JP4438077B2 - Method for preparing gas-dissolved water for cleaning electronic materials - Google Patents

Method for preparing gas-dissolved water for cleaning electronic materials Download PDF

Info

Publication number
JP4438077B2
JP4438077B2 JP25785199A JP25785199A JP4438077B2 JP 4438077 B2 JP4438077 B2 JP 4438077B2 JP 25785199 A JP25785199 A JP 25785199A JP 25785199 A JP25785199 A JP 25785199A JP 4438077 B2 JP4438077 B2 JP 4438077B2
Authority
JP
Japan
Prior art keywords
gas
water
dissolved
pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25785199A
Other languages
Japanese (ja)
Other versions
JP2001079376A (en
Inventor
博志 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP25785199A priority Critical patent/JP4438077B2/en
Publication of JP2001079376A publication Critical patent/JP2001079376A/en
Application granted granted Critical
Publication of JP4438077B2 publication Critical patent/JP4438077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ガス溶解水の調製方法に関する。さらに詳しくは、本発明は、半導体用シリコン基板、液晶用ガラス基板などの電子材料などのウェット洗浄に用いられる所望濃度のガス溶解水を、短時間で効率的に調製することができるガス溶解水の調製方法に関する。
【0002】
【従来の技術】
半導体用シリコン基板、液晶用ガラス基板、フォトマスク用石英基板などの電子材料の表面から、微粒子、有機物、金属などを除去することは、製品の品質、歩留まりを確保する上で極めて重要である。この目的のために、いわゆるRCA洗浄法と呼ばれる過酸化水素をベースとする濃厚薬液による高温でのウェット洗浄が行われ、アンモニアと過酸化水素水の混合溶液(APM)や塩酸と過酸化水素水の混合溶液(HPM)などが用いられていた。これらの洗浄法を採用した場合の多大な薬液コスト、リンス用の超純水コスト、廃液処理コスト、薬品蒸気を排気し新たに清浄空気を調製する空調コストなどを低減し、さらに水の大量使用、薬物の大量廃棄、排ガスの放出などの環境への負荷を低減するために、近年ウェット洗浄工程の見直しが進められている。
本発明者らは、先に特定のガスを超純水に溶解し、必要に応じて微量の薬品を添加して調製する、薬品の使用量が極めて少なく、しかも優れた洗浄効果を発揮する機能性洗浄水を開発した。この機能性洗浄水は、省資源性と環境保全性が高く評価され、高濃度薬液に代わって使用されるようになった。機能性洗浄水に用いられるガスとしては、水素ガス、酸素ガス、オゾンガス、希ガス、炭酸ガスなどがある。これらのガスを溶解した機能性洗浄水は、純水に近い性質を維持しつつ、従来から使用されていた高濃度の薬液洗浄に匹敵する洗浄効果を発揮する。特に、アンモニアを極微量添加した水素ガス溶解水、酸素ガス溶解水、アルゴンなどの希ガス溶解水は、超音波を併用した洗浄工程で使用すると、極めて高い微粒子除去効果を発揮する。
ガス溶解水の製造にあたっては、精度のよいガス流量コントローラーなどを採用することによって、再現性よく、比較的高濃度の特定ガスを溶解した水が得られる。しかし、特定ガスを溶解した機能性洗浄水の使用が広がるにつれて、より短時間で効率的に特定のガスの溶解を行うことができるガス溶解水の調製方法が求められるようになった。
【0003】
【発明が解決しようとする課題】
本発明は、半導体用シリコン基板、液晶用ガラス基板などの電子材料などのウェット洗浄に用いられる所望濃度のガス溶解水を、短時間で効率的に調製することができるガス溶解水の調製方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、ガスを溶解させる水を低い温度又は高い圧力に調整して所望濃度のガスを溶解したのち、得られたガス溶解水を所定温度又は所定圧力に戻すことにより、短時間で効率的にガスを溶解し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)所定温度、所定圧力における所望濃度のガス溶解水を得る方法であって、ガスを溶解させる水をあらかじめ脱気して溶存ガスの飽和度を低下させた後、該所定温度より低い温度に温度調整した水に、該所望濃度に相当する量のガスを気体溶解膜モジュールに供給して該ガスを温度調整した水に溶解したのち、得られたガス溶解水を所定温度まで加温することを特徴とする電子材料洗浄用ガス溶解水の調製方法、
(2)所定温度、所定圧力における所望濃度のガス溶解水を得る方法であって、ガスを溶解させる水をあらかじめ脱気して溶存ガスの飽和度を低下させた後、ガスを溶解させる水を該所定圧力より高い圧力に圧力調整した水に、該所望濃度に相当する量のガスを気体溶解膜モジュールに供給して該ガスを圧力調整した水に溶解したのち、得られたガス溶解水を所定圧力まで減圧することを特徴とする電子材料洗浄用ガス溶解水の調製方法、及び、
)ガスが水素であり、ガス溶解水が水素溶解水である第(1)項又は第(2)項記載の電子材料洗浄用ガス溶解水の調製方法、
を提供するものである。
【0005】
【発明の実施の形態】
本発明のガス溶解水の調製方法は、所定温度、所定圧力における所望濃度のガス溶解水を得る方法であって、ガスを溶解させる水を、該所定温度より低い温度に温度調整し、又は、該所定圧力より高い圧力に圧力調整し、温度調整又は圧力調整した水に、該所望濃度に相当する量のガスを供給して溶解したのち、得られたガス溶解水を所定温度まで加温し、又は、所定圧力まで減圧するガス溶解水の調製方法である。本発明方法は、半導体用シリコン基板、液晶用ガラス基板、フォトマスク用石英基板などの電子材料の表面を洗浄して、表面に付着した微粒子、有機物、金属などを除去するために用いられる、水素ガス、酸素ガス、オゾンガス、希ガスなどを溶解したガス溶解超純水の調製に好適に用いることができる。
多くのガスは、温度が低いほど飽和溶解度が大きく、圧力が高いほど飽和溶解度が大きく、また、水中へのガスの溶解速度も、温度が低く、圧力が高いほど大きい。したがって、ガスを溶解させる水を、所定温度より低い温度に温度調整し、又は、所定圧力より高い圧力に圧力調整したのち、ガスを溶解させることにより、ガスの溶解速度を高め、効率的にガス溶解水を調製することができる。ガス溶解水の溶存ガス濃度は、ガス溶解装置への通水量とガス供給量によって制御することができる。ガス供給量の制御方式に特に制限はなく、例えば、ガス流量計と調整弁の組み合わせ、マスフローコントローラーなどを挙げることができる。本発明方法により調製するガス溶解水の溶存ガス濃度は、所定温度、所定圧力における飽和溶解度以下であることが好ましい。本発明方法においては、ガスを溶解させる水の温度のみを調整することができ、圧力のみを調整することもでき、あるいは、温度と圧力を同時に調整することもできる。
【0006】
本発明方法においては、ガスを溶解させる水をあらかじめ脱気して溶存ガスの飽和度を低下させ、ガス溶解キャパシティーに空きをつくったのち、ガスを溶解させることが好ましい。本発明において、ガスの飽和度とは、水中に溶解しているガスの量を、温度25℃、圧力0.1MPaにおけるガスの溶解量で除した値である。例えば、水が温度25℃、圧力0.1MPaで窒素ガスと接して平衡状態にあるとき、水への窒素ガスの溶解量は17.6mg/リットルであるので、水中に溶解しているガスが窒素ガスのみであって、その溶解量が17.6mg/リットルである水の飽和度は1.0倍であり、水中に溶解しているガスが窒素ガスのみであって、その溶解量が8.8mg/リットルである水の飽和度は0.5倍である。また、温度25℃、圧力0.1MPaで空気と接して平衡状態にある水は、窒素ガス13.7mg/リットル及び酸素ガス8.1mg/リットルを溶解して飽和度1.0倍の状態となっているので、脱気によりガスの溶解量を窒素ガス2.7mg/リットル、酸素ガス1.6mg/リットルとした水の飽和度は0.2倍である。
飽和度0.5倍の水は、ガス溶解キャパシティーに飽和度0.5倍に相当する空きがあるので、飽和度0.5倍に相当する量の他のガスを容易かつ迅速に溶解することができる。また、飽和度0.2倍の水は、ガス溶解キャパシティーに飽和度0.8倍に相当する空きがあるので、飽和度0.8倍に相当する量の他のガスを容易かつ迅速に溶解することができる。本発明方法によりガス溶解水を調製するに際して、水の脱気処理方法に特に制限はなく、例えば、真空脱気、減圧膜脱気などによることができる。また、水に、ガスを溶解させる方法に特に制限はなく、例えば、バブリングや、水を透過させずにガスのみを容易に透過させる気体透過膜モジュールを用いる溶解などによることができる。
【0007】
電子材料などの洗浄水として用いられるガス溶解超純水は、常温で用いられる場合が多いので、超純水を常温以下に冷却したのちガスを溶解させ、次いでガス溶解水の温度を常温まで上げることにより、所望濃度のガス溶解水を得ることができる。水を冷却してガスを溶解したのち加温する方法は、常温より水温が低いほど飽和溶解度が高くなる水素ガス、酸素ガス、オゾンガス、ネオンガス、アルゴンガス、クリプトンガス、キセノンガスなどに適用することができる。ガスを溶解させる水の温度が、ガス溶解水の使用温度より低い場合には、ガスを溶解させる水の冷却工程を省略することができる。
電子材料などの洗浄水として用いられるガス溶解超純水は、常圧で用いられる場合が多いので、超純水が保有される密閉環境を常圧以上の加圧状態にしたのちガスを溶解させ、次いでガス溶解水の環境を常圧に戻すことにより、所望濃度のガス溶解水を得ることができる。水が保有される密閉環境を加圧条件下に保ちつつガスを溶解させたのち、ガス溶解水の環境を常圧に戻す方法は、水素ガス、酸素ガス、オゾンガス、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、キセノンガスなど、ほとんどすべてのガスに適用することができる。
本発明方法を超純水に適用し、得られたガス溶解超純水を電子材料などの洗浄水として用いる場合、原水として使用する超純水は、温度25℃における電気抵抗率が18MΩ・cm以上であり、有機体炭素が10μg/リットル以下であり、金属分の含有量が20ng/リットル以下であり、微粒子が10,000個/リットル以下であることが好ましい。
本発明方法によりガス溶解超純水を調製して電子材料などの洗浄に用いる場合、温度調整又は圧力調整に伴う水質の悪化は避けなければならないので、温度調整又は圧力調整を行う機器の接液部材は、フッ素樹脂などの水質悪化を招くおそれのない部材とすることが好ましい。例えば、フッ素樹脂製のチューブを複数本束ねて容器に入れ、チューブの内側又は外側にガスを溶解する水を流し、チューブ壁面を介して逆の側に冷却媒体又は加温媒体を通水あるいは保持する構造を有する熱交換器などを用いることができる。冷却及び加温の媒体としては、水などの液体のほかに気体も適用することができるが、温度調整効果の面からは熱容量の大きい液体を用いることが好ましい。
本発明方法によれば、水へのガス溶解速度を高め、効率よく短時間で所望濃度のガス溶解水を調製することができるので、小型のガス溶解装置を用い、高いガス溶解効率で、経済的にガス溶解水を製造することができる。
【0008】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
直径2.5インチの気体透過膜モジュール[セルガード製、保有水量400ml]を用いて、水素ガス溶解水を調製した。なお、気体溶解膜モジュールの気相系には圧力調整弁をつけ、一定量の水素ガスを供給して水素ガス圧力が上昇する場合は、水素ガスが圧力調整弁を通じて放出され、一定の圧力に保持される機構とした。
脱気済みの超純水をテフロン製熱交換器を通して温度15℃に冷却したのち、気体溶解膜モジュールの液相側に、圧力0.1MPa、流量2.0リットル/分で通水した。気体溶解膜モジュール内の超純水の滞留時間は、12.0秒である。気体溶解膜モジュールの気相側には、水素ガスを、圧力0.1MPa、供給量27Nml/分で供給した。気体溶解膜モジュールより流出する水素ガス溶解水の溶存水素ガス濃度は1.2mg/リットルであり、水素ガスの溶解効率は100%であった。
次いで、温度15℃に調製した脱気済みの超純水の流量を3.5リットル/分、水素ガスの供給量を47Nml/分に増加して水素ガス溶解水の調製を行った。気体溶解膜モジュール内の超純水の滞留時間は、6.9秒である。気体溶解膜モジュールより流出する水素ガス溶解水の溶存水素ガス濃度は1.2mg/リットルであり、水素ガスの溶解効率は100%であった。
さらに、温度15℃に調製した脱気済みの超純水の流量を5.0リットル/分、水素ガスの供給量を68Nml/分に増加して水素ガス溶解水の調製を行った。気体溶解膜モジュール内の超純水の滞留時間は、4.8秒である。気体溶解膜モジュールより流出する水素ガス溶解水の溶存水素ガス濃度は1.1mg/リットルであり、水素ガスの溶解効率は91%であった。
実施例2
脱気済みの超純水を温度25℃のまま用い、通水圧と水素ガス供給圧をともに高めた以外は、実施例1と同様にして水素ガス溶解水を調製した。
脱気済みの超純水を気体溶解膜モジュールの液相側に、圧力0.2MPa、流量2.0リットル/分で通水し、気相側には、水素ガスを、圧力0.2MPa、供給量27Nml/分で供給した。気体溶解膜モジュールより流出する水素ガス溶解水の溶存水素ガス濃度は1.2mg/リットルであり、水素ガスの溶解効率は100%であった。
次いで、脱気済みの超純水の流量を3.5リットル/分、水素ガスの供給量を47Nml/分に増加して水素ガス溶解水の調製を行った。気体溶解膜モジュールより流出する水素ガス溶解水の溶存水素ガス濃度は1.2mg/リットルであり、水素ガスの溶解効率は100%であった。
さらに、脱気済みの超純水の流量を5.0リットル/分、水素ガスの供給量を68Nml/分に増加して水素ガス溶解水の調製を行った。気体溶解膜モジュールより流出する水素ガス溶解水の溶存水素ガス濃度は1.1mg/リットルであり、水素ガスの溶解効率は91%であった。
比較例1
脱気済みの超純水を温度25℃のまま用い、通水圧と水素ガス供給圧をともに常圧とし、実施例1と同様にして水素ガス溶解水を調製した。
脱気済みの超純水を気体溶解膜モジュールの液相側に、圧力0.1MPa、流量2.0リットル/分で通水し、気相側には、水素ガスを、圧力0.1MPa、供給量27Nml/分で供給した。気体溶解膜モジュールより流出する水素ガス溶解水の溶存水素ガス濃度は1.2mg/リットルであり、水素ガスの溶解効率は100%であった。
次いで、脱気済みの超純水の流量を3.5リットル/分、水素ガスの供給量を47Nml/分に増加して水素ガス溶解水の調製を行った。気体溶解膜モジュールより流出する水素ガス溶解水の溶存水素ガス濃度は1.0mg/リットルであり、水素ガスの溶解効率は83%であった。
さらに、脱気済みの超純水の流量を5.0リットル/分、水素ガスの供給量を68Nml/分に増加して水素ガス溶解水の調製を行った。気体溶解膜モジュールより流出する水素ガス溶解水の溶存水素ガス濃度は0.7mg/リットルであり、水素ガスの溶解効率は58%であった。
実施例1〜2及び比較例1の結果を、第1表に示す。
【0009】
【表1】

Figure 0004438077
【0010】
第1表に見られるように、気体透過膜モジュールへの超純水の通水量を2.0リットル/分、水素ガス供給量を27Nml/分とした場合は、実施例、比較例ともに、超純水に供給された水素ガスが完全に溶解して、溶存水素ガス濃度1.2mg/リットルの水素ガス溶解水が得られている。しかし、通水量を3.5リットル/分、水素ガス供給量を47Nml/分に増加すると、水温を下げた実施例1と、処理圧力を上げた実施例2では、溶存水素ガス濃度1.2mg/リットルの水素ガス溶解水が得られ、水素ガス溶解効率100%が保たれているのに対して、常温、常圧で処理している比較例1では、溶存水素ガス濃度が1.0mg/リットル、水素ガス溶解効率が83%に低下し、供給した水素ガスの17%が失われている。さらに、通水量を5.0リットル/分、水素ガス供給量を68Nml/分に増加すると、実施例1と実施例2では、溶存水素ガス濃度1.1mg/リットル、水素ガス溶解効率91%となるが、比較例1では、溶存水素ガス濃度が0.7mg/リットル、水素ガス溶解効率が58%まで低下する。
すなわち、気体溶解膜モジュールにおいて、ガスを溶解させる水を低い温度又は高い圧力に調製することにより、常温、常圧で処理する場合に比べて、ガスの溶解速度とガス溶解効率を高め、短時間で効率的に、所望濃度のガス溶解水を製造することができる。
なお、実施例1及び実施例2で得られた水素ガス溶解水は、常温、常圧に戻したのちは、常温、常圧で水素ガスを溶解する従来法で製造された同一濃度の水素ガス溶解水となんら違いがなく、ウェット洗浄の効果においても全く同じであった。
【0011】
【発明の効果】
本発明方法により、特定のガスを溶解させる水の温度又は圧力を、ガスの溶解度が増加する方向に調製してガスを供給すると、ガス溶解効率が著しく向上するとともに、気体透過膜モジュールなどのガス溶解装置の単位時間あたりの処理量を増加させることができ、効率よく経済的にガス溶解水を調製することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for preparing gas-dissolved water. More specifically, the present invention relates to gas-dissolved water that can efficiently prepare gas-dissolved water having a desired concentration used for wet cleaning of electronic materials such as silicon substrates for semiconductors and glass substrates for liquid crystals in a short time. It relates to the preparation method.
[0002]
[Prior art]
Removing fine particles, organic substances, metals, and the like from the surface of electronic materials such as a semiconductor silicon substrate, a liquid crystal glass substrate, and a photomask quartz substrate is extremely important for ensuring product quality and yield. For this purpose, wet cleaning at a high temperature with a concentrated chemical solution based on hydrogen peroxide called the so-called RCA cleaning method is performed, and a mixed solution (APM) of ammonia and hydrogen peroxide solution or hydrochloric acid and hydrogen peroxide solution. A mixed solution (HPM) or the like was used. Reduces the cost of chemicals when using these cleaning methods, the cost of ultrapure water for rinsing, the cost of waste liquid treatment, the air conditioning cost of exhausting chemical vapor and newly preparing clean air, and the use of large amounts of water In recent years, the wet cleaning process has been reviewed in order to reduce environmental burdens such as mass disposal of drugs and emission of exhaust gas.
The present inventors previously dissolved a specific gas in ultrapure water and prepared by adding a small amount of chemical as needed, a function that uses an extremely small amount of chemical and exhibits an excellent cleaning effect Water was developed. This functional wash water has been highly evaluated for its resource saving and environmental conservation, and has come to be used in place of high-concentration chemicals. Examples of the gas used for the functional cleaning water include hydrogen gas, oxygen gas, ozone gas, rare gas, and carbon dioxide gas. Functional cleaning water in which these gases are dissolved exhibits a cleaning effect comparable to that of conventionally used high-concentration chemical liquid cleaning while maintaining properties close to pure water. In particular, hydrogen gas-dissolved water, oxygen gas-dissolved water, and rare gas-dissolved water such as argon to which a very small amount of ammonia is added exhibit an extremely high particulate removal effect when used in a cleaning process using ultrasonic waves.
In the production of gas-dissolved water, by using an accurate gas flow controller or the like, water in which a specific gas having a relatively high concentration is dissolved can be obtained with good reproducibility. However, as the use of functional cleaning water in which a specific gas is dissolved spreads, a method for preparing a gas-dissolved water that can efficiently dissolve a specific gas in a shorter time has come to be demanded.
[0003]
[Problems to be solved by the invention]
The present invention provides a method for preparing gas-dissolved water that can efficiently prepare gas-dissolved water having a desired concentration used for wet cleaning of electronic materials such as silicon substrates for semiconductors and glass substrates for liquid crystals in a short time. It was made for the purpose of providing.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor adjusted the water for dissolving the gas to a low temperature or a high pressure to dissolve the gas having a desired concentration, and then obtained the gas-dissolved water. It has been found that the gas can be efficiently dissolved in a short time by returning to the predetermined temperature or the predetermined pressure, and the present invention has been completed based on this finding.
That is, the present invention
(1) A method for obtaining a gas-dissolved water having a desired concentration at a predetermined temperature and a predetermined pressure, wherein after degassing water for dissolving the gas in advance to lower the saturation of the dissolved gas, the temperature lower than the predetermined temperature After supplying the gas whose amount is equivalent to the desired concentration to the gas-dissolved membrane module and dissolving the gas in the temperature-adjusted water , the obtained gas-dissolved water is heated to a predetermined temperature. A method for preparing a gas-dissolved water for cleaning electronic materials,
(2) A method for obtaining a gas-dissolved water having a desired concentration at a predetermined temperature and a predetermined pressure, wherein the water for dissolving the gas is degassed in advance to reduce the saturation of the dissolved gas, and then the water for dissolving the gas is added. An amount of gas corresponding to the desired concentration is supplied to the gas-dissolving membrane module in water adjusted to a pressure higher than the predetermined pressure, and the gas is dissolved in the pressure-adjusted water. A method for preparing a gas-dissolved water for electronic material cleaning, characterized by reducing pressure to a predetermined pressure, and
( 3 ) The method for preparing a gas-dissolved water for electronic material cleaning according to (1) or (2) , wherein the gas is hydrogen and the gas-dissolved water is hydrogen-dissolved water,
Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The method for preparing gas-dissolved water according to the present invention is a method for obtaining gas-dissolved water having a desired concentration at a predetermined temperature and a predetermined pressure, and adjusting the temperature of water for dissolving gas to a temperature lower than the predetermined temperature, or After adjusting the pressure to a pressure higher than the predetermined pressure and dissolving the temperature-adjusted or pressure-adjusted water by supplying an amount of gas corresponding to the desired concentration, the obtained gas-dissolved water is heated to the predetermined temperature. Or a method for preparing gas-dissolved water that is depressurized to a predetermined pressure. The method of the present invention is used to clean the surface of an electronic material such as a silicon substrate for a semiconductor, a glass substrate for a liquid crystal, or a quartz substrate for a photomask to remove fine particles, organic substances, metals, etc. attached to the surface. It can be suitably used for the preparation of gas-dissolved ultrapure water in which gas, oxygen gas, ozone gas, rare gas and the like are dissolved.
Many gases have higher saturation solubility at lower temperatures and higher saturation solubility at higher pressures, and the rate of gas dissolution into water is higher at lower temperatures and higher pressures. Therefore, by adjusting the temperature of water for dissolving the gas to a temperature lower than the predetermined temperature or adjusting the pressure to a pressure higher than the predetermined pressure, the gas is dissolved to increase the gas dissolution rate and efficiently Dissolved water can be prepared. The dissolved gas concentration of the gas dissolved water can be controlled by the amount of water flow to the gas dissolving apparatus and the gas supply amount. There is no particular limitation on the gas supply amount control method, and examples thereof include a combination of a gas flow meter and a regulating valve, a mass flow controller, and the like. The dissolved gas concentration of the gas-dissolved water prepared by the method of the present invention is preferably not more than the saturation solubility at a predetermined temperature and a predetermined pressure. In the method of the present invention, only the temperature of water for dissolving the gas can be adjusted, only the pressure can be adjusted, or the temperature and pressure can be adjusted simultaneously.
[0006]
In the method of the present invention, it is preferable to degas the water in which the gas is dissolved in advance to lower the degree of saturation of the dissolved gas and make the gas dissolution capacity empty, and then dissolve the gas. In the present invention, the gas saturation is a value obtained by dividing the amount of gas dissolved in water by the amount of gas dissolved at a temperature of 25 ° C. and a pressure of 0.1 MPa. For example, when water is in equilibrium with nitrogen gas at a temperature of 25 ° C. and a pressure of 0.1 MPa, the amount of nitrogen gas dissolved in water is 17.6 mg / liter. The saturation of water, which is only nitrogen gas and its dissolution amount is 17.6 mg / liter, is 1.0 times, and the gas dissolved in water is only nitrogen gas, and its dissolution amount is 8 The saturation of water, which is 0.8 mg / liter, is 0.5 times. In addition, water in contact with air at a temperature of 25 ° C. and a pressure of 0.1 MPa is in a state of equilibrium of 1.0 times by dissolving 13.7 mg / liter of nitrogen gas and 8.1 mg / liter of oxygen gas. Therefore, the degree of saturation of water with the amount of dissolved gas of 2.7 mg / liter of nitrogen gas and 1.6 mg / liter of oxygen gas by degassing is 0.2 times.
Water having a saturation level of 0.5 times has an empty space corresponding to a saturation level of 0.5 times in the gas dissolution capacity, so that other gases corresponding to a saturation level of 0.5 times can be easily and quickly dissolved. be able to. In addition, since water having a saturation degree of 0.2 times has an empty space corresponding to a saturation degree of 0.8 times in the gas dissolution capacity, another gas corresponding to a saturation degree of 0.8 times can be easily and quickly discharged. Can be dissolved. In preparing the gas-dissolved water by the method of the present invention, there is no particular limitation on the water degassing treatment method, and for example, vacuum degassing, reduced-pressure membrane degassing and the like can be used. Moreover, there is no restriction | limiting in particular in the method of dissolving gas in water, For example, it can be based on bubbling or the melt | dissolution which uses the gas permeation membrane module which permeate | transmits only gas without permeate | transmitting water.
[0007]
Gas-dissolved ultrapure water used as cleaning water for electronic materials is often used at room temperature, so after cooling ultrapure water below room temperature, dissolve the gas, and then raise the temperature of the gas-dissolved water to room temperature. Thus, gas-dissolved water having a desired concentration can be obtained. The method of heating after dissolving the gas by cooling the water is applicable to hydrogen gas, oxygen gas, ozone gas, neon gas, argon gas, krypton gas, xenon gas, etc. whose saturation solubility increases as the water temperature is lower than normal temperature Can do. When the temperature of the water for dissolving the gas is lower than the use temperature of the gas-dissolved water, the step of cooling the water for dissolving the gas can be omitted.
Gas-dissolved ultrapure water used as cleaning water for electronic materials, etc. is often used at normal pressure, so the gas is dissolved after the sealed environment in which ultrapure water is held is brought to a pressurized state higher than normal pressure. Then, the gas-dissolved water having a desired concentration can be obtained by returning the environment of the gas-dissolved water to normal pressure. After dissolving the gas while maintaining the sealed environment where water is held under pressure, the method of returning the environment of the gas dissolved water to normal pressure is hydrogen gas, oxygen gas, ozone gas, helium gas, neon gas, argon gas. It can be applied to almost all gases such as krypton gas and xenon gas.
When the method of the present invention is applied to ultrapure water and the obtained gas-dissolved ultrapure water is used as cleaning water for electronic materials, the ultrapure water used as raw water has an electrical resistivity of 18 MΩ · cm at a temperature of 25 ° C. The organic carbon is preferably 10 μg / liter or less, the metal content is 20 ng / liter or less, and the fine particles are preferably 10,000 particles / liter or less.
When gas-dissolved ultrapure water is prepared by the method of the present invention and used for cleaning electronic materials and the like, deterioration of water quality associated with temperature adjustment or pressure adjustment must be avoided. The member is preferably a member that does not cause deterioration of water quality such as a fluororesin. For example, bundle multiple tubes made of fluororesin into a container, let water that dissolves gas flow inside or outside the tube, and pass or hold cooling medium or heating medium on the opposite side through the tube wall A heat exchanger or the like having a structure to be used can be used. As the cooling and heating medium, a gas other than a liquid such as water can be applied, but it is preferable to use a liquid having a large heat capacity in terms of the temperature adjustment effect.
According to the method of the present invention, the gas dissolution rate in water can be increased and gas dissolution water having a desired concentration can be efficiently prepared in a short time. Thus, gas-dissolved water can be produced.
[0008]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
Hydrogen gas-dissolved water was prepared using a gas permeable membrane module having a diameter of 2.5 inches [manufactured by Celgard, 400 ml of retained water]. In addition, a pressure control valve is attached to the gas phase system of the gas dissolution membrane module, and when a certain amount of hydrogen gas is supplied and the hydrogen gas pressure rises, the hydrogen gas is released through the pressure control valve and is kept at a constant pressure. The mechanism is held.
The deaerated ultrapure water was cooled to a temperature of 15 ° C. through a Teflon heat exchanger, and then passed through the liquid phase side of the gas dissolution membrane module at a pressure of 0.1 MPa and a flow rate of 2.0 liters / minute. The residence time of ultrapure water in the gas dissolution membrane module is 12.0 seconds. Hydrogen gas was supplied to the gas phase side of the gas-dissolving membrane module at a pressure of 0.1 MPa and a supply amount of 27 Nml / min. The dissolved hydrogen gas concentration of the hydrogen gas-dissolved water flowing out from the gas-dissolving membrane module was 1.2 mg / liter, and the dissolution efficiency of hydrogen gas was 100%.
Next, hydrogen gas-dissolved water was prepared by increasing the flow rate of degassed ultrapure water prepared at a temperature of 15 ° C. to 3.5 liters / minute and the supply amount of hydrogen gas to 47 Nml / minute. The residence time of ultrapure water in the gas dissolution membrane module is 6.9 seconds. The dissolved hydrogen gas concentration of the hydrogen gas-dissolved water flowing out from the gas-dissolving membrane module was 1.2 mg / liter, and the dissolution efficiency of hydrogen gas was 100%.
Furthermore, hydrogen gas-dissolved water was prepared by increasing the flow rate of degassed ultrapure water prepared at a temperature of 15 ° C. to 5.0 liters / minute and the supply amount of hydrogen gas to 68 Nml / minute. The residence time of ultrapure water in the gas dissolution membrane module is 4.8 seconds. The dissolved hydrogen gas concentration of the hydrogen gas-dissolved water flowing out from the gas-dissolving membrane module was 1.1 mg / liter, and the dissolution efficiency of hydrogen gas was 91%.
Example 2
Hydrogen gas-dissolved water was prepared in the same manner as in Example 1 except that degassed ultrapure water was used at a temperature of 25 ° C., and both the water flow pressure and the hydrogen gas supply pressure were increased.
Ultrapure water that has been degassed is passed through the liquid phase side of the gas-dissolving membrane module at a pressure of 0.2 MPa and a flow rate of 2.0 liters / min. Hydrogen gas is supplied to the gas phase side at a pressure of 0.2 MPa, It was fed at a feed rate of 27 Nml / min. The dissolved hydrogen gas concentration of the hydrogen gas-dissolved water flowing out from the gas-dissolving membrane module was 1.2 mg / liter, and the dissolution efficiency of hydrogen gas was 100%.
Next, hydrogen gas-dissolved water was prepared by increasing the flow rate of degassed ultrapure water to 3.5 liters / minute and the supply amount of hydrogen gas to 47 Nml / minute. The dissolved hydrogen gas concentration of the hydrogen gas-dissolved water flowing out from the gas-dissolving membrane module was 1.2 mg / liter, and the dissolution efficiency of hydrogen gas was 100%.
Furthermore, hydrogen gas-dissolved water was prepared by increasing the flow rate of degassed ultrapure water to 5.0 liters / minute and the supply amount of hydrogen gas to 68 Nml / minute. The dissolved hydrogen gas concentration of the hydrogen gas-dissolved water flowing out from the gas-dissolving membrane module was 1.1 mg / liter, and the dissolution efficiency of hydrogen gas was 91%.
Comparative Example 1
Hydrogen gas-dissolved water was prepared in the same manner as in Example 1, using degassed ultrapure water at a temperature of 25 ° C., setting both the water flow pressure and the hydrogen gas supply pressure to normal pressure.
Ultrapure water that has been degassed is passed through the liquid phase side of the gas dissolution membrane module at a pressure of 0.1 MPa and a flow rate of 2.0 liters / minute, and hydrogen gas is supplied to the gas phase side at a pressure of 0.1 MPa, It was fed at a feed rate of 27 Nml / min. The dissolved hydrogen gas concentration of the hydrogen gas-dissolved water flowing out from the gas-dissolving membrane module was 1.2 mg / liter, and the dissolution efficiency of hydrogen gas was 100%.
Next, hydrogen gas-dissolved water was prepared by increasing the flow rate of degassed ultrapure water to 3.5 liters / minute and the supply amount of hydrogen gas to 47 Nml / minute. The dissolved hydrogen gas concentration of hydrogen gas-dissolved water flowing out from the gas-dissolving membrane module was 1.0 mg / liter, and the dissolution efficiency of hydrogen gas was 83%.
Furthermore, hydrogen gas-dissolved water was prepared by increasing the flow rate of degassed ultrapure water to 5.0 liters / minute and the supply amount of hydrogen gas to 68 Nml / minute. The dissolved hydrogen gas concentration of the hydrogen gas-dissolved water flowing out from the gas-dissolving membrane module was 0.7 mg / liter, and the dissolution efficiency of hydrogen gas was 58%.
The results of Examples 1 and 2 and Comparative Example 1 are shown in Table 1.
[0009]
[Table 1]
Figure 0004438077
[0010]
As shown in Table 1, when the flow rate of ultrapure water to the gas permeable membrane module was 2.0 liter / min and the hydrogen gas supply rate was 27 Nml / min, both the examples and comparative examples Hydrogen gas supplied to pure water is completely dissolved, and hydrogen gas-dissolved water having a dissolved hydrogen gas concentration of 1.2 mg / liter is obtained. However, when the water flow rate is increased to 3.5 liters / minute and the hydrogen gas supply rate is increased to 47 Nml / minute, the dissolved hydrogen gas concentration is 1.2 mg in Example 1 where the water temperature is lowered and in Example 2 where the treatment pressure is raised. / Liter of hydrogen gas-dissolved water is obtained and the hydrogen gas dissolution efficiency is maintained at 100%, whereas in Comparative Example 1 where the treatment is performed at normal temperature and normal pressure, the dissolved hydrogen gas concentration is 1.0 mg / liter. Liters, the hydrogen gas dissolution efficiency is reduced to 83%, and 17% of the supplied hydrogen gas is lost. Further, when the water flow rate is increased to 5.0 liters / minute and the hydrogen gas supply amount is increased to 68 Nml / minute, in Examples 1 and 2, the dissolved hydrogen gas concentration is 1.1 mg / liter and the hydrogen gas dissolution efficiency is 91%. However, in Comparative Example 1, the dissolved hydrogen gas concentration is 0.7 mg / liter, and the hydrogen gas dissolution efficiency is reduced to 58%.
That is, in the gas dissolution membrane module, by adjusting the water for dissolving the gas to a low temperature or a high pressure, the gas dissolution rate and the gas dissolution efficiency are increased compared with the case of treating at normal temperature and normal pressure, and the time is shortened. Thus, gas-dissolved water having a desired concentration can be produced efficiently.
The hydrogen gas-dissolved water obtained in Example 1 and Example 2 is the same concentration of hydrogen gas produced by the conventional method of dissolving hydrogen gas at normal temperature and normal pressure after returning to normal temperature and normal pressure. There was no difference from the dissolved water, and the wet cleaning effect was exactly the same.
[0011]
【The invention's effect】
According to the method of the present invention, when the temperature or pressure of water for dissolving a specific gas is adjusted so as to increase the solubility of the gas and the gas is supplied, the gas dissolution efficiency is remarkably improved, and the gas such as a gas permeable membrane module The throughput per unit time of the dissolution apparatus can be increased, and gas dissolution water can be prepared efficiently and economically.

Claims (3)

所定温度、所定圧力における所望濃度のガス溶解水を得る方法であって、ガスを溶解させる水をあらかじめ脱気して溶存ガスの飽和度を低下させた後、該所定温度より低い温度に温度調整した水に、該所望濃度に相当する量のガスを気体溶解膜モジュールに供給して該ガスを温度調整した水に溶解したのち、得られたガス溶解水を所定温度まで加温することを特徴とする電子材料洗浄用ガス溶解水の調製方法。A method for obtaining a gas-dissolved water having a desired concentration at a predetermined temperature and a predetermined pressure, wherein the water for dissolving the gas is degassed in advance to lower the saturation of the dissolved gas, and then the temperature is adjusted to a temperature lower than the predetermined temperature The gas dissolved in the water is supplied to the gas dissolving membrane module in an amount corresponding to the desired concentration, and the gas is dissolved in the temperature-adjusted water, and then the obtained gas dissolved water is heated to a predetermined temperature. A method for preparing gas-dissolved water for electronic material cleaning. 所定温度、所定圧力における所望濃度のガス溶解水を得る方法であって、ガスを溶解させる水をあらかじめ脱気して溶存ガスの飽和度を低下させた後、ガスを溶解させる水を該所定圧力より高い圧力に圧力調整した水に、該所望濃度に相当する量のガスを気体溶解膜モジュールに供給して該ガスを圧力調整した水に溶解したのち、得られたガス溶解水を所定圧力まで減圧することを特徴とする電子材料洗浄用ガス溶解水の調製方法。A method of obtaining a gas-dissolved water having a desired concentration at a predetermined temperature and a predetermined pressure, wherein the water for dissolving the gas is degassed in advance to reduce the saturation of the dissolved gas, and then the water for dissolving the gas is supplied to the predetermined pressure. After supplying a gas corresponding to the desired concentration to the gas-dissolved membrane module in the water adjusted to a higher pressure and dissolving the gas in the pressure-adjusted water, the obtained gas-dissolved water is brought to a predetermined pressure. A method for preparing gas-dissolved water for cleaning electronic materials, wherein the pressure is reduced. ガスが水素であり、ガス溶解水が水素溶解水である請求項1又は2記載の電子材料洗浄用ガス溶解水の調製方法。The method for preparing a gas-dissolved water for electronic material cleaning according to claim 1 or 2 , wherein the gas is hydrogen and the gas-dissolved water is hydrogen-dissolved water.
JP25785199A 1999-09-10 1999-09-10 Method for preparing gas-dissolved water for cleaning electronic materials Expired - Fee Related JP4438077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25785199A JP4438077B2 (en) 1999-09-10 1999-09-10 Method for preparing gas-dissolved water for cleaning electronic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25785199A JP4438077B2 (en) 1999-09-10 1999-09-10 Method for preparing gas-dissolved water for cleaning electronic materials

Publications (2)

Publication Number Publication Date
JP2001079376A JP2001079376A (en) 2001-03-27
JP4438077B2 true JP4438077B2 (en) 2010-03-24

Family

ID=17312051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25785199A Expired - Fee Related JP4438077B2 (en) 1999-09-10 1999-09-10 Method for preparing gas-dissolved water for cleaning electronic materials

Country Status (1)

Country Link
JP (1) JP4438077B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334433A (en) 2002-05-16 2003-11-25 Kurita Water Ind Ltd Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water
JP2004230370A (en) * 2002-12-05 2004-08-19 Wataru Murota Reduced water and manufacturing method therefor
JP4470101B2 (en) * 2004-03-24 2010-06-02 栗田工業株式会社 Nitrogen-dissolved ultrapure water production method
CA2601814A1 (en) * 2005-03-28 2006-10-05 Wataru Murota Oxygen-containing reductive aqueous beverage and process for production of the same
WO2006120747A1 (en) * 2005-05-13 2006-11-16 Wataru Murota Process and apparatus for producing oxygen-containing reducing aqueous beverage
JP6565347B2 (en) * 2015-06-08 2019-08-28 栗田工業株式会社 Method for producing gas-dissolved water

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130785A (en) * 1987-11-18 1989-05-23 Ishikawajima Harima Heavy Ind Co Ltd Ozonized water sterilizer
JPH0338198U (en) * 1989-08-24 1991-04-12
JPH0458527A (en) * 1990-06-28 1992-02-25 Ebara Res Co Ltd Cleaning method
JP2751943B2 (en) * 1992-04-03 1998-05-18 仁蔵 長廣 High concentration ozone water production method and high concentration ozone water production device
US5464480A (en) * 1993-07-16 1995-11-07 Legacy Systems, Inc. Process and apparatus for the treatment of semiconductor wafers in a fluid
JPH0889771A (en) * 1994-09-19 1996-04-09 Dainippon Ink & Chem Inc Gas dissolver and gas dissolving method
JPH10216490A (en) * 1997-01-31 1998-08-18 Koa Corp:Kk Rapid mixing and dissolving device of gas into liquid
JP3662111B2 (en) * 1997-06-24 2005-06-22 アルプス電気株式会社 Cleaning liquid manufacturing method and apparatus therefor
JP4151088B2 (en) * 1997-09-01 2008-09-17 栗田工業株式会社 Hydrogen-containing ultrapure water supply device
JP3691985B2 (en) * 1999-05-21 2005-09-07 大日本スクリーン製造株式会社 Substrate processing apparatus and substrate processing method
JP2000334283A (en) * 1999-05-26 2000-12-05 Ishikawajima Harima Heavy Ind Co Ltd Ozone dissolving method and device

Also Published As

Publication number Publication date
JP2001079376A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
JP5072062B2 (en) Method, apparatus and apparatus for producing hydrogen gas-dissolved cleaning water
JP5251184B2 (en) Gas dissolved water supply system
JP3765354B2 (en) Method for producing hydrogen-containing ultrapure water
KR101514863B1 (en) Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gases
JP4756327B2 (en) Nitrogen gas dissolved water production method
JP2010017633A (en) Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component
US20150303053A1 (en) Method for producing ozone gas-dissolved water and method for cleaning electronic material
JP4438077B2 (en) Method for preparing gas-dissolved water for cleaning electronic materials
JP4503111B2 (en) Gas dissolved water supply device
JP4151088B2 (en) Hydrogen-containing ultrapure water supply device
JPH1129794A (en) Cleaning water for electronic material its reparation, and cleaning of electronic material
JP3332323B2 (en) Cleaning method and cleaning device for electronic component members
JP2004050019A (en) Ultra-pure water supply equipment
JP2000216130A (en) Washing water and method for electronic material
JPH11138182A (en) Ozonized ultrapure water feeder
JP2005152803A (en) Ozone water supply method
JP5037748B2 (en) Ozone water concentration adjustment method and ozone water supply system
JP4117446B2 (en) Ozone water supply device
JPH11181493A (en) Cleaning water for electronic material
JP2000262992A (en) Substrate washing method
JP3381782B2 (en) High purity ozone gas generator
JPH03154601A (en) Removal of dissolving oxygen in water
JP2003181251A (en) Method and apparatus for manufacturing ozone-dissolved water
JP2000246076A (en) Gas dissolution method
JP2000197815A (en) Device for making ozone-dissolved water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4438077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees