapure water that has undergone deoxidation treatment is dissolved only by nitrogen gas as a dissolved gas, by utilizing it without removing it, the production system for dissolved nitrogen gas is simplified, Gas can be used without waste.

図5に示す態様の装置においては、膜式ガス溶解装置の気室にガス排出管7が設けられ、ガス排出管には、バルブ8とポンプ9が設けられている。ガス排出管は、装置の運転を開始するに際し、気室に窒素を送り込んで内部の空気を窒素で置換するとき、空気が混合したガスの排出に使用することができる。また、供給される脱酸素処理を受けた超純水の溶存窒素ガス濃度よりも、製造する窒素ガス溶解水の溶存窒素ガス濃度が低い場合は、ガス透過性膜を経由して抜き取った窒素ガスの排出に使用することができる。   In the apparatus shown in FIG. 5, a gas discharge pipe 7 is provided in the air chamber of the membrane gas dissolving apparatus, and a valve 8 and a pump 9 are provided in the gas discharge pipe. The gas discharge pipe can be used for discharging a gas mixed with air when nitrogen is fed into the air chamber and the internal air is replaced with nitrogen when starting the operation of the apparatus. In addition, if the dissolved nitrogen gas concentration of the nitrogen gas dissolved water to be produced is lower than the dissolved nitrogen gas concentration of ultrapure water that has been subjected to deoxygenation treatment, the nitrogen gas extracted through the gas permeable membrane Can be used to discharge

供給される脱酸素処理を受けた超純水の溶存窒素ガス濃度よりも、製造する窒素ガス溶解水の溶存窒素ガス濃度が低い場合は、膜式ガス溶解装置の気室の圧力は、窒素ガス溶解水を製造すると上昇する。このとき、圧力計3の測定値が信号として制御器5に送られ、制御器において設定値との差が自動計算され、信号がバルブ8に送られてバルブを開くことより窒素ガス排出量が調整され、気室内の圧力が設定値に維持される。バルブ8より下流側は、ポンプ9により大気圧以下に保たれる。   When the dissolved nitrogen gas concentration of the nitrogen gas dissolved water to be produced is lower than the dissolved nitrogen gas concentration of the ultrapure water subjected to the deoxygenation treatment supplied, the pressure of the air chamber of the membrane gas dissolving device is nitrogen gas Increased when dissolved water is produced. At this time, the measured value of the pressure gauge 3 is sent to the controller 5 as a signal, the difference from the set value is automatically calculated in the controller, and the signal is sent to the valve 8 to open the valve, thereby reducing the nitrogen gas discharge amount. The pressure in the air chamber is adjusted and the set value is maintained. The downstream side of the valve 8 is maintained at atmospheric pressure or lower by the pump 9.

図5に示す態様の装置により溶存窒素ガス濃度が一定した窒素ガス溶解水を製造するためには、膜式ガス溶解装置の気室の圧力を測定する圧力計を設置するだけでよく、また、圧力計を気室に設置するので試料水を用いる溶存窒素ガス濃度の測定の必要がなく、試料水を採取するための分岐管が不要であり、窒素ガス溶解水の製造装置として簡略化することができる。さらに、圧力を測定するのみであるので、濃度計による窒素ガス濃度測定のような煩雑な操作を必要とせず、排水を発生することもない。   In order to produce nitrogen gas-dissolved water having a constant dissolved nitrogen gas concentration by the apparatus shown in FIG. 5, it is only necessary to install a pressure gauge that measures the pressure of the air chamber of the membrane gas dissolver, Since the pressure gauge is installed in the air chamber, there is no need to measure the dissolved nitrogen gas concentration using the sample water, and no branch pipe is required to collect the sample water. Can do. Furthermore, since only the pressure is measured, a complicated operation such as measurement of the nitrogen gas concentration by a densitometer is not required, and no drainage is generated.

図5に示す態様の装置において、脱酸素処理を受けた超純水を原水とすると、窒素ガス以外のガスは溶解しておらず、圧力計で測定される圧力は、直ちに窒素ガス溶解水の溶存窒素ガス濃度に対応し、窒素ガス溶解水の溶存窒素ガス濃度を正確に制御することができる。また、膜式ガス溶解装置の気室に供給される窒素ガスは、通常は純度100体積%のガスであるために、圧力の測定値は溶存窒素ガス濃度に対応することになる。換言すれば、原水に脱酸素処理を受けた超純水を用い、供給する窒素ガスとして純度100体積%のガスを用いるために、気室の圧力を測定することにより、所定の溶存窒素ガス濃度の窒素ガス溶解水を製造することができる。   In the apparatus of the embodiment shown in FIG. 5, when ultrapure water that has been subjected to deoxygenation treatment is used as raw water, no gas other than nitrogen gas is dissolved, and the pressure measured by the pressure gauge is immediately reduced to nitrogen gas dissolved water. Corresponding to the dissolved nitrogen gas concentration, the dissolved nitrogen gas concentration of the nitrogen gas dissolved water can be accurately controlled. In addition, since the nitrogen gas supplied to the air chamber of the membrane gas dissolving apparatus is usually a gas having a purity of 100% by volume, the measured pressure value corresponds to the dissolved nitrogen gas concentration. In other words, in order to use ultrapure water that has undergone deoxygenation treatment as raw water and to use a gas with a purity of 100% by volume as the nitrogen gas to be supplied, by measuring the pressure in the air chamber, a predetermined dissolved nitrogen gas concentration The nitrogen gas-dissolved water can be produced.

