JP2008311591A - Substrate treatment method and substrate treatment equipment - Google Patents

Substrate treatment method and substrate treatment equipment Download PDF

Info

Publication number
JP2008311591A
JP2008311591A JP2007160611A JP2007160611A JP2008311591A JP 2008311591 A JP2008311591 A JP 2008311591A JP 2007160611 A JP2007160611 A JP 2007160611A JP 2007160611 A JP2007160611 A JP 2007160611A JP 2008311591 A JP2008311591 A JP 2008311591A
Authority
JP
Japan
Prior art keywords
ozone water
substrate processing
substrate
concentration
processing tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007160611A
Other languages
Japanese (ja)
Inventor
Hiroaki Yamamoto
弘明 山本
Takashi Minamibounoki
孝至 南朴木
Shinji Masuoka
真二 増岡
Hiroki Ninomiya
啓樹 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007160611A priority Critical patent/JP2008311591A/en
Publication of JP2008311591A publication Critical patent/JP2008311591A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate treating device capable of removing a residual organic matter on a substrate safely and in a short time, and a method. <P>SOLUTION: Cooled deionized water or ozone cold water is mixed with ozone gas to dissolve ozone, the low-temperature and high-concentration ozone water whose concentration has been increased is headed by a heating means 3, the high-temperature and high-concentration ozone water is supplied to a sealed substrate treatment tub 25 to be exposed to pressure higher than atmospheric pressure, thereby reducing an amount of useless ozone gas generated from the ozone water by heating exceeding saturated solubility, and expediting the reaction of the high-temperature and high-concentration ozone water by ozone. In the substrate treatment tub 25, the high-temperature and high-concentration ozone water is fluidized by the pump P2 to make an ozone concentration in the tank uniform. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、たとえば半導体素子、液晶表示素子および電子回路部品などの生成工程において、これらの素子および部品に用いられる半導体ウエハおよびガラス基板などの基板の表面に付着したレジストなどの残留有機物を除去するために好適に実施することができる基板処理装置および方法に関する。   The present invention removes residual organic substances such as a resist adhering to the surface of a substrate such as a semiconductor wafer or a glass substrate used in these elements and components in a production process of the semiconductor elements, liquid crystal display elements, and electronic circuit components, for example. Therefore, the present invention relates to a substrate processing apparatus and method that can be suitably implemented.

半導体素子および液晶表示素子などの素子および電子部品などに用いられる基板のうち、たとえば半導体ウエハは、その生成工程において、前記基板の表面に、化学的気相蒸着法(CVD法)またはスパッタリング法(PVD法)などによって薄膜(酸化膜)を形成し、その薄膜上にフォトレジストを塗布し、その基板を露光、現像処理して、レジストによるマスクパターンを形成する。そして、そのマスクパターンを保護膜として、不要な薄膜をエッチングによって除去した後、イオン注入によって不純物を導入して拡散層を形成する。   Among substrates used for elements such as semiconductor elements and liquid crystal display elements and electronic components, for example, semiconductor wafers are formed on the surface of the substrate in the production process by chemical vapor deposition (CVD) or sputtering ( A thin film (oxide film) is formed by the PVD method, a photoresist is applied on the thin film, the substrate is exposed and developed, and a mask pattern is formed by the resist. Then, using the mask pattern as a protective film, unnecessary thin films are removed by etching, and then impurities are introduced by ion implantation to form a diffusion layer.

エッチングやイオン注入が終わると、不要となったレジストを除去するのであるが、その除去の方法として、たとえば硫酸などの酸と過酸化物との混合液、あるいは有機溶剤などの種々の薬液によってレジストを分解または溶解して除去する手法が多用されている。   When etching or ion implantation is completed, the resist that is no longer needed is removed. As a method for removing the resist, for example, the resist is mixed with a mixture of an acid such as sulfuric acid and a peroxide, or various chemicals such as an organic solvent. Many methods are used for decomposing or dissolving them.

また、高濃度のイオン注入などによって激しく変質したレジストの場合は、薬液のみでは除去できないため、低圧でプラズマアッシング処理を併用するが、いずれにしても残留レジストを除去するために薬液が用いられる。   Also, in the case of a resist that has been severely altered by high-concentration ion implantation or the like, it cannot be removed only with a chemical solution, and therefore, a plasma ashing process is used at a low pressure. In any case, a chemical solution is used to remove the residual resist.

しかしながら、前述のような薬液による残留レジストの除去は、使用する薬液が硫酸などであるため、作業上および管理上、危険性が高く、また、使用後も、その廃液処理が必要であり、環境汚染の問題があるため、近年では、環境保全や作業中の安全性の観点から、そのような問題を有した薬品を使用しない手法の一つとして、オゾン(O)を用いた処理技術が採用されている。 However, the removal of residual resist with a chemical solution as described above is highly dangerous in terms of work and management because the chemical solution to be used is sulfuric acid, etc., and it is necessary to treat the waste liquid after use. Since there is a problem of contamination, in recent years, from the viewpoint of environmental protection and safety during work, as one of the methods that do not use chemicals with such a problem, there is a processing technology using ozone (O 3 ). It has been adopted.

オゾンによるレジストの除去は、オゾンガスやオゾン溶解溶液に、そのレジストなどの残留有機物が付着した基板を曝して、オゾンによる強い酸化力によって有機物を分解させるものであり、その廃液の処理が容易であり、環境保全や作業中の安全性という要望に十分応えられるものであるが、オゾンによる基板表面の残留有機物の除去は、薬液を使用する場合のような環境汚染や安全性の問題はないものの、長い処理時間を要するという作業効率上の問題がある。   Resist removal with ozone involves exposing a substrate with residual organic matter such as the resist to ozone gas or an ozone-dissolved solution, and decomposing the organic matter with strong oxidizing power due to ozone. Although it can fully meet the demands of environmental protection and safety during work, the removal of residual organic substances on the substrate surface by ozone does not cause environmental pollution and safety issues like when using chemicals, There is a problem in work efficiency that a long processing time is required.

このような問題を解決する従来技術は、たとえば特許文献1に提案されている。この先行技術では、基板を処理槽に貯留されるオゾン水中に浸漬し、約0℃〜約20℃に冷却した純水またはオゾン水にオゾンを溶解させて高濃度オゾン水を生成し、その低温の高濃度オゾン水を処理槽内で約20℃〜約40℃に加熱することによって、基板に付着した有機物とオゾンとの反応速度を向上し、基板に付着した残存有機物を迅速に除去することが提案されている。   For example, Patent Document 1 proposes a conventional technique for solving such a problem. In this prior art, a substrate is immersed in ozone water stored in a processing tank, ozone is dissolved in pure water or ozone water cooled to about 0 ° C. to about 20 ° C. to generate high-concentration ozone water, and its low temperature The high-concentration ozone water is heated to about 20 ° C. to about 40 ° C. in the treatment tank, thereby improving the reaction rate between the organic matter adhering to the substrate and ozone and quickly removing the remaining organic matter adhering to the substrate. Has been proposed.

またこの先行技術では、オゾン水に塩化ナトリウム、塩化カリウム、炭酸カルシウムなどの溶媒を溶解させることによって、オゾン水の凝固点を下げて、オゾン水のオゾン濃度をより高濃度化することが提案されている。   In addition, in this prior art, it has been proposed to lower the freezing point of ozone water and to further increase the ozone concentration of ozone water by dissolving solvents such as sodium chloride, potassium chloride and calcium carbonate in ozone water. Yes.

特許第3691985号公報Japanese Patent No. 3691985

前述の特許文献1の従来技術では、処理槽の液面は大気開放状態であり、加熱後大気圧力下で飽和溶解度を超えたオゾンは、オゾン水中で気泡となり、オゾン水のオゾン濃度低下を引き起こし、反応効率が低下する。さらにこのオゾン水を処理槽内で循環すると、次ぎに供給されたオゾン水と混じり、さらに濃度を低下させ、その結果、反応効率がさらに悪化することになり、単位時間あたりの処理量、すなわちスループットが低下するという問題がある。   In the prior art of Patent Document 1 described above, the liquid level of the treatment tank is open to the atmosphere, and ozone that exceeds the saturation solubility under atmospheric pressure after heating becomes bubbles in ozone water, causing a decrease in the ozone concentration of ozone water. , Reaction efficiency decreases. Furthermore, when this ozone water is circulated in the treatment tank, it is mixed with the ozone water supplied next, further reducing the concentration, resulting in further deterioration in reaction efficiency, and the throughput per unit time, that is, throughput. There is a problem that decreases.

本発明の目的は、安全にかつ短時間で基板の残留有機物を除去することができる基板処理装置および方法を提供することである。   An object of the present invention is to provide a substrate processing apparatus and method capable of removing residual organic substances on a substrate safely and in a short time.

本発明は、基板の表面に残留している残留有機物を、オゾン水中に前記基板を浸漬させて除去する基板処理装置において、
大気圧よりも圧力が高いオゾンガスを発生し、そのオゾンガスを低温の純水またはオゾン水に溶解させて、高濃度のオゾン水を生成する高濃度オゾン水生成手段と、
高濃度オゾン水生成手段によって生成された加圧・高濃度オゾン水を加熱する高濃度オゾン水加熱手段と、
加圧高濃度オゾン水が貯留され、この貯留された高濃度オゾン水に前記基板を浸漬させて洗浄する基板処理槽と、
前記高濃度オゾン水生成手段で発生したオゾンの一部を、基板処理槽内に導くオゾンガス供給手段と、
基板処理槽内の気相の圧力を、大気圧よりも高い予め定める圧力に維持する圧力制御弁とを含むことを特徴とする基板処理装置である。
The present invention provides a substrate processing apparatus for removing residual organic substances remaining on the surface of a substrate by immersing the substrate in ozone water.
High-concentration ozone water generating means for generating ozone gas having a pressure higher than atmospheric pressure and dissolving the ozone gas in low-temperature pure water or ozone water to generate high-concentration ozone water;
High-concentration ozone water heating means for heating the pressurized / high-concentration ozone water generated by the high-concentration ozone water generation means;
A substrate processing tank in which pressurized high-concentration ozone water is stored, and the substrate is immersed in the stored high-concentration ozone water for cleaning,
Ozone gas supply means for guiding a part of the ozone generated by the high-concentration ozone water generation means into the substrate processing tank;
A substrate processing apparatus comprising: a pressure control valve that maintains a gas phase pressure in the substrate processing tank at a predetermined pressure higher than atmospheric pressure.

本発明に従えば、オゾン水中に基板を浸漬させて、基板に残留している残留有機物を除去するにあたって、高濃度オゾン水生成手段は、発生させたオゾンガスを低温の純水またはオゾン水に溶解させて、高濃度のオゾン水を生成する。この高濃度オゾン水は、高濃度オゾン水加熱手段によって加熱され、基板貯留槽に貯留される。高濃度オゾン水生成手段で発生したオゾンガスの一部は、オゾンガス供給手段によって基板処理槽内に導かれる。また基板処理槽内の気相の圧力は、圧力制御弁によって大気圧よりも高い予め定める圧力に維持され、基板処理槽内に貯留されるオゾン水のオゾンの溶存量の低下を抑制し、こうして高濃度のオゾン水によって安全にかつ短時間で基板の残留付着物を除去することが可能となる。   According to the present invention, when removing the residual organic matter remaining on the substrate by immersing the substrate in ozone water, the high concentration ozone water generating means dissolves the generated ozone gas in low temperature pure water or ozone water. To generate high-concentration ozone water. This high concentration ozone water is heated by the high concentration ozone water heating means and stored in the substrate storage tank. Part of the ozone gas generated by the high-concentration ozone water generating means is introduced into the substrate processing tank by the ozone gas supply means. Further, the pressure of the gas phase in the substrate processing tank is maintained at a predetermined pressure higher than the atmospheric pressure by the pressure control valve, thereby suppressing a decrease in the dissolved amount of ozone water stored in the substrate processing tank. Residual deposits on the substrate can be removed safely and in a short time with high-concentration ozone water.

また本発明は、前記基板処理槽内のオゾン水を、流動化する流動化手段を含むことを特徴とする。   Further, the present invention is characterized by including fluidizing means for fluidizing the ozone water in the substrate processing tank.

本発明に従えば、流動化手段によって基板処理槽内のオゾン水が流動化されるので、基板表面の残存有機物の除去が促進される。   According to the present invention, since the ozone water in the substrate processing tank is fluidized by the fluidizing means, the removal of residual organic substances on the substrate surface is promoted.

さらに本発明は、前記基板処理槽内のオゾン水を、加圧状態で循環させて流動化する流動化手段を含むことを特徴とする。   Furthermore, the present invention is characterized by comprising fluidizing means for circulating and fluidizing ozone water in the substrate processing tank in a pressurized state.

本発明に従えば、流動化手段によって基板処理槽内のオゾン水が加圧状態で流動化されるので、基板表面の残留有機物の除去が促進される。   According to the present invention, the ozone water in the substrate processing tank is fluidized in a pressurized state by the fluidizing means, so that the removal of residual organic substances on the substrate surface is promoted.

さらに本発明は、前記基板処理槽内に設けられ、1または複数の基板の周縁部分を支持することによって、前記1または複数の基板を保持する基板保持手段を含むことを特徴とする。   Furthermore, the present invention includes a substrate holding unit that is provided in the substrate processing tank and holds the one or more substrates by supporting a peripheral portion of the one or more substrates.

本発明に従えば、1または複数の基板が基板保持手段によって周縁部分だけが支持された状態で基盤処理槽内に保持されるので、基板の表面が基板保持手段によって覆われず、したがって基板の表面全体にオゾン水を接触させて、確実に残存有機物を除去することができる。   According to the present invention, since one or a plurality of substrates are held in the substrate processing tank in a state where only the peripheral portion is supported by the substrate holding means, the surface of the substrate is not covered by the substrate holding means, and therefore Residual organic substances can be reliably removed by bringing ozone water into contact with the entire surface.

さらに本発明は、前記高濃度オゾン水生成手段によって生成された高濃度オゾン水を、前記基板処理槽の底部から基板処理槽内へ供給する高濃度オゾン水供給手段と、
前記基板処理槽内に貯留されているオゾン水を、前記基板処理槽の底部から排出するオゾン水排出手段とを含むことを特徴とする。
Furthermore, the present invention provides a high concentration ozone water supply means for supplying the high concentration ozone water generated by the high concentration ozone water generation means from the bottom of the substrate processing tank into the substrate processing tank,
And ozone water discharging means for discharging ozone water stored in the substrate processing tank from the bottom of the substrate processing tank.

本発明に従えば、高濃度オゾン水生成手段によって生成された高濃度オゾン水は、高濃度オゾン水供給手段によって基板処理槽の底部から基板処理槽内へ供給され、基板処理槽内のオゾン水は、オゾン水排出手段によって基板処理槽の底部から排出されるので、基板処理槽の底部から供給されるオゾン水は、基板処理槽内に上昇流を形成し、基板処理槽の底部からの排出によって、基板処理槽内に下降流を形成して、残存有機物のオゾンとの反応生成物である底質とともに濃度の低下したオゾン水が系外へ排出され、基板処理槽内の基板から効率よく残存有機物を除去することができる。   According to the present invention, the high-concentration ozone water generated by the high-concentration ozone water generating means is supplied from the bottom of the substrate processing tank into the substrate processing tank by the high-concentration ozone water supply means, and the ozone water in the substrate processing tank is supplied. Is discharged from the bottom of the substrate processing tank by the ozone water discharging means, so the ozone water supplied from the bottom of the substrate processing tank forms an upward flow in the substrate processing tank and is discharged from the bottom of the substrate processing tank. As a result, a downward flow is formed in the substrate processing tank, and ozone water having a reduced concentration is discharged out of the system together with the bottom sediment, which is a reaction product of residual organic matter with ozone, and efficiently from the substrate in the substrate processing tank. Residual organic matter can be removed.

さらに本発明は、前記高濃度オゾン水生成手段によって生成された高濃度オゾン水を、前記基板処理槽の側部から基板処理槽内へ供給する高濃度オゾン水供給手段と、
前記基板処理槽内に貯留されているオゾン水を、前記基板処理槽の底部から排出するオゾン水排出手段とを含むことを特徴とする。
Furthermore, the present invention provides a high-concentration ozone water supply means for supplying the high-concentration ozone water generated by the high-concentration ozone water generation means from the side of the substrate processing tank into the substrate processing tank,
And ozone water discharging means for discharging ozone water stored in the substrate processing tank from the bottom of the substrate processing tank.

本発明に従えば、高濃度オゾン水生成手段によって生成された高濃度オゾン水は、高濃度オゾン水供給手段によって基板処理槽の側部から基板処理槽内へ供給され、基板処理槽内のオゾン水は、オゾン水排出手段によって基板処理槽の底部から排出されるので、基板処理槽の側部から供給されるオゾン水は、基板処理槽内に上昇流と下降流とを形成し、基板処理槽の底部からの排出によって、基板処理槽内に下降流を形成して、残存有機物のオゾンとの反応生成物である底質とともに濃度の低下したオゾン水が系外へ排出し、基板処理槽内の基板から効率よく残存有機物を除去することができる。   According to the present invention, the high-concentration ozone water generated by the high-concentration ozone water generation means is supplied from the side of the substrate processing tank into the substrate processing tank by the high-concentration ozone water supply means, and the ozone in the substrate processing tank is supplied. Since water is discharged from the bottom of the substrate processing tank by the ozone water discharging means, the ozone water supplied from the side of the substrate processing tank forms an upward flow and a downward flow in the substrate processing tank, and the substrate processing By discharging from the bottom of the tank, a downward flow is formed in the substrate processing tank, and ozone water having a reduced concentration is discharged out of the system together with the bottom sediment, which is a reaction product of residual organic matter with ozone. Residual organic substances can be efficiently removed from the inner substrate.

