JP2010216943A - Method and device for measuring concentration of dissolved nitrogen - Google Patents

Method and device for measuring concentration of dissolved nitrogen Download PDF

Info

Publication number
JP2010216943A
JP2010216943A JP2009063010A JP2009063010A JP2010216943A JP 2010216943 A JP2010216943 A JP 2010216943A JP 2009063010 A JP2009063010 A JP 2009063010A JP 2009063010 A JP2009063010 A JP 2009063010A JP 2010216943 A JP2010216943 A JP 2010216943A
Authority
JP
Japan
Prior art keywords
water
dissolved
measured
hydrogen
dissolved hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009063010A
Other languages
Japanese (ja)
Other versions
JP5292136B2 (en
Inventor
Ryosuke Terashi
亮輔 寺師
Hiroshi Sugawara
広 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2009063010A priority Critical patent/JP5292136B2/en
Publication of JP2010216943A publication Critical patent/JP2010216943A/en
Application granted granted Critical
Publication of JP5292136B2 publication Critical patent/JP5292136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for measuring the concentration of dissolved nitrogen, capable of easily and accurately measuring the concentration of dissolved nitrogen in water to be measured. <P>SOLUTION: The method for measuring the concentration of dissolved nitrogen includes a dissolved hydrogen removing step of removing dissolved hydrogen in the water to be measured; and a measurement step of measuring the concentration of dissolved nitrogen in the water to be measured by a thermal conductivity type detector 12 after the dissolved hydrogen removing step. In the dissolved hydrogen removing step, dissolved hydrogen in the water to be measured is preferably removed by making a platinum group catalyst contact with the water to be measured, and this step may include an oxygen addition step of adding oxygen into the water to be measured. A device for measuring the concentration of dissolved nitrogen 10 includes a dissolved hydrogen removing means 11 for removing dissolved hydrogen in the water to be measured; the thermal conductivity type detector 12; and a hydrogen removed water supplying tube 14 for supplying the water treated by the dissolved hydrogen removing means 11 to the thermal conductivity type detector 12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は溶存窒素濃度の測定方法及び溶存窒素濃度の測定装置に関する。   The present invention relates to a method for measuring dissolved nitrogen concentration and an apparatus for measuring dissolved nitrogen concentration.

従来、電子デバイス等の半導体製造分野や、医薬品製造分野、原子力や火力等の発電分野、食品工業等の各種の産業又は研究施設等、様々な分野での用水として、イオン成分、有機物、微粒子、細菌等の不純物が高度に除去された超純水が使用されている。中でも、電子デバイスをはじめとする電子部品製造の洗浄工程では、多くの超純水が使用されている。電子デバイスの製造工程では、電子デバイス基板表面から微粒子、金属不純物、有機物等の不純物を除去するために、該基板表面を超純水で洗浄している。この洗浄には、超純水のみならず、窒素ガス、水素ガス、オゾンガス等を超純水に溶解し、洗浄効果を高めたいわゆる機能水が用いられることがある。   Conventionally, ionic components, organic matter, fine particles, water for use in various fields such as semiconductor manufacturing fields such as electronic devices, pharmaceutical manufacturing fields, power generation fields such as nuclear power and thermal power, various industries such as food industry and research facilities, etc. Ultrapure water from which impurities such as bacteria are highly removed is used. In particular, a lot of ultrapure water is used in the cleaning process for manufacturing electronic components such as electronic devices. In the manufacturing process of an electronic device, in order to remove impurities such as fine particles, metal impurities, and organic substances from the surface of the electronic device substrate, the substrate surface is washed with ultrapure water. In this cleaning, not only ultrapure water but also so-called functional water in which nitrogen gas, hydrogen gas, ozone gas or the like is dissolved in ultrapure water to enhance the cleaning effect may be used.

一般的に、機能水の製造方法としては、脱気した水に半透膜を用いたガス溶解モジュールを介してガスを溶解する方法が知られている。機能水に対しては、溶存ガス濃度を所定濃度に高い精度で制御することが求められている。また、超純水製造装置(サブシステム)内にガス溶解モジュールを設け、溶存窒素を制御した超純水を常時供給することもある。こうした超純水や機能水への要求に対し、例えば、ガス溶解モジュールを用いた機能水の製造方法において、凝縮水を押し出すガスの圧力と、押し出す凝縮水の量とを所定の関係に保つことで、溶解ガス濃度が安定した機能水を常時供給できる発明が提案されている(例えば、特許文献1)。そして、製造した機能水の溶存ガス濃度は、各種検出器により測定されるが、溶存窒素濃度に関しては熱伝導度検出端子(TCD)を備えた熱伝導度式検出器を用いて測定するのが一般的である。   In general, as a method for producing functional water, a method is known in which a gas is dissolved in degassed water through a gas dissolution module using a semipermeable membrane. For functional water, it is required to control the dissolved gas concentration to a predetermined concentration with high accuracy. Moreover, a gas dissolution module may be provided in the ultrapure water production apparatus (subsystem) to always supply ultrapure water in which dissolved nitrogen is controlled. In response to such demands for ultrapure water and functional water, for example, in a method for producing functional water using a gas dissolution module, the pressure of the gas that extrudes condensed water and the amount of condensed water that is extruded are maintained in a predetermined relationship. Thus, an invention that can always supply functional water having a stable dissolved gas concentration has been proposed (for example, Patent Document 1). The dissolved gas concentration of the produced functional water is measured by various detectors, and the dissolved nitrogen concentration is measured by using a thermal conductivity type detector equipped with a thermal conductivity detection terminal (TCD). It is common.

特開2007−185559号公報JP 2007-185559 A

しかしながら、超純水及び機能水には溶存ガス濃度のさらなる精度向上の要求がある。かかる要求を満たすには、超純水の溶存窒素濃度及び機能水の溶存ガス濃度を精度高く分析する必要がある。熱伝導度式検出器は、被測定水である超純水や機能水の溶存窒素濃度を正確に測定できない場合があった。
そこで本発明は、被測定水の溶存窒素濃度を簡便かつ正確に測定できる溶存窒素濃度の測定方法及び溶存窒素濃度の測定装置を目的とする。
However, ultrapure water and functional water are required to further improve the accuracy of dissolved gas concentration. In order to satisfy this requirement, it is necessary to analyze the dissolved nitrogen concentration of ultrapure water and the dissolved gas concentration of functional water with high accuracy. In some cases, the thermal conductivity detector cannot accurately measure the dissolved nitrogen concentration of ultrapure water or functional water that is the water to be measured.
Then, this invention aims at the measuring method of the dissolved nitrogen concentration which can measure the dissolved nitrogen concentration of to-be-measured water simply and correctly, and the measuring apparatus of dissolved nitrogen concentration.

一般的な超純水又は機能水の製造ラインでは、各ユースポイントでの仕様に応じて、複数の機能水を供給する構成とすることがある。かかる製造ラインで製造した超純水を水素水とし、一部のユースポイントに供給する場合には、そのユースポイントで消費できなかった余剰の水素水を超純水の製造ラインに戻す設備を設けていることがある。このような超純水の製造ラインにおいては、脱気装置を設けていたとしても、溶存水素の除去は困難である。このため、超純水又は機能水に溶存水素が含まれる可能性が高くなる。   A general ultrapure water or functional water production line may be configured to supply a plurality of functional water according to the specifications at each use point. When ultrapure water produced in such a production line is used as hydrogen water and is supplied to some use points, facilities are provided to return excess hydrogen water that could not be consumed at those use points to the ultrapure water production line. There may be. In such an ultrapure water production line, even if a degassing device is provided, it is difficult to remove dissolved hydrogen. For this reason, possibility that dissolved hydrogen will be contained in ultrapure water or functional water becomes high.