膜式ガス溶解装置に用いるガス透過膜の材質に特に制限はなく、例えば、ポリプロピレン、ポリ(4−メチルペンテン−1)、ポリ(2,6−ジメチルフェニレンオキシド)、ポリジメチルシロキサン、ポリカーボネート−ポリジメチルシロキサンブロック共重合体、ポリビニルフェノール−ポリジメチルシロキサン−ポリスルホンブロック共重合体、ポリテトラフルオロエチレン、ポリイミドなどを挙げることができる。本発明方法においては、腐食性などのない窒素ガスを溶解させるので、ポリプロピレン、ポリ(4−メチルペンテン−1)などのポリオレフィン系のガス透過膜を好適に用いることができる。膜式ガス溶解装置において、ガス透過膜の形式に特に制限はなく、例えば、平面膜、管型、スパイラル、中空糸、モノリス型、槽浸漬型、回転円盤膜などを挙げることができる。   There are no particular restrictions on the material of the gas permeable membrane used in the membrane gas dissolving apparatus, for example, polypropylene, poly (4-methylpentene-1), poly (2,6-dimethylphenylene oxide), polydimethylsiloxane, polycarbonate-poly Examples thereof include a dimethylsiloxane block copolymer, a polyvinylphenol-polydimethylsiloxane-polysulfone block copolymer, polytetrafluoroethylene, and polyimide. In the method of the present invention, non-corrosive nitrogen gas is dissolved, and therefore, a polyolefin-based gas permeable membrane such as polypropylene and poly (4-methylpentene-1) can be preferably used. In the membrane gas dissolving apparatus, the type of the gas permeable membrane is not particularly limited, and examples thereof include a flat membrane, a tube type, a spiral, a hollow fiber, a monolith type, a bath immersion type, and a rotating disk membrane.

本発明方法において、膜式ガス溶解装置への脱酸素処理を受けた超純水と窒素ガスの供給は、向流方式で行うことが好ましい。すなわち、膜式ガス溶解装置の水室の膜の長さ方向の一端側に超純水を供給し、他端側から窒素ガス溶解水を排出するのに対し、窒素ガスは気室の窒素ガス溶解水排出側から供給し、超純水の供給側から排出することが好ましい。超純水と窒素ガスを向流接触することにより、良好なガス溶解効率を得ることができる。   In the method of the present invention, it is preferable to supply the ultrapure water and nitrogen gas subjected to the deoxygenation treatment to the membrane gas dissolving apparatus by a countercurrent system. That is, ultrapure water is supplied to one end in the length direction of the membrane of the water chamber of the membrane gas dissolving apparatus, and nitrogen gas dissolved water is discharged from the other end, whereas nitrogen gas is nitrogen gas in the air chamber. It is preferable to supply from the dissolved water discharge side and to discharge from the ultrapure water supply side. By bringing the ultrapure water and nitrogen gas into countercurrent contact, good gas dissolution efficiency can be obtained.

図6は、本発明方法に用いる膜式ガス溶解装置の一態様の説明図である。本態様においては、膜式ガス溶解装置として中空糸膜式ガス溶解装置10が用いられ、中空糸膜11の内側に窒素ガスが供給され、中空糸膜の外側に脱酸素処理を受けた超純水が供給される。膜式ガス溶解装置の一端にガス供給室12、他端にガス排出室13が仕切板14、15を介して設けられ、仕切板を貫通して中空糸がガス供給室及びガス排出室に開口している。窒素ガス源16から流量調節弁17を経由して、窒素ガス供給管18がガス供給室に接続されている。また、ガス排出管19がガス排出室に接続されている。圧力計20によりガス排出室の圧力が測定され、圧力計の測定値が信号として制御器21に送られ、制御器において設定値との差が自動計算され、信号が流量調節弁に送られて弁の開度により窒素ガス供給量が調整され、中空糸膜の内側の圧力が設定値に維持される。   FIG. 6 is an explanatory view of one embodiment of a membrane gas dissolving apparatus used in the method of the present invention. In this embodiment, a hollow fiber membrane gas dissolving device 10 is used as the membrane gas dissolving device, nitrogen gas is supplied to the inside of the hollow fiber membrane 11, and deoxygenation treatment is applied to the outside of the hollow fiber membrane. Water is supplied. A gas supply chamber 12 is provided at one end of the membrane gas dissolving apparatus, and a gas discharge chamber 13 is provided at the other end via partition plates 14 and 15, and hollow fibers are opened to the gas supply chamber and gas discharge chamber through the partition plates. is doing. A nitrogen gas supply pipe 18 is connected to the gas supply chamber from the nitrogen gas source 16 via the flow rate control valve 17. A gas discharge pipe 19 is connected to the gas discharge chamber. The pressure in the gas discharge chamber is measured by the pressure gauge 20, the measured value of the pressure gauge is sent as a signal to the controller 21, the difference from the set value is automatically calculated in the controller, and the signal is sent to the flow control valve. The supply amount of nitrogen gas is adjusted by the opening of the valve, and the pressure inside the hollow fiber membrane is maintained at a set value.

