JP2012254428A - Ultrapure water producing method and apparatus - Google Patents

Ultrapure water producing method and apparatus Download PDF

Info

Publication number
JP2012254428A
JP2012254428A JP2011129971A JP2011129971A JP2012254428A JP 2012254428 A JP2012254428 A JP 2012254428A JP 2011129971 A JP2011129971 A JP 2011129971A JP 2011129971 A JP2011129971 A JP 2011129971A JP 2012254428 A JP2012254428 A JP 2012254428A
Authority
JP
Japan
Prior art keywords
nitrogen
water
treated
pure water
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011129971A
Other languages
Japanese (ja)
Other versions
JP5663410B2 (en
Inventor
Masami Murayama
雅美 村山
Hiroshi Sugawara
広 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2011129971A priority Critical patent/JP5663410B2/en
Publication of JP2012254428A publication Critical patent/JP2012254428A/en
Application granted granted Critical
Publication of JP5663410B2 publication Critical patent/JP5663410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily control the concentration of dissolved nitrogen to be necessary in a use point without wasting added nitrogen while removing dissolved oxygen in ultrapure water that is treated water.SOLUTION: The pure water production apparatus comprises: a primary pure water tank 11 for storing the treated water that contains dissolved oxygen; an ultraviolet oxidation apparatus 14 that irradiates the treated water from the primary pure water tank 11 with ultraviolet; a non-regeneration type mixed bed ion-exchange apparatus 21 that removes an ion component in the treated water having irradiated with the ultraviolet; a supply line that supplies the treated water from which ion has been removed to the use point; and a circulation line that branches from the supply line and returns a portion or all of treated water to the primary pure water tank 11. The apparatus is further provided with: a nitrogen addition apparatus 15 that adds nitrogen to the treated water; and a dissolved oxygen removing apparatus 17 that is provided with a catalytic metal carrier supporting a platinum group metal, and brings the treated water to which the nitrogen has been added into contact with to the catalytic metal carrier to remove the dissolved oxygen in the treated water.

Description

本発明は、超純水製造方法及び装置に関し、特に、半導体装置などの電子部品製造工程などでの使用に適し、溶存酸素が極低濃度であるとともに溶存窒素の濃度が管理された超純水を製造する方法及び装置に関する。   The present invention relates to an ultrapure water manufacturing method and apparatus, and more particularly, to ultrapure water that is suitable for use in an electronic component manufacturing process such as a semiconductor device and has a very low concentration of dissolved oxygen and a controlled concentration of dissolved nitrogen. The present invention relates to a method and an apparatus for manufacturing.

半導体装置や液晶表示装置などの製造では、高度に不純物が除去された超純水等の純水が使用されている。半導体製造分野で多く用いられている超純水では、現在、水質指標の一つである溶存酸素(DO)濃度を5ppb以下、例えば1ppb以下とするように管理されることが多い。   In the manufacture of semiconductor devices and liquid crystal display devices, pure water such as ultrapure water from which impurities are highly removed is used. In ultrapure water that is widely used in the field of semiconductor manufacturing, the dissolved oxygen (DO) concentration, which is one of the water quality indicators, is often managed to be 5 ppb or less, for example, 1 ppb or less.

超純水は、工業用水、井水、水道水などの原水を前処理した後、逆浸透膜分離装置及びイオン交換装置などで構成された一次純水製造装置により原水を処理して一次純水を生成し、さらに、紫外線酸化装置、イオン交換装置及び限外濾過膜分離装置などで構成されたサブシステムによって一次純水を処理することによって製造される。一次純水製造装置とサブシステムとの間には、一次純水を一時的に貯蔵する一次純水タンクが設けられることが多い。   Ultra-pure water is prepared by pre-treating raw water such as industrial water, well water, tap water, etc., and then treating the raw water with a primary pure water production device composed of a reverse osmosis membrane separation device and an ion exchange device. And the primary pure water is processed by a subsystem constituted by an ultraviolet oxidation device, an ion exchange device, an ultrafiltration membrane separation device, and the like. A primary pure water tank that temporarily stores primary pure water is often provided between the primary pure water production apparatus and the subsystem.

溶存酸素を極低濃度とするために、一次純水製造装置やサブシステムには、溶存酸素除去装置が設けられる。また、一次純水タンク内を窒素ガスでシールすることすなわち窒素パージも行われている。   In order to make dissolved oxygen into a very low concentration, a dissolved oxygen removal apparatus is provided in a primary pure water manufacturing apparatus and a subsystem. Further, the inside of the primary pure water tank is sealed with nitrogen gas, that is, nitrogen purge is also performed.

純水中から溶存酸素を除去する方法として、特許文献1では、白金族金属を担持した樹脂によって被処理水を処理することが提案されている。特許文献2では、モノリス状有機多孔質アニオン交換体に白金族金属を担持した白金族担持モノリスを使用し、被処理水に水素を添加した後に白金族担持モノリスに接触させることで、被処理水から溶存酸素を除去することが提案されている。また特許文献2には、白金族担持モノリスの製造方法も示されている。   As a method for removing dissolved oxygen from pure water, Patent Document 1 proposes treating treated water with a resin carrying a platinum group metal. In Patent Document 2, a platinum group-supported monolith in which a platinum group metal is supported on a monolithic organic porous anion exchanger is used, and after adding hydrogen to the water to be treated, the water is treated with the platinum group-supported monolith. It has been proposed to remove dissolved oxygen from water. Patent Document 2 also discloses a method for producing a platinum group-supported monolith.

ところで、超純水が使用されるプロセスによっては、所定量(例えば10ppm程度)の溶存窒素が存在することが望ましい場合があり、近年では、溶存酸素の濃度に加えて溶存窒素の濃度を管理することも求められるようになってきている。超純水中の溶存窒素濃度を制御する方法として、特許文献3では、被処理水の脱気処理を行う際に溶存窒素濃度を測定しつつ脱気膜装置の真空度を調整することによって、溶存窒素濃度を制御する方法が提案されている。特許文献4では、脱気膜等により溶存ガスを除去した後に、高純度の窒素を被処理水に添加することとし、その際、添加される窒素ガスの流量を制御する方法が提案されている。さらに、特許文献5には、溶存酸素を選択的に除去できるパラジウム触媒によって被処理水に対して脱酸素処理を行った後に、被処理水に対して高純度の窒素ガスを溶解させて窒素ガス溶解水を製造する方法が提案されている。   By the way, depending on the process in which ultrapure water is used, it may be desirable to have a predetermined amount (for example, about 10 ppm) of dissolved nitrogen. In recent years, the concentration of dissolved nitrogen is controlled in addition to the concentration of dissolved oxygen. It is also demanded. As a method for controlling the dissolved nitrogen concentration in ultrapure water, in Patent Document 3, by adjusting the degree of vacuum of the degassing membrane device while measuring the dissolved nitrogen concentration when performing deaeration treatment of the water to be treated, A method for controlling the dissolved nitrogen concentration has been proposed. Patent Document 4 proposes a method in which high-purity nitrogen is added to the water to be treated after the dissolved gas is removed by a degassing membrane or the like, and the flow rate of the added nitrogen gas is controlled at that time. . Further, in Patent Document 5, after deoxidizing the water to be treated with a palladium catalyst capable of selectively removing dissolved oxygen, high purity nitrogen gas is dissolved in the water to be treated to remove nitrogen gas. A method for producing dissolved water has been proposed.