超純水は、その製造工程において、有機物を酸化分解して除去する目的で紫外線酸化装置を設置することが多い。かかる紫外線酸化装置での処理に際し、発生した水素が超純水中に溶解し、ユースポイントに供給する超純水、あるいは、機能水に溶存水素が残留するおそれがあることも懸念される。   Ultrapure water is often provided with an ultraviolet oxidizer for the purpose of oxidizing and removing organic substances in the production process. In the treatment with such an ultraviolet oxidizer, there is a concern that the generated hydrogen may be dissolved in the ultrapure water and the dissolved hydrogen may remain in the ultrapure water or functional water supplied to the use point.

ここで、被測定水に溶存水素が存在すると、熱伝導度式検出器のTCDは、窒素ガスの熱伝導度に加え水素ガスの熱伝導度を測定し、窒素ガスの熱伝導度と水素ガスの熱伝導度とを加算した値を信号として出力する。水素の熱伝導度は、窒素の熱伝導度と比較して極めて大きく、水素の熱伝導度が0.1815W・m−1・K−1であるのに対し、窒素の熱伝導度は0.02598W・m−1・K−1である。このような熱伝導度の違いにより、被測定水に溶存水素が存在する系での溶存窒素濃度の測定値は、実際の溶存窒素濃度に比べ極めて高い値となる。即ち、被測定水中の溶存水素の存在は、溶存窒素濃度の測定における大きな誤差要因となる。 Here, when dissolved hydrogen exists in the water to be measured, the TCD of the thermal conductivity detector measures the thermal conductivity of the hydrogen gas in addition to the thermal conductivity of the nitrogen gas, and the thermal conductivity of the nitrogen gas and the hydrogen gas A value obtained by adding the thermal conductivity of is output as a signal. The thermal conductivity of hydrogen is extremely large compared to the thermal conductivity of nitrogen. The thermal conductivity of hydrogen is 0.1815 W · m −1 · K −1 , whereas the thermal conductivity of nitrogen is 0. 02598 W · m −1 · K −1 . Due to such a difference in thermal conductivity, the measured value of the dissolved nitrogen concentration in a system in which dissolved hydrogen is present in the water to be measured is extremely higher than the actual dissolved nitrogen concentration. That is, the presence of dissolved hydrogen in the water to be measured becomes a large error factor in the measurement of the dissolved nitrogen concentration.

本発明者らは、上述のような製造ラインで製造される超純水や窒素水においては、被測定水中の溶存水素をできる限り取り除くことで、熱伝導度式検出器により溶存窒素濃度をより高い精度で測定できるとの知見を得た。そして、簡便な方法で被測定水中の溶存水素を除去し、正確な溶存窒素濃度を測定できる方法を見出し、以下の発明に至った。   In the ultrapure water and nitrogen water produced in the production line as described above, the present inventors remove the dissolved hydrogen in the water to be measured as much as possible, thereby further reducing the dissolved nitrogen concentration with a thermal conductivity detector. The knowledge that it can measure with high accuracy was acquired. And the dissolved hydrogen in to-be-measured water was removed by the simple method, the method which can measure exact dissolved nitrogen concentration was discovered, and it came to the following invention.

即ち、本発明の溶存窒素濃度の測定方法は、被測定水の溶存水素を除去する溶存水素除去工程と、前記溶存水素除去工程の後、熱伝導度式検出器により被測定水の溶存窒素濃度を測定する測定工程とを有することを特徴とする。前記溶存水素除去工程は、白金族触媒に被測定水を接触させて被測定水の溶存水素を除去することが好ましく、被測定水に酸素を添加する酸素添加工程を有していてもよい。   That is, the method for measuring the dissolved nitrogen concentration of the present invention includes a dissolved hydrogen removing step for removing dissolved hydrogen in the water to be measured, and a dissolved nitrogen concentration in the water to be measured by a thermal conductivity detector after the dissolved hydrogen removing step. And a measuring step for measuring. The dissolved hydrogen removal step preferably removes dissolved hydrogen from the water to be measured by bringing the water to be measured into contact with the platinum group catalyst, and may include an oxygen addition step of adding oxygen to the water to be measured.

本発明の溶存窒素濃度の測定装置は、被測定水の溶存水素を除去する溶存水素除去手段と、熱伝導度式検出器と、前記溶存水素除去手段で処理した水を前記熱伝導度式検出器に供給する手段とを有することを特徴とする。   The apparatus for measuring dissolved nitrogen concentration of the present invention comprises a dissolved hydrogen removing means for removing dissolved hydrogen in water to be measured, a thermal conductivity detector, and water detected by the dissolved hydrogen removing means for detecting the thermal conductivity. Means for supplying to the vessel.

本発明の溶存窒素濃度の測定方法及び溶存窒素濃度の測定装置によれば、被測定水の溶存窒素濃度を簡便かつ正確に測定できる。   According to the method for measuring dissolved nitrogen concentration and the apparatus for measuring dissolved nitrogen concentration of the present invention, the dissolved nitrogen concentration of water to be measured can be measured easily and accurately.

本発明の溶存窒素濃度の測定装置の一例を示す模式図である。It is a schematic diagram which shows an example of the measuring apparatus of the dissolved nitrogen concentration of this invention. 本発明に用いる熱伝導度式検出器の測定原理を説明する模式図である。It is a schematic diagram explaining the measurement principle of the thermal conductivity type detector used for this invention. 実施例及び比較例に用いた実験装置を示す模式図である。It is a schematic diagram which shows the experimental apparatus used for the Example and the comparative example.

(溶存窒素濃度の測定装置)
本発明について、図1、2を用いて説明するが、本発明はこれに限定されるものではない。図1は、溶存窒素濃度の測定装置(以下、溶存窒素濃度測定装置という)10の模式図である。図2は、熱伝導度式検出器12の測定原理を説明する模式図である。
(Measurement device for dissolved nitrogen concentration)
The present invention will be described with reference to FIGS. 1 and 2, but the present invention is not limited to this. FIG. 1 is a schematic diagram of a dissolved nitrogen concentration measuring device (hereinafter referred to as a dissolved nitrogen concentration measuring device) 10. FIG. 2 is a schematic diagram for explaining the measurement principle of the thermal conductivity detector 12.

図1のとおり、溶存窒素濃度測定装置10は、溶存水素除去手段11と、熱伝導度式検出器12と、脱水素水供給管14とを有する。被測定水流通管20には、被測定水流通管20から被測定水をサンプルとして抜き出す被測定水供給管22が接続されている。被測定水供給管22は、バルブ24を介して溶存水素除去手段11と接続され、溶存水素除去手段11には脱水素水供給管14が接続されている。脱水素水供給管14は、溶存水素除去手段11で溶存水素が除去された被測定水(以下、脱水素水ということがある)をサンプル室102(図2)に導入するように、熱伝導度式検出器12と接続されている。熱伝導度式検出器12は、排水管16により図示されない排水口と接続されている。   As shown in FIG. 1, the dissolved nitrogen concentration measuring device 10 includes a dissolved hydrogen removing unit 11, a thermal conductivity detector 12, and a dehydrogenated water supply pipe 14. A measured water supply pipe 22 is connected to the measured water circulation pipe 20 for extracting the measured water from the measured water circulation pipe 20 as a sample. The measured water supply pipe 22 is connected to the dissolved hydrogen removing means 11 via the valve 24, and the dehydrogenated water supply pipe 14 is connected to the dissolved hydrogen removing means 11. The dehydrogenated water supply pipe 14 conducts heat so that the measured water from which dissolved hydrogen has been removed by the dissolved hydrogen removing means 11 (hereinafter also referred to as dehydrogenated water) is introduced into the sample chamber 102 (FIG. 2). A degree detector 12 is connected. The thermal conductivity detector 12 is connected to a drain port (not shown) by a drain pipe 16.

「前記溶存水素除去手段で処理した水を前記熱伝導度式検出器に供給する手段」は、脱水素水供給管14である。   “Means for supplying water treated by the dissolved hydrogen removing means to the thermal conductivity detector” is the dehydrogenated water supply pipe 14.

溶存水素除去手段11は、被測定水中の溶存水素を除去できる装置であれば特に限定されることはない。溶存水素除去手段11は、白金族触媒を充填した充填塔が好ましい。白金族触媒に被測定水を接触させることで、容易に溶存水素を除去できるためである。   The dissolved hydrogen removing means 11 is not particularly limited as long as it is an apparatus that can remove dissolved hydrogen in the water to be measured. The dissolved hydrogen removing means 11 is preferably a packed tower packed with a platinum group catalyst. This is because dissolved hydrogen can be easily removed by bringing the water to be measured into contact with the platinum group catalyst.

溶存水素除去手段11として、白金族触媒を充填した充填塔を用いる場合、充填する白金族触媒の形状は特に限定されず、例えば、粉末状、粒状、ペレット状等の形状を挙げることができる。
白金族触媒としては公知の技術を利用できる。例えば、パラジウム(Pd)、白金(Pt)等の白金族をイオン交換樹脂やアルミナ、活性炭、ゼオライト等の担体に担持させたものを使用することができる。中でも金属Pdを担体に担持した触媒を用いることが好ましい。担体としては、アニオン交換樹脂を用いることが好ましい。アニオン交換樹脂を担体とした触媒は、超純水の製造ラインへ適用できる程度に不純物の混入を抑えたものが得られるため、熱伝導度式検出器12を汚染することなく、長期間安定した測定ができるためである。
When a packed tower packed with a platinum group catalyst is used as the dissolved hydrogen removal means 11, the shape of the platinum group catalyst to be packed is not particularly limited, and examples thereof include powders, granules, and pellets.
A known technique can be used as the platinum group catalyst. For example, a material in which a platinum group such as palladium (Pd) or platinum (Pt) is supported on a carrier such as an ion exchange resin, alumina, activated carbon, or zeolite can be used. Among these, it is preferable to use a catalyst having metal Pd supported on a carrier. As the carrier, an anion exchange resin is preferably used. The catalyst using the anion exchange resin as a carrier is stable for a long period of time without contaminating the thermal conductivity detector 12 because it can be obtained by suppressing the mixing of impurities to the extent that it can be applied to the production line of ultrapure water. This is because it can be measured.

熱伝導度式検出器12は、TCDを用いた熱伝導度式検出器である。熱伝導度式検出器は既存のものを用いることができ、例えば、株式会社ハックウルトラ製の溶存窒素計(511/E T1C0P00J)等が挙げられる。   The thermal conductivity detector 12 is a thermal conductivity detector using TCD. As the thermal conductivity type detector, an existing one can be used, and examples thereof include a dissolved nitrogen meter (511 / E T1C0P00J) manufactured by Hack Ultra Co., Ltd.

熱伝導度式検出器12の構成の一例につき、図2を用いて説明する。図2のとおり、熱伝導度式検出器12は、サンプル室102と、測定室110と、パージガス供給源120と、増幅機130と、制御機132とで概略構成されている。サンプル室102には、気体のみを通す隔膜104を介して隣接する測定室110が設けられている。測定室110には、パージガス供給ライン122と、ガス排出ライン114が接続されている。パージガス供給ライン122は、バルブ124を介してパージガス供給源120と接続されている。ガス排出ライン114は、図示されない排ガス口と接続されている。測定室110には、TCD112が設けられ、TCD112は増幅機130と接続されている。増幅機130は制御機132と接続され、制御機132はバルブ124と接続されている。   An example of the configuration of the thermal conductivity detector 12 will be described with reference to FIG. As shown in FIG. 2, the thermal conductivity detector 12 is roughly configured by a sample chamber 102, a measurement chamber 110, a purge gas supply source 120, an amplifier 130, and a controller 132. In the sample chamber 102, an adjacent measurement chamber 110 is provided via a diaphragm 104 through which only gas passes. A purge gas supply line 122 and a gas discharge line 114 are connected to the measurement chamber 110. The purge gas supply line 122 is connected to the purge gas supply source 120 via a valve 124. The gas discharge line 114 is connected to an exhaust gas port (not shown). A TCD 112 is provided in the measurement chamber 110, and the TCD 112 is connected to the amplifier 130. The amplifier 130 is connected to the controller 132, and the controller 132 is connected to the valve 124.

(溶存窒素濃度の測定方法)
本発明の溶存窒素濃度の測定方法は、被測定水の溶存水素を除去する溶存水素除去工程と、前記溶存水素除去工程の後、熱伝導度式検出器により被測定水の溶存窒素濃度を測定する測定工程とを有するものである。
(Measurement method of dissolved nitrogen concentration)
The method for measuring the dissolved nitrogen concentration of the present invention includes a dissolved hydrogen removing step for removing dissolved hydrogen in the water to be measured, and a measured conductivity of the measured water by a thermal conductivity detector after the dissolved hydrogen removing step. Measuring step.

溶存窒素濃度の測定方法について、溶存水素除去手段11が白金族触媒を充填した充填塔である場合を例にして説明する。まず、バルブ24を開として、被測定水流通管20内の被測定水を被測定水供給管22から溶存水素除去手段11に供給する。溶存水素除去手段11に供給された被測定水は、充填塔内の白金族触媒と接触しながら流通する。この間、被測定水は、溶存水素が存在する場合、以下の2つの反応により溶存水素が除去される。第一に、被測定水中の溶存水素は、被測定水の溶存酸素等と下記(1)式の反応により水が生成され(触媒反応)、除去される。第二に、被測定水中の溶存水素は、白金族触媒に吸着され(吸着反応)、除去される。吸着反応では、被測定水中の溶存水素濃度が化学量論的に被測定水中の溶存酸素濃度より大きい場合であっても、Pd、Pt等の白金族の金属が溶存水素を吸着できるので、一定期間、被測定水中の溶存水素を除去することができる。   The method for measuring the dissolved nitrogen concentration will be described taking as an example the case where the dissolved hydrogen removing means 11 is a packed tower packed with a platinum group catalyst. First, the valve 24 is opened, and the measured water in the measured water circulation pipe 20 is supplied from the measured water supply pipe 22 to the dissolved hydrogen removing means 11. The water to be measured supplied to the dissolved hydrogen removing means 11 circulates in contact with the platinum group catalyst in the packed tower. During this time, when dissolved hydrogen exists in the water to be measured, the dissolved hydrogen is removed by the following two reactions. First, the dissolved hydrogen in the water to be measured is removed by the reaction of dissolved oxygen or the like of the water to be measured with the reaction of the following formula (1) (catalytic reaction). Secondly, dissolved hydrogen in the water to be measured is adsorbed on the platinum group catalyst (adsorption reaction) and removed. In the adsorption reaction, even if the dissolved hydrogen concentration in the water to be measured is stoichiometrically larger than the dissolved oxygen concentration in the water to be measured, platinum group metals such as Pd and Pt can adsorb the dissolved hydrogen. During the period, dissolved hydrogen in the water to be measured can be removed.

2H+O→2HO ・・・(1) 2H 2 + O 2 → 2H 2 O (1)

このようにして、被測定水は、溶存水素が含まれる場合、溶存水素が除去され、脱水素水となって脱水素水供給管14から流出する(溶存水素除去工程)。   In this way, when dissolved hydrogen is contained in the water to be measured, the dissolved hydrogen is removed and becomes dehydrogenated water that flows out from the dehydrogenated water supply pipe 14 (dissolved hydrogen removing step).

脱水素水供給管14に流出した脱水素水は、熱伝導度式検出器12に供給され、熱伝導度式検出器12により脱水素水の溶存窒素濃度が測定される(測定工程)。   The dehydrogenated water that has flowed into the dehydrogenated water supply pipe 14 is supplied to the thermal conductivity detector 12, and the dissolved nitrogen concentration of the dehydrogenated water is measured by the thermal conductivity detector 12 (measuring step).

熱伝導度式検出器12による溶存窒素濃度の測定方法について、図2を用いて説明する。まず、バルブ124を開とし、パージガス供給源120のパージガス(二酸化炭素ガス、アルゴンガス等)をパージガス供給ライン122から測定室110に供給し、測定室110内をパージガスで充満させる。この状態において、TCD112はパージガスの熱伝導度を測定し、その測定値を信号として増幅機130に出力する。この際、測定室110内は特定のパージガスで充満されているため、TCD112から増幅機130に出力される信号は、パージガスの熱伝導度で安定している。TCD112から出力された信号は、増幅機130を経由し制御機132に送られる。制御機132では、TCD112から出力される信号が安定、即ち、測定室110内のパージが完了すると、バルブ124を閉とし、測定室110へのパージガスの供給を停止する。   A method for measuring the dissolved nitrogen concentration by the thermal conductivity detector 12 will be described with reference to FIG. First, the valve 124 is opened, purge gas (carbon dioxide gas, argon gas, etc.) of the purge gas supply source 120 is supplied from the purge gas supply line 122 to the measurement chamber 110, and the measurement chamber 110 is filled with the purge gas. In this state, the TCD 112 measures the thermal conductivity of the purge gas and outputs the measured value to the amplifier 130 as a signal. At this time, since the inside of the measurement chamber 110 is filled with a specific purge gas, the signal output from the TCD 112 to the amplifier 130 is stable with the thermal conductivity of the purge gas. The signal output from the TCD 112 is sent to the controller 132 via the amplifier 130. In the controller 132, when the signal output from the TCD 112 is stable, that is, when the purge in the measurement chamber 110 is completed, the valve 124 is closed and the supply of the purge gas to the measurement chamber 110 is stopped.

測定室110内がパージガスで充満されている状態で、サンプル室102に脱水素水が供給されると、脱水素水の溶存窒素は隔膜112を透過して測定室110に移行する。サンプル室102から窒素ガスが測定室110に移行してくると、測定室110内のパージガスは、移行してきた窒素ガスによりガス排出ライン114に排出される。そして、TCD112は、測定室110内の窒素ガス濃度に応じた熱伝導度を測定し、その測定値を信号として増幅機130を介して制御機132に出力する。測定室110内のパージガスが窒素ガスに置換される速さは、サンプル室102の溶存ガスの窒素分圧に比例する。このため、制御機132は、TCD112が出力する信号の変化速度から、サンプル室102における窒素分圧を求め、求めた窒素分圧を基に脱水素水の溶存窒素濃度、即ち、被測定水の溶存窒素濃度が求められる。   When dehydrogenated water is supplied to the sample chamber 102 in a state where the measurement chamber 110 is filled with the purge gas, dissolved nitrogen in the dehydrogenated water passes through the diaphragm 112 and moves to the measurement chamber 110. When nitrogen gas moves from the sample chamber 102 to the measurement chamber 110, the purge gas in the measurement chamber 110 is discharged to the gas discharge line 114 by the transferred nitrogen gas. The TCD 112 measures the thermal conductivity according to the nitrogen gas concentration in the measurement chamber 110, and outputs the measured value as a signal to the controller 132 via the amplifier 130. The speed at which the purge gas in the measurement chamber 110 is replaced with nitrogen gas is proportional to the nitrogen partial pressure of the dissolved gas in the sample chamber 102. For this reason, the controller 132 obtains the nitrogen partial pressure in the sample chamber 102 from the change rate of the signal output from the TCD 112, and based on the obtained nitrogen partial pressure, the dissolved nitrogen concentration in the dehydrogenated water, that is, the water to be measured. The dissolved nitrogen concentration is required.

被測定水は、溶存窒素濃度の測定対象となる全ての水であり、例えば、超純水等の純水又は前記純水に窒素ガスを溶解した窒素水、純水に水素ガスを溶解した水素水、純水にオゾンを溶解したオゾン水等の機能水を挙げることができる。中でも、溶存窒素濃度を高精度に管理することが要求される超純水や窒素水に、本発明を好適に用いることができる。加えて、本発明における溶存水素除去工程では、被測定水中の溶存窒素濃度は変化しない。このため、被測定水は、水素水のような溶存水素を常時含有する水のみならず、溶存水素が不定期に混入する可能性がある超純水や窒素水、溶存水素を含有しない水であってもよい。   The water to be measured is all water to be measured for dissolved nitrogen concentration, for example, pure water such as ultrapure water or nitrogen water in which nitrogen gas is dissolved in the pure water, hydrogen in which hydrogen gas is dissolved in pure water Examples thereof include functional water such as ozone water in which ozone is dissolved in water or pure water. Especially, this invention can be used suitably for the ultrapure water and nitrogen water which are required to manage dissolved nitrogen concentration with high precision. In addition, in the dissolved hydrogen removal step in the present invention, the dissolved nitrogen concentration in the water to be measured does not change. Therefore, the water to be measured is not only water that always contains dissolved hydrogen, such as hydrogen water, but also water that does not contain dissolved hydrogen, such as ultrapure water, nitrogen water, or dissolved hydrogen that may be mixed irregularly. There may be.

溶存水素除去工程に、白金族触媒を充填した充填塔を溶存水素除去手段として用いた場合には、充填塔における被測定水の滞留時間は、触媒の種類、担持量等の触媒条件、被測定水中の溶存水素濃度及び溶存酸素濃度を勘案して決定することができる。また、溶存水素除去工程における被測定水の温度は特に限定されないが、10〜50℃の範囲で決定することが好ましい。上記温度範囲内であれば、効率的に触媒反応を行うことができるためである。なお、アニオン交換樹脂を担体として用いる場合には、アニオン交換樹脂の耐熱性の観点から、60℃以下とすることが好ましい。   When a packed tower packed with a platinum group catalyst is used as a means for removing dissolved hydrogen in the dissolved hydrogen removal step, the residence time of the water to be measured in the packed tower is determined by the catalyst conditions such as the type of catalyst, the amount of catalyst, and the measured value. It can be determined in consideration of dissolved hydrogen concentration and dissolved oxygen concentration in water. Moreover, the temperature of the water to be measured in the dissolved hydrogen removal step is not particularly limited, but is preferably determined in the range of 10 to 50 ° C. This is because the catalytic reaction can be performed efficiently within the above temperature range. In addition, when using an anion exchange resin as a support | carrier, it is preferable to set it as 60 degrees C or less from a heat resistant viewpoint of an anion exchange resin.

溶存水素除去工程を経て得られる脱水素水の溶存水素濃度は、特に限定されないが、例えば、脱水素水中の溶存水素濃度は2質量ppb以下が好ましく、1質量ppb以下がさらに好ましい。   The concentration of dissolved hydrogen in the dehydrogenated water obtained through the dissolved hydrogen removal step is not particularly limited. For example, the dissolved hydrogen concentration in the dehydrogenated water is preferably 2 mass ppb or less, and more preferably 1 mass ppb or less.

上述したように、本発明の溶存水素除去工程を設けることで、被測定水から溶存水素を除去した後、測定工程で溶存窒素濃度を測定できる。このため、被測定水の溶存窒素濃度を熱伝導度式検出器により、簡便かつ高い精度で測定することができる。加えて、溶存水素除去工程は、白金族触媒に被測定水を接触させて溶存水素を除去することで、煩雑な操作を伴わずに、効率的に被測定水の溶存水素を除去することができる。   As described above, by providing the dissolved hydrogen removing step of the present invention, the dissolved nitrogen concentration can be measured in the measuring step after removing the dissolved hydrogen from the water to be measured. For this reason, the dissolved nitrogen concentration of the water to be measured can be measured easily and with high accuracy by the thermal conductivity detector. In addition, the dissolved hydrogen removal step can remove the dissolved hydrogen efficiently without bringing about complicated operations by bringing the measured water into contact with the platinum group catalyst to remove the dissolved hydrogen. it can.

(その他の実施形態)
本発明の溶存窒素濃度の測定方法は、上述の実施形態に限られない。
溶存窒素濃度測定装置10に溶存水素除去手段11として白金族触媒を充填した充填塔を用いる溶存窒素濃度の測定方法には、前記充填塔に供給する被測定水に、酸素を添加する酸素添加工程を設けてもよい。酸素添加工程としては、酸素ボンベから任意の量の酸素を被測定水供給管22に添加する方法が挙げられる。酸素添加工程を設け、被測定水の溶存水素濃度に対して過剰の酸素を被測定水に添加することで、被測定水の溶存水素濃度が高い場合であっても、白金族触媒で溶存水素を継続して除去することができる。加えて、酸素は水素に比べて、熱伝導度式検出器12での溶存窒素濃度の測定値に与える影響が極めて小さいため、除去する溶存水素に対して過剰に添加しても溶存窒素濃度の測定値は高い精度を保つことができる。また、酸素添加工程を設ける場合、被測定水に酸素を添加する頻度は特に限定されず、例えば、溶存窒素濃度を測定している間、常時添加してもよいし、間欠的に添加してもよい。被測定水が溶存酸素より過剰な溶存水素を含有する場合でも、上述した吸着反応により、一定期間、溶存水素の除去ができる。そして、白金族触媒への水素の吸着量が飽和し溶存水素除去手段11から溶存水素が漏洩する前に、被測定水に酸素を適宜添加することで、白金族触媒を下記(1)式の触媒反応により再生できる。このため、間欠的に酸素を添加することで、白金族触媒の吸着反応と触媒反応とを繰り返し、長期にわたり溶存水素を除去できる。
(Other embodiments)
The method for measuring the dissolved nitrogen concentration of the present invention is not limited to the above-described embodiment.
In the method for measuring dissolved nitrogen concentration using a packed tower packed with a platinum group catalyst as the dissolved hydrogen removing means 11 in the dissolved nitrogen concentration measuring apparatus 10, an oxygen addition step of adding oxygen to the water to be measured supplied to the packed tower. May be provided. Examples of the oxygen addition step include a method of adding an arbitrary amount of oxygen from the oxygen cylinder to the measured water supply pipe 22. Even if the dissolved hydrogen concentration of the water to be measured is high by adding an excess oxygen to the water to be measured with respect to the dissolved hydrogen concentration of the water to be measured, the platinum group catalyst can dissolve the dissolved hydrogen. Can be removed continuously. In addition, since oxygen has an extremely small influence on the measured value of the dissolved nitrogen concentration at the thermal conductivity detector 12 compared with hydrogen, even if it is excessively added to the dissolved hydrogen to be removed, the dissolved nitrogen concentration The measured value can maintain high accuracy. Moreover, when providing an oxygen addition process, the frequency which adds oxygen to to-be-measured water is not specifically limited, For example, while measuring the dissolved nitrogen concentration, you may always add or add intermittently. Also good. Even when the water to be measured contains dissolved hydrogen in excess of dissolved oxygen, dissolved hydrogen can be removed for a certain period by the above-described adsorption reaction. Then, before the hydrogen adsorption amount to the platinum group catalyst is saturated and dissolved hydrogen leaks from the dissolved hydrogen removing means 11, oxygen is appropriately added to the water to be measured, so that the platinum group catalyst is expressed by the following formula (1). It can be regenerated by catalytic reaction. For this reason, by intermittently adding oxygen, the adsorption reaction and catalytic reaction of the platinum group catalyst can be repeated, and dissolved hydrogen can be removed over a long period of time.

2H+O→2HO ・・・(1) 2H 2 + O 2 → 2H 2 O (1)

上述の実施形態では、被測定水流通管20から被測定水供給管22により被測定水を溶存水素除去手段11に供給しているが、本発明はこれに限られず、貯水タンク等に被測定水供給管22が接続されていてもよい。   In the above-described embodiment, the measured water is supplied from the measured water circulation pipe 20 to the dissolved hydrogen removing means 11 through the measured water supply pipe 22, but the present invention is not limited to this, and the measured water is stored in a water storage tank or the like. A water supply pipe 22 may be connected.

以下、本発明について実施例を挙げて具体的に説明するが、実施例に限定されるもので   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

(実験装置)
図3は、実施例及び比較例の実験装置200を示す模式図である。実験装置200は、一次純水供給源202と、サブシステム240と、溶存窒素濃度測定装置10と、第一のガス溶解モジュール284と、第二のガス溶解モジュール294とを有するものである。
(Experimental device)
FIG. 3 is a schematic diagram showing an experimental apparatus 200 of the example and the comparative example. The experimental apparatus 200 includes a primary pure water supply source 202, a subsystem 240, a dissolved nitrogen concentration measuring apparatus 10, a first gas dissolution module 284, and a second gas dissolution module 294.

サブシステム240は、一次純水の純度をさらに高めて、超純水を製造するシステムである。サブシステム240は、一次純水槽242、ポンプ244、熱交換器246、第一の脱気装置248、紫外線酸化装置250、第一の非再生型イオン交換装置(以下、CP)252、ファイナルフィルタ(UF膜)装置254が超純水を循環するように配置され、構成されている。   The subsystem 240 is a system for producing ultrapure water by further increasing the purity of primary pure water. The subsystem 240 includes a primary pure water tank 242, a pump 244, a heat exchanger 246, a first degassing device 248, an ultraviolet oxidation device 250, a first non-regenerative ion exchange device (hereinafter referred to as CP) 252, a final filter ( A (UF membrane) device 254 is arranged and configured to circulate ultrapure water.

一次純水槽242は、一次純水供給源202と接続されている。紫外線酸化装置250の二次側には、分岐配管251が設けられ、分岐配管251は第二のCP260と接続されている。第二のCP260は第二の脱気装置262と接続され、第二の脱気装置262は、第一のガス溶解モジュール284及び第二のガス溶解モジュール294と接続されている。水素ボンベ280は、第一のマスフローコントローラー282を介して第一のガス溶解モジュール284と接続されている。酸素ボンベ290は第二のマスフローコントローラー292を介して第二のガス溶解モジュール294と接続されている。第一のガス溶解モジュール284及び第二のガス溶解モジュール294は、精密濾過(MF)膜装置266と接続されている。MF膜装置266は被測定水流通管20により図示されない排水口と接続され、被測定水流通管20には、バルブ24を備えた被測定水供給管22が接続されている。被測定水供給管22には、溶存窒素濃度測定装置10が接続されている。溶存窒素濃度測定装置10は、被測定水供給管22から供給された被測定水が溶存水素除去手段11と熱伝導度式検出器12とを順に流通するように脱水素水供給管14により接続されている。熱伝導度式検出器12は排水管16と接続されている。   The primary pure water tank 242 is connected to the primary pure water supply source 202. A branch pipe 251 is provided on the secondary side of the ultraviolet oxidation apparatus 250, and the branch pipe 251 is connected to the second CP 260. The second CP 260 is connected to the second degassing device 262, and the second degassing device 262 is connected to the first gas dissolving module 284 and the second gas dissolving module 294. The hydrogen cylinder 280 is connected to the first gas dissolution module 284 via the first mass flow controller 282. The oxygen cylinder 290 is connected to the second gas dissolution module 294 via the second mass flow controller 292. The first gas dissolution module 284 and the second gas dissolution module 294 are connected to a microfiltration (MF) membrane device 266. The MF membrane device 266 is connected to a drain port (not shown) by the measured water circulation pipe 20, and the measured water supply pipe 22 including the valve 24 is connected to the measured water circulation pipe 20. A dissolved nitrogen concentration measuring device 10 is connected to the measured water supply pipe 22. The dissolved nitrogen concentration measuring apparatus 10 is connected by a dehydrogenated water supply pipe 14 so that the measured water supplied from the measured water supply pipe 22 flows through the dissolved hydrogen removing means 11 and the thermal conductivity detector 12 in order. Has been. The thermal conductivity detector 12 is connected to a drain pipe 16.

一次純水供給源202は、イオン交換装置、MF膜装置、逆浸透膜装置等を組み合わせた一次純水システムである。   The primary pure water supply source 202 is a primary pure water system that combines an ion exchange device, an MF membrane device, a reverse osmosis membrane device, and the like.

熱交換器246は、プレート型の熱交換器を用いた。   As the heat exchanger 246, a plate-type heat exchanger was used.

第一の脱気装置248及び第二の脱気装置262には、膜脱気装置を用いた。   Membrane deaerators were used for the first deaerator 248 and the second deaerator 262.

紫外線酸化装置250には、波長185nm付近の紫外線を照射する紫外線酸化装置を用いた。   As the ultraviolet oxidizer 250, an ultraviolet oxidizer that irradiates ultraviolet rays having a wavelength of around 185 nm was used.

第一のCP252及び第二のCP260には、カチオン交換樹脂とアニオン交換樹脂との混床形態としてイオン交換樹脂を充填したものを用いた。   As the first CP 252 and the second CP 260, those filled with an ion exchange resin as a mixed bed form of a cation exchange resin and an anion exchange resin were used.

第一のガス溶解モジュール284及び第二のガス溶解モジュール294には、大日本インキ化学工業株式会社製、SEPAREL EF002Aを用いた。   For the first gas dissolution module 284 and the second gas dissolution module 294, SEPAREL EF002A manufactured by Dainippon Ink & Chemicals, Inc. was used.

第一のマスフローコントローラー282及び第二のマスフローコントローラー292には、株式会社リンテック製、MC−3102E−NC型マスフローコントローラーを用いた。   As the first mass flow controller 282 and the second mass flow controller 292, MC-3102E-NC type mass flow controller manufactured by Lintec Corporation was used.

上述の仕様により、サブシステム240は、MF膜装置266の出口において、比抵抗:18.1MΩ・cm以上、TOC:2ppb以下の超純水が得られるものとした。なお、比抵抗は、比抵抗計(AQ−11、東亜ディケーケー株式会社製)を用いて測定された値である。TOCは、TOC計(A−1000XP、ANATEL社製)を用いて測定された値である。   According to the above specifications, the sub-system 240 can obtain ultrapure water having a specific resistance of 18.1 MΩ · cm or more and a TOC of 2 ppb or less at the outlet of the MF membrane device 266. The specific resistance is a value measured using a specific resistance meter (AQ-11, manufactured by Toa Decay Co., Ltd.). TOC is a value measured using a TOC meter (A-1000XP, manufactured by ANATEL).

(溶存水素除去手段)
溶存水素除去手段11として、カラムにパラジウム(Pd)樹脂300mLを層高60cmで充填したPd充填塔を用いた。Pd樹脂は、水分保有能力がOH形基準において60〜70%、ゲル形のI型強塩基性アニオン交換樹脂にPdを970mg−Pd/L−R(樹脂1L当たりのPd担持量(mg))担持したものを用いた。また、ゲル形アニオン交換樹脂の総交換容量の95%以上をOH形となるように調整した。
(Dissolved hydrogen removal means)
As the dissolved hydrogen removing means 11, a Pd packed tower in which 300 mL of palladium (Pd) resin was packed in a layer height of 60 cm was used. The Pd resin has a moisture retention capacity of 60 to 70% on the basis of OH type, and 970 mg-Pd / LR of Pd in a gel type I strongly basic anion exchange resin (Pd supported amount per 1 L of resin (mg)) The supported one was used. Further, 95% or more of the total exchange capacity of the gel-type anion exchange resin was adjusted to be in the OH form.

(熱伝導度式検出器)
熱伝導度式検出器12には、DO/DN計(model−3621、株式会社ハックウルトラ製)を用いた。
(Thermal conductivity detector)
For the thermal conductivity detector 12, a DO / DN meter (model-3621, manufactured by Hack Ultra Co., Ltd.) was used.

(実験例1)
上述の実験装置200を用い、一次純水供給源202からサブシステム240に供給された一次純水を常法に従って、サブシステム240で超純水とした。超純水の製造を行いながら、分岐配管251から抜き出した水を第二のCP260で処理した後、第二の脱気装置262で脱気し脱気水とした。脱気水の一部を第一のガス溶解モジュール284に供給すると共に、水素ボンベ280から水素ガスを第一のガス溶解モジュール284に供給し、脱気水に水素を溶解した水素溶解水を得た。加えて、脱気水の一部を第二のガス溶解モジュール294に供給すると共に、酸素ボンベ290から酸素ガスをガス溶解モジュール294に供給し、脱気水に酸素を溶解させた酸素溶解水を得た。得られた水素溶解水及び酸素溶解水を混合した後、MF膜装置266から被測定水流通管20に流通させ排水した。被測定水の溶存窒素濃度は、水素溶解を行わない場合、0.9〜1.3質量ppm(定常状態)で安定していた。なお、脱気水に溶解させる水素は、被測定水の溶存水素濃度が経時的に高まる様に、第一のマスフローコントローラー282でガス溶解モジュール284への水素の供給量を調節した。被測定水流通管20から被測定水を任意の時刻に採取し、溶存窒素濃度及び溶存酸素濃度をDO/DN計(model−3621、株式会社ハックウルトラ製)により測定した。その結果を表1に記載する。
なお、被測定水の溶存水素濃度は、MF膜装置266への通水量と第一のマスフローコントローラー282での水素ガス供給量から算出した(以降において同じ)。
(Experimental example 1)
Using the experimental apparatus 200 described above, the primary pure water supplied from the primary pure water supply source 202 to the subsystem 240 was converted into ultrapure water by the subsystem 240 according to a conventional method. While producing ultrapure water, the water extracted from the branch pipe 251 was treated with the second CP 260 and then deaerated with the second deaerator 262 to obtain deaerated water. A part of the degassed water is supplied to the first gas dissolving module 284, and hydrogen gas is supplied from the hydrogen cylinder 280 to the first gas dissolving module 284 to obtain hydrogen dissolved water in which hydrogen is dissolved in the degassed water. It was. In addition, a part of the degassed water is supplied to the second gas dissolving module 294, and oxygen gas is supplied from the oxygen cylinder 290 to the gas dissolving module 294, and oxygen dissolved water in which oxygen is dissolved in the deaerated water is supplied. Obtained. After the obtained hydrogen-dissolved water and oxygen-dissolved water were mixed, the water was circulated from the MF membrane device 266 to the measured water flow pipe 20 and drained. The dissolved nitrogen concentration of the water to be measured was stable at 0.9 to 1.3 mass ppm (steady state) when hydrogen dissolution was not performed. Note that the amount of hydrogen supplied to the gas dissolution module 284 was adjusted by the first mass flow controller 282 so that the dissolved hydrogen concentration of the water to be measured increased with time. The measured water was collected from the measured water flow pipe 20 at an arbitrary time, and the dissolved nitrogen concentration and the dissolved oxygen concentration were measured by a DO / DN meter (model-3621, manufactured by Hack Ultra Co., Ltd.). The results are listed in Table 1.
The dissolved hydrogen concentration of the water to be measured was calculated from the amount of water flow to the MF membrane device 266 and the amount of hydrogen gas supplied by the first mass flow controller 282 (the same applies hereinafter).

(実施例1)
実験例1と同様にして処理した脱気水の一部を第一のガス溶解モジュール284に供給すると共に、水素ボンベ280から水素ガスを第一のガス溶解モジュール284に供給し、脱気水に水素を溶解した水素溶解水を得た。加えて、脱気水の一部を第二のガス溶解モジュール294に供給すると共に、酸素ボンベ290から酸素ガスを第二のガス溶解モジュール294に供給し、脱気水に酸素を溶解させた酸素溶解水を得た。得られた水素溶解水及び酸素溶解水を混合した後MF膜装置266に流通させ、溶存水素濃度11質量ppbの被測定水とした。次いで、得られた被測定水の一部を被測定水供給管22から溶存窒素濃度測定装置10に導入し、Pd充填塔(溶存水素除去手段11)に流速:120L/h(SV=400(/h))で通水して、溶存水素除去工程を行った。ここで、SVとは、Pd樹脂の単位体積(L)に対して1時間に流通させる流量(L/h)で表される。溶存水素除去工程後、熱伝導度式検出器12により、被測定水の溶存窒素濃度を測定した。これらの作業を2回行い、その測定結果を溶存酸素濃度の測定結果と併せて表2に記載する。
Example 1
A part of the degassed water treated in the same manner as in Experimental Example 1 is supplied to the first gas dissolving module 284, and hydrogen gas is supplied from the hydrogen cylinder 280 to the first gas dissolving module 284 to obtain degassed water. Hydrogen-dissolved water in which hydrogen was dissolved was obtained. In addition, a part of the degassed water is supplied to the second gas dissolution module 294, and oxygen gas is supplied from the oxygen cylinder 290 to the second gas dissolution module 294 to dissolve oxygen in the deaerated water. Dissolved water was obtained. The obtained hydrogen-dissolved water and oxygen-dissolved water were mixed and then passed through the MF membrane device 266 to obtain water to be measured having a dissolved hydrogen concentration of 11 mass ppb. Subsequently, a part of the obtained water to be measured is introduced into the dissolved nitrogen concentration measuring device 10 from the measured water supply pipe 22 and the flow rate is 120 L / h (SV = 400 (SV = 400 (SV) to the Pd packed tower (dissolved hydrogen removing means 11)). / H)), and the dissolved hydrogen removal step was performed. Here, SV is represented by a flow rate (L / h) that is circulated in one hour with respect to a unit volume (L) of the Pd resin. After the dissolved hydrogen removal step, the dissolved nitrogen concentration of the water to be measured was measured by the thermal conductivity detector 12. These operations are performed twice, and the measurement results are shown in Table 2 together with the measurement results of the dissolved oxygen concentration.

(実施例2)
脱気水に水素ガスを溶解しなかった以外は、実施例1と同様にして被測定水の溶存窒素濃度及び溶存酸素濃度を測定し、その測定結果を表2に記載する。
(Example 2)
Except that hydrogen gas was not dissolved in the degassed water, the dissolved nitrogen concentration and dissolved oxygen concentration of the water to be measured were measured in the same manner as in Example 1, and the measurement results are shown in Table 2.

(比較例1)
Pd充填塔に被測定水を通水しなかった以外は、実施例1と同様にして被測定水の溶存窒素濃度及び溶存酸素濃度を測定し、その測定結果を表2に記載する。
(Comparative Example 1)
Except that the measured water was not passed through the Pd packed tower, the dissolved nitrogen concentration and dissolved oxygen concentration of the measured water were measured in the same manner as in Example 1, and the measurement results are shown in Table 2.

(参考例1)
Pd充填塔に被測定水を通水しなかった以外は、実施例2と同様にして被測定水の溶存窒素濃度及び溶存酸素濃度を測定し、その測定結果を表2に記載する。
(Reference Example 1)
Except that the measured water was not passed through the Pd packed tower, the dissolved nitrogen concentration and dissolved oxygen concentration of the measured water were measured in the same manner as in Example 2, and the measurement results are shown in Table 2.

Figure 2010216943
Figure 2010216943

Figure 2010216943
Figure 2010216943

表1のとおり、実験例1では被測定水の溶存窒素濃度は0.9〜1.3質量ppmであるにもかかわらず、被測定水中の溶存水素濃度の上昇に伴って、溶存窒素濃度の測定値も上昇していた。このことから、溶存水素が存在する被測定水の溶存窒素濃度を熱伝導度式検出器で測定すると、実際の溶存窒素濃度に対し正に大きな誤差が生じることが判った。   As shown in Table 1, in Experimental Example 1, although the dissolved nitrogen concentration in the measured water was 0.9 to 1.3 ppm by mass, the dissolved nitrogen concentration increased as the dissolved hydrogen concentration in the measured water increased. The measured value also increased. From this, it was found that when the dissolved nitrogen concentration of the water to be measured in which dissolved hydrogen exists was measured with a thermal conductivity detector, a large error occurred with respect to the actual dissolved nitrogen concentration.

表2のとおり、Pd充填塔に通水して溶存水素除去を行った後、熱伝導度式検出器で溶存窒素濃度を測定した実施例1、2は、溶存窒素濃度が1.1〜1.3質量ppmという測定値であった。被測定水の実際の溶存窒素濃度が0.9〜1.3質量ppmであることを考慮すると、実施例1、2は、Pd充填塔に通水する前の溶存水素の有無にかかわらず、被測定水の溶存窒素濃度を正確に測定できていると推測できる。一方、溶存水素濃度が1.1×10質量ppbの被測定水をPd充填塔に通水せずに、熱伝導度式検出器で溶存窒素濃度を測定した比較例1では、溶存窒素濃度の測定値が6.9質量ppm、7.2質量ppmとなっていた。このことから、被測定水をPd充填塔に通水して溶存水素を除去した後、熱伝導度式検出器で溶存窒素濃度を測定することで、正確かつ簡便に溶存窒素濃度を測定できることが判った。   As shown in Table 2, in Examples 1 and 2 in which dissolved nitrogen concentration was measured with a thermal conductivity detector after passing through a Pd packed tower to remove dissolved hydrogen, the dissolved nitrogen concentration was 1.1 to 1 The measured value was 3 ppm by mass. Considering that the actual dissolved nitrogen concentration of the water to be measured is 0.9 to 1.3 ppm by mass, Examples 1 and 2 are independent of the presence or absence of dissolved hydrogen before passing through the Pd packed tower. It can be estimated that the dissolved nitrogen concentration of the water to be measured can be accurately measured. On the other hand, in Comparative Example 1 where the dissolved nitrogen concentration was measured with a thermal conductivity detector without passing water to be measured having a dissolved hydrogen concentration of 1.1 × 10 mass ppb through the Pd packed tower, The measured values were 6.9 mass ppm and 7.2 mass ppm. From this, it is possible to measure the dissolved nitrogen concentration accurately and simply by passing the water to be measured through the Pd packed tower to remove the dissolved hydrogen and then measuring the dissolved nitrogen concentration with a thermal conductivity detector. understood.

10 溶存窒素濃度の測定装置
11 溶存水素除去手段
12 熱伝導度式検出器
14 脱水素水供給管
DESCRIPTION OF SYMBOLS 10 Measurement apparatus of dissolved nitrogen concentration 11 Dissolved hydrogen removal means 12 Thermal conductivity type detector 14 Dehydrogenated water supply pipe

Claims (4)

被測定水の溶存水素を除去する溶存水素除去工程と、前記溶存水素除去工程の後、熱伝導度式検出器により被測定水の溶存窒素濃度を測定する測定工程とを有する、溶存窒素濃度の測定方法。   A dissolved hydrogen removal step for removing dissolved hydrogen in the water to be measured; and a measurement step for measuring the dissolved nitrogen concentration in the water to be measured by a thermal conductivity detector after the dissolved hydrogen removal step. Measuring method. 前記溶存水素除去工程は、白金族触媒に被測定水を接触させて被測定水の溶存水素を除去する、請求項1に記載の溶存窒素濃度の測定方法。   The method for measuring a dissolved nitrogen concentration according to claim 1, wherein the dissolved hydrogen removal step removes dissolved hydrogen from the water to be measured by bringing the water to be measured into contact with a platinum group catalyst. 被測定水に酸素を添加する酸素添加工程を有する、請求項2に記載の溶存窒素濃度の測定方法。   The measuring method of the dissolved nitrogen concentration of Claim 2 which has an oxygen addition process which adds oxygen to to-be-measured water. 被測定水の溶存水素を除去する溶存水素除去手段と、熱伝導度式検出器と、前記溶存水素除去手段で処理した水を前記熱伝導度式検出器に供給する手段とを有する、溶存窒素濃度の測定装置。   Dissolved nitrogen having dissolved hydrogen removing means for removing dissolved hydrogen in water to be measured, a thermal conductivity detector, and means for supplying water treated by the dissolved hydrogen removing means to the thermal conductivity detector Concentration measuring device.
JP2009063010A 2009-03-16 2009-03-16 Method for measuring dissolved nitrogen concentration and measuring device for dissolved nitrogen concentration Active JP5292136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009063010A JP5292136B2 (en) 2009-03-16 2009-03-16 Method for measuring dissolved nitrogen concentration and measuring device for dissolved nitrogen concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063010A JP5292136B2 (en) 2009-03-16 2009-03-16 Method for measuring dissolved nitrogen concentration and measuring device for dissolved nitrogen concentration

Publications (2)

Publication Number Publication Date
JP2010216943A true JP2010216943A (en) 2010-09-30
JP5292136B2 JP5292136B2 (en) 2013-09-18

Family

ID=42975956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063010A Active JP5292136B2 (en) 2009-03-16 2009-03-16 Method for measuring dissolved nitrogen concentration and measuring device for dissolved nitrogen concentration

Country Status (1)

Country Link
JP (1) JP5292136B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512916A (en) * 2012-06-29 2014-01-15 重庆凌卡分析仪器有限公司 High-stability thermal conductance type gas sensor
JP2020123094A (en) * 2019-01-30 2020-08-13 日本電信電話株式会社 Sound generator, data generator, abnormality level calculator, index value calculator, and program
CN112466491A (en) * 2020-11-18 2021-03-09 三门核电有限公司 Online measuring system and method for content of dissolved hydrogen in primary circuit coolant of pressurized water reactor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03278882A (en) * 1989-11-07 1991-12-10 Ebara Infilco Co Ltd Method and apparatus for removing dissolved oxygen in water
JPH04145648A (en) * 1990-10-08 1992-05-19 Fujitsu Ltd Packaging method of semiconductor device of semiconductor chip
JPH08311676A (en) * 1995-05-19 1996-11-26 Shinko Pantec Co Ltd Method for removing dissolved hydrogen of electrolyzer and device therefor
JPH1177023A (en) * 1997-09-02 1999-03-23 Kurita Water Ind Ltd Preparation of hydrogen-containing ultrapure water
JP2000100726A (en) * 1998-09-25 2000-04-07 Nippon Sanso Corp Vapor growth equipment
JP2000131308A (en) * 1998-10-23 2000-05-12 Kurita Water Ind Ltd Apparatus and method for measurement of concentration of dissolved nitrogen in ultrapure water
JP3160827B2 (en) * 1993-09-03 2001-04-25 新日本製鐵株式会社 Method and apparatus for sequential and continuous measurement of carbon, hydrogen and nitrogen concentrations in molten steel
JP3339669B2 (en) * 1996-07-19 2002-10-28 東京瓦斯株式会社 Monitoring method for mixed gas in city gas feedstock using thermal conductivity calorimeter
JP2003202309A (en) * 2002-01-07 2003-07-18 Kurita Water Ind Ltd Water quality-measuring apparatus
JP2011141234A (en) * 2010-01-08 2011-07-21 Japan Organo Co Ltd Apparatus and method for measuring dissolved hydrogen concentration

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03278882A (en) * 1989-11-07 1991-12-10 Ebara Infilco Co Ltd Method and apparatus for removing dissolved oxygen in water
JPH04145648A (en) * 1990-10-08 1992-05-19 Fujitsu Ltd Packaging method of semiconductor device of semiconductor chip
JP3160827B2 (en) * 1993-09-03 2001-04-25 新日本製鐵株式会社 Method and apparatus for sequential and continuous measurement of carbon, hydrogen and nitrogen concentrations in molten steel
JPH08311676A (en) * 1995-05-19 1996-11-26 Shinko Pantec Co Ltd Method for removing dissolved hydrogen of electrolyzer and device therefor
JP3339669B2 (en) * 1996-07-19 2002-10-28 東京瓦斯株式会社 Monitoring method for mixed gas in city gas feedstock using thermal conductivity calorimeter
JPH1177023A (en) * 1997-09-02 1999-03-23 Kurita Water Ind Ltd Preparation of hydrogen-containing ultrapure water
JP2000100726A (en) * 1998-09-25 2000-04-07 Nippon Sanso Corp Vapor growth equipment
JP2000131308A (en) * 1998-10-23 2000-05-12 Kurita Water Ind Ltd Apparatus and method for measurement of concentration of dissolved nitrogen in ultrapure water
JP2003202309A (en) * 2002-01-07 2003-07-18 Kurita Water Ind Ltd Water quality-measuring apparatus
JP2011141234A (en) * 2010-01-08 2011-07-21 Japan Organo Co Ltd Apparatus and method for measuring dissolved hydrogen concentration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512916A (en) * 2012-06-29 2014-01-15 重庆凌卡分析仪器有限公司 High-stability thermal conductance type gas sensor
JP2020123094A (en) * 2019-01-30 2020-08-13 日本電信電話株式会社 Sound generator, data generator, abnormality level calculator, index value calculator, and program
JP7331369B2 (en) 2019-01-30 2023-08-23 日本電信電話株式会社 Abnormal Sound Additional Learning Method, Data Additional Learning Method, Abnormality Degree Calculating Device, Index Value Calculating Device, and Program
US11996120B2 (en) 2019-01-30 2024-05-28 Nippon Telegraph And Telephone Corporation Sound generation apparatus, data generation apparatus, anomaly score calculation apparatus, and program
CN112466491A (en) * 2020-11-18 2021-03-09 三门核电有限公司 Online measuring system and method for content of dissolved hydrogen in primary circuit coolant of pressurized water reactor

Also Published As

Publication number Publication date
JP5292136B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5124946B2 (en) Removal method of hydrogen peroxide in ultrapure water in ultrapure water production equipment
TWI504569B (en) And a method for treating water containing organic matter
JP4756327B2 (en) Nitrogen gas dissolved water production method
JP5484278B2 (en) Hydrogen peroxide concentration measuring device and measuring method
JP4920019B2 (en) Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method
JP2010017633A (en) Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component
JP5647842B2 (en) Pure water or ultrapure water production apparatus and production method
JP2014168743A (en) Pure water manufacturing method
JP5292136B2 (en) Method for measuring dissolved nitrogen concentration and measuring device for dissolved nitrogen concentration
JP5750236B2 (en) Pure water production method and apparatus
JP5871652B2 (en) Method for removing dissolved oxygen in alcohol, alcohol supply device and cleaning liquid supply device
JP6290654B2 (en) Ultrapure water production equipment
JP5499433B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP2008119658A (en) Ultraviolet oxidation apparatus and organic matter removal apparatus
JP6591211B2 (en) Ultrapure water production system and ultrapure water production method
JP2002210494A (en) Device for manufacturing extrapure water
JP2018096879A (en) Deterioration diagnosis method for solid catalyst carrier, deterioration diagnosis device, and measuring device for processing target material
JP5663410B2 (en) Ultrapure water production method and apparatus
JP5484277B2 (en) System and method for measuring total organic carbon content in ultrapure water
JP6029948B2 (en) Pure water production method and pure water production system
JP5512358B2 (en) Pure water production method and apparatus
JP2022002830A (en) Pure water production device and pure water production method
JP2016215150A (en) Ultrapure water production device
JP7171671B2 (en) Ultrapure water production system and ultrapure water production method
JP2004154713A (en) Ultrapure water manufacturing apparatus

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110831

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Ref document number: 5292136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250