図6に示す態様の装置において、膜式ガス溶解装置の気室に設置する圧力計に特に制限はなく、例えば、U字管型、単管型、零位法型などの液柱方式の圧力計、プルドン管型、ベローズ型、ダイヤフラム型などの弾性体方式又は力平衡方式の圧力計、単鐘式、複鐘式などの沈鐘方式の圧力計などを挙げることができる。   In the apparatus of the embodiment shown in FIG. 6, there is no particular limitation on the pressure gauge installed in the air chamber of the membrane gas dissolving apparatus. For example, a liquid column type pressure such as a U-tube type, a single tube type, a null method type, etc. An elastic body type or force balance type pressure gauge such as a meter, a Prudon tube type, a bellows type, or a diaphragm type, a bell type pressure gauge such as a single bell type or a double bell type.

膜式ガス溶解装置において、窒素ガス供給量調整手段に特に制限はなく、例えば、手動又は自動により、圧力の測定値が所定の溶存窒素ガス濃度に対応する設定値となるように、窒素ガス供給量を調整することができる。自動により窒素ガス供給量を調整する場合は、圧力の測定値を演算装置に入力し、圧力の設定値と比較演算し、その差に相当する信号を窒素ガス供給量調整手段に送り、窒素ガス供給量を調整することができる。窒素ガス供給量の調整手段としては、例えば、窒素ガス供給管又は窒素ガス排出管に設けた流量調整弁などを挙げることができる。手動による場合は、弁の開度を人手によって調整することができる。   In the membrane gas dissolving apparatus, the nitrogen gas supply amount adjusting means is not particularly limited. For example, the nitrogen gas supply is performed manually or automatically so that the measured pressure value becomes a set value corresponding to a predetermined dissolved nitrogen gas concentration. The amount can be adjusted. When adjusting the nitrogen gas supply amount automatically, the measured pressure value is input to the calculation device, compared with the set pressure value, and a signal corresponding to the difference is sent to the nitrogen gas supply amount adjusting means. The supply amount can be adjusted. Examples of the means for adjusting the supply amount of nitrogen gas include a flow rate adjustment valve provided in a nitrogen gas supply pipe or a nitrogen gas discharge pipe. In the case of manual operation, the opening of the valve can be adjusted manually.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
超純水製造装置の逆浸透膜脱塩装置から流出する脱塩水のパラジウム触媒による脱酸素処理を行った。脱塩水の水量は100m3/hであり、溶存酸素ガス濃度は8,550μg/L、溶存窒素ガス濃度は13.5mg/Lであった。
この脱塩水を、パラジウム担持アニオン交換樹脂[Bayer社、Lewatit OC]2,000Lを充填した直径1,000mm、高さ4,600mmの触媒反応塔に通水し、触媒反応塔に水素ガス130g/hを注入した。触媒反応塔から流出する脱酸素水の溶存酸素ガス濃度は50μg/L、溶存窒素ガス濃度は13.5mg/Lであった。
この脱酸素水を、混床型イオン交換樹脂塔に通水し、いったんサブタンクに貯留した。サブタンクから脱酸素水80m3/hを抜き出し、非再生型純水器[栗田工業(株)、デミナー]と限外ろ過膜装置に通水し、超純水としてユースポイントで使用した。また、サブタンクから脱酸素水20m3/hを抜き出し、窒素ガス溶解膜装置に窒素ガス12.8g/hを供給しつつ通水し、窒素ガス溶解水を製造した。得られた窒素ガス溶解水の溶存窒素ガス濃度は、14.14mg/Lであった。得られた窒素ガス溶解水は、機能水としてユースポイントで使用した。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
Deoxygenation treatment with a palladium catalyst of demineralized water flowing out from the reverse osmosis membrane demineralizer of the ultrapure water production apparatus was performed. The amount of demineralized water was 100 m 3 / h, the dissolved oxygen gas concentration was 8,550 μg / L, and the dissolved nitrogen gas concentration was 13.5 mg / L.
This demineralized water was passed through a catalytic reaction tower having a diameter of 1,000 mm and a height of 4,600 mm packed with 2,000 L of a palladium-supported anion exchange resin [Bayer, Lewatit OC]. h was injected. The dissolved oxygen gas concentration of deoxygenated water flowing out from the catalytic reaction tower was 50 μg / L, and the dissolved nitrogen gas concentration was 13.5 mg / L.
This deoxygenated water was passed through a mixed bed ion exchange resin tower and once stored in a sub tank. 80 m 3 / h of deoxygenated water was extracted from the sub tank, passed through a non-regenerative pure water device [Kurita Kogyo Co., Ltd., Deminer] and an ultrafiltration membrane device, and used as ultrapure water at the point of use. Further, 20 m 3 / h of deoxygenated water was extracted from the sub tank, and water was passed through the nitrogen gas dissolving membrane apparatus while supplying 12.8 g / h of nitrogen gas, thereby producing nitrogen gas dissolved water. The dissolved nitrogen gas concentration of the obtained nitrogen gas-dissolved water was 14.14 mg / L. The obtained nitrogen gas-dissolved water was used at the point of use as functional water.