特開2008−93606号公報JP 2008-93606 A 特開2010−240642号公報JP 2010-240642 A 特開平10−309566号公報JP 10-309566 A 特開2008−86879号公報JP 2008-86879 A 特開2007−699号公報JP 2007-699 A

超純水製造において溶存窒素濃度を制御する従来の方法のうち、特許文献3に示すものでは、脱気処理における真空度を調整するので溶存酸素の除去性能が低下し、このため、溶存酸素濃度を極低濃度に調整しつつ溶存窒素濃度を調整することは困難である。特許文献4に記載される方法では、溶存ガス除去の際に既に被処理水中に含まれていた溶存窒素も除去されるので、後段の窒素添加工程でより多くの窒素を添加しなくてはならず、窒素添加量に無駄が生じる。特許文献5で示される方法では、溶存酸素を除去したことにより溶存ガスがほとんど存在しない状態となった超純水に対して窒素ガスを添加するため、窒素ガスの溶解速度が速くなり、溶存窒素の濃度調整を細かく行うことが困難となる。   Among the conventional methods for controlling the dissolved nitrogen concentration in the production of ultrapure water, the method disclosed in Patent Document 3 adjusts the degree of vacuum in the degassing process, so that the performance for removing dissolved oxygen is lowered. It is difficult to adjust the dissolved nitrogen concentration while adjusting the concentration to a very low concentration. In the method described in Patent Document 4, dissolved nitrogen that has already been contained in the water to be treated is also removed at the time of removing the dissolved gas, so that more nitrogen must be added in the subsequent nitrogen addition step. Therefore, the amount of nitrogen added is wasted. In the method shown in Patent Document 5, nitrogen gas is added to ultrapure water in which almost no dissolved gas exists due to removal of dissolved oxygen, so that the dissolution rate of nitrogen gas is increased, and dissolved nitrogen is increased. It is difficult to finely adjust the density of the toner.

本発明の目的は、被処理水である超純水中の溶存酸素を極低濃度まで除去しつつ、ユースポイントで必要となる溶存窒素の濃度管理を容易に行うことができる純水製造方法及び装置を提供することにある。   An object of the present invention is to provide a pure water production method capable of easily managing the concentration of dissolved nitrogen required at a use point while removing dissolved oxygen in ultrapure water which is treated water to an extremely low concentration, and To provide an apparatus.

本発明の純水製造方法は、溶存酸素を含む被処理水を紫外線を照射する照射工程と、紫外線が照射された被処理水に対してイオン交換処理を行うイオン交換工程と、を少なくとも有して純水を生成し、生成された純水が被処理水の少なくとも一部として照射工程に循環される純水製造方法において、被処理水に窒素を添加する窒素添加工程と、白金族金属が担持された触媒金属担持体に、窒素添加工程により窒素が添加された被処理水を接触させて、その被処理水中の溶存酸素を除去する溶存酸素除去工程と、を有することを特徴とする。   The pure water production method of the present invention has at least an irradiation step of irradiating the water to be treated containing dissolved oxygen with ultraviolet rays and an ion exchange step of performing an ion exchange treatment on the water to be treated irradiated with ultraviolet rays. In the pure water production method in which pure water is generated and the generated pure water is circulated to the irradiation step as at least part of the water to be treated, a nitrogen addition step of adding nitrogen to the water to be treated, and a platinum group metal And a dissolved oxygen removing step of contacting the treated catalyst metal carrier to which the treated water to which nitrogen has been added in the nitrogen adding step is brought into contact, and removing dissolved oxygen in the treated water.

本発明の純水製造装置は、溶存酸素を含む被処理水を貯留する貯槽と、貯槽から流出する被処理水に紫外線を照射する紫外線酸化装置と、紫外線酸化装置によって紫外線を照射された被処理水中のイオン成分を除去するイオン交換装置と、イオン交換装置によってイオン成分が除去された処理水をユースポイントに供給する供給ラインと、供給ラインから分岐し処理水の一部または全部を貯槽に戻す循環ラインと、を有する純水製造装置であって、被処理水に窒素を添加する窒素添加装置と、白金族金属が担持された触媒金属担持体を備え、窒素添加装置により窒素が添加された被処理水を触媒金属担持体に接触させてこの被処理水中の溶存酸素を除去する溶存酸素除去装置と、を有する。   The pure water production apparatus of the present invention includes a storage tank for storing water to be treated containing dissolved oxygen, an ultraviolet oxidation device for irradiating ultraviolet light to the water to be treated flowing out of the storage tank, and a treatment to be irradiated with ultraviolet rays by the ultraviolet oxidation device. An ion exchange device that removes ion components in the water, a supply line that supplies treated water from which ion components have been removed by the ion exchange device to a use point, and a part or all of the treated water is returned to the storage tank by branching from the supply line A pure water production apparatus having a circulation line, comprising: a nitrogen addition apparatus for adding nitrogen to the water to be treated; and a catalyst metal carrier on which a platinum group metal is supported, wherein nitrogen is added by the nitrogen addition apparatus. A dissolved oxygen removing device for bringing the water to be treated into contact with the catalyst metal carrier to remove the dissolved oxygen in the water to be treated.

本発明では、被処理水中に溶存酸素が存在する状態で被処理水に対し窒素を添加し、その後、白金族金属が担持された触媒金属担持体(すなわち白金族触媒)に被処理水を接触させて溶存酸素だけを選択的に除去する。これにより、無駄に窒素を消費することなく、ユースポイントで必要となる溶存窒素の濃度管理を容易に行えるようになる。   In the present invention, nitrogen is added to the water to be treated in the presence of dissolved oxygen in the water to be treated, and then the water to be treated is brought into contact with a catalyst metal carrier (that is, a platinum group catalyst) on which a platinum group metal is supported. And only the dissolved oxygen is selectively removed. This makes it possible to easily manage the concentration of dissolved nitrogen required at the point of use without consuming wasteful nitrogen.

本発明の実施の一形態の純水製造装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the pure water manufacturing apparatus of one Embodiment of this invention. 実験例で純水製造装置の構成を示す図である。It is a figure which shows the structure of a pure water manufacturing apparatus in an experiment example.