さらに本発明は、基板の表面に残留している残留有機物を、オゾン水中に前記基板を浸漬させて除去する基板処理方法において、
純水またはオゾン水にオゾンガスを溶解させて、高濃度のオゾン水を生成する高濃度オゾン水生成工程と、
高濃度オゾン水生成工程によって生成された高濃度オゾン水を、加熱する高濃度オゾン水加熱工程と、
高濃度オゾン水加熱工程によって加圧された高濃度オゾン水を基板処理槽に貯留し、この基板処理槽内に前記高濃度オゾン水生成手段で用いられるオゾンガスの一部を導きながら、基板処理槽内の気相の圧力を大気圧よりも高い予め定める圧力に維持して、基板処理槽内に貯留される高濃度オゾン水に前記基板を浸漬させて洗浄する基板洗浄工程とを含むことを特徴とする基板処理方法である。
Furthermore, the present invention provides a substrate processing method for removing residual organic matter remaining on the surface of the substrate by immersing the substrate in ozone water.
A high-concentration ozone water generation step of dissolving ozone gas in pure water or ozone water to generate high-concentration ozone water;
A high concentration ozone water heating step for heating the high concentration ozone water generated by the high concentration ozone water generation step;
The substrate processing tank is configured to store high-concentration ozone water pressurized by the high-concentration ozone water heating process in the substrate processing tank, and guide a part of the ozone gas used in the high-concentration ozone water generating means into the substrate processing tank. And a substrate cleaning step of cleaning the substrate by immersing the substrate in high-concentration ozone water stored in a substrate processing tank while maintaining the pressure of the gas phase inside at a predetermined pressure higher than atmospheric pressure. This is a substrate processing method.

本発明に従えば、純水またはオゾン水にオゾンガスを溶解させて生成される高濃度のオゾン水を加熱し、この加圧された高濃度オゾン水を基板処理槽に貯留し、この基板処理槽内に前記高濃度オゾン水生成手段で用いられるオゾンガスの一部を導きながら、基板処理槽内の気相の圧力を大気圧よりも高い予め定める圧力に維持するので、基板処理槽内のオゾン水のオゾン濃度の低下を抑制して、基板に付着した残存有機物を除去することができる。   According to the present invention, high-concentration ozone water generated by dissolving ozone gas in pure water or ozone water is heated, and this pressurized high-concentration ozone water is stored in a substrate processing tank, and this substrate processing tank Since the pressure of the gas phase in the substrate processing tank is maintained at a predetermined pressure higher than the atmospheric pressure while guiding part of the ozone gas used in the high-concentration ozone water generating means, the ozone water in the substrate processing tank The residual organic matter adhering to the substrate can be removed by suppressing the decrease in ozone concentration.

本発明によれば、前記従来技術のように、硫酸などの環境負荷の大きい薬剤や真空排気系を有する複雑で高価な装置を使用せずに、オゾン水を用いて、基板上の残留有機物の除去に要する時間を短縮して、基板に付着する残留有機物の除去処理の効率を向上することができる。   According to the present invention, unlike the prior art, ozone water is used to remove residual organic substances on the substrate without using a complicated and expensive apparatus having a chemical evacuation system such as sulfuric acid or a vacuum exhaust system. The time required for the removal can be shortened, and the efficiency of the removal process of the residual organic matter attached to the substrate can be improved.

図1は本発明の実施の一形態の基板処理装置1を示す系統図であり、この基板処理装置1によって本発明の基板洗浄方法が実施される。本実施形態の基板処理装置1は、低温で高濃度オゾン水を生成する高濃度オゾン水生成手段2と、高濃度オゾン水を加熱する加熱手段3と、加熱手段3において加熱されたオゾン水によって基板Wに付着した有機物を除去する基板処理手段4と、基板処理手段4でのオゾン水濃度の低下を抑えるための加圧手段5とを含む。   FIG. 1 is a system diagram showing a substrate processing apparatus 1 according to an embodiment of the present invention. The substrate cleaning method of the present invention is carried out by this substrate processing apparatus 1. The substrate processing apparatus 1 according to the present embodiment includes a high-concentration ozone water generation unit 2 that generates high-concentration ozone water at a low temperature, a heating unit 3 that heats the high-concentration ozone water, and ozone water heated in the heating unit 3. Substrate processing means 4 for removing organic substances adhering to the substrate W and pressurizing means 5 for suppressing a decrease in the concentration of ozone water in the substrate processing means 4 are included.

被処理物である前記基板Wとしては、シリコンウエハなどの半導体基板および液晶表示素子のガラス基板などが挙げられるが、本実施形態においては、例示的に8inch〜12
inchの大径のシリコンウエハであって、このシリコンウエハの表面には、気相蒸着法(CVD法)によってレジストを塗布し、露光工程および現像工程を経てマスクパターンを形成し、このマスクパターンを保護膜として不要な薄膜をエッチングし、イオン注入によって不純物が拡散された後、残留有機物として表面に残着した不要なレジストを除去する場合について説明する。前記レジストは、たとえばフェノールノボラック型樹脂またはクレゾールノボラック型樹脂を硬化剤として含有する光硬化型樹脂から成る。
Examples of the substrate W to be processed include a semiconductor substrate such as a silicon wafer and a glass substrate of a liquid crystal display element. In the present embodiment, the substrate W is illustratively 8 inches to 12 inches.
Inch large-diameter silicon wafer, a resist is applied to the surface of the silicon wafer by a vapor deposition method (CVD method), and a mask pattern is formed through an exposure process and a development process. A case will be described in which an unnecessary thin film remaining as a residual organic substance is removed after etching an unnecessary thin film as a protective film and diffusing impurities by ion implantation. The resist is made of a photo-curing resin containing, for example, a phenol novolac resin or a cresol novolac resin as a curing agent.

高濃度オゾン水生成手段2は、エジェクタ9にオゾンガス生成器10によって生成したオゾンガスを管路11から供給し、このオゾンガスを溶解槽12から管路13,14,15を経て循環するオゾン水に溶解させて高濃度化させながら、冷却器16によって冷却した純水またはオゾン水を前記管路14へ供給して補給し、低温の高濃度オゾン水を生成する。生成された低温の高濃度オゾン水は、溶解槽12から供給管路17を経て、前記加熱手段3に供給される。   The high-concentration ozone water generating means 2 supplies the ejector 9 with the ozone gas generated by the ozone gas generator 10 from the pipe 11 and dissolves the ozone gas in the ozone water circulating from the dissolution tank 12 through the pipes 13, 14 and 15. Then, while increasing the concentration, pure water or ozone water cooled by the cooler 16 is supplied to the conduit 14 and replenished to generate low-temperature high-concentration ozone water. The generated low-temperature high-concentration ozone water is supplied to the heating means 3 from the dissolution tank 12 through the supply pipe 17.

前記オゾンガス生成器10は、たとえば誘電体に設けられる誘導電極と放電電極との間に酸素ガスまたは空気などの原料ガスを供給し、誘導電極および放電電極間に高電圧の印加による放電によって酸素分子を電子と原子に解離させてオゾンガスを生成する構成によって実現されてもよい。   The ozone gas generator 10 supplies a source gas such as oxygen gas or air between an induction electrode provided on a dielectric and a discharge electrode, for example, and oxygen molecules are discharged by applying a high voltage between the induction electrode and the discharge electrode. May be realized by a configuration in which ozone gas is generated by dissociating the electrons into atoms and atoms.

前記エジェクタ9は、溶解槽12の底部に接続される前記管路13に入力ポートが接続され、出口ポートには前記管路14が接続される。この管路14の途中には、前記冷却器16によって冷却された約4℃以上、約15℃以下の純水またはオゾン水を供給する管路19が接続され、溶解槽12内のオゾン水の消費量に相当する純水またはオゾン水が補給される。   The ejector 9 has an input port connected to the conduit 13 connected to the bottom of the dissolution tank 12 and the conduit 14 connected to an outlet port. In the middle of the pipe line 14, a pipe line 19 for supplying pure water or ozone water having a temperature of about 4 ° C. or more and about 15 ° C. or less cooled by the cooler 16 is connected. Pure water or ozone water corresponding to consumption is replenished.

前記エジェクタ9の出力ポートに接続された管路14と溶解槽12の上部に接続された管路15との間には、ポンプP1が介在される。このポンプP1は、溶解槽12、管路13、エジェクタ9、管路14、ポンプP1および管路15によって形成される循環経路にオゾン水を強制循環させ、エジェクタ9によってオゾンガスを溶解させながら、オゾン濃度が100ppm以上、300ppm以下の高濃度オゾン水を生成する。   A pump P <b> 1 is interposed between the pipe line 14 connected to the output port of the ejector 9 and the pipe line 15 connected to the upper part of the dissolution tank 12. The pump P1 is configured to forcibly circulate ozone water in a circulation path formed by the dissolution tank 12, the conduit 13, the ejector 9, the conduit 14, the pump P1 and the conduit 15, and dissolve the ozone gas by the ejector 9, while High concentration ozone water having a concentration of 100 ppm or more and 300 ppm or less is generated.

前記溶解槽12の上部には、管路20が接続され、この管路20には溶解槽12内の気相の圧力を調整して、溶解槽12から供給管路17を介して加熱手段3へ供給されるオゾン水の供給圧力を、約0.10MPa〜約0.35MPaの一定圧力に維持するため、圧力制御弁V1が介在される。   A pipe line 20 is connected to the upper part of the dissolution tank 12, and the pressure of the gas phase in the dissolution tank 12 is adjusted to the pipe line 20, and the heating means 3 is supplied from the dissolution tank 12 through the supply pipe line 17. A pressure control valve V1 is interposed in order to maintain the supply pressure of the ozone water supplied to a constant pressure of about 0.10 MPa to about 0.35 MPa.

加熱手段3は、前記供給管路17から供給された低温の高濃度オゾン水を約40℃〜約90℃、好ましくは約80℃に加熱する。加熱された高温高濃度オゾン水は、供給管路21を経て基板処理手段4に供給される。供給管路21には開閉弁V5が介在され、この開閉弁V5を開放して加熱手段3から高温高濃度オゾン水を基板処理槽25へ供給し、開閉弁V5を閉鎖することによって、加熱手段3から基板処理槽25へ高温高濃度オゾン水の供給が遮断される。   The heating means 3 heats the low-temperature high-concentration ozone water supplied from the supply pipe 17 to about 40 ° C. to about 90 ° C., preferably about 80 ° C. The heated high-temperature high-concentration ozone water is supplied to the substrate processing means 4 through the supply pipe 21. An opening / closing valve V5 is interposed in the supply pipe line 21. The opening / closing valve V5 is opened to supply high-temperature high-concentration ozone water from the heating means 3 to the substrate processing tank 25, and the opening / closing valve V5 is closed, thereby heating means. The supply of high-temperature high-concentration ozone water from 3 to the substrate processing tank 25 is shut off.

図2は基板処理手段4の構成を説明するための系統図であり、基板処理槽25を図1の左側から見た側面を示す。前記基板処理手段4は、基板処理槽25と、基板処理槽25の底部から取り込んだ貯留オゾン水を基板処理槽25の上部の液面下に導く循環管路26と、循環管路26に介在されるポンプP2とを有する。循環管路26とポンプP2とよって、流動化手段が構成され、基板処理槽25内のオゾン水が流動化されて、基板表面の残留有機物の除去が促進される。   FIG. 2 is a system diagram for explaining the configuration of the substrate processing means 4 and shows a side surface of the substrate processing tank 25 as viewed from the left side of FIG. The substrate processing means 4 includes a substrate processing tank 25, a circulation pipe 26 that guides stored ozone water taken from the bottom of the substrate processing tank 25 to a level below the upper surface of the substrate processing tank 25, and a circulation pipe 26. And a pump P2. The circulation line 26 and the pump P2 constitute a fluidizing means, and the ozone water in the substrate processing tank 25 is fluidized to promote the removal of residual organic substances on the substrate surface.

基板処理槽25は、基板Wを収容することができる処理槽本体24の上部のフランジに、蓋体27のフランジがクランプ部材28によって着脱自在に装着され、気密および液密に封止し、基板処理槽25内に気密な空間を形成することができるように構成されている。   In the substrate processing tank 25, the flange of the lid 27 is detachably mounted on the flange of the upper part of the processing tank main body 24 capable of accommodating the substrate W by a clamp member 28, and is hermetically and liquid-tightly sealed. An airtight space can be formed in the treatment tank 25.

処理槽本体24は、収容された基板Wに対向して平行な一対の長辺側側壁29,30と、各側壁29,30に垂直な一対の短辺側側壁31,32と、各側壁29,30;31,32の下端部に連なり、下方(図1の下方)に向かって先細となる略四角錘状の底部33とを有する。この底部33には、基板Wに付着した残留有機物のオゾンとの反応生成物およびその他の浮遊物が底質として回収され、後述するドレン管路42から排出される。   The processing tank body 24 has a pair of long side walls 29, 30 parallel to the substrate W accommodated therein, a pair of short side walls 31, 32 perpendicular to the side walls 29, 30, and each side wall 29. 30; 31 and 32, and a bottom portion 33 having a substantially quadrangular pyramid shape that tapers downward (downward in FIG. 1). At bottom 33, reaction products of residual organic matter adhering to substrate W with ozone and other suspended matters are collected as bottom sediment and discharged from a drain line 42 described later.

各側壁29,30;31,32と底部33との間には、多数の透孔34が形成された底板35が装着され、この底板35および各短辺側側壁31,32には、基板Wの周縁部分を支持して、基板Wを各長辺側側壁29,30と平行に保持する複数の支持片36が設けられる。前記複数の支持片36は、基板保持手段を構成する。各支持片36は、V字状の溝を有し、この溝に基板Wの周縁部分が嵌まり込み、周縁部分のエッジ部分が線接触または点接触した状態で基板Wが支持される。このような複数の支持片36から成る基板保持手段によって基板Wが保持されるので、基板Wの表面が覆われず、したがって基板Wの表面全体に高濃度オゾン水を接触させて、確実に残存有機物を除去することができる。   Between each of the side walls 29, 30; 31, 32 and the bottom 33, a bottom plate 35 in which a large number of through holes 34 are formed is mounted, and the bottom plate 35 and each of the short side walls 31, 32 are provided with a substrate W. A plurality of support pieces 36 for supporting the peripheral edge portion of the substrate W and holding the substrate W in parallel with the long side walls 29 and 30 are provided. The plurality of support pieces 36 constitute a substrate holding means. Each support piece 36 has a V-shaped groove, and the peripheral portion of the substrate W is fitted into the groove, and the substrate W is supported in a state where the edge portion of the peripheral portion is in line contact or point contact. Since the substrate W is held by the substrate holding means composed of the plurality of support pieces 36 as described above, the surface of the substrate W is not covered. Therefore, the entire surface of the substrate W is brought into contact with the high-concentration ozone water to reliably remain. Organic matter can be removed.

前記加圧手段5は、管路11から分岐し、高濃度オゾン水生成手段2のオゾンガス生成器10で発生したオゾンガスの一部を、蓋体27から基板処理槽25内へ導く分岐管路40と、分岐管路40に介在される開閉弁V2と、基板処理槽25の蓋体27に接続される管路44と、管路44に介在される圧力制御弁V3とを含む。   The pressurizing means 5 branches from the pipe 11 and a branch pipe 40 for guiding a part of the ozone gas generated by the ozone gas generator 10 of the high-concentration ozone water generating means 2 from the lid 27 into the substrate processing tank 25. And an on-off valve V2 interposed in the branch pipe 40, a pipe 44 connected to the lid 27 of the substrate processing tank 25, and a pressure control valve V3 interposed in the pipe 44.

基板処理槽25内には、貯留された高温高濃度オゾン水から成る液相Lと、液相Lよりも上方に溜まったオゾンガスから成る気相Vとが形成される。分岐管路40に介在される開閉弁V2が開放された状態では、オゾンガス生成器10によって生成されたオゾンガスが基板処理槽25内へ上方から供給される。また開閉弁V2から閉鎖された状態では、オゾンガス生成器10からのオゾンガスの供給が遮断される。圧力制御弁V3は、基板処理槽25内の気相Vの圧力が大気圧よりも高い予め定める圧力、たとえば約0.15MPa〜約0.30MPaとなる設定圧力に設定されている。   In the substrate processing tank 25, a liquid phase L made of stored high-temperature high-concentration ozone water and a gas phase V made of ozone gas accumulated above the liquid phase L are formed. In a state where the on-off valve V2 interposed in the branch pipe 40 is opened, ozone gas generated by the ozone gas generator 10 is supplied into the substrate processing tank 25 from above. In the state where the on-off valve V2 is closed, the supply of ozone gas from the ozone gas generator 10 is shut off. The pressure control valve V3 is set to a predetermined pressure at which the pressure of the gas phase V in the substrate processing tank 25 is higher than atmospheric pressure, for example, about 0.15 MPa to about 0.30 MPa.

基板処理槽25の底部には、ドレン管路42が複数箇所に接続され、ドレン管路42には開閉弁V4が介在される。これらのドレン管路42および開閉弁V4は、オゾン水排出手段を構成する。   A drain line 42 is connected to a plurality of locations on the bottom of the substrate processing tank 25, and an open / close valve V <b> 4 is interposed in the drain line 42. The drain pipe 42 and the on-off valve V4 constitute ozone water discharging means.

高濃度オゾン水生成手段2によって生成された低温の高濃度オゾン水は、加熱手段3によって加熱された後、その高温高濃度オゾン水は管路21を経て基板処理槽25の底部の複数箇所から基板処理槽25内へ供給される。基板処理槽25内のオゾン水は、前記オゾン水排出手段のドレン管路42によって基板処理槽25の底部から排出されるので、基板処理槽25の底部から供給されたオゾン水は、基板処理槽25内に上昇流を形成し、基板処理槽25の底部からの排出によって、基板処理槽25内に下降流を形成して、残存有機物のオゾンとの反応生成物である底質とともに濃度の低下したオゾン水が系外へ排出され、廃液処理設備へ導かれて廃液処理され、基板処理槽25内の基板Wから効率よく残存有機物が除去される。   The low-temperature high-concentration ozone water generated by the high-concentration ozone water generation means 2 is heated by the heating means 3, and then the high-temperature high-concentration ozone water passes from the plurality of locations at the bottom of the substrate processing tank 25 via the pipe line 21. It is supplied into the substrate processing tank 25. Since the ozone water in the substrate processing tank 25 is discharged from the bottom of the substrate processing tank 25 by the drain line 42 of the ozone water discharge means, the ozone water supplied from the bottom of the substrate processing tank 25 is 25, an upward flow is formed within the substrate processing tank 25, and a downward flow is formed within the substrate processing tank 25 by discharging from the bottom of the substrate processing tank 25, resulting in a decrease in concentration along with bottom sediment that is a reaction product of residual organic matter with ozone. The discharged ozone water is discharged to the outside of the system, guided to a waste liquid treatment facility for waste liquid treatment, and residual organic substances are efficiently removed from the substrate W in the substrate treatment tank 25.

図3は、図1に示される基板処理装置1を用いて残存有機物が除去されるためのオゾン水中のオゾン飽和溶解度のオゾン水温度およびオゾンガス圧力の依存性を示す図である。図3において、横軸はオゾン水の温度を示し、縦軸はオゾン水のオゾンの飽和溶解濃度を示す。加熱手段3によって低温高濃度オゾン水を加熱することによって、次の式1によって表されるアレニウス則、
ER=ACw×exp(−E・kT) …(1)
FIG. 3 is a diagram showing the dependence of ozone water solubility and ozone gas pressure on ozone saturation solubility in ozone water for removing residual organic matter using the substrate processing apparatus 1 shown in FIG. In FIG. 3, the horizontal axis indicates the temperature of ozone water, and the vertical axis indicates the saturated dissolution concentration of ozone in ozone water. By heating the low-temperature high-concentration ozone water by the heating means 3, the Arrhenius law expressed by the following equation 1;
ER = ACw × exp (−E · kT) (1)

ここに、ER:エッチングレート[%]
A:頻度因子[sec−1
Cw:オゾン水濃度[ppm]
E:活性化エネルギ[kJ]
k:ボルツマン定数[1.38065×10−23JK−1
T:オゾン水温度[K]
に従い、処理槽での有機物のエッチングレートは高くなる。
Here, ER: Etching rate [%]
A: Frequency factor [sec −1 ]
Cw: ozone water concentration [ppm]
E: Activation energy [kJ]
k: Boltzmann constant [1.338065 × 10 −23 JK −1 ]
T: ozone water temperature [K]
Accordingly, the etching rate of the organic substance in the treatment tank increases.

しかしながら、図3に示すRoth & Sullivanの計算式から得られるオゾン水中のオゾン飽和溶解度のオゾン水温およびオゾンガス圧力への依存性から解るように、一定圧力下においては、加熱によって飽和溶解度は下がり、オゾン水は濃度低下を起こし、さらに大気圧への減圧ではより濃度低下を起こす。これによって高濃度オゾン水生成手段2において高濃度に溶解したオゾンがオゾン水から気泡として抜けてしまい、オゾンの有効活用ができず、結果的に有機物の除去効率が上がらないことが解る。   However, as can be seen from the dependence of the ozone saturation solubility in ozone water obtained from the Roth & Sullivan formula shown in FIG. 3 on the ozone water temperature and the ozone gas pressure, the saturation solubility decreases with heating under a constant pressure. Water causes a decrease in concentration, and further a decrease in concentration when the pressure is reduced to atmospheric pressure. As a result, ozone dissolved at a high concentration in the high-concentration ozone water generating means 2 escapes from the ozone water as bubbles, making it impossible to effectively use ozone, and as a result, the organic substance removal efficiency does not increase.

図4は本件発明者による実験によって18℃の低温高濃度オゾン水を80℃に加熱したときの各温度とオゾン濃度との関係を示す図であり、図5は本件発明者による実験によって18℃の各濃度のオゾン水を80℃に加熱した高温高濃度オゾン水を用いて4μmのレジスト除去に要する除去時間を確認した結果を示す図である。図6はオゾン水の流速による4μmのレジスト除去時間の依存性を示す図である。図4および図5において、横軸は18℃のオゾン水のオゾン濃度(ppm)を示し、縦軸は80℃のオゾン水のオゾン濃度(ppm)を示す。図6において、横軸はオゾン水の流速(cm/分)を示し、縦軸は残留有機物の除去時間(分)を示す。   FIG. 4 is a diagram showing the relationship between each temperature and ozone concentration when low-temperature high-concentration ozone water at 18 ° C. is heated to 80 ° C. by an experiment by the present inventors, and FIG. 5 is 18 ° C. by an experiment by the present inventors. It is a figure which shows the result of having confirmed the removal time required for a 4 micrometer resist removal using the high temperature high concentration ozone water which heated ozone water of each density | concentration of 80 degreeC. FIG. 6 is a graph showing the dependency of the 4 μm resist removal time on the flow rate of ozone water. 4 and 5, the horizontal axis represents the ozone concentration (ppm) of ozone water at 18 ° C., and the vertical axis represents the ozone concentration (ppm) of ozone water at 80 ° C. In FIG. 6, the horizontal axis represents the flow rate of ozone water (cm / min), and the vertical axis represents the removal time (min) of residual organic matter.

これらの実験結果からも明らかなように、低温高濃度オゾン水を加熱および大気圧下で洗浄を行った場合、飽和溶解度を超えるオゾンガスはオゾン水に溶解せず、有機物との反応に寄与せず、無駄になっているのが解る。また有機物に対するオゾン水の流速を上げることによって、基板表面の残留有機物とオゾン水との反応生成物がオゾン水によって置換され、除去時間が短縮されることが確認された。   As is clear from these experimental results, when low-temperature high-concentration ozone water is heated and washed under atmospheric pressure, ozone gas exceeding the saturation solubility does not dissolve in ozone water and does not contribute to the reaction with organic matter. I understand that it's wasted. It was also confirmed that by increasing the flow rate of ozone water relative to the organic matter, the reaction product of residual organic matter and ozone water on the substrate surface was replaced by ozone water, and the removal time was shortened.

以上のように本実施形態によれば、基板処理槽25内を加圧し、この基板処理槽25で無駄となるオゾンを減らし、短時間での基板処理を行い、さらに基板表面のオゾン水の流速を上げ反応生成物をオゾン水で置換することができる。図1および図2に示される実施形態では、基板処理槽25に1枚の基板Wを保持し、基板処理槽25を密閉構造にし、加熱したオゾン水で満たすことによって、基板処理槽25内をオゾン水の水圧のままの圧力状態を保ち、基板処理槽25内でオゾン水を循環させ、オゾン水の流れによって基板表面でオゾン水中のオゾンによる有機物と反応生成物との置換効果を高める。この基板処理槽25内の基板Wは、複数枚を相互に間隔をあけて収容する構成であってもよく、基板1枚を収容する前述の基板処理槽25を複数、並列に連結した構成であってもよい。このような構成によってもまた、上記と同様な効果を達成することができる。   As described above, according to the present embodiment, the inside of the substrate processing tank 25 is pressurized, ozone that is wasted in the substrate processing tank 25 is reduced, the substrate processing is performed in a short time, and the flow rate of ozone water on the substrate surface is further reduced. The reaction product can be replaced with ozone water. In the embodiment shown in FIG. 1 and FIG. 2, the substrate processing tank 25 is held in the substrate processing tank 25, the substrate processing tank 25 is sealed, and filled with heated ozone water. While maintaining the pressure state of the ozone water, the ozone water is circulated in the substrate processing tank 25, and the replacement effect of the organic substance and the reaction product by the ozone in the ozone water on the substrate surface is enhanced by the flow of the ozone water. The substrate W in the substrate processing tank 25 may be configured to store a plurality of substrates with a space between each other, or a configuration in which a plurality of the substrate processing tanks 25 that store one substrate are connected in parallel. There may be. Such a configuration can also achieve the same effect as described above.

図7は本発明の他の実施形態の基板処理装置1に備えられる基板処理手段4aを示す一部の系統図である。なお、前述の実施形態と対応する部分には、同一の参照符を付す。本実施形態の基板処理装置1の加圧手段5は、基板処理槽25内に貯留される飽和溶解度以上の高温高濃度オゾン水から発生したオゾンガスの圧力を調整するための圧力制御弁V3が介在される管路41だけを蓋体27に接続した構成から成り、基板処理槽25内の気相Vを大気圧より加圧状態に調圧することができる。このような加圧手段5を採用することによって、オゾンガス生成器10からオゾンガスを基板処理槽25へ導くための管路40および開閉弁V2を省略し、構成を簡素化することができる。   FIG. 7 is a partial system diagram showing the substrate processing means 4a provided in the substrate processing apparatus 1 according to another embodiment of the present invention. Note that the same reference numerals are given to portions corresponding to the above-described embodiment. The pressurizing means 5 of the substrate processing apparatus 1 of the present embodiment includes a pressure control valve V3 for adjusting the pressure of ozone gas generated from high-temperature high-concentration ozone water having a saturation solubility or higher stored in the substrate processing tank 25. Only the pipe 41 to be connected is connected to the lid 27, and the gas phase V in the substrate processing tank 25 can be regulated from atmospheric pressure to a pressurized state. By adopting such pressurizing means 5, the conduit 40 and the on-off valve V2 for guiding the ozone gas from the ozone gas generator 10 to the substrate processing tank 25 can be omitted, and the configuration can be simplified.

図8は本発明のさらに他の実施形態の基板処理装置1に備えられる基板処理手段4bを示す一部の系統図である。なお、図1〜図7に示される前述の各実施形態と対応する部分には、同一の参照符を付す。本実施形態の基板処理装置1は、加圧手段5の構成として、基板処理槽25自体を密閉状態にして、高温の高濃度オゾン水で満たすことによって、槽内をオゾン水の水圧だけによって大気圧よりも高い圧力状態に維持し、基板処理槽25内で高濃度オゾン水を循環させてオゾン水を流動化し、この流動化するオゾン水の流れによって、高温高濃度のオゾン水を基板Wの表面に強制的に接触させ、オゾン水中のオゾンによる有機物とその反応生成物との置換効率を高めるものである。このような構成によれば、蓋体27に前述の管路40,41を接続する必要がなく、開閉弁V2および圧力制御弁V3も不要とすることができ、基板処理装置1の構成が簡素化される。   FIG. 8 is a partial system diagram showing the substrate processing means 4b provided in the substrate processing apparatus 1 according to still another embodiment of the present invention. The parts corresponding to those of the above-described embodiments shown in FIG. 1 to FIG. The substrate processing apparatus 1 according to the present embodiment has a configuration in which the substrate processing tank 25 itself is hermetically sealed and filled with high-temperature high-concentration ozone water as a configuration of the pressurizing unit 5. Maintaining the pressure state higher than the atmospheric pressure, circulating the high-concentration ozone water in the substrate processing tank 25 to fluidize the ozone water, and the fluidized ozone water causes the high-temperature and high-concentration ozone water to flow into the substrate W. It is forcibly brought into contact with the surface to increase the substitution efficiency between the organic substance and its reaction product by ozone in the ozone water. According to such a configuration, it is not necessary to connect the above-described pipe lines 40 and 41 to the lid body 27, and the on-off valve V2 and the pressure control valve V3 can be eliminated, and the configuration of the substrate processing apparatus 1 is simple. It becomes.

図9は本発明のさらに他の実施形態の基板処理装置1に備えられる基板処理手段4cを示す一部の系統図であり、基板処理槽25は図1の左側から見た側面を示す。なお、図1〜図8に示される前述の各実施形態と対応する分部には、同一の参照符を付す。本実施形態の基板処理装置1は、高濃度オゾン水生成手段2によって生成された高濃度オゾン水を、加熱手段3によって加熱した後、複数(本実施形態では3)の管路21a,21(b)、21cによって基板処理槽25の側部である長辺側側壁29,30の複数箇所から基板処理槽25内へ供給される。   FIG. 9 is a partial system diagram showing the substrate processing means 4c provided in the substrate processing apparatus 1 of still another embodiment of the present invention, and the substrate processing tank 25 shows a side surface as viewed from the left side of FIG. Note that the same reference numerals are assigned to the portions corresponding to the above-described embodiments shown in FIGS. In the substrate processing apparatus 1 of the present embodiment, after the high-concentration ozone water generated by the high-concentration ozone water generation unit 2 is heated by the heating unit 3, a plurality (three in the present embodiment) of pipelines 21a, 21 ( b) and 21c are fed into the substrate processing tank 25 from a plurality of locations on the long side walls 29 and 30 which are the side portions of the substrate processing tank 25.

このような構成を採用することによって、基板処理槽25内に供給された高温高濃度のオゾン水は、基板Wの表面に複数から供給されて基板Wの表面に均一に高温高濃度のオゾン水を供給することができる。濃度がほぼ均一な高温高濃度のオゾン水は、基板Wの表面に沿う上昇流と下降流とを形成し、基板Wの表面の全域で残留有機物と反応した後、短い滞留時間で反応生成物とともにドレン管路42から排出され、基板処理槽25内の基板Wから効率よく残存有機物を除去することができる。   By adopting such a configuration, high-temperature and high-concentration ozone water supplied into the substrate processing tank 25 is supplied from a plurality of surfaces to the surface of the substrate W, and the high-temperature and high-concentration ozone water is uniformly applied to the surface of the substrate W. Can be supplied. The high-temperature and high-concentration ozone water having a substantially uniform concentration forms an upward flow and a downward flow along the surface of the substrate W, reacts with the remaining organic substances over the entire surface of the substrate W, and then reacts in a short residence time. At the same time, the organic matter is discharged from the drain line 42 and the remaining organic matter can be efficiently removed from the substrate W in the substrate processing tank 25.

以上のように本発明は、基板処理槽25内を大気圧よりも高い加圧状態にすることによって、加熱によってオゾン水中から出る飽和溶解度以上の無駄となるオゾンガスを減らし、基板表面の反応生成物をオゾン水によって速やかに置換し、オゾンの反応を促進することができる。したがって本発明は、有機物除去だけでなく、基板表面の酸化膜形成装置などのオゾン水中の溶存オゾンの酸化力を用いて基板を処理する装置や方法にも適用することができる。   As described above, the present invention reduces the waste ozone gas more than the saturated solubility that comes out of the ozone water by heating by bringing the inside of the substrate processing tank 25 into a pressurized state higher than the atmospheric pressure, and the reaction product on the substrate surface. Can be quickly replaced by ozone water to promote the reaction of ozone. Therefore, the present invention can be applied not only to organic substance removal but also to an apparatus and method for processing a substrate using the oxidizing power of dissolved ozone in ozone water, such as an oxide film forming apparatus on the substrate surface.

また本発明は、高濃度オゾン水生成手段2において生成したオゾン水の溶存オゾンガス濃度は、供給管路17に設けたオゾン水濃度検出器によって検出し、監視・管理するように構成されてもよい。この場合、常圧・室温下でのオゾンガスの水に対する飽和溶解濃度は50〜60ppmであるが、基板Wの洗浄に用いられるオゾン水の溶存オゾンガス濃度は、洗浄効果の点からより高い方が好ましい。   Further, the present invention may be configured such that the dissolved ozone gas concentration of the ozone water generated in the high-concentration ozone water generating means 2 is detected by an ozone water concentration detector provided in the supply pipe line 17 and monitored and managed. . In this case, the saturated dissolution concentration of ozone gas in water at normal pressure and room temperature is 50 to 60 ppm, but the dissolved ozone gas concentration of ozone water used for cleaning the substrate W is preferably higher in terms of cleaning effect. .

さらに本発明は、基板処理槽25内を加圧する手段として、基板処理槽25内を大気圧よりも高く加圧できるものであれば特に限定されるものではない。またポンプP1,P2は、耐オゾンガス材料を用いた耐酸化性の高い加圧ポンプが好適に用いられる。   Furthermore, the present invention is not particularly limited as a means for pressurizing the inside of the substrate processing tank 25 as long as the inside of the substrate processing tank 25 can be pressurized higher than the atmospheric pressure. Further, as the pumps P1 and P2, a pressure pump having high oxidation resistance using an ozone-resistant gas material is preferably used.

さらに本発明の他の実施形態では、基板処理手段4は、紫外線を照射する手段が付加された構成であってもよい。基板処理槽25内で高温高濃度オゾン水に浸漬された基板Wに紫外線を照射することによって、オゾンの分解速度が促進され、それに伴い洗浄効果を上げることができる。したがって、高温高濃度オゾン水と紫外線照射とを併用することによって、より高い洗浄効果を得ることができる。前記紫外線を照射する手段としては、特に限定されるものではないが、たとえばUVランプ等が挙げられる。また照射される紫外線の波長は、オゾンが吸収する254nm近辺であることが好ましい。   Furthermore, in another embodiment of the present invention, the substrate processing means 4 may have a configuration to which means for irradiating ultraviolet rays is added. By irradiating the substrate W immersed in the high-temperature and high-concentration ozone water in the substrate processing tank 25 with ultraviolet rays, the decomposition rate of ozone is accelerated, and the cleaning effect can be increased accordingly. Therefore, a higher cleaning effect can be obtained by using both high-temperature and high-concentration ozone water and ultraviolet irradiation. The means for irradiating the ultraviolet rays is not particularly limited, and examples thereof include a UV lamp. Moreover, it is preferable that the wavelength of the irradiated ultraviolet ray is around 254 nm which ozone absorbs.

さらに本発明の他の実施形態では、基板処理槽25に供給される高温高濃度のオゾン水に、酸性化合物または有機溶剤もしくはそれら双方を添加する手段を設けるようにしてもよい。高温高濃度のオゾン水に酸性化合物または有機溶剤もしくはそれら双方を添加することによって、洗浄効果を向上することができる。酸性化合物としては、たとえば硫酸、塩酸、硝酸、フッ酸等が挙げられる。また前記有機溶剤としては、たとえば酢酸、アセトンおよびアセトニトリル等が挙げられる。   Furthermore, in another embodiment of the present invention, means for adding an acidic compound or an organic solvent or both to high-temperature and high-concentration ozone water supplied to the substrate processing tank 25 may be provided. By adding an acidic compound and / or an organic solvent to high-temperature and high-concentration ozone water, the cleaning effect can be improved. Examples of the acidic compound include sulfuric acid, hydrochloric acid, nitric acid, and hydrofluoric acid. Examples of the organic solvent include acetic acid, acetone and acetonitrile.

前述の各実施形態では、基板Wは半導体ウエハに付着した残留有機物を除去する構成について説明したが、本発明の他の実施形態では、基板Wは液晶表示素子のガラス基板、半導体素子のチップ基板であってもよく、高温高濃度オゾン水による高酸化力を利用した各種の基板を洗浄するために好適に実施することができる。   In each of the above-described embodiments, the structure in which the substrate W removes residual organic substances attached to the semiconductor wafer has been described. It may be suitable for cleaning various substrates using high oxidizing power by high-temperature high-concentration ozone water.

本発明の実施の一形態の基板処理装置1を示す系統図である。1 is a system diagram showing a substrate processing apparatus 1 according to an embodiment of the present invention. 基板処理手段4の構成を説明するための系統図であり、基板処理槽25を図1の左側から見た側面を示す。It is a systematic diagram for demonstrating the structure of the substrate processing means 4, and shows the side surface which looked at the substrate processing tank 25 from the left side of FIG. 図1に示される基板処理装置1を用いて残存有機物が除去されるためのオゾン水中のオゾン飽和溶解度のオゾン水温度およびオゾンガス圧力の依存性を示す図である。It is a figure which shows the dependence of ozone water temperature and ozone gas pressure of the ozone saturation solubility in ozone water for a residual organic substance to be removed using the substrate processing apparatus 1 shown by FIG. 本件発明者による実験によって18℃の低温高濃度オゾン水を80℃に加熱したときの各温度とオゾン濃度との関係を示す図である。It is a figure which shows the relationship between each temperature and ozone concentration when 18 degreeC low temperature high concentration ozone water is heated to 80 degreeC by experiment by this inventor. 本件発明者による実験によって18℃の各濃度のオゾン水を80℃に加熱した高温高濃度オゾン水を用いて4μmのレジスト除去に要する除去時間を確認した結果を示す図である。It is a figure which shows the result of having confirmed the removal time required for resist removal of 4 micrometers using the high temperature high concentration ozone water which heated ozone water of each concentration of 18 degreeC to 80 degreeC by experiment by this inventor. オゾン水の流速による4μmのレジスト除去時間の依存性を示す図である。It is a figure which shows the dependence of the resist removal time of 4 micrometers by the flow velocity of ozone water. 本発明の他の実施形態の基板処理装置1に備えられる基板処理手段4aを示す一部の系統図である。It is a one part systematic diagram which shows the substrate processing means 4a with which the substrate processing apparatus 1 of other embodiment of this invention is equipped. 本発明のさらに他の実施形態の基板処理装置1に備えられる基板処理手段4bを示す一部の系統図である。It is a one part systematic diagram which shows the substrate processing means 4b with which the substrate processing apparatus 1 of other embodiment of this invention is equipped. 本発明のさらに他の実施形態の基板処理装置1に備えられる基板処理手段4cを示す一部の系統図であり、図1の左側から見た側面を示す。It is a partial systematic diagram which shows the substrate processing means 4c with which the substrate processing apparatus 1 of further another embodiment of this invention is equipped, and shows the side surface seen from the left side of FIG.

符号の説明Explanation of symbols

1 基板処理装置
2 高濃度オゾン水生成手段
3 加熱手段
4,4a,4b,4c 基板処理手段
5 加圧手段
9 エジェクタ
10 オゾンガス生成器
11,13,14,15,20 管路
12 溶解槽
16 冷却器
17,21 供給管路
25 基板処理槽
26 循環管路
24 処理槽本体
27 蓋体
28 クランプ部材
29,30 長辺側側壁
31,32 短辺側側壁
33 底部
34 透孔
35 底板
36 支持片
40 分岐管路
42 ドレン管路
P1,P2 ポンプ
V1,V3 圧力制御弁
V2,V4,V5 開閉弁
W 基板
DESCRIPTION OF SYMBOLS 1 Substrate processing apparatus 2 High concentration ozone water production | generation means 3 Heating means 4, 4a, 4b, 4c Substrate treatment means 5 Pressurization means 9 Ejector 10 Ozone gas generator 11, 13, 14, 15, 20 Pipe line 12 Dissolution tank 16 Cooling Containers 17, 21 Supply pipe 25 Substrate processing tank 26 Circulation pipe 24 Processing tank main body 27 Cover body 28 Clamp member 29, 30 Long side wall 31, 32 Short side wall 33 Bottom part 34 Through hole 35 Bottom plate 36 Support piece 40 Branch line 42 Drain line P1, P2 Pump V1, V3 Pressure control valve V2, V4, V5 On-off valve W Substrate

Claims (7)

基板の表面に残留している残留有機物を、オゾン水中に前記基板を浸漬させて除去する基板処理装置において、
大気圧よりも圧力の高いオゾンガスを発生し、そのオゾンガスを低温の純水またはオゾン水に溶解させて、高濃度のオゾン水を生成する高濃度オゾン水生成手段と、
高濃度オゾン水生成手段によって生成された高濃度オゾン水を加熱する高濃度オゾン水加熱手段と、
加圧高濃度オゾン水が貯留され、この貯留された高濃度オゾン水に前記基板を浸漬させて洗浄する基板処理槽と、
前記高濃度オゾン水生成手段で発生したオゾンガスの一部を、基板処理槽内に導くオゾンガス供給手段と、
基板処理槽内の気相の圧力を、大気圧よりも高い予め定める圧力に維持する圧力制御弁とを含むことを特徴とする基板処理装置。
In a substrate processing apparatus for removing residual organic matter remaining on the surface of the substrate by immersing the substrate in ozone water,
High concentration ozone water generating means for generating ozone gas having a pressure higher than atmospheric pressure and dissolving the ozone gas in low temperature pure water or ozone water to generate high concentration ozone water;
High-concentration ozone water heating means for heating the high-concentration ozone water generated by the high-concentration ozone water generation means;
A substrate processing tank in which pressurized high-concentration ozone water is stored, and the substrate is immersed in the stored high-concentration ozone water for cleaning,
Ozone gas supply means for guiding a part of the ozone gas generated by the high-concentration ozone water generation means into the substrate processing tank;
A substrate processing apparatus comprising: a pressure control valve that maintains a gas phase pressure in the substrate processing tank at a predetermined pressure higher than atmospheric pressure.
前記基板処理槽内のオゾン水を、流動化する流動化手段を含むことを特徴とする請求項1記載の基板処理装置。   2. The substrate processing apparatus according to claim 1, further comprising fluidizing means for fluidizing ozone water in the substrate processing tank. 前記基板処理槽内のオゾン水を、加圧状態で循環させて流動化する流動化手段を含むことを特徴とする請求項1記載の基板処理装置。   2. The substrate processing apparatus according to claim 1, further comprising fluidizing means for circulating and fluidizing ozone water in the substrate processing tank in a pressurized state. 前記基板処理槽内に設けられ、1または複数の基板の周縁部分を支持することによって、前記1または複数の基板を保持する基板保持手段を含むことを特徴とする請求項1〜3のいずれか1つに記載の基板処理装置。   4. A substrate holding unit that is provided in the substrate processing tank and holds the one or more substrates by supporting a peripheral portion of the one or more substrates. The substrate processing apparatus as described in one. 前記高濃度オゾン水生成手段によって生成された高濃度オゾン水を、前記基板処理槽の底部から基板処理槽内へ供給する高濃度オゾン水供給手段と、
前記基板処理槽内に貯留されているオゾン水を、前記基板処理槽の底部から排出するオゾン水排出手段とを含むことを特徴とする請求項1〜4のいずれか1つに記載の基板処理装置。
High-concentration ozone water supply means for supplying the high-concentration ozone water generated by the high-concentration ozone water generation means from the bottom of the substrate processing tank into the substrate processing tank;
The substrate processing according to any one of claims 1 to 4, further comprising ozone water discharging means for discharging ozone water stored in the substrate processing tank from a bottom portion of the substrate processing tank. apparatus.
前記高濃度オゾン水生成手段によって生成された高濃度オゾン水を、前記基板処理槽の側部から基板処理槽内へ供給する高濃度オゾン水供給手段と、
前記基板処理槽内に貯留されているオゾン水を、前記基板処理槽の底部から排出するオゾン水排出手段とを含むことを特徴とする請求項1〜4のいずれか1つに記載の基板処理装置。
High-concentration ozone water supply means for supplying the high-concentration ozone water generated by the high-concentration ozone water generation means from the side of the substrate processing tank into the substrate processing tank;
The substrate processing according to any one of claims 1 to 4, further comprising ozone water discharging means for discharging the ozone water stored in the substrate processing tank from the bottom of the substrate processing tank. apparatus.
基板の表面に残留している残留有機物を、オゾン水中に前記基板を浸漬させて除去する基板処理方法において、
純水またはオゾン水にオゾンガスを溶解させて、高濃度のオゾン水を生成する高濃度オゾン水生成工程と、
高濃度オゾン水生成工程によって生成された加圧・高濃度オゾン水を、加熱する高濃度オゾン水加熱工程と、
加圧高濃度オゾン水を基板処理槽に貯留し、この基板処理槽内に前記高濃度オゾン水生成手段で用いられるオゾンガスの一部を導きながら、基板処理槽内の気相の圧力を大気圧よりも高い予め定める圧力に維持して、基板処理槽内に貯留される高濃度オゾン水に前記基板を浸漬させて洗浄する基板洗浄工程とを含むことを特徴とする基板処理方法。
In the substrate processing method of removing residual organic matter remaining on the surface of the substrate by immersing the substrate in ozone water,
A high-concentration ozone water generation step of dissolving ozone gas in pure water or ozone water to generate high-concentration ozone water;
A high-concentration ozone water heating step for heating the pressurized and high-concentration ozone water generated by the high-concentration ozone water generation step;
Pressurized high-concentration ozone water is stored in a substrate treatment tank, and a part of the ozone gas used in the high-concentration ozone water generating means is introduced into the substrate treatment tank, and the pressure of the gas phase in the substrate treatment tank is changed to atmospheric pressure. And a substrate cleaning step of cleaning the substrate by immersing the substrate in high-concentration ozone water stored in a substrate processing tank while maintaining a higher predetermined pressure.
JP2007160611A 2007-06-18 2007-06-18 Substrate treatment method and substrate treatment equipment Pending JP2008311591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007160611A JP2008311591A (en) 2007-06-18 2007-06-18 Substrate treatment method and substrate treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007160611A JP2008311591A (en) 2007-06-18 2007-06-18 Substrate treatment method and substrate treatment equipment

Publications (1)

Publication Number Publication Date
JP2008311591A true JP2008311591A (en) 2008-12-25

Family

ID=40238909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007160611A Pending JP2008311591A (en) 2007-06-18 2007-06-18 Substrate treatment method and substrate treatment equipment

Country Status (1)

Country Link
JP (1) JP2008311591A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503340A (en) * 2012-11-08 2016-02-04 エムケイエス インストゥルメンツ, インコーポレイテッド Non-pressurized ozonized deionized water (DI03) recirculation and recovery system and method
JP2017000931A (en) * 2015-06-08 2017-01-05 栗田工業株式会社 Method and device for manufacturing gas-dissolved water
US10290511B2 (en) 2012-08-08 2019-05-14 SCREEN Holdings Co., Ltd Substrate treatment apparatus and substrate treatment method
JPWO2021235242A1 (en) * 2020-05-19 2021-11-25
KR20220039785A (en) 2019-08-29 2022-03-29 가부시키가이샤 스크린 홀딩스 Substrate processing method and substrate processing apparatus
JP7475441B2 (en) 2020-05-19 2024-04-26 東京エレクトロン株式会社 Substrate Processing Equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133433U (en) * 1991-05-30 1992-12-11 関西日本電気株式会社 Semiconductor wafer cleaning equipment
JP2001028356A (en) * 1999-07-14 2001-01-30 Nisso Engineering Co Ltd Cleaning apparatus
JP2002261068A (en) * 2001-03-05 2002-09-13 Sony Corp Device and method for substrate treatment
JP2003236481A (en) * 2002-02-14 2003-08-26 Toshiba Corp Washing method, washing apparatus, manufacturing method for semiconductor device, and manufacturing method for active matrix type display device
JP2006261685A (en) * 1999-07-23 2006-09-28 Semitool Inc Process and apparatus for treating workpiece such as semiconductor wafer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133433U (en) * 1991-05-30 1992-12-11 関西日本電気株式会社 Semiconductor wafer cleaning equipment
JP2001028356A (en) * 1999-07-14 2001-01-30 Nisso Engineering Co Ltd Cleaning apparatus
JP2006261685A (en) * 1999-07-23 2006-09-28 Semitool Inc Process and apparatus for treating workpiece such as semiconductor wafer
JP2002261068A (en) * 2001-03-05 2002-09-13 Sony Corp Device and method for substrate treatment
JP2003236481A (en) * 2002-02-14 2003-08-26 Toshiba Corp Washing method, washing apparatus, manufacturing method for semiconductor device, and manufacturing method for active matrix type display device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10290511B2 (en) 2012-08-08 2019-05-14 SCREEN Holdings Co., Ltd Substrate treatment apparatus and substrate treatment method
JP2016503340A (en) * 2012-11-08 2016-02-04 エムケイエス インストゥルメンツ, インコーポレイテッド Non-pressurized ozonized deionized water (DI03) recirculation and recovery system and method
TWI587900B (en) * 2012-11-08 2017-06-21 Mks儀器公司 Pressure-less ozonated di-water (dio3) recirculation reclaim system
TWI587902B (en) * 2012-11-08 2017-06-21 Mks儀器公司 Pressure-less ozonated di-water (dio3) recirculation reclaim system
JP2017121628A (en) * 2012-11-08 2017-07-13 エムケイエス インストゥルメンツ, インコーポレイテッド Pressure-less ozonated di-water (di03) recirculation reclaim system and method
US9796603B2 (en) 2012-11-08 2017-10-24 Mks Instruments, Inc. Pressure-less ozonated di-water (DIO3) recirculation reclaim system
JP2017000931A (en) * 2015-06-08 2017-01-05 栗田工業株式会社 Method and device for manufacturing gas-dissolved water
KR20220039785A (en) 2019-08-29 2022-03-29 가부시키가이샤 스크린 홀딩스 Substrate processing method and substrate processing apparatus
JPWO2021235242A1 (en) * 2020-05-19 2021-11-25
WO2021235242A1 (en) * 2020-05-19 2021-11-25 東京エレクトロン株式会社 Substrate processing device and substrate processing method
JP7475441B2 (en) 2020-05-19 2024-04-26 東京エレクトロン株式会社 Substrate Processing Equipment

Similar Documents

Publication Publication Date Title
US6551409B1 (en) Method for removing organic contaminants from a semiconductor surface
KR100514598B1 (en) Method and apparatus for recovering photoresist film
US5378317A (en) Method for removing organic film
JP5217951B2 (en) Resist removing method and apparatus
WO2000030164A1 (en) Photoresist film removing method and device therefor
JP4952375B2 (en) Resist removing method and apparatus
JP2003330206A (en) Method for removing organic coating film, and removing device
WO2004030037A2 (en) System for in-situ generation of fluorine radicals and/or fluorine-containing interhalogen (xfn) compounds for use in cleaning semiconductor processing chambers
TW376548B (en) Treating system and treating method for semiconductor substrates
JP2008311591A (en) Substrate treatment method and substrate treatment equipment
JP2009141028A (en) Shower head and resist removing device
TW201417905A (en) Cleaning method and cleaning device
KR100229687B1 (en) Method for removing organic thin film
TWI713587B (en) A method for treating substates with an aqueous liquid medium exposed to uv-radiation
JPH04302145A (en) Cleaning method
JP4320982B2 (en) Substrate processing equipment
JP2004241726A (en) Method and device for treating resist
JP2009218548A (en) Resist removing method and resist removing device of high dose implantation process
JP2001203182A (en) Cleaning method of object surface and cleaning equipment for method
JP2010129837A (en) Method for removing resist
JP2017202474A (en) Ozone dissolved water production apparatus
JP5581090B2 (en) Method and apparatus for treating waste liquid containing acid or base and hydrogen peroxide
JP2002018379A (en) Thin film peeling method, thin film peeling device and method for manufacturing electronic device
JP2007103429A (en) Cleaning equipment and method
JPH11274132A (en) Method and device for cleaning substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090805

A977 Report on retrieval

Effective date: 20110207

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110215

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712