比較例1
実施例1と同じ超純水製造装置の逆浸透膜脱塩装置から流出する溶存酸素ガス濃度8,550μg/L、溶存窒素ガス濃度13.5mg/Lの脱塩水を、混床型イオン交換樹脂塔に通水したのち、脱気膜装置に通水して脱酸素処理を行った。脱気膜装置から流出する脱酸素水の溶存酸素ガス濃度は50μg/L、溶存窒素ガス濃度は0.677mg/Lであった。
得られた脱酸素水を、いったんサブタンクに貯留した。サブタンクから脱酸素水80m3/hを抜き出し、非再生型純水器[栗田工業(株)、デミナー]と限外ろ過膜装置に通水し、超純水としてユースポイントで使用した。また、サブタンクから脱酸素水20m3/hを抜き出し、窒素ガス溶解膜装置に窒素ガス269g/hを供給しつつ通水し、窒素ガス溶解水を製造した。得られた窒素ガス溶解水の溶存窒素ガス濃度は、14.14mg/Lであった。得られた窒素ガス溶解水は、機能水としてユースポイントで使用した。
Comparative Example 1
The deionized water having a dissolved oxygen gas concentration of 8,550 μg / L and a dissolved nitrogen gas concentration of 13.5 mg / L flowing out from the reverse osmosis membrane desalting apparatus of the same ultrapure water production apparatus as in Example 1 was mixed with a mixed bed ion exchange resin. After passing through the tower, water was passed through a degassing membrane device to perform deoxygenation treatment. The dissolved oxygen gas concentration of deoxygenated water flowing out from the degassing membrane device was 50 μg / L, and the dissolved nitrogen gas concentration was 0.677 mg / L.
The obtained deoxygenated water was once stored in the sub tank. 80 m 3 / h of deoxygenated water was extracted from the sub tank, passed through a non-regenerative pure water device [Kurita Kogyo Co., Ltd., Deminer] and an ultrafiltration membrane device, and used as ultrapure water at the point of use. Further, 20 m 3 / h of deoxygenated water was extracted from the sub tank, and water was passed through the nitrogen gas dissolving membrane apparatus while supplying 269 g / h of nitrogen gas, thereby producing nitrogen gas dissolved water. The dissolved nitrogen gas concentration of the obtained nitrogen gas-dissolved water was 14.14 mg / L. The obtained nitrogen gas-dissolved water was used at the point of use as functional water.

実施例2
超純水製造装置の逆浸透膜脱塩装置から流出する脱塩水のパラジウム触媒による脱酸素処理と脱気膜装置による脱酸素処理を続けて行った。脱塩水の水量は100m3/hであり、溶存酸素ガス濃度は8,550μg/L、溶存窒素ガス濃度は13.5mg/Lであった。
この脱塩水を、実施例1と同じパラジウム担持アニオン交換樹脂を充填した触媒反応塔に通水し、触媒反応塔に水素ガス130g/hを注入した。触媒反応塔から流出する一次脱酸素水の溶存酸素ガス濃度は50μg/L、溶存窒素ガス濃度は13.5mg/Lであった。
この一次脱酸素水を、混床型イオン交換樹脂塔に通水し、さらに脱気膜装置に通水した。脱気膜装置から流出する二次脱酸素水の溶存酸素ガス濃度は10μg/L、溶存窒素ガス濃度は10.5mg/Lであった。得られた二次脱酸素水は、いったんサブタンクに貯留した。サブタンクから二次脱酸素水80m3/hを抜き出し、非再生型純水器[栗田工業(株)、デミナー]と限外ろ過膜装置に通水し、特に溶存酸素ガス濃度が低い超純水が要求されるユースポイントで使用した。また、サブタンクから二次脱酸素水20m3/hを抜き出し、窒素ガス溶解膜装置に窒素ガス72.8g/hを供給しつつ通水し、窒素ガス溶解水を製造した。得られた窒素ガス溶解水の溶存窒素ガス濃度は、14.14mg/Lであった。得られた窒素ガス溶解水は、溶存酸素ガス濃度の低い機能水としてユースポイントで使用した。
Example 2
The deoxygenation treatment by the palladium catalyst of the demineralized water flowing out from the reverse osmosis membrane demineralizer of the ultrapure water production device and the deoxygenation treatment by the degassing membrane device were continued. Water of demineralized water is 100 m 3 / h, dissolved oxygen gas concentration is 8,550μg / L, concentration of dissolved nitrogen gas was 13.5 mg / L.
This demineralized water was passed through the catalytic reaction tower filled with the same palladium-supported anion exchange resin as in Example 1, and 130 g / h of hydrogen gas was injected into the catalytic reaction tower. The dissolved oxygen gas concentration of the primary deoxygenated water flowing out from the catalytic reaction tower was 50 μg / L, and the dissolved nitrogen gas concentration was 13.5 mg / L.
This primary deoxygenated water was passed through a mixed bed ion exchange resin tower and further passed through a degassing membrane device. The dissolved oxygen gas concentration of the secondary deoxygenated water flowing out from the degassing membrane device was 10 μg / L, and the dissolved nitrogen gas concentration was 10.5 mg / L. The obtained secondary deoxygenated water was once stored in the sub tank. Secondary deoxygenated water 80m 3 / h is extracted from the sub tank, and passed through a non-regenerative pure water device [Kurita Kogyo Co., Ltd., Deminer] and an ultrafiltration membrane device. Ultrapure water with particularly low dissolved oxygen gas concentration Used at required use points. Further, secondary deoxygenated water 20 m 3 / h was extracted from the sub tank, and water was passed through the nitrogen gas-dissolving membrane device while supplying 72.8 g / h of nitrogen gas, thereby producing nitrogen gas-dissolved water. The dissolved nitrogen gas concentration of the obtained nitrogen gas-dissolved water was 14.14 mg / L. The obtained nitrogen gas-dissolved water was used at a use point as functional water having a low dissolved oxygen gas concentration.

比較例2
脱気膜のみを用いて溶存酸素ガス濃度10μg/Lの脱酸素水を調製し、窒素ガス溶解水を製造した。実施例1と同じ超純水製造装置の逆浸透膜脱塩装置から流出する溶存酸素ガス濃度8,550μg/L、溶存窒素ガス濃度13.5mg/Lの脱塩水を、混床型イオン交換樹脂塔に通水したのち、脱気膜装置に通水して脱酸素処理を行った。脱気膜装置から流出する脱酸素水の溶存酸素ガス濃度は10μg/L、溶存窒素ガス濃度は0.617mg/Lであった。
得られた脱酸素水を、いったんサブタンクに貯留した。サブタンクから脱酸素水80m3/hを抜き出し、非再生型純水器[栗田工業(株)、デミナー]と限外ろ過膜装置に通水し、溶存酸素ガス濃度が低い超純水が要求されるユースポイントで使用した。また、サブタンクから脱酸素水20m3/hを抜き出し、窒素ガス溶解膜装置に窒素ガス283g/hを供給しつつ通水し、窒素ガス溶解水を製造した。得られた窒素ガス溶解水の溶存窒素ガス濃度は、14.14mg/Lであった。得られた窒素ガス溶解水は、溶存酸素ガス濃度の低い機能水としてユースポイントで使用した。
実施例1〜2及び比較例1〜2の結果を、第1表に示す。
Comparative Example 2
Deoxygenated water having a dissolved oxygen gas concentration of 10 μg / L was prepared using only a degassed membrane to produce nitrogen gas-dissolved water. The deionized water having a dissolved oxygen gas concentration of 8,550 μg / L and a dissolved nitrogen gas concentration of 13.5 mg / L flowing out from the reverse osmosis membrane desalting apparatus of the same ultrapure water production apparatus as in Example 1 was mixed with a mixed bed ion exchange resin. After passing through the tower, water was passed through a degassing membrane device to perform deoxygenation treatment. The dissolved oxygen gas concentration of deoxygenated water flowing out from the degassing membrane device was 10 μg / L, and the dissolved nitrogen gas concentration was 0.617 mg / L.
The obtained deoxygenated water was once stored in the sub tank. Withdrawn deoxygenated water 80 m 3 / h from the sub tank, non-regenerative pure water device [Kurita Water Industries Ltd., Demina] Rohm & and the ultrafiltration membrane device, low dissolved oxygen gas concentration ultrapure water is required Used at the use point. Further, 20 m 3 / h of deoxygenated water was extracted from the sub tank, and water was passed through the nitrogen gas-dissolving membrane device while supplying 283 g / h of nitrogen gas, thereby producing nitrogen gas-dissolved water. The dissolved nitrogen gas concentration of the obtained nitrogen gas-dissolved water was 14.14 mg / L. The obtained nitrogen gas-dissolved water was used at a use point as functional water having a low dissolved oxygen gas concentration.
The results of Examples 1-2 and Comparative Examples 1-2 are shown in Table 1.

Figure 2007000699
Figure 2007000699

第1表に見られるように、同じ溶存窒素ガス濃度14.14mg/Lの窒素ガス溶解水を製造するために必要な窒素ガスの量は、実施例1では比較例1の21分の1であり、パラジウム触媒による脱酸素処理を行うことにより、窒素ガス溶解水の製造に必要な窒素ガスの量を大幅に低減し得ることが分かる。
パラジウム触媒による脱酸素処理を行った一次脱酸素水を、さらに脱気膜装置による脱酸素処理を行って二次脱酸素水とした実施例2では、パラジウム触媒による脱酸素処理のみを行った実施例1に比べて、同じ溶存窒素ガス濃度14.14mg/Lの窒素ガス溶解水を製造するために必要な窒素ガスの量が5.7倍となっている。しかし、脱気膜装置のみにより脱酸素処理を行った比較例2と比べると、同じ溶存窒素ガス濃度14.14mg/Lの窒素ガス溶解水を製造するために必要な窒素ガスの量は、実施例2では比較例2の3.9分の1であり、パラジウム触媒による脱酸素処理を行うことにより、窒素ガス溶解水の製造に必要な窒素ガスの量を低減し得ることが分かる。
As can be seen from Table 1, the amount of nitrogen gas required to produce nitrogen gas dissolved water having the same dissolved nitrogen gas concentration of 14.14 mg / L is 1/21 of that of Comparative Example 1 in Example 1. It can be seen that the amount of nitrogen gas necessary for producing the nitrogen gas-dissolved water can be greatly reduced by performing the deoxygenation treatment with a palladium catalyst.
In Example 2, the primary deoxygenated water subjected to the deoxygenation treatment using the palladium catalyst was further deoxygenated using the degassing membrane device to obtain the secondary deoxygenated water. In Example 2, only the deoxygenation treatment using the palladium catalyst was performed. Compared to Example 1, the amount of nitrogen gas necessary to produce nitrogen gas-dissolved water having the same dissolved nitrogen gas concentration of 14.14 mg / L is 5.7 times. However, compared with Comparative Example 2 in which deoxygenation treatment was performed only by the degassing membrane device, the amount of nitrogen gas necessary for producing the same dissolved nitrogen gas concentration 14.14 mg / L of nitrogen gas dissolved water was In Example 2, it is 1 / 3.9 of the comparative example 2, and it turns out that the quantity of nitrogen gas required for manufacture of nitrogen gas dissolved water can be reduced by performing a deoxidation process by a palladium catalyst.

本発明の窒素ガス溶解水の製造方法によれば、半導体用シリコン基板、液晶用ガラス基板、フォトマスク用石英基板などの電子材料のウェット洗浄工程に使用される窒素ガス溶解水を、原水に溶解している窒素ガスを利用することにより、新たな窒素ガスの使用量を低減し、小型化した窒素ガス溶解装置を用いて、短時間で、効率的かつ経済的に製造することができる。   According to the method for producing dissolved nitrogen gas water of the present invention, dissolved nitrogen gas dissolved water used in a wet cleaning process of electronic materials such as a semiconductor silicon substrate, a liquid crystal glass substrate, and a photomask quartz substrate is dissolved in raw water. By using the nitrogen gas that is being used, the amount of new nitrogen gas used can be reduced, and it can be manufactured efficiently and economically in a short time by using a miniaturized nitrogen gas dissolving apparatus.

本発明方法の一態様の工程系統図である。It is a process flow diagram of one mode of the method of the present invention. 本発明方法の他の態様の工程系統図である。It is a process flow diagram of other modes of the method of the present invention. 本発明方法の他の態様の工程系統図である。It is a process flow diagram of other modes of the method of the present invention. 本発明方法の他の態様の工程系統図である。It is a process flow diagram of other modes of the method of the present invention. 本発明方法に用いる窒素ガス溶解装置の一態様の工程系統図である。It is a process flow diagram of one mode of a nitrogen gas dissolving device used for a method of the present invention. 本発明方法に用いる膜式ガス溶解装置の一態様の説明図である。It is explanatory drawing of the one aspect | mode of the membrane type gas dissolving apparatus used for this invention method. 超純水製造装置の一例の工程系統図である。It is a process system diagram of an example of an ultrapure water manufacturing apparatus. 従来の窒素ガス溶解水の製造装置の一例の工程系統図である。It is a process system diagram of an example of the manufacturing apparatus of the conventional nitrogen gas dissolved water.

符号の説明Explanation of symbols

1 膜式ガス溶解装置
2 窒素ガス供給管
3 圧力計
4 排出管
5 制御器
6 バルブ
7 ガス排出管
8 バルブ
9 ポンプ
10 中空糸膜式ガス溶解装置
11 中空糸膜
12 ガス供給室
13 ガス排出室
14 仕切板
15 仕切板
16 窒素ガス源
17 流量調節弁
18 窒素ガス供給管
19 ガス排出管
20 圧力計
21 制御器
22 超純水タンク
23 ポンプ
24 膜脱気装置
25 膜式ガス溶解装置
DESCRIPTION OF SYMBOLS 1 Membrane-type gas dissolution apparatus 2 Nitrogen gas supply pipe 3 Pressure gauge 4 Discharge pipe 5 Controller 6 Valve 7 Gas discharge pipe 8 Valve 9 Pump 10 Hollow fiber membrane gas dissolver 11 Hollow fiber membrane 12 Gas supply chamber 13 Gas discharge chamber DESCRIPTION OF SYMBOLS 14 Partition plate 15 Partition plate 16 Nitrogen gas source 17 Flow control valve 18 Nitrogen gas supply pipe 19 Gas exhaust pipe 20 Pressure gauge 21 Controller 22 Ultrapure water tank 23 Pump 24 Membrane deaerator 25 Membrane gas dissolver

Claims (5)

超純水に窒素ガスを溶解して窒素ガス溶解水を製造する方法において、超純水がパラジウム触媒による脱酸素処理を受けた超純水であることを特徴とする窒素ガス溶解水の製造方法。   A method for producing nitrogen gas-dissolved water by dissolving nitrogen gas in ultra-pure water, wherein the ultra-pure water is ultra-pure water that has undergone deoxidation treatment with a palladium catalyst. . パラジウム触媒による脱酸素処理が、超純水製造装置で生産された超純水に対して行われる請求項1記載の窒素ガス溶解水の製造方法。   The method for producing nitrogen gas-dissolved water according to claim 1, wherein the deoxygenation treatment with a palladium catalyst is performed on ultrapure water produced by an ultrapure water production apparatus. パラジウム触媒による脱酸素処理が、超純水製造装置の中の一工程として行われる請求項1記載の窒素ガス溶解水の製造方法。   The method for producing nitrogen gas-dissolved water according to claim 1, wherein the deoxygenation treatment with a palladium catalyst is performed as one step in the ultrapure water production apparatus. パラジウム触媒による脱酸素処理の後段側において、さらに脱酸素処理が行われる請求項1ないし請求項3のいずれか1項に記載の窒素ガス溶解水の製造方法。   The method for producing nitrogen gas-dissolved water according to any one of claims 1 to 3, wherein the deoxygenation treatment is further performed on the downstream side of the deoxygenation treatment with a palladium catalyst. 後段における脱酸素処理が、膜分離である請求項4記載の窒素ガス溶解水の製造方法。   The method for producing nitrogen gas-dissolved water according to claim 4, wherein the deoxygenation treatment in the latter stage is membrane separation.
JP2005180831A 2005-06-21 2005-06-21 Nitrogen gas dissolved water production method Expired - Fee Related JP4756327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180831A JP4756327B2 (en) 2005-06-21 2005-06-21 Nitrogen gas dissolved water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005180831A JP4756327B2 (en) 2005-06-21 2005-06-21 Nitrogen gas dissolved water production method

Publications (2)

Publication Number Publication Date
JP2007000699A true JP2007000699A (en) 2007-01-11
JP4756327B2 JP4756327B2 (en) 2011-08-24

Family

ID=37686784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180831A Expired - Fee Related JP4756327B2 (en) 2005-06-21 2005-06-21 Nitrogen gas dissolved water production method

Country Status (1)

Country Link
JP (1) JP4756327B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056218A (en) * 2008-08-27 2010-03-11 Dainippon Screen Mfg Co Ltd Substrate processing apparatus, and substrate processing method
WO2011155281A1 (en) * 2010-06-09 2011-12-15 株式会社神鋼環境ソリューション Freshwater-generating device, and freshwater-generating method
JP2012503724A (en) * 2008-09-25 2012-02-09 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Method for treating seawater for the purpose of producing injection water for offshore oil drilling and corresponding apparatus
JP2012254428A (en) * 2011-06-10 2012-12-27 Japan Organo Co Ltd Ultrapure water producing method and apparatus
JP2020199471A (en) * 2019-06-12 2020-12-17 栗田工業株式会社 Ph-adjusted water production apparatus
CN114605174A (en) * 2022-01-27 2022-06-10 杭州三得农业科技有限公司 System and process for preparing nitrogen ion fertilizer special for chemoautotrophy of plants by using nitrogen
WO2023176147A1 (en) * 2022-03-14 2023-09-21 オルガノ株式会社 Water treatment device and water treatment method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9088842B2 (en) 2013-03-13 2015-07-21 Bose Corporation Grille for electroacoustic transducer
US9327628B2 (en) 2013-05-31 2016-05-03 Bose Corporation Automobile headrest
US9699537B2 (en) 2014-01-14 2017-07-04 Bose Corporation Vehicle headrest with speakers

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349902A (en) * 1991-05-27 1992-12-04 Miura Kenkyusho:Kk Deoxygenating method and apparatus using high purity gas
JPH0584474A (en) * 1991-09-26 1993-04-06 Hitachi Plant Eng & Constr Co Ltd Method and device for removement of dissolved oxygen
JPH05269306A (en) * 1992-03-24 1993-10-19 Kurita Water Ind Ltd Deoxygenation device
JPH09192658A (en) * 1996-01-19 1997-07-29 Nomura Micro Sci Co Ltd Manufacturing device of ultrapure water
JP2000098321A (en) * 1998-09-25 2000-04-07 Toshiba Corp Method for washing and washer
JP2000208471A (en) * 1999-01-11 2000-07-28 Kurita Water Ind Ltd Device for preparing cleaning water for electronic materials
JP2002307080A (en) * 2001-04-12 2002-10-22 Kurita Water Ind Ltd Apparatus for producing ultrapure water
JP2003145135A (en) * 2001-11-07 2003-05-20 Kurita Water Ind Ltd Membrane-type deaeration apparatus and potable drinking water producing apparatus
JP2004275857A (en) * 2003-03-14 2004-10-07 Yokogawa Electric Corp Deaerator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349902A (en) * 1991-05-27 1992-12-04 Miura Kenkyusho:Kk Deoxygenating method and apparatus using high purity gas
JPH0584474A (en) * 1991-09-26 1993-04-06 Hitachi Plant Eng & Constr Co Ltd Method and device for removement of dissolved oxygen
JPH05269306A (en) * 1992-03-24 1993-10-19 Kurita Water Ind Ltd Deoxygenation device
JPH09192658A (en) * 1996-01-19 1997-07-29 Nomura Micro Sci Co Ltd Manufacturing device of ultrapure water
JP2000098321A (en) * 1998-09-25 2000-04-07 Toshiba Corp Method for washing and washer
JP2000208471A (en) * 1999-01-11 2000-07-28 Kurita Water Ind Ltd Device for preparing cleaning water for electronic materials
JP2002307080A (en) * 2001-04-12 2002-10-22 Kurita Water Ind Ltd Apparatus for producing ultrapure water
JP2003145135A (en) * 2001-11-07 2003-05-20 Kurita Water Ind Ltd Membrane-type deaeration apparatus and potable drinking water producing apparatus
JP2004275857A (en) * 2003-03-14 2004-10-07 Yokogawa Electric Corp Deaerator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056218A (en) * 2008-08-27 2010-03-11 Dainippon Screen Mfg Co Ltd Substrate processing apparatus, and substrate processing method
JP2012503724A (en) * 2008-09-25 2012-02-09 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Method for treating seawater for the purpose of producing injection water for offshore oil drilling and corresponding apparatus
WO2011155281A1 (en) * 2010-06-09 2011-12-15 株式会社神鋼環境ソリューション Freshwater-generating device, and freshwater-generating method
JP2012016695A (en) * 2010-06-09 2012-01-26 Kobelco Eco-Solutions Co Ltd Fresh water generating apparatus and method
JP2012254428A (en) * 2011-06-10 2012-12-27 Japan Organo Co Ltd Ultrapure water producing method and apparatus
JP2020199471A (en) * 2019-06-12 2020-12-17 栗田工業株式会社 Ph-adjusted water production apparatus
WO2020250495A1 (en) * 2019-06-12 2020-12-17 栗田工業株式会社 Ph-adjusted water production device
CN113939357A (en) * 2019-06-12 2022-01-14 栗田工业株式会社 PH adjusting water manufacturing device
CN114605174A (en) * 2022-01-27 2022-06-10 杭州三得农业科技有限公司 System and process for preparing nitrogen ion fertilizer special for chemoautotrophy of plants by using nitrogen
WO2023176147A1 (en) * 2022-03-14 2023-09-21 オルガノ株式会社 Water treatment device and water treatment method

Also Published As

Publication number Publication date
JP4756327B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4756327B2 (en) Nitrogen gas dissolved water production method
JP5072062B2 (en) Method, apparatus and apparatus for producing hydrogen gas-dissolved cleaning water
US6464867B1 (en) Apparatus for producing water containing dissolved ozone
JP5251184B2 (en) Gas dissolved water supply system
JP3765354B2 (en) Method for producing hydrogen-containing ultrapure water
JPH0647105B2 (en) Purification method and device for pure water or ultrapure water
WO2009128327A1 (en) Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gases
JP2010017633A (en) Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component
US20150303053A1 (en) Method for producing ozone gas-dissolved water and method for cleaning electronic material
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
WO2005089919A1 (en) Apparatus for producing water containing nitrogen dissolved therein
JP5380870B2 (en) Method and apparatus for producing gas-dissolved water
JP6400918B2 (en) Hydrogen dissolved water production apparatus and pure water production system
TW201808820A (en) Water treatment method and apparatus, method of modifying water treatment apparatus, and kit for modifying water treatment apparatus
JP4151088B2 (en) Hydrogen-containing ultrapure water supply device
KR0171584B1 (en) Process for removing dissolved oxygen from water and system therefor
JP5292136B2 (en) Method for measuring dissolved nitrogen concentration and measuring device for dissolved nitrogen concentration
JP5663410B2 (en) Ultrapure water production method and apparatus
JPH10225664A (en) Wet treating device
JP4438077B2 (en) Method for preparing gas-dissolved water for cleaning electronic materials
JP2000308815A (en) Producing device of ozone dissolved water
JP3906684B2 (en) Ultrapure water supply device
JP2001205297A (en) Apparatus for producing pure water
JP5358910B2 (en) Carbonated water manufacturing apparatus and manufacturing method
JP7261711B2 (en) Ultrapure water production system and ultrapure water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees