JP6565347B2 - Method for producing gas-dissolved water - Google Patents

Method for producing gas-dissolved water Download PDF

Info

Publication number
JP6565347B2
JP6565347B2 JP2015115900A JP2015115900A JP6565347B2 JP 6565347 B2 JP6565347 B2 JP 6565347B2 JP 2015115900 A JP2015115900 A JP 2015115900A JP 2015115900 A JP2015115900 A JP 2015115900A JP 6565347 B2 JP6565347 B2 JP 6565347B2
Authority
JP
Japan
Prior art keywords
gas
dissolved
water
liquid temperature
dissolved water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015115900A
Other languages
Japanese (ja)
Other versions
JP2017000931A (en
Inventor
祐子 池田
祐子 池田
融 正岡
融 正岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2015115900A priority Critical patent/JP6565347B2/en
Publication of JP2017000931A publication Critical patent/JP2017000931A/en
Application granted granted Critical
Publication of JP6565347B2 publication Critical patent/JP6565347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Accessories For Mixers (AREA)

Description

本発明はガス溶解水の製造方法及び製造装置に係り、詳しくは、液温が高く、溶存ガス濃度の高いガス溶解水を安全に製造して使用場所に供給する方法と装置に関する。   The present invention relates to a method and an apparatus for producing gas-dissolved water, and more particularly, to a method and apparatus for safely producing gas-dissolved water having a high liquid temperature and a high dissolved gas concentration and supplying it to a place of use.

電子材料などの洗浄液として、水素ガス溶解水や窒素ガス溶解水が用いられており、洗浄力を高めるために、ガス溶解水の溶存ガス濃度を高めること、また、液温を高くすることが行われている。   Hydrogen gas-dissolved water and nitrogen gas-dissolved water are used as cleaning liquids for electronic materials, etc., and in order to increase the cleaning power, the dissolved gas concentration of the gas-dissolved water is increased and the liquid temperature is increased. It has been broken.

しかし、液温が高くなるとガス溶解水の溶存ガス濃度が飽和溶解度を上回り、発泡する恐れがあるため、取り扱いに注意する必要がある。例えば、特許文献1には、オゾンガス溶解水の発泡で、被洗浄物の表面に気泡が付着することによる洗浄ムラで洗浄効果が低下する;超音波洗浄を行う場合は、気泡の存在で超音波振動子が空振動することにより振動子の破損を招く;といった問題が発生することが記載されている。また、送液配管内に気泡が残留した場合、これを完全に押し出すことが困難であるという問題もある。   However, when the liquid temperature becomes high, the dissolved gas concentration of the gas-dissolved water exceeds the saturation solubility, and there is a possibility of foaming. For example, Patent Document 1 discloses that ozone gas-dissolved water foams and the cleaning effect is reduced due to uneven cleaning due to bubbles adhering to the surface of the object to be cleaned; It is described that the problem that the vibrator is damaged due to the vibration of the vibrator is caused. In addition, when bubbles remain in the liquid feeding pipe, there is a problem that it is difficult to completely extrude the bubbles.

従来、高温のガス溶解水を使用する際の発泡防止の対処法として、ガス溶解水を加圧すること、或いは、溶存ガスの一部を除去した後に使用することが提案されている。
例えば、特許文献2,3には、ガス溶解水の液温として10〜90℃の範囲とすることが記載され、また、ガス溶解水の溶解度を上げるために加圧することが記載されている。
特許文献4には、40〜50℃程度の温度のガス溶解水を安定的に調整するために、溶解度以上に調製された高濃度ガス溶解水を減圧して溶存ガスの一部を除去することが記載されている。
Conventionally, as a countermeasure for preventing foaming when using high-temperature gas-dissolved water, it has been proposed to pressurize the gas-dissolved water or use it after removing a part of the dissolved gas.
For example, Patent Documents 2 and 3 describe that the temperature of gas-dissolved water is in the range of 10 to 90 ° C., and also describes that pressurization is performed to increase the solubility of gas-dissolved water.
In Patent Document 4, in order to stably adjust gas-dissolved water having a temperature of about 40 to 50 ° C., a part of the dissolved gas is removed by depressurizing high-concentration gas-dissolved water prepared to have a solubility or higher. Is described.

特開2017−93357号公報JP 2017-93357 A 特開2011−134864号公報JP 2011-134864 A 特開2012−143708号公報JP 2012-143708 A 特開2007−243113号公報JP 2007-243113 A

しかし、洗浄時に用いたガス溶解水が発泡しないよう洗浄機内を加圧状態にするには、そのための設備が複雑になる。
また、溶存ガスを除去する方法は、除去したガスが系外へ放出されることとなるため、排ガス処理の問題がある上に、例えば、爆発性のある水素ガスについては、安全面から好ましい方法とは言えない。
発泡を確実に防止するために、溶存ガス濃度を低めに設定することは、ガス溶解水の洗浄力が低下するため、高い洗浄力が要求される場合には対応し得ない。
However, in order to put the inside of the washing machine into a pressurized state so that the gas-dissolved water used at the time of washing does not foam, the equipment for that is complicated.
Further, the method for removing dissolved gas has a problem of exhaust gas treatment because the removed gas is released out of the system. For example, for explosive hydrogen gas, it is a preferable method from the viewpoint of safety. It can not be said.
In order to surely prevent foaming, setting the dissolved gas concentration to a low value cannot cope with a case where a high cleaning power is required because the cleaning power of the dissolved gas decreases.

このようなことから、加熱ガス溶解水の液温における飽和溶解度を超えることなく、かつ、飽和溶解度になるべく近い溶存ガス濃度のガス溶解水を製造することが望まれる。   For this reason, it is desired to produce gas-dissolved water having a dissolved gas concentration that is as close as possible to the saturation solubility without exceeding the saturation solubility at the liquid temperature of the heated gas-dissolved water.

本発明は、液温が高く、溶存ガス濃度の高いガス溶解水を安全に製造して使用場所に供給する方法と装置を提供することを課題とする。   It is an object of the present invention to provide a method and an apparatus for safely producing a gas dissolved water having a high liquid temperature and a high dissolved gas concentration and supplying it to a place of use.

本発明者らは、上記課題を解決すべく検討を重ねた結果、加熱されたガス溶解水の液温を測定し、この測定値に基づいて、ガス溶解水のガス溶解量を制御することにより、飽和溶解度を超えることなく、かつ飽和溶解度に近い溶存ガス濃度のガス溶解水を製造することができることを見出した。
即ち、本発明は以下を要旨とする。
As a result of repeated studies to solve the above problems, the present inventors have measured the liquid temperature of heated gas-dissolved water, and controlled the amount of gas dissolved in the gas-dissolved water based on this measured value. It has been found that gas-dissolved water having a dissolved gas concentration close to the saturation solubility can be produced without exceeding the saturation solubility.
That is, the gist of the present invention is as follows.

[1] 水中で自己分解しないガスからなる被溶解ガスを供給水に溶解させるガス溶解工程と、得られたガス溶解水を、液温の目標値Tとなるように加熱する加熱工程とを含むガス溶解水の製造方法において、該加熱工程における加熱後の該ガス溶解水の液温の測定値Tに基づいて、該ガス溶解水の溶存ガス濃度が該測定値Tにおける飽和溶解度を超えないように該ガス溶解工程におけるガス溶解量を制御することを特徴とするガス溶解水の製造方法。 [1] A gas dissolving step of dissolving a dissolved gas composed of a gas that does not self-decompose in water in the supply water, and a heating step of heating the obtained gas-dissolved water to a target value T 0 of the liquid temperature. In the method for producing gas dissolved water, the dissolved gas concentration of the gas dissolved water does not exceed the saturation solubility in the measured value T based on the measured value T of the liquid temperature of the gas dissolved water after heating in the heating step. Thus, the method for producing gas-dissolved water, wherein the amount of gas dissolved in the gas-dissolving step is controlled.

[2] [1]において、前記測定値Tが目標値T未満のときは、下記(1)〜(4)のうちのいずれかで前記ガス溶解水のガス溶解量を制御し、前記測定値Tが目標値Tに達した後は、下記(2)〜(4)のいずれかで前記ガス溶解水のガス溶解量を制御することを特徴とするガス溶解水の製造方法。
(1) 予め求めた目標値Tにおける前記被溶解ガスの飽和溶解度を前記溶存ガス濃度の調整値として前記ガス溶解水のガス溶解量を制御する。
(2) 予め前記ガス溶解水の液温と前記被溶解ガスの飽和溶解度との連続的な検量関係を求めておき、該検量関係から求めた前記測定値Tにおける飽和溶解度を前記溶存ガス濃度の調整値として前記ガス溶解水のガス溶解量を制御する。
(3) 予め前記ガス溶解水の液温と前記被溶解ガスの飽和溶解度との検量関係を所定の液温間隔で求めておき、該検量関係に示される液温のうち、前記測定値Tよりも高く、かつ該測定値Tに最も近い液温における飽和溶解度を前記溶存ガス濃度の調整値として前記ガス溶解水のガス溶解量を制御する。
(4) 予め前記ガス溶解水の液温と前記被溶解ガスの飽和溶解度との検量関係を所定の液温間隔で求めておき、前記測定値Tが該検量関係に示される液温に達したときに、該液温における飽和溶解度を前記溶存ガス濃度の調整値として前記ガス溶解水のガス溶解量を制御する。
[2] In [1], when the measurement value T is less than the target value T 0 , the gas dissolution amount is controlled by any one of the following (1) to (4), and the measurement is performed. After the value T reaches the target value T 0 , the gas dissolution amount is controlled by any one of the following (2) to (4).
(1) The gas dissolution amount of the gas dissolved water is controlled using the saturation solubility of the gas to be dissolved at the target value T 0 obtained in advance as the adjustment value of the dissolved gas concentration.
(2) A continuous calibration relationship between the liquid temperature of the gas-dissolved water and the saturated solubility of the gas to be dissolved is obtained in advance, and the saturated solubility at the measured value T obtained from the calibration relationship is calculated as the dissolved gas concentration. The gas dissolution amount of the gas dissolution water is controlled as an adjustment value.
(3) A calibration relationship between the liquid temperature of the gas-dissolved water and the saturated solubility of the gas to be dissolved is obtained in advance at a predetermined liquid temperature interval, and the measured value T of the liquid temperatures indicated in the calibration relationship is obtained. And the amount of dissolved gas in the gas dissolved water is controlled using the saturation solubility at the liquid temperature closest to the measured value T as the adjusted value of the dissolved gas concentration.
(4) A calibration relationship between the liquid temperature of the gas-dissolved water and the saturated solubility of the gas to be dissolved is obtained in advance at a predetermined liquid temperature interval, and the measured value T reaches the liquid temperature indicated by the calibration relationship. In some cases, the amount of gas dissolved in the gas dissolved water is controlled using the saturation solubility at the liquid temperature as an adjustment value of the dissolved gas concentration.

[3] [2]において、前記所定の液温間隔で求めた検量関係は、液温間隔10℃以下で液温と該液温における飽和溶解度との関係を求めたものであることを特徴とするガス溶解水の製造方法。 [3] In [2], the calibration relationship obtained at the predetermined liquid temperature interval is a relationship between the liquid temperature and the saturation solubility at the liquid temperature at a liquid temperature interval of 10 ° C. or less. To produce gas-dissolved water.

[4] [1]ないし[3]のいずれかにおいて、前記供給水の液温は20℃以上であり、前記加熱による前記ガス溶解水の上昇温度が10℃以上であることを特徴とするガス溶解水の製造方法。 [4] The gas according to any one of [1] to [3], wherein the temperature of the feed water is 20 ° C. or higher, and the rising temperature of the dissolved gas due to the heating is 10 ° C. or higher. A method for producing dissolved water.

[5] [1]ないし[4]のいずれかにおいて、前記目標値Tが80℃未満であり、下記式で算出される飽和溶解度比率が70%以上であることを特徴とするガス溶解水の製造方法。
飽和溶解度比率=(S/S)×100
(上記式中、Sは前記測定値Tにおける飽和溶解度、Sは前記ガス溶解水の溶存ガス濃度を示す。)
[5] The gas-dissolved water according to any one of [1] to [4], wherein the target value T 0 is less than 80 ° C., and a saturated solubility ratio calculated by the following formula is 70% or more. Manufacturing method.
Saturation solubility ratio = (S X / S) × 100
(In the above formula, S represents the saturation solubility at the measured value T, and S X represents the dissolved gas concentration of the gas-dissolved water.)

[6] [5]において、前記目標値Tが70℃未満であり、前記飽和溶解度比率が80%以上であることを特徴とするガス溶解水の製造方法。 [6] The method for producing gas-dissolved water according to [5], wherein the target value T 0 is less than 70 ° C., and the saturation solubility ratio is 80% or more.

[7] [1]ないし[6]のいずれかにおいて、前記測定値Tに基づいて前記ガス溶解水の加熱強度を制御することを特徴とするガス溶解水の製造方法。 [7] The method for producing gas-dissolved water according to any one of [1] to [6], wherein the heating intensity of the gas-dissolved water is controlled based on the measured value T.

[8] [7]において、前記ガス溶解水の前記加熱工程への流入量を測定し、該ガス溶解水の流入量の測定値と、前記測定値Tとに基づいて、前記ガス溶解水の加熱強度を制御することを特徴とするガス溶解水の製造方法。 [8] In [7], an inflow amount of the gas-dissolved water into the heating step is measured, and the gas-dissolved water is measured based on a measured value of the inflow amount of the gas-dissolved water and the measured value T. A method for producing gas-dissolved water, wherein the heating intensity is controlled.

[9] 水中で自己分解しないガスからなる被溶解ガスを供給水に溶解させるガス溶解手段と、得られたガス溶解水を、液温の目標値Tとなるように加熱する加熱手段とを含むガス溶解水の製造装置において、該加熱手段における加熱後の該ガス溶解水の液温を測定する液温測定手段と、該液温の測定値Tに基づいて、該ガス溶解水の溶存ガス濃度が該測定値Tにおける飽和溶解度を超えないように該ガス溶解手段におけるガス溶解量を制御する制御手段とを有することを特徴とするガス溶解水の製造装置。 [9] Gas dissolving means for dissolving a gas to be dissolved made of a gas that does not self-decompose in water in supply water, and heating means for heating the obtained gas dissolved water so as to reach a target value T 0 of the liquid temperature. In the gas dissolved water production apparatus, the liquid temperature measuring means for measuring the liquid temperature of the gas dissolved water after heating in the heating means, and the dissolved gas of the gas dissolved water based on the measured value T of the liquid temperature And a control means for controlling the amount of dissolved gas in the gas dissolving means so that the concentration does not exceed the saturation solubility at the measured value T.

本発明によれば、加熱されたガス溶解水の液温の測定値に基づいて、当該液温における飽和溶解度を超えないようにガス溶解水のガス溶解量を制御するため、製造された加熱ガス溶解水は飽和溶解度を超えることはなく、発泡の危険性を回避することができる。また、飽和溶解度に近い溶存ガス濃度とすることができ、溶存ガス濃度が十分に高く、洗浄効果の高い加熱ガス溶解水を使用場所に供給することができる。   According to the present invention, based on the measured value of the liquid temperature of the heated gas-dissolved water, the manufactured heated gas is used to control the amount of gas-dissolved water dissolved so as not to exceed the saturation solubility at the liquid temperature. The dissolved water does not exceed the saturation solubility and the risk of foaming can be avoided. Moreover, it can be set as the dissolved gas density | concentration close | similar to saturation solubility, and dissolved gas density | concentration is high enough, and heated gas dissolved water with a high cleaning effect can be supplied to a use place.

本発明においては、製造したガス溶解水を、加熱後に加圧や冷却によって飽和溶解度を上げることなく使用場所に供給することができるため、溶存ガス濃度を高く維持したガス溶解水を使用することができる。また、ガス溶解から使用場所への供給までに余剰ガスの発生・排出がないため、排ガス処理が不要となる上に、被溶解ガスとして水素ガスのような爆発性のガスを用いる場合も安全に処理することができる。   In the present invention, the produced gas-dissolved water can be supplied to the place of use without increasing the saturation solubility by pressurization or cooling after heating. Therefore, it is possible to use gas-dissolved water that maintains a high dissolved gas concentration. it can. In addition, since there is no generation or discharge of surplus gas from gas dissolution to supply to the place of use, exhaust gas treatment becomes unnecessary, and when explosive gas such as hydrogen gas is used as dissolved gas, it is safe Can be processed.

本発明のガス溶解水の製造装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the manufacturing apparatus of the gas dissolution water of this invention. ヒーターによる昇温時間とヒーター出口温度との関係を示すグラフである。It is a graph which shows the relationship between the temperature rising time by a heater, and heater exit temperature.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[メカニズム]
加熱したガス溶解水を製造する場合、ガス溶解水の加熱温度の目標値Tは、この加熱ガス溶解水を洗浄液として使用する使用場所(ユースポイント)側から、必要な洗浄液の液温として設定され、ガス溶解水の加熱後の液温の測定値Tが、目標値Tに近づくように、ガス溶解水の加熱前温度と流量からヒーター加熱強度が決められる。
[mechanism]
When manufacturing heated gas-dissolved water, the target value T 0 of the gas-dissolved water heating temperature is set as the required cleaning liquid temperature from the use point (use point) where the heated gas-dissolved water is used as the cleaning liquid. is the measured value T of the liquid temperature after heating of the gas dissolved water is, so as to approach the target value T 0, the heater heating intensity can be determined from prior heating of the gas dissolved water temperature and flow rate.

しかし、ヒーターの加熱強度を調整するだけでは目標値Tに制御することは容易ではない場合があり、ヒーター出口温度T、即ち、加熱後のガス溶解水の液温の測定値Tが変動することがある。例えば、ヒーターの運転開始から加熱強度が上がるにつれて、ヒーター出口温度、即ち、液温の測定値Tが徐々に上がり、出口温度(測定値T)が目標値Tに到達する(以下、この目標値Tに達するまでの段階を「段階1」と称す場合がある。)。この時点から、ヒーター加熱強度を微調整するが、測定値Tは目標値T近傍でしばらく変動した後に安定する(この目標値Tに達した後、測定値Tが安定するまでの段階を「段階2」と称し、その後、測定値Tが安定する段階を「段階3」と称す場合がある。)。ただし、厳密には、段階3においても、供給水(原水)にわずかながら流量変動があるため、その後のヒーター出口温度もわずかに変動する。 However, only by adjusting the heating intensity of the heater may is not easy to control the target value T 0, the heater outlet temperature T, i.e., the measured value T of the liquid temperature of the gas dissolved water after heating varies Sometimes. For example, as the heating intensity increases from the start of operation of the heater, the heater outlet temperature, that is, the measured value T of the liquid temperature, gradually increases, and the outlet temperature (measured value T) reaches the target value T 0 (hereinafter, this target). The stage until the value T 0 is reached may be referred to as “stage 1”). From this point, the fine adjustment of the heater heating intensity, after the measurement value T has reached the stable to (the target value T 0 after a while varied target value T 0 near the measured value T of the phase to stabilize The stage where the measured value T is stabilized after that is referred to as “stage 2”, and may be referred to as “stage 3”. However, strictly speaking, even in the stage 3, since there is a slight flow rate fluctuation in the feed water (raw water), the heater outlet temperature thereafter fluctuates slightly.

例えば、約36mg/Lの酸素ガスを溶解させたガス溶解水を、流量5.8L/minでオメガセミコン電子(株)製ヒーター「DI WATER HEATER、HDWII−12N」に供給し、液温の目標値Tを66℃に設定して加熱する加熱実験を行うと、原水供給側からの流量変動のためにヒーターへの流入水量も変動し、昇温時間と、ヒーター出口温度(加熱後のガス溶解水の液温の測定値に該当する。)との関係は表1及び図2の通りとなり、目標値Tに達した後もヒーター出口温度はわずかに変動する。 For example, gas dissolved water in which about 36 mg / L of oxygen gas is dissolved is supplied to a heater “DI WATER HEATER, HDWII-12N” manufactured by Omega Semicon Electronics Co., Ltd. at a flow rate of 5.8 L / min. When a heating experiment was performed by setting the value T 0 to 66 ° C. and heating, the amount of water flowing into the heater also fluctuated due to fluctuations in the flow rate from the raw water supply side, and the temperature rise time and the heater outlet temperature (gas after heating) corresponds to the measured value of the liquid temperature of the dissolution water.) relationship between becomes as shown in Table 1 and Figure 2, the heater outlet temperature after reaching the target value T 0 may vary slightly.

Figure 0006565347
Figure 0006565347

従来法では、後掲の比較例1に示すように、目標値Tにおける飽和溶解度を、ガス溶解水の溶存ガス濃度の調整値として設定してガス溶解水を製造するため、目標値Tに達した後は、実際の加熱温度の変動のために、飽和溶解度を超えてしまう場合があり、発泡の恐れがある。 In the conventional method, as shown in Comparative Example 1 described later, since the saturated solubility at the target value T 0 is set as the adjustment value of the dissolved gas concentration of the gas dissolved water to produce the gas dissolved water, the target value T 0 After reaching the value, the saturation solubility may be exceeded due to fluctuations in the actual heating temperature, and foaming may occur.

本発明では、加熱されたガス溶解水の液温を測定し、この測定値Tが目標値Tに達した後もガス溶解水の溶存ガス濃度が測定値Tにおける飽和溶解度を超えないようにガス溶解量を制御するため、このような発泡の問題は回避される。
しかも、液温の測定値Tに基づいて、当該液温における飽和溶解度に近い溶存ガス濃度に制御することにより、高い溶存ガス濃度のガス溶解水を製造することができる。
In the present invention, the liquid temperature of the heated gas dissolved water is measured, so that the dissolved gas concentration of the gas dissolved water does not exceed saturation solubility in the measured value T even after the measurement value T has reached the target value T 0 Such foaming problems are avoided because the amount of dissolved gas is controlled.
Moreover, by controlling the dissolved gas concentration close to the saturation solubility at the liquid temperature based on the measured value T of the liquid temperature, it is possible to produce gas dissolved water having a high dissolved gas concentration.

[被溶解ガス]
本発明では、ガス溶解水を加熱するため、加熱により自己分解するオゾンガスなどは、被溶解ガスとして適用できない。水中で自己分解しない被溶解ガスとしては、水素ガス、酸素ガス、窒素ガス、アルゴンガス等の希ガスが挙げられるが、何らこれらに限定されるものではない。
[Dissolved gas]
In the present invention, since the gas-dissolved water is heated, ozone gas that self-decomposes by heating cannot be applied as the gas to be dissolved. Examples of the gas to be dissolved that does not self-decompose in water include noble gases such as hydrogen gas, oxygen gas, nitrogen gas, and argon gas, but are not limited thereto.

[供給水]
被溶解ガスを溶解させる供給水としては、通常超純水が用いられる。
特に、製造したガス溶解水を電子材料の洗浄液として用いる場合、供給水として使用する超純水は、温度25℃における電気抵抗率が18MΩ・cm以上であり、有機体炭素濃度が10μg/L以下であり、金属分の含有量が20ng/L以下であり、微粒子量が10,000個/L以下であることが好ましい。
[Supply water]
As the supply water for dissolving the gas to be dissolved, ultrapure water is usually used.
In particular, when the produced gas-dissolved water is used as a cleaning liquid for electronic materials, the ultrapure water used as the supply water has an electrical resistivity at a temperature of 25 ° C. of 18 MΩ · cm or more and an organic carbon concentration of 10 μg / L or less. The metal content is preferably 20 ng / L or less, and the fine particle content is preferably 10,000 particles / L or less.

なお、超純水を使用する場合、脱気後に窒素パージして窒素ガス溶解水と同等の水質の水溶液として使用する場合があり、特に温超純水として使用する場合、パージ窒素が発泡しないようにパージ量を制御することが好ましいので、本発明では、窒素ガスパージした超純水も窒素ガス溶解水に含める。   In addition, when using ultrapure water, it may be purged with nitrogen after deaeration and used as an aqueous solution with a water quality equivalent to nitrogen gas-dissolved water. Especially when used as warm ultrapure water, it is purged so that purge nitrogen does not foam. Since it is preferable to control the amount, ultrapure water purged with nitrogen gas is also included in the nitrogen gas-dissolved water in the present invention.

[被溶解ガスの溶解及び加熱]
供給水への被溶解ガスの溶解は、常法に従って行うことができる。
[Dissolution and heating of dissolved gas]
Dissolution of the gas to be dissolved in the feed water can be performed according to a conventional method.

例えば、供給水を必要に応じて脱気膜モジュールで脱気処理した後、ガス透過膜を介して気相室と液相室とが仕切られたガス透過膜モジュールの気相室に供給した被溶解ガスをガス透過膜を介して液相室に供給した供給水に移行させて溶解させるガス溶解膜モジュールを用いて、被溶解ガスを溶解させる方法が挙げられる。   For example, after the supply water is deaerated in the deaeration membrane module as necessary, the supplied water is supplied to the gas phase chamber of the gas permeable membrane module in which the gas phase chamber and the liquid phase chamber are partitioned through the gas permeable membrane. There is a method of dissolving a gas to be dissolved using a gas dissolving membrane module in which dissolved gas is transferred to supply water supplied to a liquid phase chamber via a gas permeable membrane and dissolved.

また、脱気処理された供給水に過剰量の被溶解ガスを常圧下でバブリングすることで被溶解ガスを溶解させることもできる。   Further, the dissolved gas can be dissolved by bubbling an excessive amount of the dissolved gas into the degassed supply water under normal pressure.

ガス溶解水の加熱についても常法に従ってヒーターを用いて行うことができるが、加熱処理によってガス溶解水の水質が悪化することを避けるべく、加熱手段の接液部材は、フッ素樹脂などの水質悪化を招くおそれのない部材とすることが好ましい。
例えば、フッ素樹脂製のチューブを複数本束ねて容器に入れ、チューブの内側又は外側にガス溶解水を流し、チューブ壁面を介して逆の側に加温媒体を通水あるいは保持する構造を有する熱交換器を用いることができる。この場合は加温媒体の温度や流量の調整によって加熱強度を調整することができる。
或いは、透光性の石英製の通水管にガス溶解水を通水しつつ通水管の外側の空間内に設置されたハロゲンランプ等の放射加熱体により加熱する加熱器を用いることもできる。この場合は放射加熱体の出力の調整によって加熱強度を調整することができる。
Gas-dissolved water can also be heated using a heater according to a conventional method. However, in order to avoid deterioration of the quality of the gas-dissolved water due to the heat treatment, the liquid contact member of the heating means is deteriorated in water quality such as fluororesin. It is preferable to use a member that does not have a risk of incurring.
For example, heat having a structure in which a plurality of tubes made of fluororesin are bundled and put in a container, gas dissolved water is allowed to flow inside or outside the tube, and the heating medium is passed or held on the opposite side through the tube wall surface. An exchanger can be used. In this case, the heating intensity can be adjusted by adjusting the temperature and flow rate of the heating medium.
Alternatively, it is also possible to use a heater that is heated by a radiant heater such as a halogen lamp installed in a space outside the water pipe while passing the gas-dissolved water through the light-transmitting quartz water pipe. In this case, the heating intensity can be adjusted by adjusting the output of the radiant heating element.

供給水やガス溶解水を送液する給水配管の材質は、水質を悪化させるものでなければ制限はなく、ガス透過性が低いCVP(塩化ビニル)、PVDF(ポリフッ化ビニリデン)などの材質が望ましいが、高い脱気レベル(例えば溶存酸素ガス濃度50ppb以下)が必要でない場合はこの限りではない。   The material of the water supply pipe for feeding the supply water and the gas-dissolved water is not limited as long as it does not deteriorate the water quality, and a material such as CVP (vinyl chloride) or PVDF (polyvinylidene fluoride) having low gas permeability is desirable. However, this is not the case when a high deaeration level (for example, a dissolved oxygen gas concentration of 50 ppb or less) is not required.

[ガス溶解量の制御]
本発明においては、加熱後のガス溶解水の液温を測定し、この測定値Tに基づいて、ガス溶解水の溶存ガス濃度が測定値Tにおける飽和溶解度を超えないように供給水に溶解させる被溶解ガスのガス溶解量を制御する。
[Control of dissolved gas amount]
In the present invention, the temperature of the gas-dissolved water after heating is measured, and based on this measured value T, the dissolved gas concentration of the gas-dissolved water is dissolved in the supply water so as not to exceed the saturation solubility at the measured value T. Controls the amount of gas to be dissolved.

具体的には、予めガス溶解水の液温とこの液温における被溶解ガスの飽和溶解度との検量関係を求めておき、この検量関係から測定値Tに対応する飽和溶解度を求め、ガス溶解水の溶存ガス濃度がこの飽和溶解度以下となるようにガス溶解水のガス溶解量を制御する方法が挙げられる。   Specifically, a calibration relationship between the liquid temperature of the gas-dissolved water and the saturated solubility of the gas to be dissolved at the liquid temperature is obtained in advance, and the saturated solubility corresponding to the measured value T is obtained from the calibration relationship, and the gas-dissolved water is obtained. There is a method of controlling the gas dissolution amount of the gas dissolved water so that the dissolved gas concentration of the gas is equal to or lower than the saturation solubility.

このガス溶解量の制御は、例えば、ヒーター又はヒーターからの加熱ガス溶解水の送液配管に設けられた温度計で測定した液温の温度信号を制御手段に送信し、制御手段にて予め作製した検量関係に基づいて、目的とする溶存ガス濃度になるようにガス溶解手段の出力を自動調整することで行うことが好ましい。   This gas dissolution amount control is performed by, for example, transmitting a temperature signal of a liquid temperature measured by a thermometer provided in a heater or a heating pipe for supplying heated gas dissolved water from the heater to the control means, and preparing the control means in advance. Based on the calibration relationship, it is preferable to automatically adjust the output of the gas dissolving means so as to achieve the desired dissolved gas concentration.

例えば、脱気処理された供給水に対して、ガス溶解膜モジュールを用いて、ガス溶解膜モジュールの気相室に被溶解ガスを加圧供給して液相室内の供給水に溶解させる場合は、被溶解ガスを加圧供給するポンプの出力を調整することで、ガス溶解量を調整することができる。あるいは、脱気処理された供給水に過剰量の被溶解ガスを常圧下でバブリングすることで被溶解ガスを溶解させる場合は、曝気のブロワーの出力を調整することでガス溶解量を調整することができる。   For example, when the gas to be dissolved is pressurized and supplied to the gas phase chamber of the gas dissolution membrane module with respect to the degassed supply water, and dissolved in the supply water in the liquid phase chamber The amount of dissolved gas can be adjusted by adjusting the output of a pump that pressurizes and supplies the gas to be dissolved. Alternatively, if the dissolved gas is dissolved by bubbling an excessive amount of the dissolved gas into the degassed feed water under normal pressure, the gas dissolved amount can be adjusted by adjusting the output of the aeration blower. Can do.

ガス溶解量の制御は、常に液温の測定値Tから当該液温における飽和溶解度に基づいて行ってもよく、液温の測定値Tが目標値T未満のとき(即ち、段階1)は、下記(1)〜(4)のうちのいずれかでガス溶解水のガス溶解量を制御し、前記測定値Tが目標値Tに達した後(即ち、前記段階2と段階3)は、下記(2)〜(4)のいずれかで前記ガス溶解水のガス溶解量を制御するようにしてもよい。
(1) 予め求めた目標値Tにおける前記被溶解ガスの飽和溶解度を前記溶存ガス濃度の調整値として前記ガス溶解水のガス溶解量を制御する。
(2) 予め前記ガス溶解水の液温と前記被溶解ガスの飽和溶解度との連続的な検量関係を求めておき、該検量関係から求めた前記測定値Tにおける飽和溶解度を前記溶存ガス濃度の調整値として前記ガス溶解水のガス溶解量を制御する。
(3) 予め前記ガス溶解水の液温と前記被溶解ガスの飽和溶解度との検量関係を所定の液温間隔で求めておき、該検量関係に示される液温のうち、前記測定値Tよりも高く、かつ該測定値Tに最も近い液温における飽和溶解度を前記溶存ガス濃度の調整値として前記ガス溶解水のガス溶解量を制御する。
(4) 予め前記ガス溶解水の液温と前記被溶解ガスの飽和溶解度との検量関係を所定の液温間隔で求めておき、前記測定値Tが該検量関係に示される液温に達したときに、該液温における飽和溶解度を前記溶存ガス濃度の調整値として前記ガス溶解水のガス溶解量を制御する。
The control of the gas dissolution amount may always be performed based on the liquid temperature measurement value T based on the saturation solubility at the liquid temperature, and when the liquid temperature measurement value T is less than the target value T 0 (ie, stage 1). After the gas dissolution amount is controlled in any of the following (1) to (4) and the measured value T reaches the target value T 0 (that is, the steps 2 and 3) The gas dissolution amount of the gas dissolution water may be controlled by any one of the following (2) to (4).
(1) The gas dissolution amount of the gas dissolved water is controlled using the saturation solubility of the gas to be dissolved at the target value T 0 obtained in advance as the adjustment value of the dissolved gas concentration.
(2) A continuous calibration relationship between the liquid temperature of the gas-dissolved water and the saturated solubility of the gas to be dissolved is obtained in advance, and the saturated solubility at the measured value T obtained from the calibration relationship is calculated as the dissolved gas concentration. The gas dissolution amount of the gas dissolution water is controlled as an adjustment value.
(3) A calibration relationship between the liquid temperature of the gas-dissolved water and the saturated solubility of the gas to be dissolved is obtained in advance at a predetermined liquid temperature interval, and the measured value T of the liquid temperatures indicated in the calibration relationship is obtained. And the amount of dissolved gas in the gas dissolved water is controlled using the saturation solubility at the liquid temperature closest to the measured value T as the adjusted value of the dissolved gas concentration.
(4) A calibration relationship between the liquid temperature of the gas-dissolved water and the saturated solubility of the gas to be dissolved is obtained in advance at a predetermined liquid temperature interval, and the measured value T reaches the liquid temperature indicated by the calibration relationship. In some cases, the amount of gas dissolved in the gas dissolved water is controlled using the saturation solubility at the liquid temperature as an adjustment value of the dissolved gas concentration.

ここで、「飽和溶解度に基づいてガス溶解量を制御する」とは、その飽和溶解度を、得られるガス溶解水の溶存ガス濃度の調整値(目標値)としてガス溶解量を制御することを言う。   Here, “controlling the amount of dissolved gas based on the saturation solubility” means controlling the amount of dissolved gas using the saturation solubility as an adjustment value (target value) of the dissolved gas concentration of the obtained dissolved gas. .

液温と飽和溶解度との検量関係は、連続的に求めたものであってもよく、所定の液温間隔で求めたものであってもよい。例えば、液温間隔10℃以下で液温と当該液温における飽和溶解度との関係を求めたものであっても構わない。この液温間隔が10℃よりも大きいと、精度のよい制御を行うことができず、発泡を確実に防止し得ない場合がある。また、飽和溶解度に近い溶存ガス濃度のガス溶解水を製造することができない場合がある。   The calibration relationship between the liquid temperature and the saturated solubility may be obtained continuously or may be obtained at predetermined liquid temperature intervals. For example, the relationship between the liquid temperature and the saturation solubility at the liquid temperature at a liquid temperature interval of 10 ° C. or less may be obtained. If this liquid temperature interval is larger than 10 ° C., accurate control cannot be performed, and foaming may not be reliably prevented. Moreover, the gas-dissolved water with the dissolved gas concentration close to the saturation solubility may not be produced.

高精度の制御が行える観点から、この液温間隔は小さい程好ましいが、検量関係を測定するための作業と制御精度を勘案して、液温間隔は1〜10℃程度とすることが好ましい。   The liquid temperature interval is preferably as small as possible from the viewpoint of performing high-precision control, but the liquid temperature interval is preferably set to about 1 to 10 ° C. in consideration of the work for measuring the calibration relationship and the control accuracy.

検量関係に基づくガス溶解量の制御法としてはまた、例えば、後掲の実施例1のように、適度な液温間隔(例えば10℃以下)刻みで液温と該液温における飽和溶解度との検量関係を事前に求めておき、また一定時間毎にヒーター出口の加熱ガス溶解水の液温を測定し、検量関係の液温の中で測定値Tより高くかつ最も近い液温における飽和溶解度を、ガス溶解水の溶存ガス濃度の調整値としてガス溶解量を制御する方法が挙げられる(上記(3))。
また、連続的にヒーター出口の加熱ガス溶解水の液温を測定し、検量関係の液温に達した時点で昇温中継点となる当該液温の飽和溶解度を溶存ガス濃度の調整値としてガス溶解量を制御するようにしてもよい(上記(4))。
As a method for controlling the amount of dissolved gas based on the calibration relationship, for example, as in Example 1 described later, the liquid temperature and the saturation solubility at the liquid temperature at appropriate liquid temperature intervals (for example, 10 ° C. or less). The calibration relationship is obtained in advance, and the liquid temperature of the heated gas dissolved water at the heater outlet is measured at regular intervals, and the saturation solubility at the closest liquid temperature higher than the measured value T among the calibration temperature is measured. As a method for adjusting the dissolved gas concentration of the dissolved gas, there is a method of controlling the amount of dissolved gas (above (3)).
Also, the temperature of the heated gas dissolved water at the heater outlet is continuously measured, and the saturated solubility of the liquid temperature that becomes the temperature rise relay point when the calibration related liquid temperature is reached is used as the adjustment value of the dissolved gas concentration. The amount of dissolution may be controlled ((4) above).

例えば、液温5℃の水素ガス溶解水を昇温する場合、始めは10℃における飽和溶解度1.72mg/Lを溶存ガス濃度の調整値として被溶解ガスの加圧ポンプの出力を調整して加熱開始し、ヒーター出力が徐々に上がりヒーター出口温度が10℃に達した時点で、溶存ガス濃度の調整値を20℃における飽和溶解度1.59mg/Lに変更するといった操作を繰り返し、10℃刻みでガス溶解量の制御を行うことができる。
上記は10℃刻みの例を示したが、前述の通り、検量関係の液温間隔が小さいほど高精度の制御が可能となる。
For example, when raising the temperature of hydrogen gas-dissolved water with a liquid temperature of 5 ° C., first adjust the output of the pressurized pump of the gas to be dissolved with a saturation solubility of 1.72 mg / L at 10 ° C. as the adjustment value of the dissolved gas concentration. When heating starts and the heater output gradually rises and the heater outlet temperature reaches 10 ° C, the operation of changing the dissolved gas concentration adjustment value to 1.59 mg / L of saturated solubility at 20 ° C is repeated every 10 ° C. Can control the amount of dissolved gas.
Although the above shows an example in increments of 10 ° C., as described above, control with higher accuracy is possible as the calibration-related liquid temperature interval is smaller.

加熱ガス溶解水の液温を間欠的に測定してガス溶解量を制御する場合、その頻度には特に制限はなく、加熱時のガス溶解水の昇温速度や液温の変動の程度によっても異なるが、例えば、液温の測定・制御間隔は1〜60秒で一定としてもよく、目標値Tに達するまでの昇温過程(段階1)と、目標値Tに達し、液温の大きな変動がなくなった時点以降(段階2及び段階3)とで、液温の測定・制御間隔を異なる条件に設定してもよい。 When controlling the amount of dissolved gas by intermittently measuring the temperature of the heated gas dissolved water, there is no particular limitation on the frequency, and it depends on the rate of temperature increase of the gas dissolved water during heating and the degree of fluctuation of the liquid temperature. different, for example, measurement and control spacing liquid temperature may be constant at 60 seconds, the Atsushi Nobori process to reach the target value T 0 (step 1), reached the target value T 0, the liquid temperature The liquid temperature measurement / control interval may be set to different conditions after the time when the large fluctuation disappears (step 2 and step 3).

[加熱強度の制御]
ガス溶解水の加熱強度は、加熱ガス溶解水の液温の測定値Tに基づいて制御することが好ましく、特に、供給水の流量又は加熱手段へのガス溶解水の流入量を測定し、流量の測定値と液温の測定値Tに基づいて制御することが好ましい。即ち、液温の測定値Tが目標値Tに近づくか、または液温の測定値が目標値Tを超えたら、加熱強度を小さくする。
[Control of heating intensity]
The heating intensity of the gas dissolved water is preferably controlled based on the measured value T of the liquid temperature of the heated gas dissolved water. In particular, the flow rate of the supplied water or the amount of gas dissolved water flowing into the heating means is measured, It is preferable to control based on the measured value and the measured value T of the liquid temperature. That is, if the measured value T of the liquid temperature approaches the target value T 0, or measurements of the liquid temperature After exceeds the target value T 0, decreasing the heating intensity.

[加熱温度と飽和溶解度比率]
本発明は、特に、供給水の液温が20℃以上、例えば20〜30℃であり、加熱によるガス溶解水の上昇温度が10℃以上、特に10〜70℃程度で、液温40〜90℃程度の加熱ガス溶解水を製造する場合のように、加熱による被溶解ガスの飽和溶解度の変化が大きい加熱ガス溶解水の製造に有効である。
[Heating temperature and saturation solubility ratio]
In the present invention, in particular, the liquid temperature of the feed water is 20 ° C. or higher, for example, 20 to 30 ° C., the rising temperature of the gas dissolved water by heating is 10 ° C. or higher, particularly about 10 to 70 ° C., and the liquid temperature is 40 to 90 °. As in the case of producing heated gas-dissolved water at about 0 ° C., this is effective for producing heated gas-dissolved water in which the change in saturation solubility of the gas to be dissolved by heating is large.

このような加熱ガス溶解水の製造に当たり、本発明によれば、加熱ガス溶解水の液温の目標値Tが80℃未満の場合、下記式で算出される飽和溶解度比率が70%以上のガス溶解水を製造することができ、特に、目標値Tが70℃未満の場合には、飽和溶解度比率が80%以上のガス溶解水を製造することができる。
飽和溶解度比率=(S/S)×100
(上記式中、Sは測定値Tにおける飽和溶解度、Sはガス溶解水の溶存ガス濃度を示す。)
In producing such heated gas-dissolved water, according to the present invention, when the target value T 0 of the heated gas-dissolved water temperature is less than 80 ° C., the saturated solubility ratio calculated by the following formula is 70% or more. Gas-dissolved water can be produced. In particular, when the target value T 0 is less than 70 ° C., gas-dissolved water having a saturation solubility ratio of 80% or more can be produced.
Saturation solubility ratio = (S X / S) × 100
(In the above formula, S represents the saturation solubility at the measured value T, and S X represents the dissolved gas concentration of the gas dissolved water.)

[ガス溶解水の製造装置]
以下に、図1を参照して本発明のガス溶解水の製造装置の実施の形態を説明するが、図1は本発明のガス溶解水の製造装置の実施の形態の一例を示すものであり、本発明のガス溶解水の製造装置は何ら図1に示すものに限定されるものではない。
[Production equipment for dissolved gas]
Hereinafter, an embodiment of the gas dissolved water production apparatus of the present invention will be described with reference to FIG. 1. FIG. 1 shows an example of an embodiment of the gas dissolved water production apparatus of the present invention. The gas-dissolved water production apparatus of the present invention is not limited to that shown in FIG.

図1において、1は脱気膜モジュール、2はガス溶解膜モジュール、3はヒーター、4は制御器である。V,Vは開閉バルブである。 In FIG. 1, 1 is a degassing membrane module, 2 is a gas dissolution membrane module, 3 is a heater, and 4 is a controller. V 1 and V 2 are open / close valves.

脱気膜モジュール1内は、ガス透過膜1Mによって液相室1aと気相室1bに区画されている。同様に、ガス溶解膜モジュール2内も、ガス透過膜2Mによって液相室2aと気相室2bに区画されている。   The inside of the deaeration membrane module 1 is partitioned into a liquid phase chamber 1a and a gas phase chamber 1b by a gas permeable membrane 1M. Similarly, the gas dissolution membrane module 2 is also divided into a liquid phase chamber 2a and a gas phase chamber 2b by a gas permeable membrane 2M.

これらガス透過膜1M,2Mとしては、水を透過させず、かつガスを透過させるものであれば特に制限はなく、例えば、ポリプロピレン、ポリジメチルシロキサン、ポリカーボネート−ポリジメチルシロキサンブロック共重合体、ポリビニルフェノール−ポリジメチルシロキサン−ポリスルホンブロック共重合体、ポリ(4−メチルペンテン−1)、ポリ(2,6−ジメチルフェニレンオキシド)、ポリテトラフルオロエチレンなどの高分子膜などを挙げることができる。   The gas permeable membranes 1M and 2M are not particularly limited as long as they do not allow water to permeate and allow gas to permeate. For example, polypropylene, polydimethylsiloxane, polycarbonate-polydimethylsiloxane block copolymer, polyvinylphenol Examples thereof include polymer films such as polydimethylsiloxane-polysulfone block copolymer, poly (4-methylpentene-1), poly (2,6-dimethylphenylene oxide), and polytetrafluoroethylene.

供給水(原水)は原水配管11より、脱気膜モジュール1の液相室1aに導入され、脱気膜モジュール1の気相室1bが、排気配管13を介して真空ポンプPで吸引されることで脱気される。 Supply water (raw water) is introduced into the liquid phase chamber 1a of the degassing membrane module 1 from the raw water piping 11, and the gas phase chamber 1b of the degassing membrane module 1 is sucked by the vacuum pump P1 through the exhaust piping 13. Is degassed.

真空ポンプPには特に制限はないが、例えば、水封式真空ポンプや水蒸気除去機能を備えたスクロールポンプなどのように、水蒸気を吸気できるものが好ましい。 There is no particular limitation on the vacuum pump P 1, for example, such as a scroll pump with liquid ring vacuum pumps and steam removal function and that can be used in the intake steam.

脱気膜モジュール1からの脱気水は、脱気水配管12よりガス溶解膜モジュール2の液相室2aに導入される。ガス溶解膜モジュール2の気相室2bには、加圧ポンプPにより被溶解ガス配管14を経て被溶解ガスが供給され、ガス透過膜2Mを透過して脱気水に被溶解ガスが溶解される。 Deaerated water from the deaeration membrane module 1 is introduced into the liquid phase chamber 2 a of the gas dissolution membrane module 2 through the deaeration water pipe 12. The gas phase chamber 2b of the gas dissolving membrane module 2, the dissolved gases are supplied through the dissolved gas pipe 14 by the pressure pump P 2, the dissolved gases are dissolved in degassed water passes through the gas permeable membrane 2M Is done.

ガス溶解膜モジュール2からのガス溶解水は、配管15よりヒーター3に送給されて加熱され、加熱ガス溶解水は配管16より使用場所の洗浄機等に送給される。   The gas-dissolved water from the gas-dissolving membrane module 2 is supplied to the heater 3 through the pipe 15 and heated, and the heated gas-dissolved water is supplied from the pipe 16 to a washing machine or the like at the place of use.

この配管16には温度計Tが設けられており、加熱ガス溶解水の液温が測定され、測定値Tは制御器4に入力される。制御器4では、入力された測定値Tに基づき、予め設定された液温と飽和溶解度の検量関係から、目標とする溶存ガス濃度の調整値を設定し、その調整値に対応するガス溶解量となるように、被溶解ガス配管14の加圧ポンプPの出力を制御する。 This pipe 16 is provided with a thermometer T m, the liquid temperature of the heating gas dissolved water is measured, the measured value T is input to the control unit 4. The controller 4 sets a target dissolved gas concentration adjustment value from a preset calibration relationship between the liquid temperature and the saturation solubility based on the input measurement value T, and a gas dissolution amount corresponding to the adjustment value. and so that, to control the output of the pressure pump P 2 of the dissolution gas pipe 14.

また、この制御器4は、更に、温度計Tの測定値Tに基づいて、ヒーター3の加熱強度を制御するものであってもよい。更に、配管15又は16に流量計を設け、この流量計の測定値と、温度計Tの測定値Tに基づいて、ヒーター3の加熱強度を制御するものであってもよい。 The control unit 4 is further based on the measured value T of the thermometer T m, it may be configured to control the heating intensity of the heater 3. Furthermore, a flow meter is provided in the piping 15 or 16, the measured value of the flowmeter, based on the measured value T of the thermometer T m, may be configured to control the heating intensity of the heater 3.

なお、図1において、17は、ヒーターの昇温過程やトラブル時の加熱ガス溶解水を系外へ排出するためのブロー配管であり、バルブV,Vの開閉操作で、適宜加熱ガス溶解水の送液先が制御される。 In FIG. 1, reference numeral 17 denotes a blow pipe for discharging heated gas dissolved water during heating process or trouble of the heater to the outside of the system, and the heated gas dissolving is appropriately performed by opening and closing the valves V 1 and V 2. The water destination is controlled.

[被洗浄物]
本発明により製造される加熱ガス溶解水は、高温かつ高溶存ガス濃度で、洗浄効果に優れることから、各種部品の洗浄液として有用である。その洗浄対象となる被洗浄物としては特に制限はないが、その優れた洗浄効果から、半導体用のシリコンウェハ、フラットパネルディスプレイ用のガラス基板、フォトマスク用石英基板等、高度な清浄度が要求される電子材料(電子部品や電子部材等)の洗浄に好適である。
[To be cleaned]
The heated gas-dissolved water produced by the present invention is useful as a cleaning liquid for various parts because it has a high temperature and a high dissolved gas concentration and is excellent in cleaning effect. There are no particular restrictions on the object to be cleaned, but due to its excellent cleaning effect, a high degree of cleanliness is required, such as silicon wafers for semiconductors, glass substrates for flat panel displays, and quartz substrates for photomasks. It is suitable for cleaning of electronic materials (electronic parts, electronic members, etc.) to be used.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

以下の実施例及び比較例では、超純水を供給水とし、脱気膜モジュール:ミリポア社製「リキセルG248」で脱気処理した後、ガス溶解膜モジュール:ジャパンゴアテックス社製「GNH−01R」で被溶解ガスを溶解させて、ガス溶解水を製造し、このガス溶解水を、ヒーター:オメガセミコン電子(株)製「DI WATER HEATER、HDWII−12N」で加熱した。
溶存ガス濃度はORBISPHERE社製「510 Series Gas Analyzer」により測定した。
In the following Examples and Comparative Examples, ultrapure water was used as feed water, and after deaeration treatment with a deaeration membrane module: “Liquicel G248” manufactured by Millipore, a gas dissolution membrane module: “GNH-01R” manufactured by Japan Gore-Tex The dissolved gas was dissolved to produce gas-dissolved water, and the gas-dissolved water was heated with a heater: “DI WATER HEATER, HDWII-12N” manufactured by Omega Semicon Electronics Co., Ltd.
The dissolved gas concentration was measured by “510 Series Gas Analyzer” manufactured by ORBISPHERE.

[比較例1]
目標値T=66℃に設定し、加熱後のガス溶解水の液温の測定値Tに基づくガス溶解量の制御を行わずに昇温を行い、飽和溶解度比率(測定値Tにおける溶存ガス濃度と飽和溶解度Sの比)を求めた。なお、溶存ガス濃度の調整値は、目標値T:66℃における飽和溶解度So:1.07mg/Lとして条件固定で行ったので、飽和溶解度比率は(So/S)×100(%)となる。
その結果、後掲の表3に示す通り、ガス溶解量の制御を行わなかったため、加熱開始後30秒近くまでは飽和溶解度比率が80%を下回り、また、昇温時間70秒経過後は飽和溶解度比率が100%を超過する時間帯があり、発泡の可能性があるという結果になった。
[Comparative Example 1]
The target value T 0 is set to 66 ° C., the temperature is raised without controlling the amount of dissolved gas based on the measured value T of the gas dissolved water after heating, and the saturated solubility ratio (dissolved gas at the measured value T is measured). The ratio of concentration to saturation solubility S) was determined. The adjustment value of the dissolved gas concentration was set at a target value T 0 : saturated solubility So at 66 ° C .: 1.07 mg / L, and the conditions were fixed, so the saturated solubility ratio was (So / S) × 100 (%). Become.
As a result, as shown in Table 3 below, since the amount of dissolved gas was not controlled, the saturation solubility ratio was less than 80% until nearly 30 seconds after the start of heating, and after the heating time of 70 seconds passed, There were times when the solubility ratio exceeded 100%, which resulted in the possibility of foaming.

[実施例1]
目標値T=66℃に設定し、加熱後のガス溶解水の液温の測定値Tに基づくガス溶解量の制御を行いつつ昇温を行った。
本制御では、予め温度5℃又は10℃間隔で各液温における飽和溶解度を求めておき、下記表2に示すように、例えば測定値Tが25℃以上30℃未満の場合は、溶存ガス濃度の調整値を30℃における飽和溶解度Sに設定してガス溶解量を調整する、という要領で制御を行った。
[Example 1]
The target value T 0 was set to 66 ° C., and the temperature was raised while controlling the amount of dissolved gas based on the measured value T of the liquid temperature of the dissolved gas after heating.
In this control, the saturated solubility at each liquid temperature is obtained in advance at intervals of 5 ° C. or 10 ° C., and as shown in Table 2 below, for example, when the measured value T is 25 ° C. or higher and lower than 30 ° C., the dissolved gas concentration Was adjusted to the saturation solubility S X at 30 ° C. to adjust the gas dissolution amount.

Figure 0006565347
Figure 0006565347

このときの飽和溶解度比率(測定値Tにおける溶存ガス濃度Sと測定値Tにおける飽和溶解度Sの比Sx/S×100(%))を求めた。
結果は下記表3に示す通り、液温の測定値Tに基づいてガス溶解量の制御を行ったため、昇温による飽和溶解度の変化によらず安定して飽和溶解度比率を90%以上に維持することができ、また飽和溶解度比率100%を超えることがないため発泡も防止することができた。
The saturation solubility ratio at this time (the ratio Sx / S × 100 (%) of the dissolved gas concentration S x at the measurement value T and the saturation solubility S at the measurement value T) was determined.
As shown in Table 3, the result is that the gas dissolution amount is controlled based on the measured value T of the liquid temperature, so that the saturation solubility ratio is stably maintained at 90% or more regardless of the change in the saturation solubility due to the temperature rise. In addition, since the saturated solubility ratio did not exceed 100%, foaming could be prevented.

Figure 0006565347
Figure 0006565347

[実施例2〜4]
ガス種として酸素ガス(実施例2)、水素ガス(実施例3)、窒素ガス(実施例4)を用い、それぞれ、実施例1におけると同様に脱気、ガス溶解、及び加熱を行ってガス溶解水を製造する際に、液温10℃間隔でガス溶解量の制御を行ったときの飽和溶解度比率を求めた。
条件と結果を下記表4〜6に示す。
いずれのガス種でも、加熱温度が80℃未満であれば10℃刻みの制御で飽和溶解度比率70%以上を維持することができ、加熱温度が70℃未満であれば10℃刻みの制御で飽和溶解度比率80%以上を維持することができ、また、飽和溶解度比率100%を超えることはないことが示された。
[Examples 2 to 4]
As gas species, oxygen gas (Example 2), hydrogen gas (Example 3), and nitrogen gas (Example 4) were used, respectively, and degassing, gas dissolution, and heating were performed in the same manner as in Example 1. When the dissolved water was produced, the saturation solubility ratio was determined when the gas dissolution amount was controlled at intervals of 10 ° C. of the liquid temperature.
Conditions and results are shown in Tables 4 to 6 below.
Any gas type can maintain a saturation solubility ratio of 70% or more by controlling in increments of 10 ° C if the heating temperature is less than 80 ° C, and saturated by controlling in increments of 10 ° C if the heating temperature is less than 70 ° C. It was shown that the solubility ratio of 80% or more can be maintained, and that the saturation solubility ratio does not exceed 100%.

Figure 0006565347
Figure 0006565347

Figure 0006565347
Figure 0006565347

Figure 0006565347
Figure 0006565347

1 脱気膜モジュール
2 ガス溶解膜モジュール
3 ヒーター
4 制御器
1 Degassing membrane module 2 Gas dissolution membrane module 3 Heater 4 Controller

Claims (6)

水中で自己分解しないガスからなる被溶解ガスを供給水に溶解させるガス溶解工程と、得られたガス溶解水を、液温の目標値Tとなるように加熱する加熱工程とを含むガス溶解水の製造方法において、該加熱工程における加熱後の該ガス溶解水の液温の測定値Tに基づいて、該ガス溶解水の溶存ガス濃度が該測定値Tにおける飽和溶解度を超えないように該ガス溶解工程におけるガス溶解量を制御する方法であって、
前記測定値Tが目標値T 未満のときは、下記(1)〜(4)のうちのいずれかで前記ガス溶解水のガス溶解量を制御し、前記測定値Tが目標値T に達した後は、下記(2)〜(4)のいずれかで前記ガス溶解水のガス溶解量を制御することを特徴とするガス溶解水の製造方法。
(1) 予め求めた目標値T における前記被溶解ガスの飽和溶解度を前記溶存ガス濃度の調整値として前記ガス溶解水のガス溶解量を制御する。
(2) 予め前記ガス溶解水の液温と前記被溶解ガスの飽和溶解度との連続的な検量関係を求めておき、該検量関係から求めた前記測定値Tにおける飽和溶解度を前記溶存ガス濃度の調整値として前記ガス溶解水のガス溶解量を制御する。
(3) 予め前記ガス溶解水の液温と該液温における前記被溶解ガスの飽和溶解度との検量関係を液温間隔10℃以下の所定の液温間隔で求めておき、該検量関係に示される液温のうち、前記測定値Tよりも高く、かつ該測定値Tに最も近い液温における飽和溶解度を前記溶存ガス濃度の調整値として前記ガス溶解水のガス溶解量を制御する。
(4) 予め前記ガス溶解水の液温と該液温における前記被溶解ガスの飽和溶解度との検量関係を液温間隔10℃以下の所定の液温間隔で求めておき、前記測定値Tが該検量関係に示される液温に達したときに、該液温における飽和溶解度を前記溶存ガス濃度の調整値として前記ガス溶解水のガス溶解量を制御する。
A gas dissolution process including a gas dissolution process for dissolving a gas to be dissolved, which is a gas that does not self-decompose in water, in a supply water, and a heating process for heating the obtained gas dissolution water to a target value T 0 of the liquid temperature. In the method for producing water, based on the measured value T of the temperature of the dissolved gas after heating in the heating step, the dissolved gas concentration of the dissolved gas does not exceed the saturation solubility at the measured value T. A method for controlling the amount of gas dissolved in the gas dissolving step ,
When the measured value T is less than the target value T 0 , the gas dissolution amount of the gas-dissolved water is controlled by any one of the following (1) to (4), and the measured value T becomes the target value T 0 . After reaching , the gas-dissolved water production method characterized in that the gas-dissolved water amount is controlled by any one of the following (2) to (4) .
(1) The gas dissolution amount of the gas dissolved water is controlled using the saturation solubility of the gas to be dissolved at the target value T 0 determined in advance as the adjustment value of the dissolved gas concentration.
(2) A continuous calibration relationship between the liquid temperature of the gas-dissolved water and the saturated solubility of the gas to be dissolved is obtained in advance, and the saturated solubility at the measured value T obtained from the calibration relationship is calculated as the dissolved gas concentration. The gas dissolution amount of the gas dissolution water is controlled as an adjustment value.
(3) A calibration relationship between the liquid temperature of the gas-dissolved water and the saturated solubility of the gas to be dissolved at the liquid temperature is obtained in advance at a predetermined liquid temperature interval of a liquid temperature interval of 10 ° C. or less, and is shown in the calibration relationship. The amount of dissolved gas in the gas dissolved water is controlled using the saturated solubility at a liquid temperature higher than the measured value T and closest to the measured value T as an adjustment value of the dissolved gas concentration.
(4) A calibration relationship between the liquid temperature of the gas-dissolved water and the saturated solubility of the gas to be dissolved at the liquid temperature is obtained in advance at a predetermined liquid temperature interval of a liquid temperature interval of 10 ° C. or less. When the liquid temperature indicated in the calibration relationship is reached, the gas dissolution amount of the gas dissolved water is controlled using the saturation solubility at the liquid temperature as an adjustment value of the dissolved gas concentration.
請求項1において、前記供給水の液温は20℃以上であり、前記加熱による前記ガス溶解水の上昇温度が10℃以上であることを特徴とするガス溶解水の製造方法。 Oite to claim 1, wherein the liquid temperature of the feed water is at 20 ° C. or higher, the manufacturing method of the gas dissolved water, wherein the elevated temperature of the gas dissolved water by the heating is 10 ° C. or higher. 請求項1又は2において、前記目標値Tが80℃未満であり、下記式で算出される飽和溶解度比率が70%以上であることを特徴とするガス溶解水の製造方法。
飽和溶解度比率=(S/S)×100
(上記式中、Sは前記測定値Tにおける飽和溶解度、Sは前記ガス溶解水の溶存ガス濃度を示す。)
3. The method for producing gas-dissolved water according to claim 1, wherein the target value T 0 is less than 80 ° C., and a saturated solubility ratio calculated by the following formula is 70% or more.
Saturation solubility ratio = (S X / S) × 100
(In the above formula, S represents the saturation solubility at the measured value T, and S X represents the dissolved gas concentration of the gas-dissolved water.)
請求項において、前記目標値Tが70℃未満であり、前記飽和溶解度比率が80%以上であることを特徴とするガス溶解水の製造方法。 According to claim 3, wherein a target value T 0 is less than 70 ° C., the manufacturing method of the gas dissolved water, characterized in that the saturation solubility ratio of 80% or more. 請求項1ないしのいずれか1項において、前記測定値Tに基づいて前記ガス溶解水の加熱強度を制御することを特徴とするガス溶解水の製造方法。 In any one of claims 1 to 4, a manufacturing method of the gas dissolved water, characterized by controlling the heating intensity of the gas dissolved water based on the measured value T. 請求項において、前記ガス溶解水の前記加熱工程への流入量を測定し、該ガス溶解水の流入量の測定値と、前記測定値Tとに基づいて、前記ガス溶解水の加熱強度を制御することを特徴とするガス溶解水の製造方法。 In Claim 5 , the amount of inflows into the heating step of the gas dissolved water is measured, and based on the measured value of the amount of inflow of the gas dissolved water and the measured value T, the heating intensity of the gas dissolved water is determined. A method for producing gas-dissolved water, characterized by controlling.
JP2015115900A 2015-06-08 2015-06-08 Method for producing gas-dissolved water Active JP6565347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015115900A JP6565347B2 (en) 2015-06-08 2015-06-08 Method for producing gas-dissolved water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015115900A JP6565347B2 (en) 2015-06-08 2015-06-08 Method for producing gas-dissolved water

Publications (2)

Publication Number Publication Date
JP2017000931A JP2017000931A (en) 2017-01-05
JP6565347B2 true JP6565347B2 (en) 2019-08-28

Family

ID=57750969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015115900A Active JP6565347B2 (en) 2015-06-08 2015-06-08 Method for producing gas-dissolved water

Country Status (1)

Country Link
JP (1) JP6565347B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438077B2 (en) * 1999-09-10 2010-03-24 栗田工業株式会社 Method for preparing gas-dissolved water for cleaning electronic materials
DE60035288T2 (en) * 1999-10-19 2008-02-14 Phifer Smith Corp., Palo Alto METHOD AND DEVICE FOR TREATING A SUBSTRATE WITH AN OZONE SOLVENT SOLUTION
JP4019245B2 (en) * 2000-12-04 2007-12-12 株式会社ササクラ Ozone water production equipment
JP2003047839A (en) * 2001-08-06 2003-02-18 Yamatake Corp Micro reactor
JP2007173677A (en) * 2005-12-26 2007-07-05 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2008073595A (en) * 2006-09-20 2008-04-03 Matsushita Electric Ind Co Ltd Oxygen-enriched water generator
JP2008311591A (en) * 2007-06-18 2008-12-25 Sharp Corp Substrate treatment method and substrate treatment equipment
JP2010207724A (en) * 2009-03-10 2010-09-24 Yamatake Corp Gas dissolving system, gas dissolving method, and gas dissolving program
JP2010234298A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Device for supplying water containing dissolved gas and method for producing water containing dissolved gas
JP2013022496A (en) * 2011-07-19 2013-02-04 Panasonic Corp Face-washing water supply device

Also Published As

Publication number Publication date
JP2017000931A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
TWI795559B (en) Production method of ozone water
US10186436B2 (en) Substrate processing system and substrate processing method
JP4920751B2 (en) Apparatus, system and method for carbonating deionized water
JP6826437B2 (en) Supply liquid manufacturing equipment and supply liquid manufacturing method
JP2013528949A (en) Device, system and method for carbonation of deionized water
KR20170058928A (en) Device and method for manufacturing gas-dissolved water
KR0147044B1 (en) Heat treatment apparatus having exhaust system
WO2017122771A1 (en) Supply-liquid producing apparatus and supply-liquid producing method
TWI815010B (en) Gas-dissolved liquid supply apparatus and gas-dissolved liquid supply method
JP2009297588A (en) Method of preparing heated ozone water
JP6751326B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2000271549A (en) Gas-dissolved water supply device
TW200536600A (en) Apparatus for manufacturing nitrogen-dissolved water
JP6565347B2 (en) Method for producing gas-dissolved water
JP5412135B2 (en) Ozone water supply device
JP2004153164A (en) Method for controlling boiled chemical
JP5663410B2 (en) Ultrapure water production method and apparatus
JP6777534B2 (en) Diluting solution manufacturing equipment and diluent manufacturing method
JP6777533B2 (en) Diluting solution manufacturing equipment and diluent manufacturing method
WO2018025592A1 (en) Production apparatus and production method of alkaline water for electronic device cleaning
JP2004022572A (en) Substrate processing apparatus and method of controlling inert gas concentration
JP5358910B2 (en) Carbonated water manufacturing apparatus and manufacturing method
JP7052423B2 (en) Ozone-dissolved water production equipment and ozone-dissolved water production method using this
CN113613803B (en) System and method for supplying cleaning liquid
JP2010000503A (en) Pure water production apparatus and method of controlling pure water production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190715

R150 Certificate of patent or registration of utility model

Ref document number: 6565347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250