次に、本発明の実施の形態について、図面を参照して説明する。図1に示す本発明の実施の一形態の純水製造装置は、サブシステムである超純水製造装置として構成されており、不図示の一次純水製造装置から一次純水の供給を受けて溶存酸素(DO)濃度が極低濃度に管理され、溶存窒素(DN)濃度が所定の値に管理された超純水を生成してユースポイントに供給するものである。当然のことながら、本発明に基づく純水製造装置は図1に示されたものに限定されるものではない。   Next, embodiments of the present invention will be described with reference to the drawings. The pure water production apparatus according to one embodiment of the present invention shown in FIG. 1 is configured as an ultrapure water production apparatus that is a subsystem, and receives the supply of primary pure water from a primary pure water production apparatus (not shown). Ultrapure water in which the dissolved oxygen (DO) concentration is controlled to an extremely low concentration and the dissolved nitrogen (DN) concentration is controlled to a predetermined value is generated and supplied to the use point. Naturally, the pure water manufacturing apparatus based on this invention is not limited to what was shown by FIG.

図1に示す装置は、一次純水を供給水として受け入れる貯槽である一次純水タンク11と、一次純水タンク11から純水を送出するポンプ(P)12とを備えており、ポンプ12に対し、熱交換器13、紫外線酸化装置14、窒素添加装置15、溶存酸素除去装置17、非再生型混床式イオン交換装置(CP)21及び限外濾過膜装置(UF)22がこの順で接続し、限外濾過膜装置22から流出する水が超純水として弁23を介してユースポイントに送られるようになっている。ユースポイントで使用されたなかった分の超純水を一次純水タンク11に戻すために、弁24を備える循環配管が設けられている。この装置では、一次純水タンク11からポンプ12、熱交換器13、紫外線酸化装置14、窒素添加装置15、溶存酸素除去装置17、非再生型混床式イオン交換装置21及び限外濾過膜装置22を経て一次純水タンク11に戻る循環系が形成されている。   The apparatus shown in FIG. 1 includes a primary pure water tank 11 that is a storage tank that receives primary pure water as supply water, and a pump (P) 12 that sends pure water from the primary pure water tank 11. On the other hand, the heat exchanger 13, the ultraviolet oxidation device 14, the nitrogen addition device 15, the dissolved oxygen removal device 17, the non-regenerative mixed bed ion exchange device (CP) 21 and the ultrafiltration membrane device (UF) 22 are arranged in this order. The water flowing out from the ultrafiltration membrane device 22 is connected to the use point through the valve 23 as ultrapure water. In order to return the ultrapure water that has not been used at the use point to the primary pure water tank 11, a circulation pipe including a valve 24 is provided. In this apparatus, the primary pure water tank 11 to the pump 12, the heat exchanger 13, the ultraviolet oxidation apparatus 14, the nitrogen addition apparatus 15, the dissolved oxygen removal apparatus 17, the non-regenerative mixed bed ion exchange apparatus 21 and the ultrafiltration membrane apparatus. A circulation system that returns to the primary pure water tank 11 through 22 is formed.

この構成では、一次純水タンク11内の一次純水は、ポンプ12によって熱交換器13を通って紫外線酸化装置14に供給され、紫外線酸化装置14内で純水に対して紫外線を照射することにより純水中の有機物が分解される。紫外線酸化装置14から流出した純水に対し、続いて、窒素添加装置15により窒素(N2)が添加される。窒素が添加された純水は、溶存酸素除去装置17によって溶存酸素が除去され、次に、非再生型混床式イオン交換装置21においてイオン交換処理により金属等が除去され、さらに、限外濾過膜装置22において微細な不純物が除去されて、超純水としてユースポイントに送られる。一次純水タンク11、ポンプ12、熱交換器13、紫外線酸化装置14、非再生型混床式イオン交換装置21及び限外濾過膜装置22としては、サブシステムとして構成された超純水装製造装置において一般的に用いられているものを使用することができるので、以下、窒素添加装置15及び溶存酸素除去装置17について、詳しく説明する。 In this configuration, the primary pure water in the primary pure water tank 11 is supplied to the ultraviolet oxidizer 14 through the heat exchanger 13 by the pump 12 and irradiates the pure water with ultraviolet rays in the ultraviolet oxidizer 14. As a result, organic substances in pure water are decomposed. Subsequently, nitrogen (N 2 ) is added to the pure water flowing out from the ultraviolet oxidation device 14 by the nitrogen addition device 15. In the pure water to which nitrogen is added, the dissolved oxygen is removed by the dissolved oxygen removing device 17, and then metal and the like are removed by ion exchange treatment in the non-regenerative mixed bed ion exchange device 21. Further, ultrafiltration is performed. Fine impurities are removed in the membrane device 22 and sent to the use point as ultrapure water. The primary pure water tank 11, the pump 12, the heat exchanger 13, the ultraviolet oxidizer 14, the non-regenerative mixed bed ion exchanger 21 and the ultrafiltration membrane device 22 are manufactured as ultrapure water equipment constructed as a subsystem. Since what is generally used in the apparatus can be used, the nitrogen addition apparatus 15 and the dissolved oxygen removal apparatus 17 will be described in detail below.

<窒素添加装置>
窒素添加装置15は、純水中に窒素ガスを供給する窒素供給部と、純水中の溶存窒素濃度を測定する溶存窒素計32と、溶存窒素計32での測定結果から窒素ガスの供給量を決定する制御部33とを有している。窒素供給部は、ガス溶解膜31と、窒素(N2)ガス供給源とガス溶解膜31の間に設けられたマスフローコントローラ34とを備えており、ガス溶解膜31を介して純水中に高純度の窒素ガスを供給する。窒素ガスの供給量は、制御部33によってマスフローコントローラ34で調節される。
<Nitrogen addition device>
The nitrogen addition device 15 includes a nitrogen supply unit that supplies nitrogen gas into pure water, a dissolved nitrogen meter 32 that measures a dissolved nitrogen concentration in pure water, and a supply amount of nitrogen gas based on the measurement results of the dissolved nitrogen meter 32. And a control unit 33 for determining. The nitrogen supply unit includes a gas-dissolving film 31 and a mass flow controller 34 provided between the nitrogen (N 2 ) gas supply source and the gas-dissolving film 31. Supply high purity nitrogen gas. The supply amount of nitrogen gas is adjusted by the mass flow controller 34 by the control unit 33.

ガス溶解膜31は、液体は透過させず気体のみを透過させる膜であり、このような膜としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン製の膜や、ポリ四フッ化エチレン等のフッ素樹脂製の膜、さらにはポリスルホン製、シリコンゴム製等の膜がある。また気体透過性膜を中空糸状に形成した中空糸膜もガス溶解膜31として好適に用いられるものであり、そのような中空糸膜の形状は特に制限されないが、中空糸膜の内径は0.1〜1mm程度のものが好ましい。中空糸膜の長さは10〜300cm、特に50〜100cm程度のものが好ましい。   The gas-dissolving film 31 is a film that does not transmit liquid but allows only gas to pass. Examples of such a film include a film made of polyolefin such as polyethylene and polypropylene, and a fluorine resin such as polytetrafluoroethylene. In addition, there are membranes made of polysulfone, silicone rubber or the like. A hollow fiber membrane in which a gas permeable membrane is formed in a hollow fiber shape is also suitably used as the gas dissolving membrane 31. The shape of such a hollow fiber membrane is not particularly limited, but the inner diameter of the hollow fiber membrane is 0.00. The thing of about 1-1 mm is preferable. The length of the hollow fiber membrane is preferably about 10 to 300 cm, particularly about 50 to 100 cm.

マスフローコントローラ34は、流量センサーによって入口側の流量を検知して、流量調節弁により、出口側の流量を設定流量に調節するものである。   The mass flow controller 34 detects the flow rate on the inlet side with a flow rate sensor, and adjusts the flow rate on the outlet side to a set flow rate with a flow rate control valve.

溶存窒素計32は、窒素が添加された後の純水を被測定水として、弁16を介して被測定水を取り込み、被測定水中の溶存窒素濃度を計測するものである。例えば、被測定水が導入される測定セルを有し、導入前後の熱伝導度の変化速度を熱検出器により求め、求めた変化速度から溶存窒素濃度を算出するものを溶存窒素計32として用いることができる。そのような溶存窒素計としては、市販のもの、例えばハック・ウルトラ社製model−3621などを使用することができる。   The dissolved nitrogen meter 32 measures the concentration of dissolved nitrogen in the water to be measured by taking the water to be measured through the valve 16 using pure water to which nitrogen has been added as the water to be measured. For example, a measuring cell into which water to be measured is introduced, a change rate of thermal conductivity before and after introduction is obtained by a heat detector, and a dissolved nitrogen concentration is calculated from the obtained change rate as the dissolved nitrogen meter 32. be able to. As such a dissolved nitrogen meter, a commercially available one, for example, model-3621 manufactured by Hack Ultra, Inc. can be used.

制御部33は、溶存窒素計32での測定結果とマスフローコントローラ34の流量センサーの検知結果とから、マスフローコントローラ34の設定流量を算出し、マスフローコントローラ34の流量調節弁の開度を調節するような信号をマスフローコントローラ34に送る。   The control unit 33 calculates the set flow rate of the mass flow controller 34 from the measurement result of the dissolved nitrogen meter 32 and the detection result of the flow rate sensor of the mass flow controller 34, and adjusts the opening degree of the flow rate control valve of the mass flow controller 34. A simple signal is sent to the mass flow controller 34.

<溶存酸素除去装置>
溶存酸素除去装置17は、白金族金属が担持された触媒金属担持体を用いた装置である。以下、白金族金属が担持された触媒金属担持体を白金族触媒41と呼ぶ。溶存酸素除去装置17は、純水を白金族触媒41に接触させることにより、純水中の溶存酸素を除去する。
<Dissolved oxygen removal device>
The dissolved oxygen removing device 17 is a device using a catalytic metal carrier on which a platinum group metal is supported. Hereinafter, the catalyst metal carrier on which the platinum group metal is supported is referred to as a platinum group catalyst 41. The dissolved oxygen removing device 17 removes dissolved oxygen in the pure water by bringing the pure water into contact with the platinum group catalyst 41.

ここで一次純水タンク11が窒素パージされている場合を考える。窒素パージされている場合には、一次純水タンク11から送出される純水中の溶存窒素濃度は3ppm程度となっている。そのような場合に溶存酸素除去に脱気膜を使用するものとすると、
(1)溶存酸素除去用の脱気膜の後段に窒素添加装置を設ける構成では、溶存酸素とともに窒素パージに由来する溶存窒素も脱気膜で除去されるため、脱気膜で除去された分の窒素も窒素添加装置で添加する必要があり、窒素の無駄が生じ、
(2)溶存酸素除去用の脱気膜の前段に窒素添加装置を設ける構成では、脱気膜で除去される溶存窒素を考慮して窒素を添加する必要があり、溶存窒素量の細かい調節が困難となる、
という課題を生じる。そこで本実施形態では、溶存酸素を選択的に除去することができる白金族触媒41を用いて溶存酸素を除去することとしている。これにより、純水中の溶存窒素濃度を低下させることなく溶存酸素のみを除去でき、窒素パージされた一次純水タンク11内で純水に溶解した溶存窒素を有効に利用することができるようになる。
Consider a case where the primary pure water tank 11 is purged with nitrogen. When nitrogen is purged, the concentration of dissolved nitrogen in pure water delivered from the primary pure water tank 11 is about 3 ppm. In such a case, if a degassing membrane is used to remove dissolved oxygen,
(1) In the configuration in which the nitrogen addition device is provided at the subsequent stage of the degassing membrane for removing dissolved oxygen, the dissolved nitrogen derived from the nitrogen purge is also removed by the degassing membrane along with the dissolved oxygen. Nitrogen must also be added with a nitrogen addition device, resulting in wasted nitrogen,
(2) In a configuration in which a nitrogen addition device is provided in front of the degassing membrane for removing dissolved oxygen, it is necessary to add nitrogen in consideration of the dissolved nitrogen removed by the degassing membrane, and fine adjustment of the amount of dissolved nitrogen is possible. Become difficult,
This creates a problem. Therefore, in the present embodiment, the dissolved oxygen is removed using the platinum group catalyst 41 that can selectively remove the dissolved oxygen. Thereby, only dissolved oxygen can be removed without reducing the concentration of dissolved nitrogen in the pure water, and the dissolved nitrogen dissolved in the pure water can be used effectively in the nitrogen-purged primary pure water tank 11. Become.

白金族触媒41の形態は特に限定されるものではないが、好ましくは、イオン交換樹脂(特にアニオン交換樹脂)に白金族金属を担持したものや、モノリス状有機多孔質であるアニオン交換体(すなわちモノリスアニオン交換体)に白金族金属を担持したものがよい。モノリスアニオン交換体を用いた場合には、1時間当たりにこのモノリスアニオン交換体の体積の2000〜20000倍(すなわちSV=2000〜20000h-1;SVは1時間に触媒担持体体積の何倍の量の流体を流すかの指標)の純水を流すことが可能であるから、担体としてモノリスアニオン交換体を用いることがより好ましい。 The form of the platinum group catalyst 41 is not particularly limited, but preferably, an ion exchange resin (particularly an anion exchange resin) carrying a platinum group metal or an anion exchanger that is monolithic organic porous (ie A monolith anion exchanger) carrying a platinum group metal is preferable. When a monolith anion exchanger is used, 2000 to 20000 times the volume of the monolith anion exchanger per hour (ie SV = 2000 to 20000 h -1 ; SV is several times the catalyst support volume per hour) Therefore, it is more preferable to use a monolith anion exchanger as a carrier.

白金族触媒41のみで溶存酸素除去装置17を構成してもよいが、白金族触媒41を単独で使用した場合には、純水中の溶存酸素との反応量に限度があり、その限度を超えると純水中から溶存酸素を除去できなくなる。そこで、白金族触媒41に対して水素を供給する水素添加手段を備え、白金族触媒41の存在下で水素と溶存酸素とを反応させて水を生成させ、反応した分だけ溶存酸素量が減少するような構成とすることが好ましい。水素添加手段としては、白金族触媒41に水素(H2)ガスを直接添加する構成のものが使用可能であり、また、白金族触媒41の前段でガス溶解膜を介して水素ガスを純水中に添加することも可能である。しかしながら、水素添加手段としては、添加量の調整が容易である点から、図1に示したように、あらかじめ水素を溶解した水素水を溶存酸素除去装置17に通水して白金族触媒41と接触させるような構成とすることが好ましい。図1に示したものでは、水素ガス供給源から水素ガスが供給されて純水に水素を溶解させ水素水を生成する水素水生成装置18と、水素水生成装置18からの水素水の流量を測定する流量計(FI)19と、流量計19と溶存酸素除去装置17との間に設けられた弁20とによって、水素添加手段が構成されている。この水素水は、窒素添加装置15からの純水と混合して白金族触媒41と接触することになる。水素水生成装置18に供給する水素については、不純物混入の防止、及び水素ガスボンベを不要とするいう安全面から、純水を電気分解して生成することが好ましい。水素水生成装置18には例えばガス溶解膜を用いることができる。 The dissolved oxygen removing device 17 may be configured by only the platinum group catalyst 41. However, when the platinum group catalyst 41 is used alone, there is a limit in the amount of reaction with dissolved oxygen in pure water. If it exceeds, dissolved oxygen cannot be removed from pure water. Therefore, a hydrogen addition means for supplying hydrogen to the platinum group catalyst 41 is provided, and water and dissolved oxygen are reacted in the presence of the platinum group catalyst 41 to generate water, and the amount of dissolved oxygen is reduced by the amount of reaction. It is preferable to adopt such a configuration. As a means for adding hydrogen, one having a configuration in which hydrogen (H 2 ) gas is directly added to the platinum group catalyst 41 can be used, and pure water is supplied from the hydrogen gas through a gas dissolution membrane in the previous stage of the platinum group catalyst 41. It is also possible to add in. However, as the hydrogen addition means, since the adjustment of the addition amount is easy, as shown in FIG. 1, hydrogen water in which hydrogen is dissolved in advance is passed through the dissolved oxygen removing device 17 and the platinum group catalyst 41 and It is preferable to make the structure which contacts. 1, hydrogen water is supplied from a hydrogen gas supply source to dissolve hydrogen in pure water to generate hydrogen water, and the flow rate of hydrogen water from the hydrogen water generator 18 is as follows. A hydrogenation means is constituted by the flow meter (FI) 19 to be measured and the valve 20 provided between the flow meter 19 and the dissolved oxygen removing device 17. This hydrogen water is mixed with pure water from the nitrogen addition device 15 and comes into contact with the platinum group catalyst 41. The hydrogen supplied to the hydrogen water generator 18 is preferably generated by electrolyzing pure water from the standpoint of preventing impurities from being mixed and eliminating the need for a hydrogen gas cylinder. For example, a gas-dissolved film can be used for the hydrogen water generator 18.

なお、上述のように水素添加手段を設けた場合、純水中に溶存水素が存在すると、溶存窒素計において実際の溶存窒素濃度よりも高い値で溶存窒素濃度が検出されてしまうおそれがあるので、水素添加は、循環系において、窒素添加装置15の溶存窒素計32への配管の分岐よりも下流で行うことが好ましい。   When the hydrogen addition means is provided as described above, if dissolved hydrogen is present in the pure water, the dissolved nitrogen concentration may be detected at a value higher than the actual dissolved nitrogen concentration in the dissolved nitrogen meter. The hydrogenation is preferably performed downstream of the branch of the piping to the dissolved nitrogen meter 32 of the nitrogen addition device 15 in the circulation system.

<窒素添加装置と溶存酸素除去装置の配置>
次に、窒素添加装置15と溶存酸素除去装置17との配置関係について説明する。
<Arrangement of nitrogen addition device and dissolved oxygen removal device>
Next, the arrangement relationship between the nitrogen addition device 15 and the dissolved oxygen removal device 17 will be described.

一般にガス溶解膜を介して純水中に窒素ガスを添加する場合、純水中への窒素ガスの溶解速度は、純水中に含まれる気体の分圧の合計とガス溶解膜の気相側における気体の分圧との差が大きいほど大きくなる。つまり、いずれの気体成分についても溶存ガスをほとんど含んでいない純水は、気体が溶け込みやすくなっている。このため、純水中の溶存酸素を除去した後で窒素ガスを添加すると、窒素添加装置15においてマスフローコントローラ34の流量調整弁の開度による窒素ガス流量の調整が困難になり、結果的に純水中の溶存窒素量を細かく調整することが困難になる。そのため本実施形態では、溶存酸素除去装置17の前段に窒素添加装置15を配置する。純水中に溶存酸素が存在した状態で窒素ガスを添加するため、所定の溶存窒素濃度になるように窒素ガス添加量を細かく調整することが容易になる。   In general, when nitrogen gas is added to pure water through a gas dissolution membrane, the dissolution rate of nitrogen gas in pure water is determined by the sum of the partial pressures of the gases contained in the pure water and the gas phase side of the gas dissolution membrane. The larger the difference from the partial pressure of the gas, the larger the difference. That is, pure water that hardly contains dissolved gas for any gas component is easy to dissolve the gas. For this reason, when nitrogen gas is added after removing dissolved oxygen in pure water, it becomes difficult to adjust the nitrogen gas flow rate according to the opening degree of the flow rate adjustment valve of the mass flow controller 34 in the nitrogen addition device 15. It becomes difficult to finely adjust the amount of dissolved nitrogen in water. Therefore, in the present embodiment, the nitrogen addition device 15 is disposed in front of the dissolved oxygen removal device 17. Since nitrogen gas is added in a state where dissolved oxygen is present in pure water, it becomes easy to finely adjust the amount of nitrogen gas added so as to obtain a predetermined dissolved nitrogen concentration.

[実験例]
次に、本実施形態の純水製造装置の有効性を示すために行った実験結果について説明する。
[Experimental example]
Next, the results of experiments conducted to show the effectiveness of the pure water production apparatus of this embodiment will be described.

図2に示す純水製造装置を構成した。この装置は、図1に示した装置から窒素添加装置15を取り除き、その代わり、弁51〜54と溶存酸素計55及び溶存窒素計56とを設けることにより、溶存酸素除去装置17の入口と出口での純水の溶存酸素濃度及び溶存窒素濃度、すなわち溶存酸素除去装置17の通過の前後での純水における溶存酸素濃度及び溶存窒素濃度を測定できるようにしたものである。溶存酸素濃度は、溶存酸素計55(ハック・ウルトラ社製model−3600)を用いて測定し、溶存窒素濃度は、溶存窒素計56(ハック・ウルトラ社製model−3621)を用いて測定した。溶存酸素除去装置17には、内径16mmの塩化ビニル製カラムに層高40mm(約8mL)でPd担持モノリス(担持量:2.3g/L)を充填して構成した白金族触媒担持体を用いた。一次純水タンク11は窒素パージされており、純水は、溶存酸素除去装置17に対して40L/h(つまりSV=5000h-1)で通水した。溶存酸素除去装置17の通過の前後での純水中の溶存酸素濃度及び溶存窒素濃度の測定結果を表1に示す。 The pure water manufacturing apparatus shown in FIG. 2 was configured. In this apparatus, the nitrogen addition apparatus 15 is removed from the apparatus shown in FIG. 1, and instead, the valves 51 to 54, the dissolved oxygen meter 55, and the dissolved nitrogen meter 56 are provided, so that the inlet and the outlet of the dissolved oxygen removing device 17 are provided. It is possible to measure the dissolved oxygen concentration and dissolved nitrogen concentration of pure water, that is, the dissolved oxygen concentration and dissolved nitrogen concentration in pure water before and after passing through the dissolved oxygen removing device 17. The dissolved oxygen concentration was measured using a dissolved oxygen meter 55 (model-3600 manufactured by Hack Ultra), and the dissolved nitrogen concentration was measured using a dissolved nitrogen meter 56 (model-3621 manufactured by Hack Ultra). The dissolved oxygen removal device 17 uses a platinum group catalyst carrier comprising a polyvinyl chloride column with an inner diameter of 16 mm and a Pd-supported monolith (supported amount: 2.3 g / L) filled with a layer height of 40 mm (about 8 mL). It was. The primary pure water tank 11 was purged with nitrogen, and the pure water was passed through the dissolved oxygen removing device 17 at 40 L / h (that is, SV = 5000 h −1 ). Table 1 shows the measurement results of the dissolved oxygen concentration and the dissolved nitrogen concentration in pure water before and after passing through the dissolved oxygen removing device 17.

Figure 2012254428
表1から、白金族触媒を用いた溶存酸素除去装置では、その前後での溶存窒素濃度に変わりがなく、純水中の溶存酸素を選択的に除去できることがわかる。したがって、本実施形態の純水製造装置のように、窒素添加装置の後段に、白金族触媒を用いた溶存酸素除去装置を配置することにより、溶存酸素濃度を極低濃度にまで低減しつつ、ユースポイントで必要とする溶存窒素濃度にするために添加すべき窒素ガスの量を少なくすることができることが分かる。また、白金族触媒による溶存酸素除去装置を用いる場合には、超純水を循環させる構成として純水製造装置を構成すると、循環する超純水中の溶存窒素濃度が基本的に低下することがないから、一度、ユースポイントで必要な溶存窒素濃度に調整した後は、窒素添加装置による窒素ガスの添加を微調整程度で済ませることができる。
Figure 2012254428
From Table 1, it can be seen that the dissolved oxygen removal apparatus using a platinum group catalyst has no change in the dissolved nitrogen concentration before and after that, and can selectively remove dissolved oxygen in pure water. Therefore, like the pure water production apparatus of the present embodiment, by disposing a dissolved oxygen removal apparatus using a platinum group catalyst at the subsequent stage of the nitrogen addition apparatus, while reducing the dissolved oxygen concentration to an extremely low concentration, It can be seen that the amount of nitrogen gas to be added in order to obtain the dissolved nitrogen concentration required at the use point can be reduced. In addition, when using a dissolved oxygen removal device using a platinum group catalyst, if the pure water production device is configured as a configuration for circulating ultrapure water, the concentration of dissolved nitrogen in the circulating ultrapure water may basically decrease. Therefore, once the dissolved nitrogen concentration required at the point of use is adjusted, the addition of nitrogen gas by the nitrogen adding device can be finely adjusted.

[比較例]
図2に示した純水製造装置において溶存酸素除去装置として脱気膜(大日本インキ化学工業株式会社製:EF−002A)を用いたことを除いて、実験例と同様の実験を行った。このときの溶存酸素除去装置の通過の前後での純水中の溶存酸素濃度及び溶存窒素濃度の測定結果を表2に示す。
[Comparative example]
The same experiment as the experimental example was performed except that a degassing membrane (Dainippon Ink & Chemicals, Inc .: EF-002A) was used as the dissolved oxygen removal device in the pure water production apparatus shown in FIG. Table 2 shows the measurement results of the dissolved oxygen concentration and the dissolved nitrogen concentration in pure water before and after passing through the dissolved oxygen removing device.

Figure 2012254428
表2から、溶存酸素除去装置として脱気膜を使用した場合には、溶存酸素除去装置を通過した純水での溶存窒素濃度が低下しており、溶存酸素だけでなく溶存窒素も溶存酸素除去装置によって除去されてしまうことが分かった。脱気膜による溶存酸素除去装置では、純水中の溶存酸素とともに溶存窒素も除去してしまうため、ユースポイントで必要とする溶存窒素濃度にするために添加すべき窒素ガスの量が、実験例に比べて多くなる。
Figure 2012254428
From Table 2, when a degassing membrane is used as a dissolved oxygen removal device, the concentration of dissolved nitrogen in the pure water that has passed through the dissolved oxygen removal device is reduced, and not only dissolved oxygen but also dissolved nitrogen is removed. It was found that it was removed by the device. Since the dissolved oxygen removal device using a degassing membrane removes dissolved nitrogen as well as dissolved oxygen in pure water, the amount of nitrogen gas to be added to achieve the dissolved nitrogen concentration required at the point of use is an experimental example. More than

循環系内で超純水を循環させると、溶存酸素除去装置を通過するたびに、溶存窒素も除去されてしまうため、ユースポイントでの溶存窒素濃度を一定値とするためには、除去された窒素の分だけ窒素を再度添加しなければならない、という無駄が生じることも分かる。脱気膜による溶存酸素除去装置で除去される溶存窒素の量は常に一定であるとは言えないので、除去される溶存窒素量の変動に応じて、添加すべき窒素ガスの量を頻繁に調整する必要も生じ、制御が複雑になる。   When ultrapure water is circulated in the circulation system, dissolved nitrogen is also removed every time it passes through the dissolved oxygen removal device. Therefore, in order to make the dissolved nitrogen concentration at the point of use constant, it was removed. It can also be seen that there is a waste of having to add nitrogen again by the amount of nitrogen. Since the amount of dissolved nitrogen removed by the device for removing dissolved oxygen using a degassing membrane is not always constant, the amount of nitrogen gas to be added is frequently adjusted according to fluctuations in the amount of dissolved nitrogen to be removed. It becomes necessary to do this, and the control becomes complicated.

11 一次純水タンク
12 ポンプ
13 熱交換器
14 紫外線酸化装置
15 窒素添加装置
16,20,23,24,51〜54 弁
17 溶存酸素除去装置
18 水素水生成装置
19 流量計(FI)
21 非再生型混床式イオン交換装置(CP)
22 限外濾過膜装置(UF)
31 ガス溶解膜
41 白金族触媒
32,56 溶存窒素計
55 溶存酸素計
DESCRIPTION OF SYMBOLS 11 Primary pure water tank 12 Pump 13 Heat exchanger 14 Ultraviolet oxidizer 15 Nitrogen addition device 16, 20, 23, 24, 51-54 Valve 17 Dissolved oxygen removal device 18 Hydrogen water production device 19 Flow meter (FI)
21 Non-regenerative mixed bed ion exchanger (CP)
22 Ultrafiltration membrane device (UF)
31 Gas dissolved membrane 41 Platinum group catalyst 32,56 Dissolved nitrogen meter 55 Dissolved oxygen meter

Claims (12)

溶存酸素を含む被処理水を紫外線を照射する照射工程と、前記紫外線が照射された被処理水に対してイオン交換処理を行うイオン交換工程と、を少なくとも有して純水を生成し、生成された純水が前記被処理水の少なくとも一部として前記照射工程に循環される純水製造方法において、
前記被処理水に窒素を添加する窒素添加工程と、
白金族金属が担持された触媒金属担持体に、前記窒素添加工程により窒素が添加された被処理水を接触させて、該被処理水中の溶存酸素を除去する溶存酸素除去工程と、
を有することを特徴とする純水製造方法。
Producing and producing pure water having at least an irradiation step of irradiating the water to be treated containing dissolved oxygen with ultraviolet rays and an ion exchange step of performing ion exchange treatment on the water to be treated irradiated with ultraviolet rays In the pure water production method in which the purified water is circulated to the irradiation step as at least part of the treated water,
A nitrogen addition step of adding nitrogen to the water to be treated;
A dissolved oxygen removing step of contacting the water to be treated to which nitrogen is added in the nitrogen addition step with a catalytic metal carrier on which a platinum group metal is supported, and removing dissolved oxygen in the water to be treated;
A method for producing pure water, comprising:
前記照射工程で紫外線が照射された被処理水に対して前記窒素添加工程と前記溶存酸素除去工程を実施し、その後、前記溶存酸素が除去された被処理水に対して前記イオン交換工程を実施する、請求項1に記載の純水製造方法。   The nitrogen addition step and the dissolved oxygen removal step are performed on the treated water irradiated with ultraviolet rays in the irradiation step, and then the ion exchange step is performed on the treated water from which the dissolved oxygen has been removed. The method for producing pure water according to claim 1. 前記窒素添加工程は、前記被処理水にガス溶解膜を介して窒素を添加するガス溶解工程と、前記窒素添加工程より下流側の被処理水中の溶存窒素濃度を測定し、測定された溶存窒素濃度に応じて前記ガス溶解膜に供給される窒素量を制御する制御工程と、を有する、請求項1または2に記載の純水製造方法。   The nitrogen addition step is a gas dissolution step of adding nitrogen to the water to be treated through a gas dissolution membrane, a concentration of dissolved nitrogen in the water to be treated downstream from the nitrogen addition step, and a measured dissolved nitrogen The pure water manufacturing method of Claim 1 or 2 which has a control process which controls the amount of nitrogen supplied to the said gas dissolution film | membrane according to a density | concentration. 前記触媒金属担持体に対して水素が供給されるように水素を添加する水素添加工程を有する請求項1乃至3のいずれか1項に記載の純水製造方法。   The method for producing pure water according to any one of claims 1 to 3, further comprising a hydrogenation step of adding hydrogen so that hydrogen is supplied to the catalyst metal carrier. 前記水素添加工程は、純水に水素を添加して水素水とする工程を有し、前記窒素添加工程によって窒素を添加された被処理水とともに前記水素水が前記触媒金属担持体に接触させられる、請求項4に記載の純水製造方法。   The hydrogen addition step includes a step of adding hydrogen to pure water to form hydrogen water, and the hydrogen water is brought into contact with the catalyst metal carrier together with the treated water to which nitrogen has been added by the nitrogen addition step. The pure water manufacturing method of Claim 4. 溶存酸素を含む被処理水を貯留する貯槽と、前記貯槽から流出する被処理水に紫外線を照射する紫外線酸化装置と、前記紫外線酸化装置によって紫外線を照射された被処理水中のイオン成分を除去するイオン交換装置と、前記イオン交換装置によってイオン成分が除去された処理水をユースポイントに供給する供給ラインと、前記供給ラインから分岐し前記処理水の一部または全部を前記貯槽に戻す循環ラインと、を有する純水製造装置であって、
前記被処理水に窒素を添加する窒素添加装置と、
白金族金属が担持された触媒金属担持体を備え、前記窒素添加装置により窒素が添加された被処理水を前記触媒金属担持体に接触させて該被処理水中の溶存酸素を除去する溶存酸素除去装置と、
を有する超純水製造装置。
A storage tank for storing treated water containing dissolved oxygen, an ultraviolet oxidation device for irradiating ultraviolet rays to the treated water flowing out of the storage tank, and an ionic component in the treated water irradiated with ultraviolet rays by the ultraviolet oxidation device is removed. An ion exchange device, a supply line for supplying treated water from which ion components have been removed by the ion exchange device to a use point, and a circulation line that branches from the supply line and returns part or all of the treated water to the storage tank A pure water production apparatus comprising:
A nitrogen addition device for adding nitrogen to the water to be treated;
Dissolved oxygen removal comprising a catalyst metal carrier on which a platinum group metal is supported, and removing the dissolved oxygen in the water to be treated by bringing the treated water to which nitrogen has been added by the nitrogen addition device into contact with the catalyst metal carrier. Equipment,
An ultrapure water production apparatus.
前記紫外線酸化装置の後段となり前記イオン交換装置の前段となる位置に前記窒素添加装置及び前記溶存酸素除去装置が配置される請求項6に記載の純水製造装置。   The pure water production apparatus according to claim 6, wherein the nitrogen addition apparatus and the dissolved oxygen removal apparatus are disposed at a position that is subsequent to the ultraviolet oxidation apparatus and is upstream of the ion exchange apparatus. 前記窒素添加装置は、前記被処理水に窒素を添加するガス溶解膜と、前記窒素が添加された被処理水での溶存窒素濃度を測定する溶存窒素計と、測定された溶存窒素濃度に応じて前記ガス溶解膜に供給される窒素の流量を決定して前記ガス溶解膜での窒素添加量を制御する制御部と、を有する請求項6または7に記載の純水製造装置。   The nitrogen addition apparatus includes a gas-dissolving film for adding nitrogen to the water to be treated, a dissolved nitrogen meter for measuring a dissolved nitrogen concentration in the water to be treated to which nitrogen is added, and a measured dissolved nitrogen concentration. The pure water manufacturing apparatus according to claim 6, further comprising: a control unit that determines a flow rate of nitrogen supplied to the gas dissolution membrane and controls a nitrogen addition amount in the gas dissolution membrane. 前記触媒金属担持体は、アニオン交換体に白金族金属が担持された触媒金属担持体である請求項6乃至8のいずれか1項に記載の純水製造装置。   The pure water production apparatus according to any one of claims 6 to 8, wherein the catalyst metal carrier is a catalyst metal carrier in which a platinum group metal is supported on an anion exchanger. 前記アニオン交換体は、モノリス状有機多孔質である請求項9に記載の純水製造装置。   The apparatus for producing pure water according to claim 9, wherein the anion exchanger is monolithic organic porous. 前記溶存酸素除去装置に水素を供給する水素添加手段をさらに有する、請求項6乃至10のいずれか1項に記載の純水製造装置。   The pure water manufacturing apparatus according to any one of claims 6 to 10, further comprising hydrogen adding means for supplying hydrogen to the dissolved oxygen removing apparatus. 前記水素添加手段は、純水に水素を添加して水素水として前記溶存酸素除去装置に供給する水素水生成装置を備える、請求項11に記載の純水製造装置。   The pure water production apparatus according to claim 11, wherein the hydrogen addition unit includes a hydrogen water generation device that adds hydrogen to pure water and supplies the hydrogen water as hydrogen water to the dissolved oxygen removal device.
JP2011129971A 2011-06-10 2011-06-10 Ultrapure water production method and apparatus Active JP5663410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011129971A JP5663410B2 (en) 2011-06-10 2011-06-10 Ultrapure water production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011129971A JP5663410B2 (en) 2011-06-10 2011-06-10 Ultrapure water production method and apparatus

Publications (2)

Publication Number Publication Date
JP2012254428A true JP2012254428A (en) 2012-12-27
JP5663410B2 JP5663410B2 (en) 2015-02-04

Family

ID=47526524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011129971A Active JP5663410B2 (en) 2011-06-10 2011-06-10 Ultrapure water production method and apparatus

Country Status (1)

Country Link
JP (1) JP5663410B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016112532A (en) * 2014-12-17 2016-06-23 栗田工業株式会社 Method for operating pure water production apparatus
JP2016215150A (en) * 2015-05-22 2016-12-22 オルガノ株式会社 Ultrapure water production device
JP2019176069A (en) * 2018-03-29 2019-10-10 オルガノ株式会社 Gas dissolved water supply system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269306A (en) * 1992-03-24 1993-10-19 Kurita Water Ind Ltd Deoxygenation device
JPH10309566A (en) * 1997-05-08 1998-11-24 Kurita Water Ind Ltd Ultrapure water production device
JP2002307080A (en) * 2001-04-12 2002-10-22 Kurita Water Ind Ltd Apparatus for producing ultrapure water
JP2005270793A (en) * 2004-03-24 2005-10-06 Kurita Water Ind Ltd Apparatus for production of nitrogen-dissolved water
JP2007000699A (en) * 2005-06-21 2007-01-11 Kurita Water Ind Ltd Production method of nitrogen gas-dissolved water
JP2008086879A (en) * 2006-09-29 2008-04-17 Kurita Water Ind Ltd Ultrapure water manufacturing apparatus and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269306A (en) * 1992-03-24 1993-10-19 Kurita Water Ind Ltd Deoxygenation device
JPH10309566A (en) * 1997-05-08 1998-11-24 Kurita Water Ind Ltd Ultrapure water production device
JP2002307080A (en) * 2001-04-12 2002-10-22 Kurita Water Ind Ltd Apparatus for producing ultrapure water
JP2005270793A (en) * 2004-03-24 2005-10-06 Kurita Water Ind Ltd Apparatus for production of nitrogen-dissolved water
JP2007000699A (en) * 2005-06-21 2007-01-11 Kurita Water Ind Ltd Production method of nitrogen gas-dissolved water
JP2008086879A (en) * 2006-09-29 2008-04-17 Kurita Water Ind Ltd Ultrapure water manufacturing apparatus and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016112532A (en) * 2014-12-17 2016-06-23 栗田工業株式会社 Method for operating pure water production apparatus
JP2016215150A (en) * 2015-05-22 2016-12-22 オルガノ株式会社 Ultrapure water production device
JP2019176069A (en) * 2018-03-29 2019-10-10 オルガノ株式会社 Gas dissolved water supply system
JP7125850B2 (en) 2018-03-29 2022-08-25 オルガノ株式会社 Gas-dissolved water supply system and gas-dissolved water supply method

Also Published As

Publication number Publication date
JP5663410B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP4756327B2 (en) Nitrogen gas dissolved water production method
JP3765354B2 (en) Method for producing hydrogen-containing ultrapure water
JP2010234298A (en) Device for supplying water containing dissolved gas and method for producing water containing dissolved gas
JP2010017633A (en) Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component
JP5663410B2 (en) Ultrapure water production method and apparatus
JP5647842B2 (en) Pure water or ultrapure water production apparatus and production method
JP5320665B2 (en) Ultrapure water production apparatus and method
JP2014168743A (en) Pure water manufacturing method
JP5750236B2 (en) Pure water production method and apparatus
JP6400918B2 (en) Hydrogen dissolved water production apparatus and pure water production system
JP6290654B2 (en) Ultrapure water production equipment
JP2009219997A (en) Method and apparatus for manufacturing gas-dissolved water
JP4151088B2 (en) Hydrogen-containing ultrapure water supply device
JP2016005829A (en) Method and apparatus for producing ultrapure water
WO2016199435A1 (en) Ultrapure water manufacturing system and ultrapure water manufacturing method
KR20170091023A (en) Functional water producing apparatus and functional water producing method
JP3712225B2 (en) Deionized water quality monitoring method
JP2010216943A (en) Method and device for measuring concentration of dissolved nitrogen
KR20230081716A (en) Pure water production system and pure water production method
JP6670047B2 (en) Ultrapure water production equipment
JP2007268352A (en) Water treatment method and water treatment apparatus
JP3009789B2 (en) Removal of dissolved oxygen in water
JP4112966B2 (en) Pure water production apparatus and pure water production method
JP2019162569A (en) Liquid supply device and pressure control method
JP7171671B2 (en) Ultrapure water production system and ultrapure water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R150 Certificate of patent or registration of utility model

Ref document number: 5663410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250