WO2017122771A1 - Supply-liquid producing apparatus and supply-liquid producing method - Google Patents

Supply-liquid producing apparatus and supply-liquid producing method Download PDF

Info

Publication number
WO2017122771A1
WO2017122771A1 PCT/JP2017/000983 JP2017000983W WO2017122771A1 WO 2017122771 A1 WO2017122771 A1 WO 2017122771A1 JP 2017000983 W JP2017000983 W JP 2017000983W WO 2017122771 A1 WO2017122771 A1 WO 2017122771A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
unit
liquid
pressure
gas
Prior art date
Application number
PCT/JP2017/000983
Other languages
French (fr)
Japanese (ja)
Inventor
卓 小澤
中川 洋一
宗人 高橋
涛 徐
横山 俊夫
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017001731A external-priority patent/JP6826437B2/en
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to KR1020187019107A priority Critical patent/KR102571000B1/en
Priority to CN201780006815.2A priority patent/CN108472610B/en
Priority to SG11201805417PA priority patent/SG11201805417PA/en
Priority to EP17738523.4A priority patent/EP3403717B1/en
Priority to US16/069,862 priority patent/US10654017B2/en
Publication of WO2017122771A1 publication Critical patent/WO2017122771A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/7547Discharge mechanisms characterised by the means for discharging the components from the mixer using valves, gates, orifices or openings
    • B01F35/75471Discharge mechanisms characterised by the means for discharging the components from the mixer using valves, gates, orifices or openings being adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/88Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise
    • B01F35/883Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise using flow rate controls for feeding the substances

Definitions

  • the present invention relates to a supply liquid production apparatus for producing a supply liquid by mixing a first raw material and a second raw material.
  • a cleaning method in addition to the “batch processing method” that repeats the operation of simultaneously immersing and cleaning a plurality of silicon wafers, chemical cleaning and ultrapure water are performed for each wafer corresponding to products of various types and small quantities.
  • a “single-wafer processing method” for cleaning is adopted.
  • the single wafer processing method has a longer cleaning process time (takt time) per wafer than the batch processing method, and the amount of cleaning liquid used is increased. Therefore, it is required to shorten the tact time and reduce the amount of cleaning liquid used. It has been.
  • takt time cleaning process time
  • an advanced cleaning process is performed in which a plurality of functional waters and chemicals are used alone or simultaneously to switch the cleaning process in a short time. Yes.
  • ozone water in which ozone gas is dissolved in ultrapure water is used. Since ozone dissolved in ultrapure water has a very strong oxidizing power even at a low concentration (several ppm), it is possible to remove organic substances and metals.
  • This ozone water is generally produced by an ozone water production apparatus. With the sophistication and complexity of the cleaning process, it is required to supply and stop ozone water to the cleaning device in a short time. However, once the production of ozone water is stopped, the conventional device once again requires the required ozone. It takes a certain time (rise time) before the ozone water having the concentration and the required flow rate can be supplied.
  • ozone water is always manufactured by the ozone water manufacturing device and continuously supplied to the cleaning device.
  • an excessive amount of ozone water is supplied to the cleaning device, and unused ozone water that is not used for cleaning the silicon wafer is discharged from the cleaning device as waste water.
  • water and ozone gas are supplied to the ozone dissolution tank 12 to generate ozone water, and ozone water is supplied from the ozone dissolution tank 12 to the circulation tank 21.
  • the ozone water supplied from the circulation tank 21 to the use point via the ozone water supply pipe 22 is returned to the circulation tank 21 via the ozone water return pipe 23, and again from the circulation tank 21.
  • the tank internal pressure of the ozone dissolution tank 12, the tank internal pressure of the circulation tank 21, and the internal pressure of the ozone water return pipe 23 are kept constant, and the tank internal pressure of the circulation tank 21 is maintained in the tank of the ozone dissolution tank 12.
  • the pressure and the pressure in the ozone water return pipe 23 are controlled to be lower than each pressure.
  • the conventional ozone water supply device is a circulation type that circulates ozone water (unused ozone water) to be reused, the temperature rise or contamination of ozone water due to the circulation of ozone water (unused ozone water) It was necessary to take measures against the outbreak. Therefore, it has been desired to develop a technique for producing ozone water in an amount necessary for a use point.
  • the present invention has been made in view of the above-mentioned problems, and it is not necessary to take measures against the temperature rise or the occurrence of contamination of a supply liquid (for example, ozone water) by circulation, or at least reduce the necessity thereof, and the use point
  • a supply liquid production apparatus capable of producing a supply liquid as much as necessary. More specifically, an object is to provide a supply liquid production apparatus that can supply a supply liquid with a constant flow rate or a constant pressure and a constant concentration to a use point.
  • the supply liquid manufacturing apparatus of the present invention includes a mixing unit that mixes a first raw material and a second raw material to generate a mixed liquid, a pump unit that changes a flow rate of the first raw material supplied to the mixing unit, A gas-liquid separation tank unit that gas-liquid separates the mixed liquid generated by the mixing unit into a supply liquid supplied to a use point and an exhaust gas discharged from an exhaust port, and a discharge amount of the exhaust gas is determined.
  • a valve for adjusting the opening degree, a flow rate measurement unit for measuring the flow rate of the supply liquid supplied from the gas-liquid separation tank unit to the use point, and a flow rate value of the supply liquid measured by the flow rate measurement unit The first raw material supplied to the mixing unit by generating a control signal for controlling the pump unit according to the received flow rate value and transmitting the control signal to the pump unit to control the pump Adjust the flow rate of Provided that the flow rate control unit.
  • the flow rate of the liquid (supply liquid) supplied to the use point is measured after gas-liquid separation, the gas (exhaust gas) generated by mixing the first raw material and the second raw material The flow rate of the supplied liquid can be accurately measured without being substantially affected by the bubbles. Then, the flow rate value of the supply liquid measured by the flow rate measurement unit is received, a control signal for controlling the pump unit is generated according to the received flow rate value, and the control signal is transmitted to the pump unit to control the pump As a result, the flow rate of the first raw material is adjusted according to the flow rate of the supply liquid measured in this way, so that the supply liquid (for example, ozone water) can be produced as much as required at the use point. it can.
  • the supply liquid for example, ozone water
  • the supply liquid manufacturing apparatus of the present invention includes a second flow rate measurement unit that measures the flow rate of the first raw material supplied to the mixing unit, and the first flow rate measured by the second flow rate measurement unit.
  • the flow rate control unit may perform feedback control so that the flow rate of the raw material matches the flow rate of the supply liquid measured by the flow rate measurement unit.
  • the flow rate of the first raw material is monitored, and the feedback control of the pump can be performed to correct the flow rate when it deviates from the desired flow rate.
  • the supply liquid manufacturing apparatus of the present invention includes a flow rate controller that determines the flow rate of the second raw material, and the flow rate controller uses the flow rate controller according to the flow rate of the first raw material measured by the second flow rate measurement unit. You may adjust the production amount of a 2nd raw material.
  • the relationship between the flow rates of the first raw material and the second raw material is obtained in advance so that a supply liquid with a target concentration can be obtained, and the second raw material is allowed to flow according to the flow rate of the first raw material. it can.
  • the supply liquid manufacturing apparatus of the present invention includes a mixing unit that mixes a first raw material and a second raw material to generate a mixed liquid, a booster pump unit that pressurizes the first raw material supplied to the mixing unit, and the mixing
  • a flow rate measuring unit that measures the flow rate of the supply liquid supplied to the point, and the boost pump unit is controlled according to the flow rate of the supply liquid measured by the flow rate measurement unit to boost the pressure to the mixing unit
  • a pressure increase control unit that adjusts the pressure of the first raw material to be supplied; and an exhaust pressure control unit that controls the exhaust pressure of the exhaust gas so as to keep the amount of liquid in the gas-liquid separation tank unit constant.
  • the gas (exhaust gas) generated by mixing the first raw material and the second raw material The flow rate of the supplied liquid can be accurately measured without being substantially affected by the bubbles.
  • the pressure of the first raw material (suppressed and supplied to the mixing unit) is adjusted according to the flow rate of the supply liquid thus measured, and the exhaust pressure of the exhaust gas is controlled to control the gas-liquid separation tank.
  • the amount of liquid in the section is kept constant. Thereby, supply liquid (for example, ozone water etc.) can be manufactured as much as required at the use point.
  • the supply liquid manufacturing apparatus of the present invention may further include a liquid amount adjusting unit for adjusting the liquid amount in the gas-liquid separation tank unit to be constant.
  • the amount of liquid in the gas-liquid separation tank can be kept constant, and a supply liquid (for example, ozone water) can be produced as much as required at the use point.
  • a supply liquid for example, ozone water
  • the liquid amount adjusting unit may include a liquid amount measuring unit that measures the amount of liquid in the gas-liquid separation tank unit.
  • the amount of liquid in the gas-liquid separation tank unit can be measured by the liquid amount measurement unit, so that the amount of liquid in the gas-liquid separation tank unit can be kept constant. Only a supply liquid (such as ozone water) can be produced.
  • the liquid amount adjustment unit may include the flow rate measurement unit and a second flow rate measurement unit that measures the flow rate of the liquid supplied to the mixing unit.
  • the flow rate of the liquid supplied to the mixing unit is measured, and the flow rate of the liquid discharged from the gas-liquid separation tank unit (supplied to the use point) is measured and supplied to the mixing unit.
  • the first raw material may be water
  • the second raw material may be ozone gas or a chemical raw material.
  • ozone water can be produced by mixing water and ozone gas in the mixing section.
  • chemical water for example, ammonia water
  • a chemical raw material for example, ammonia
  • the supply liquid manufacturing method of the present invention includes a step of boosting a first raw material by a boosting pump unit and supplying the first raw material to a mixing unit, and a step of mixing the first raw material and the second raw material in the mixing unit to generate a mixed liquid Gas-liquid separation of the mixed liquid generated by the mixing unit into a supply liquid supplied to a use point and an exhaust gas discharged from an exhaust port in a gas-liquid separation tank unit; Measuring the flow rate of the supply liquid supplied from the separation tank unit to the use point, and controlling the boost pump unit according to the measured flow rate of the supply liquid to boost the pressure to the mixing unit Adjusting the pressure of the first raw material, and controlling the exhaust pressure of the exhaust gas so as to keep the amount of liquid in the gas-liquid separation tank unit constant.
  • the supply liquid manufacturing apparatus of the present invention includes a mixing unit that mixes a first raw material and a second raw material to generate a mixed liquid, a pump unit that changes a flow rate of the first raw material supplied to the mixing unit, From the gas-liquid separation tank unit, the gas-liquid separation tank unit that gas-liquid separates the mixed liquid generated by the mixing unit into a supply liquid supplied to a use point and an exhaust gas discharged from an exhaust port; A first flow rate measuring unit for measuring a flow rate of the supply liquid supplied to the use point; an exhaust valve for adjusting a discharge amount of the exhaust gas discharged from the exhaust port; and the supply supplied to the use point.
  • the exhaust valve is controlled to adjust the discharge amount of the exhaust gas discharged from the exhaust port so as to keep the liquid flow rate constant.
  • the exhaust controller controls the amount of the exhaust gas discharged from the exhaust port when the flow rate of the supply liquid measured by the first flow rate measuring unit increases with respect to the constant flow rate. The discharge amount is increased, and when the flow rate of the supply liquid measured by the first flow rate measurement unit decreases with respect to the constant flow rate, the discharge amount of the exhaust gas discharged from the exhaust port is decreased.
  • the flow rate of the supply liquid supplied to the use point increases with respect to the target constant flow rate, that is, the constant flow rate where the flow rate of the supply liquid measured by the first flow rate measurement unit is the target.
  • the flow rate of the supply liquid supplied to the use point is decreased by increasing the discharge amount of the exhaust gas discharged from the exhaust port and lowering the pressure in the gas-liquid separation tank unit.
  • the flow rate of the supply liquid supplied to the use point decreases with respect to the target constant flow rate, that is, the flow rate of the supply liquid measured by the first flow rate measurement unit decreases with respect to the target constant flow rate.
  • the flow rate of the supply liquid supplied to the use point is increased by decreasing the discharge amount of the exhaust gas discharged from the exhaust port and increasing the pressure in the gas-liquid separation tank unit. In this way, the flow rate of the supply liquid supplied to the use point can be kept constant.
  • the supply liquid manufacturing apparatus of the present invention adjusts the flow rate of the first raw material to be supplied to the mixing unit by controlling the pump unit according to the flow rate of the supply liquid measured by the first flow rate measurement unit.
  • a flow rate control unit that controls the flow rate of the supply liquid measured by the first flow rate measurement unit to be the same as the flow rate of the first raw material supplied to the mixing unit. Good.
  • the flow rate of the first raw material supplied to the mixing unit is adjusted so that the flow rate of the supply liquid measured by the first flow rate measuring unit and the flow rate of the first raw material supplied to the mixing unit are the same.
  • the amount of liquid in the gas-liquid separation tank can be kept constant.
  • the supply liquid manufacturing apparatus of the present invention may include a second flow rate measurement unit that measures the flow rate of the first raw material supplied to the mixing unit.
  • the flow rate of the first raw material supplied to the mixing unit is adjusted so that the flow rate measured by the second flow rate measurement unit is the same as the flow rate measured by the first flow rate measurement unit. be able to.
  • the supply liquid manufacturing apparatus of the present invention further includes a liquid amount measuring unit that detects the amount of liquid in the gas-liquid separation tank unit, and the boost control unit is configured to measure the gas-liquid separation tank measured by the liquid amount measuring unit.
  • the boost control unit is configured to measure the gas-liquid separation tank measured by the liquid amount measuring unit.
  • the liquid amount in the gas-liquid separation tank unit can be kept constant by detecting the liquid amount in the gas-liquid separation tank unit without measuring the flow rate of the first raw material supplied to the mixing unit.
  • the flow rate of the first raw material supplied to the mixing unit can be adjusted so as to maintain.
  • the supply liquid manufacturing method of the present invention includes a step of mixing a first raw material and a second raw material in a mixing unit to generate a mixed liquid, and a supply in which the mixed liquid generated in the mixing unit is supplied to a use point Gas-liquid separation in a gas-liquid separation tank unit into liquid and exhaust gas discharged from an exhaust port; and first flow rate measurement of the supply liquid supplied from the gas-liquid separation tank unit to the use point And a discharge from the exhaust port according to the flow rate of the supply liquid measured by the first flow rate measurement unit so that the flow rate of the supply liquid supplied to the use point is kept constant.
  • the discharge amount of the exhaust gas discharged from the exhaust port is increased when the flow rate increases with respect to the constant flow rate. Decreases the amount of exhaust gas discharged from the exhaust port.
  • the flow rate of the supply liquid supplied to the use point increases with respect to the target constant flow rate, that is, the flow rate of the supply liquid measured by the flow rate measuring unit is compared with the target constant flow rate.
  • the flow rate of the supply liquid supplied to the use point is decreased by increasing the discharge amount of the exhaust gas discharged from the exhaust port and lowering the pressure in the gas-liquid separation tank unit.
  • the flow rate of the supply liquid supplied to the use point decreases with respect to the target constant flow rate, that is, when the flow rate of the supply liquid measured by the flow measurement unit decreases with respect to the target constant flow rate
  • the flow rate of the supply liquid supplied to the use point is increased by decreasing the discharge amount of the exhaust gas discharged from the exhaust port and increasing the pressure in the gas-liquid separation tank unit. In this way, the flow rate of the supply liquid supplied to the use point can be kept constant.
  • the supply liquid manufacturing apparatus of the present invention includes a mixing unit that mixes a first raw material and a second raw material to generate a mixed liquid, a pump unit that changes a flow rate of the first raw material supplied to the mixing unit, From the gas-liquid separation tank unit, the gas-liquid separation tank unit that gas-liquid separates the mixed liquid generated by the mixing unit into a supply liquid supplied to a use point and an exhaust gas discharged from an exhaust port; A pressure measuring unit for measuring a pressure of the supply liquid supplied to the use point; an exhaust valve for adjusting a discharge amount of the exhaust gas discharged from the exhaust port; and a supply liquid supplied to the use point.
  • Exhaust control that controls the exhaust valve and adjusts the exhaust gas discharged from the exhaust port according to the pressure of the supply liquid measured by the pressure measuring unit so as to keep the pressure constant. And the exhaust control unit increases the discharge amount of the exhaust gas discharged from the exhaust port when the pressure of the supply liquid measured by the pressure measurement unit increases with respect to the constant pressure. When the pressure of the supply liquid measured by the pressure measuring unit decreases with respect to the constant pressure, the discharge amount of the exhaust gas discharged from the exhaust port is decreased.
  • the supply liquid manufacturing apparatus of the present invention is a first flow rate measurement unit that measures a flow rate of the supply liquid supplied from the gas-liquid separation tank unit to the use point, and the first flow rate measurement unit that measures the flow rate.
  • a flow rate control unit that controls the pump unit and adjusts the flow rate of the first raw material supplied to the mixing unit according to the flow rate of the supply liquid, and the flow rate control unit includes the first flow rate measurement unit.
  • the flow rate of the supply liquid measured in step 1 may be controlled to be the same as the flow rate of the first raw material supplied to the mixing unit.
  • the flow rate of the first raw material supplied to the mixing unit is adjusted so that the flow rate of the supply liquid measured by the first flow rate measuring unit and the flow rate of the first raw material supplied to the mixing unit are the same.
  • the amount of liquid in the gas-liquid separation tank can be kept constant.
  • the supply liquid manufacturing apparatus of the present invention may include a second flow rate measurement unit that measures the flow rate of the first raw material supplied to the mixing unit.
  • the flow rate of the first raw material supplied to the mixing unit is adjusted so that the flow rate measured by the second flow rate measurement unit is the same as the flow rate measured by the first flow rate measurement unit. be able to.
  • the supply liquid manufacturing apparatus of the present invention has a liquid amount measurement unit that detects the amount of liquid in the gas-liquid separation tank unit, and the flow rate control unit is the gas-liquid separation tank measured by the liquid amount measurement unit
  • the amount of liquid in the unit increases with respect to a predetermined amount of liquid
  • the flow rate of the first raw material supplied to the mixing unit is decreased
  • the amount of liquid in the gas-liquid separation tank unit measured by the liquid amount measuring unit May decrease the flow rate of the first raw material supplied to the mixing unit when the amount of liquid decreases with respect to a predetermined amount of liquid.
  • the liquid amount in the gas-liquid separation tank unit can be kept constant by detecting the liquid amount in the gas-liquid separation tank unit without measuring the flow rate of the first raw material supplied to the mixing unit.
  • the flow rate of the first raw material supplied to the mixing unit can be adjusted so as to maintain.
  • the supply liquid manufacturing method of the present invention includes a step of mixing a first raw material and a second raw material to generate a mixed liquid in a mixing unit, and a supply for supplying the mixed liquid generated in the mixing unit to a use point Gas-liquid separation in the gas-liquid separation tank unit into liquid and exhaust gas discharged from the exhaust port, and pressure of the supply liquid supplied from the gas-liquid separation tank unit to the point of use in the pressure measurement unit
  • the pressure of the supply liquid measured by the pressure measuring unit is a constant pressure
  • the discharge amount of the exhaust gas discharged from the exhaust port is increased.
  • the pressure of the supply liquid measured by the pressure measuring unit decreases with respect
  • the pressure of the supply liquid supplied to the use point increases with respect to the target constant pressure, that is, the pressure of the supply liquid measured by the pressure measuring unit with respect to the target constant pressure.
  • the pressure of the supply liquid supplied to the use point is decreased by increasing the discharge amount of the exhaust gas discharged from the exhaust port and lowering the pressure in the gas-liquid separation tank unit.
  • the pressure of the supply liquid supplied to the use point decreases with respect to the target constant pressure, that is, when the pressure of the supply liquid measured by the pressure measuring unit decreases with respect to the target constant pressure.
  • the pressure of the supply liquid supplied to the use point is increased by decreasing the discharge amount of the exhaust gas discharged from the exhaust port and increasing the pressure in the gas-liquid separation tank unit. In this way, the pressure of the supply liquid supplied to the use point can be kept constant.
  • the supply liquid manufacturing apparatus of the present invention includes a mixing unit that mixes a first raw material and a second raw material to generate a mixed liquid, a pump unit that changes a flow rate of the first raw material supplied to the mixing unit, From the gas-liquid separation tank unit, the gas-liquid separation tank unit that gas-liquid separates the mixed liquid generated by the mixing unit into a supply liquid supplied to a use point and an exhaust gas discharged from an exhaust port; A first flow rate measurement unit for measuring a flow rate of the supply liquid supplied to the use point; a pressure measurement unit for measuring a pressure of the supply liquid supplied from the gas-liquid separation tank unit to the use point; and the exhaust gas An exhaust valve for adjusting an exhaust amount of the exhaust gas discharged from the mouth; and the supply liquid measured by the first flow rate measurement unit so as to maintain a constant flow rate of the supply liquid supplied to the use point A constant flow control unit for controlling the exhaust valve according to the flow rate of the exhaust gas to adjust the discharge amount of the exhaust gas discharged from the exhaust port, and a constant pressure of the supply liquid
  • the constant pressure control unit is configured such that the pressure of the supply liquid measured by the pressure measurement unit is the constant pressure.
  • the pressure of the supply liquid measured by the pressure measuring unit decreases with respect to the constant pressure, the amount of exhaust gas discharged from the exhaust port is increased when the pressure increases. The amount of the exhaust gas discharged from the exhaust gas is reduced.
  • the flow rate of the supply liquid supplied to the use point increases with respect to the target constant flow rate, that is, the flow rate of the supply liquid measured by the flow rate measurement unit is compared with the target constant flow rate.
  • the flow rate of the supply liquid supplied to the use point is decreased by increasing the discharge amount of the exhaust gas discharged from the exhaust port and lowering the pressure in the gas-liquid separation tank unit.
  • the flow rate of the supply liquid supplied to the use point decreases with respect to the target constant flow rate, that is, when the flow rate of the supply liquid measured by the flow measurement unit decreases with respect to the target constant flow rate
  • the flow rate of the supply liquid supplied to the use point is increased by decreasing the discharge amount of the exhaust gas discharged from the exhaust port and increasing the pressure in the gas-liquid separation tank unit. In this way, the flow rate of the supply liquid supplied to the use point can be kept constant.
  • the constant pressure control when the pressure of the supply liquid supplied to the use point is increased with respect to the target constant pressure, that is, the pressure of the supply liquid measured by the pressure measuring unit with respect to the target constant pressure.
  • the pressure of the supply liquid supplied to a use point is decreased by increasing the discharge amount of the exhaust gas discharged from the exhaust port and lowering the pressure in the gas-liquid separation tank unit.
  • the pressure of the supply liquid supplied to the use point decreases with respect to the target constant pressure, that is, when the pressure of the supply liquid measured by the pressure measuring unit decreases with respect to the target constant pressure.
  • the pressure of the supply liquid supplied to the use point is increased by decreasing the discharge amount of the exhaust gas discharged from the exhaust port and increasing the pressure in the gas-liquid separation tank unit. In this way, the pressure of the supply liquid supplied to the use point can be kept constant.
  • the supply liquid manufacturing method of the present invention includes a step of mixing a first raw material and a second raw material in a mixing unit to generate a mixed liquid, and a supply in which the mixed liquid generated in the mixing unit is supplied to a use point Gas-liquid separation in the gas-liquid separation tank unit into liquid and exhaust gas discharged from the exhaust port, and the flow rate of the supply liquid supplied from the gas-liquid separation tank unit to the point of use
  • the flow rate of the exhaust gas discharged from the exhaust port is adjusted by controlling the exhaust valve according to the flow rate of the supply liquid measured by the flow rate measurement unit.
  • Pressure constant control for adjusting the discharge amount of the exhaust gas to be discharged, and selecting either one of them, and when the constant flow control is selected, the flow rate measurement unit measures the When the flow rate of the supply liquid is increased with respect to the constant flow rate, the discharge amount of the exhaust gas discharged from the exhaust port is increased, and the flow rate of the supply liquid measured by the flow rate measurement unit is increased with respect to the constant flow rate.
  • the pressure of the supply liquid measured by the pressure measurement unit is The exhaust gas discharged from the exhaust port when increased with respect to pressure is increased, and the exhaust gas when the pressure of the supply liquid measured by the pressure measuring unit decreases with respect to the constant pressure. The discharge amount of the exhaust gas discharged from the mouth is reduced.
  • control that keeps the flow rate of the supply liquid supplied to the use point constant (constant flow control) and control that keeps the pressure of the supply liquid supplied to the use point constant (pressure constant control) are selected. can do.
  • the flow rate of the supply liquid supplied to the use point increases with respect to the target constant flow rate, that is, the flow rate of the supply liquid measured by the flow rate measurement unit is compared with the target constant flow rate.
  • the flow rate of the supply liquid supplied to the use point is decreased by increasing the discharge amount of the exhaust gas discharged from the exhaust port and lowering the pressure in the gas-liquid separation tank unit.
  • the flow rate of the supply liquid supplied to the use point decreases with respect to the target constant flow rate, that is, when the flow rate of the supply liquid measured by the flow measurement unit decreases with respect to the target constant flow rate
  • the flow rate of the supply liquid supplied to the use point is increased by decreasing the discharge amount of the exhaust gas discharged from the exhaust port and increasing the pressure in the gas-liquid separation tank unit. In this way, the flow rate of the supply liquid supplied to the use point can be kept constant.
  • the constant pressure control when the pressure of the supply liquid supplied to the use point is increased with respect to the target constant pressure, that is, the pressure of the supply liquid measured by the pressure measuring unit with respect to the target constant pressure.
  • the pressure of the supply liquid supplied to a use point is decreased by increasing the discharge amount of the exhaust gas discharged from the exhaust port and lowering the pressure in the gas-liquid separation tank unit.
  • the pressure of the supply liquid supplied to the use point decreases with respect to the target constant pressure, that is, when the pressure of the supply liquid measured by the pressure measuring unit decreases with respect to the target constant pressure.
  • the pressure of the supply liquid supplied to the use point is increased by decreasing the discharge amount of the exhaust gas discharged from the exhaust port and increasing the pressure in the gas-liquid separation tank unit. In this way, the pressure of the supply liquid supplied to the use point can be kept constant.
  • a supply liquid for example, ozone water
  • ozone water supply liquid
  • constant pressure and constant pressure mean that the average pressure value within a predetermined or arbitrary time interval is constant or substantially constant.
  • Constant flow rate and “constant flow rate” mean that the average flow rate value within a predetermined or arbitrary time interval is constant or substantially constant.
  • Constant concentration and “constant concentration” mean that the value of the average component concentration of a chemical species dissolved in a certain liquid within a predetermined or arbitrary time interval is constant. Or it means that it is substantially constant.
  • FIG. 1 is an explanatory diagram showing the configuration of the supply liquid manufacturing apparatus of the present embodiment.
  • the supply liquid manufacturing apparatus 100 includes a first gas (O 2 gas) and a second gas (CO 2 gas, N 2 gas, or a mixed gas of CO 2 gas and N 2 gas) as raw materials.
  • the second gas (CO 2 gas, N 2 gas, or a mixed gas of CO 2 gas and N 2 gas) is not necessarily essential, and only the first gas (O 2 gas) may be used.
  • the first gas and the second gas are sent to the ozone gas generation unit 106 after the pressure is measured by the pressure sensor 105.
  • the ozone gas generated by the ozone gas generation unit 106 is sent to the ozone water generation unit 107.
  • the supply liquid manufacturing apparatus 100 includes a supply source 108 of water (ultra pure water) that is the first raw material.
  • the supply liquid manufacturing apparatus 100 includes a deaeration processing unit 109 that performs a deaeration process in order to remove surplus gas (oxygen, nitrogen, carbon dioxide, etc.) in the water that is the first raw material.
  • a known method such as evacuation through a deaeration treatment film can be used.
  • the supply liquid manufacturing apparatus 100 is provided with a valve 110 for adjusting the flow rate of water as the first raw material and a flow meter 111 for measuring the flow rate of water as the first raw material.
  • the flow rate of the water which is the first raw material, is measured by the flow meter 111, it is sent to a booster pump (or simply referred to as a pump, hereinafter the same) 112, and the pressure is adjusted (boosted) by the pressure pump 112. Then, it is sent to the ozone water generator 107.
  • the pressure of water sent to the ozone water generation unit 107 is set to 0.1 to 1.0 MPa, for example. And the flow volume of the water sent to the ozone water production
  • the ozone water generator 107 includes a mixer 113 that mixes water (first raw material) and ozone gas (second raw material) to generate ozone water (mixed liquid).
  • the mixer 113 is preferably one that mixes water and gas using the Venturi effect. For example, an aspirator or an ejector is used as such a mixer 113.
  • the generated ozone water is sent to the gas-liquid separation tank 114.
  • the ozone water (mixed liquid) generated in the mixer 113 is gas-liquid separated into ozone water (supply liquid) and exhaust gas (exhaust gas).
  • the gas-liquid separation tank 114 is provided with a water level sensor 115 for measuring the water level of ozone water.
  • the pressure of the ozone water (supply liquid) that has been gas-liquid separated is measured by the pressure sensor 116, the flow rate is measured by the flow meter 117, and then the use point 119 (for example, a multi-chamber type single wafer is provided via the valve 118. Sent to a mold cleaning device).
  • the ozone water (supply liquid) subjected to gas-liquid separation is discharged from the drain 121 after the concentration is measured by the ozone water concentration meter 120.
  • the gas-liquid separated exhaust gas (exhaust gas) is sent from the gas-liquid separation tank 114 to the exhaust gas decomposition catalyst 123 via the valve 122 and decomposed, and then returned to the atmospheric pressure by the pressure relief valve 124. From the outlet 125.
  • the pressure relief valve 124 it is desirable to employ an air-controlled relief valve in that the pressure can be kept constant by preventing sudden pressure fluctuations. If there is no risk of sudden pressure fluctuations, a spring-type relief valve can be employed.
  • the spring type relief valve is less expensive than the air control type relief valve, and is advantageous in reducing the cost.
  • the supply liquid manufacturing apparatus 100 includes a flow rate control unit (that is, a pressure increase control unit) 126 and an exhaust pressure control unit 127.
  • the flow rate control unit (that is, the pressure increase control unit) 126 controls the pressure increase pump 112 according to the flow rate of water measured by the flow meter 111 or the flow rate of ozone water measured by the flow meter 117, and Adjust the pressure of water to be supplied by increasing the pressure. More specifically, for example, the flow value of ozone water measured by the flow meter 117 is received, a control signal for controlling the booster pump 112 is generated according to the received flow value, and this control signal is sent to the booster pump 112.
  • the exhaust pressure control unit 127 is configured to change the pressure relief valve 124 according to the flow rate of water measured by the flow meter 111, the flow rate of ozone water measured by the flow meter 117, and the concentration of ozone water measured by the ozone water concentration meter 120. And the exhaust pressure of the exhaust gas is adjusted so as to keep the water level in the gas-liquid separation tank 114 constant.
  • This supply liquid manufacturing apparatus 100 can adjust the water level of the gas-liquid separation tank 114 to be constant.
  • the water level in the gas-liquid separation tank 114 can be adjusted to be constant by measuring the water level in the gas-liquid separation tank 114 with the water level sensor 115.
  • the water level of the gas-liquid separation tank 114 is adjusted to be constant by controlling the flow rate so that the flow rate of water measured by the flow meter 111 and the flow rate of ozone water measured by the flow meter 117 are the same. Can do.
  • a first gas (O 2 gas) and a second gas (CO 2 gas, N 2 gas, Alternatively, a mixed gas of CO 2 gas and N 2 gas) is supplied from the supply sources 101 and 102.
  • the flow rates of the first gas and the second gas are controlled by the flow rate controllers 103 and 104.
  • water (pure water) as the first raw material is supplied from the supply source 108.
  • the flow rate of water is measured by the flow meter 111.
  • the flow controllers 103 and 104 control the flow rates of the first gas and the second gas according to the flow rate of water measured by the flow meter 111. That is, in order to generate ozone water having a predetermined concentration, a relationship between the flow rate of water and the flow rates of the first gas and the second gas is obtained in advance, The flow rates of the first gas and the second gas are controlled.
  • the first gas and the second gas are sent to the ozone gas generation unit 106 after the pressure is measured by the pressure sensor 105.
  • the ozone gas generator 106 generates ozone gas from the first gas (O 2 gas) and the second gas (CO 2 gas, N 2 gas, or a mixed gas of CO 2 gas and N 2 gas) by discharge.
  • the generated ozone gas (second raw material) is sent to the ozone water generation unit 107.
  • the water (first raw material) is sent to the booster pump 112, the pressure is adjusted by the booster pump 112, and then sent to the ozone water generator 107.
  • the booster pump 112 is controlled by the flow rate control unit 126 and adjusts the pressure of water sent to the ozone water generation unit 107 within a pressure range of 0.1 MPa to 1 MPa.
  • a centrifugal pump or the like is used as the booster pump 112 for example.
  • the mixer 113 of the ozone water generation unit 107 water and ozone gas are mixed to generate ozone water, and the generated ozone water is sent to the gas-liquid separation tank 114.
  • the ozone water (mixed liquid) generated in the mixer 113 is gas-liquid separated into ozone water (supply liquid) and exhaust gas (exhaust gas).
  • the pressure of the ozone water (supply liquid) that has been gas-liquid separated is measured by the pressure sensor 116, the flow rate is measured by the flow meter 117, and then the use point 119 (for example, a multi-chamber type single wafer is provided via the valve 118. Mold cleaning device).
  • the flow control unit 126 controls the booster pump 112 according to the flow measured by the flow meter 111 or the flow meter 117.
  • the exhaust gas (exhaust gas) is sent to the exhaust gas decomposition catalyst 123 via the valve 122 and decomposed, and then returned to atmospheric pressure by the pressure relief valve 124 and then discharged from the discharge port 125.
  • the exhaust pressure control unit 127 uses a pressure relief valve according to the flow rate of water measured by the flow meter 111, the flow rate of ozone water measured by the flow meter 117, and the concentration of ozone water measured by the ozone water concentration meter 120.
  • 124 is controlled to adjust the exhaust gas exhaust pressure so that the water level in the gas-liquid separation tank 114 is kept constant.
  • the exhaust pressure control unit controls the pressure relief valve 124 according to the water level in the gas-liquid separation tank 114 measured by the water level sensor 115, and exhaust gas so as to keep the water level in the gas-liquid separation tank 114 constant. Adjust the exhaust pressure.
  • the flow rate of the supply liquid (ozone water) supplied to the use point 119 is measured after gas-liquid separation.
  • the flow rate of the supply liquid (ozone water) can be accurately measured without being affected by bubbles of gas (exhaust gas) generated by mixing water) and the second raw material (ozone gas).
  • the pressure of the first raw material water (suppressed and supplied to the mixing section) is adjusted according to the flow rate of the supply liquid (ozone water) measured in this way, and the exhaust gas exhaust pressure is controlled.
  • the water level in the gas-liquid separation tank 114 is kept constant.
  • the supply liquid (ozone water) can be produced as much as required at the use point 119.
  • the water level in the gas-liquid separation tank 114 can be kept constant, so that the supply liquid (ozone water) can be produced as much as required at the use point 119.
  • the water level in the gas-liquid separation tank 114 is measured by the water level sensor 115.
  • the water level in the gas-liquid separation tank 114 can be kept constant, and the supply liquid (ozone water) can be produced as much as required at the use point 119.
  • the flow rate of water supplied to the mixer 113 is measured by the flow meter 111, and the flow rate of ozone water discharged from the gas-liquid separation tank 114 (supplied to the use point 119) is measured.
  • the amount of liquid in the gas-liquid separation tank 114 can be kept constant.
  • the supply liquid (ozone water) can be produced as much as required at the use point 119.
  • ozone water can be produced by mixing water and ozone gas in the mixer 113.
  • the booster pump 112 since the booster pump 112 is disposed upstream of the mixer 113 (upstream from the mixer 113), only water is passed through the booster pump 112 (no ozone water is passed through the booster pump 112). Therefore, the lifetime of the booster pump 112 is longer than when the booster pump 112 is provided at the subsequent stage of the mixer 113 (when ozone water is passed through the booster pump 112).
  • FIG. 2 is an explanatory diagram showing the configuration of the supply liquid manufacturing apparatus of the present embodiment.
  • the supply liquid manufacturing apparatus 200 includes a supply source 201 for water (ultra pure water) as a first raw material and a supply source 202 for a chemical raw material (for example, ammonia) as a second raw material.
  • the supply liquid manufacturing apparatus 200 is provided with a valve 203 for adjusting the flow rate of water as the first raw material and a flow meter 204 for measuring the flow rate of water as the first raw material.
  • Water, which is the first raw material is sent to the booster pump 205 after the flow rate is measured by the flow meter 204, the pressure is adjusted (pressurized) by the booster pump 205, and then sent to the mixer 206.
  • the chemical raw material that is the second raw material is also sent to the mixer 206.
  • the mixer 206 mixes water and a chemical raw material (ammonia) to generate chemical water (ammonia water).
  • the generated chemical water (ammonia water) is sent to the gas-liquid separation tank 207.
  • the chemical water (mixed liquid) generated by the mixer 206 is gas-liquid separated into chemical water (supply liquid) and exhaust gas (exhaust gas).
  • the gas-liquid separation tank 207 is provided with two water level sensors 208 and 209 for measuring the upper and lower water levels of chemical water.
  • the chemical water (supply liquid) that has been subjected to gas-liquid separation is measured for pressure by the pressure sensor 210, and after the flow rate is measured by the flow meter 211, the use point 213 (for example, multi-chamber type single wafer) is provided via the valve 212. Sent to a mold cleaning device).
  • the gas-liquid separated exhaust gas (exhaust gas) is sent from the gas-liquid separation tank 207 to the pressure relief valve 215 via the valve 214 and returned to the atmospheric pressure by the pressure relief valve 215 before the exhaust port 216. Discharged from.
  • the supply liquid manufacturing apparatus 200 includes a flow rate control unit (that is, a pressure increase control unit) 217 and an exhaust pressure control unit 218.
  • the flow rate control unit (that is, the pressure increase control unit) 217 controls the pressure increase pump 205 according to the flow rate of the chemical water (ammonia water) measured by the flow meter 204 or the flow meter 211 to increase the pressure in the mixer 206. Adjust the pressure of the supplied water. More specifically, the flow value measured by the flow meter 204 or the flow meter 211 is received, a control signal for controlling the booster pump 205 is generated according to the received flow value, and this control signal is transmitted to the booster pump 205.
  • the pressure (or flow rate) of water supplied to the mixer 206 can be adjusted by controlling the number of rotations of the pump by controlling a driving unit (not shown) provided in the booster pump 205. Further, the exhaust pressure control unit 218 controls the pressure relief valve 215 according to the flow rate of water measured by the flow meter 204 and the flow rate of ammonia water measured by the flow meter 211, and the water level in the gas-liquid separation tank 207. The exhaust gas pressure is adjusted so that the air pressure is kept constant.
  • This supply liquid manufacturing apparatus 200 can adjust the water level of the gas-liquid separation tank 207 to be constant.
  • the water level in the gas-liquid separation tank 207 can be adjusted to be constant by measuring the upper and lower water levels in the gas-liquid separation tank 207 with the two water level sensors 208 and 209. Further, the water level of the gas-liquid separation tank 207 is kept constant by controlling the flow rate so that the flow rate of water measured by the flow meter 204 and the flow rate of chemical water (ammonia water) measured by the flow meter 211 are the same. Can be adjusted.
  • chemical water for example, ammonia water
  • a chemical raw material for example, ammonia
  • FIG. 3 is an explanatory diagram showing the configuration of the supply liquid manufacturing apparatus of the present embodiment.
  • the supply liquid manufacturing apparatus 300 includes a first gas (O 2 gas) and a second gas (CO 2 gas, N 2 gas, or a mixed gas of CO 2 gas and N 2 gas) as raw materials.
  • Supply sources 301 and 302 and flow rate controllers 303 and 304 for controlling the flow rates of the respective gases (first gas and second gas).
  • the second gas CO 2 gas, N 2 gas, or a mixed gas of CO 2 gas and N 2 gas
  • the first gas and the second gas are sent to the ozone gas generation unit 306 after the pressure is measured by the pressure sensor 305.
  • the ozone gas generation unit 306 employs a silent discharge method, an electrolysis method, or an ultraviolet lamp method to generate ozone gas.
  • the ozone gas generated by the ozone gas generation unit 306 is sent to the mixing unit 307. Note that, using the pressure value measured by the pressure sensor 305, the flow rate controllers 303 and 304 can monitor whether the flow rates of the first gas and the second gas are within an appropriate range.
  • the supply liquid manufacturing apparatus 300 includes a supply source 308 of water (ultra pure water) that is the first raw material.
  • the supply liquid manufacturing apparatus 100 is provided with a valve 309 for turning on and off the supply of water as the first raw material, and a flow meter 310 for measuring the flow rate of the water as the first raw material.
  • the water that is the first raw material is sent to the pump 311, the flow rate is adjusted by the pump 311, and then sent to the mixing unit 307.
  • a centrifugal pump is used as the pump 311.
  • the pump 311 will be described by taking a centrifugal pump as an example.
  • the flow meter 310 corresponds to the second flow rate measuring unit.
  • the mixing unit 307 mixes water (first raw material) and ozone gas (second raw material) to generate ozone water (mixed liquid).
  • the mixing unit 307 preferably uses a venturi effect to mix water and gas. For example, an aspirator or an ejector is used.
  • the ozone water generated in the mixing unit 307 is sent to the gas-liquid separation tank 312.
  • the ozone water (mixed liquid) generated in the mixing unit 307 is gas-liquid separated into ozone water (supply liquid) and exhaust gas (exhaust gas).
  • the gas-liquid separation tank 312 is provided with a water level sensor 313 for measuring the water level of ozone water.
  • the water level sensor 313 is, for example, a sensor that is installed at a predetermined height in the gas-liquid separation tank 312 and detects whether the level of ozone water is above or below the height of the water level sensor 313. Alternatively, the water level sensor 313 may always measure the water level (liquid amount) of ozone water in the gas-liquid separation tank 312.
  • the ozone water (supply liquid) that has been gas-liquid separated is measured by the ozone water concentration meter 314, the flow rate is measured by the flow meter 315, the pressure is measured by the pressure sensor 316, and then used through the valve 317. It is sent to a point 318 (for example, a multi-chamber type single wafer cleaning device) or a drain 319.
  • valve 317 is switched to the drain 319 side so that ozone water flows to the drain 319 at a minimum flow rate. This is to keep the quality of the ozone water constant. Further, unnecessary ozone water is discharged from the drain 319 at the time of starting up the apparatus or during maintenance.
  • the gas-liquid separated exhaust gas (exhaust gas) is sent from the gas-liquid separation tank 312 to the exhaust gas decomposition catalyst 321 via the valve 320 and decomposed, and then the exhaust port 323 via the opening adjustment valve 322.
  • the flow meter 315 corresponds to the first flow measurement unit of the present invention
  • the pressure sensor 316 corresponds to the pressure measurement unit of the present invention
  • the opening adjustment valve 322 corresponds to the exhaust valve of the present invention.
  • the supply liquid manufacturing apparatus 300 includes an exhaust control unit 324 and a flow rate control unit 325.
  • the exhaust control unit 324 has a function of performing a constant flow rate control for keeping the flow rate of ozone water (supply liquid) supplied to the use point 318 at a constant flow rate.
  • the constant flow rate is also referred to as a target flow rate.
  • the constant flow rate or the target flow rate is not necessarily a fixed value in the supply liquid manufacturing apparatus 300, but is arbitrarily set as a flow rate required at a use point.
  • the gas-liquid separation tank 312 is connected to the opening adjustment valve 322, and the pressure in the upper space of the ozone water level in the gas-liquid separation tank 312 is adjusted by the opening adjustment valve 322.
  • the flow rate of ozone water (supply liquid) supplied to the use point 318 is influenced not only by the rotation speed of the pump 311 but also by the pressure in the upper space in the gas-liquid separation tank.
  • the exhaust control unit 324 controls the opening adjustment valve 322 in accordance with the flow rate of ozone water (supply liquid) measured by the flow meter 315 and exhaust gas discharged from the exhaust port 323. Adjust the amount of exhaust gas. More specifically, the exhaust control unit 324 detects exhaust gas (exhaust gas) discharged from the exhaust port 323 when the flow rate of ozone water (supply liquid) measured by the flow meter 315 increases with respect to the target constant flow rate. When the flow rate of ozone water (supply liquid) measured by the flow meter 315 decreases with respect to the target constant flow rate, the exhaust gas (exhaust gas) discharged from the exhaust port 323 is increased. Reduce emissions.
  • the flow control unit 325 adjusts the flow rate of the first raw material supplied to the mixing unit by controlling the rotation speed of the pump 310 according to the flow rate of ozone water (supply liquid) measured by the flow meter 315. More specifically, control is performed so that the flow rate of the first raw material supplied to the mixing unit measured by the flow meter 310 is the same as the flow rate of ozone water (supply liquid) measured by the flow meter 315. Therefore, in this embodiment, the flow value measured by the flow meter 315 is received, a control signal for controlling the rotation speed of the pump 310 is generated according to the received flow value, and this control signal is transmitted to the pump 310. The flow rate supplied to the mixing unit is adjusted by controlling the rotational speed of the pump 310.
  • the flow rate control unit 315 reduces the flow rate of the first raw material supplied to the mixing unit when the amount of liquid in the gas-liquid separation tank 312 measured by the water level sensor 313 increases beyond a predetermined amount of liquid.
  • the flow rate of the first raw material supplied to the mixing unit may be increased. More specifically, when the water level of the ozone water in the gas-liquid separation tank 312 is higher than a certain level by using a water level sensor 313 that detects whether or not the water level is higher than a certain level, The flow rate of the first raw material supplied to the mixing unit is reduced.
  • the flow volume of the 1st raw material supplied to a mixing part will be raised.
  • the water level (liquid amount) of ozone water in the gas-liquid separation tank 312 can be kept constant.
  • two water level sensors may be installed at different heights and controlled so that the water level of ozone water falls within a certain range. If the water level of ozone water can be kept constant, the flow rate of ozone water (supply liquid) supplied to the use point 318 is basically the same as the flow rate of the first raw material supplied to the mixing section. Means.
  • the flow meter 310 is not necessarily required to keep the ozone water level constant. However, in order to maintain the ozone gas concentration constant, it is necessary to control the flow rate of the raw material gas by measuring the flow rate of water. If the flow rate of the first raw material supplied to the mixing unit is controlled using a water level sensor 313 that detects the water level of the ozone water so that the water level of the ozone water is constant, the flow meter 315 is not provided. Only the flow meter 310 may be provided.
  • the exhaust control unit 324 discharges exhaust gas (exhaust gas) discharged from the exhaust port 323 when the liquid amount in the gas-liquid separation tank 312 measured by the water level sensor 313 increases with respect to a predetermined liquid amount.
  • the amount of liquid in the gas-liquid separation tank 312 may be decreased by decreasing the amount and increasing the pressure in the gas-liquid separation tank 312.
  • the amount of exhaust gas (exhaust gas) discharged from the exhaust port 323 is increased,
  • the amount of liquid in the gas-liquid separation tank 312 may be increased by lowering the pressure in the gas-liquid separation tank 312. Even in this case, the amount of liquid in the gas-liquid separation tank 312 can be kept constant.
  • the supply liquid manufacturing apparatus 300 of the third embodiment as described above, a constant flow rate control is possible. Therefore, when the flow rate of ozone water (supply liquid) supplied to the use point 318 is increased with respect to the target constant flow rate, that is, the flow rate of ozone water (supply liquid) measured by the flow meter 315 is the target. Is increased to a certain flow rate, the exhaust gas (exhaust gas) discharged from the exhaust port 323 is increased, and the pressure in the gas-liquid separation tank 312 is lowered to supply to the use point 318. Reduce the flow rate of ozone water (supply liquid).
  • the flow rate of the ozone water (supply liquid) supplied to the use point 318 decreases with respect to the target constant flow rate, that is, the flow rate of the ozone water (supply liquid) measured by the flow meter 315 is the target.
  • the exhaust gas (exhaust gas) discharged from the exhaust port 323 is reduced and the pressure in the gas-liquid separation tank 312 is increased to supply to the use point 318.
  • the flow rate of ozone water (supply liquid) supplied to the use point 318 can be kept constant.
  • the pressure in the gas-liquid separation tank the flow rate of ozone water supplied to the use point can be controlled with good responsiveness.
  • Constant pressure control As another embodiment, by using the configuration of the supply liquid manufacturing apparatus shown in FIG. 3, it is possible to perform constant pressure control that maintains the pressure of ozone water (supply liquid) supplied to the use point 318 at a constant pressure.
  • the constant pressure is also referred to as a target pressure.
  • the constant pressure or the target pressure is not necessarily a fixed value in the supply liquid manufacturing apparatus 300, but is arbitrarily set as the pressure of the supply liquid to be supplied by the supply liquid manufacturing apparatus 300.
  • the exhaust control unit 324 controls the opening adjustment valve 322 according to the pressure of ozone water (supply liquid) measured by the pressure sensor 316 and exhaust gas discharged from the exhaust port 323. Adjust the amount of exhaust gas. More specifically, when the pressure of the ozone water (supply liquid) supplied to the use point 318 increases with respect to the target constant pressure, that is, the ozone water (supply liquid) measured by the pressure sensor 316. When the pressure increases with respect to the target constant pressure, the amount of exhaust gas (exhaust gas) exhausted from the exhaust port 323 is increased, and the pressure in the gas-liquid separation tank 312 is lowered, so that the use The pressure of ozone water (supply liquid) supplied to the point 318 is decreased.
  • the pressure of the ozone water (supply liquid) supplied to the use point 318 decreases with respect to the target constant pressure, that is, the pressure of the ozone water (supply liquid) measured by the pressure sensor 316 is the target.
  • the pressure decreases with respect to a certain pressure, the amount of exhaust gas (exhaust gas) discharged from the exhaust port 323 is reduced, and the pressure in the gas-liquid separation tank 312 is increased to supply to the use point 318.
  • the pressure measured by the pressure sensor 316 and kept constant is set to 0.1 to 1.0 MPa, for example.
  • the flow rate of the first raw material supplied to the mixing unit is controlled to be the same as the flow rate of ozone water sent to the use point.
  • the specific means is the same as the means described in the constant flow rate control.
  • exhaust gas discharged from the exhaust port 323.
  • the amount of liquid in the gas-liquid separation tank 312 may be kept constant by adjusting the discharge amount of the gas.
  • FIG. 4 is a graph obtained by measuring the ozone water concentration and the ozone water supply pressure when the pressure is controlled to be constant while changing the flow rate of the ozone water supplied to the use point. As described above, according to the present embodiment, even when the flow rate required at the use point fluctuates, it is possible to supply the ozone water while keeping the pressure of the ozone water constant and maintaining the concentration of the ozone water constant. .
  • FIG. 5 shows a modified example of the supply liquid manufacturing apparatus 300 according to the third embodiment.
  • the exhaust control unit 324 of the present embodiment includes a constant flow control unit 3240 that performs constant flow control, a constant pressure control unit 3241 that performs constant pressure control, and a control selection unit 3242 that switches between constant flow control and constant pressure control. It has.
  • the constant flow rate control unit 3240 adjusts the opening according to the flow rate of ozone water (supply liquid) measured by the flow meter 315 so as to keep the flow rate of ozone water (supply liquid) supplied to the use point 318 constant.
  • the amount of exhaust gas (exhaust gas) discharged from the exhaust port 323 is adjusted by controlling the valve 322.
  • the constant pressure control unit 3241 adjusts the opening degree according to the pressure of the ozone water (supply liquid) measured by the pressure sensor 316 so as to keep the pressure of the ozone water (supply liquid) supplied to the use point 318 constant.
  • the amount of exhaust gas (exhaust gas) discharged from the exhaust port 323 is adjusted by controlling the valve 322.
  • the control selection unit 3242 includes either a constant flow control that adjusts the exhaust amount of exhaust gas (exhaust gas) by the constant flow rate control unit 3240, or a constant pressure control that adjusts the exhaust amount of exhaust gas (exhaust gas) by the constant pressure control unit 3241. Select either one. For example, switching between constant flow control and constant pressure control can be performed by operating a touch panel (not shown) provided in the supply liquid manufacturing apparatus 300. Further, switching between constant flow control and constant pressure control may be performed based on a request signal from the use point 318.
  • the constant flow control unit 3240 When the constant flow control is selected by the control selection unit 3242, the constant flow control unit 3240 performs the constant flow control. More specifically, the constant flow rate control unit 3240 controls the exhaust gas (exhaust gas) discharged from the exhaust port 323 when the flow rate of ozone water (supply liquid) measured by the flow meter 315 increases with respect to the target constant flow rate. Exhaust gas (exhaust gas) discharged from the exhaust port 323 when the flow rate of ozone water (supply liquid) measured by the flow meter 315 decreases with respect to the target constant flow rate. Reduce the amount.
  • the constant pressure control unit 3241 When the constant pressure control is selected by the control selection unit 3242, the constant pressure control unit 3241 performs the constant pressure control. More specifically, the constant pressure control unit 3241 is configured to detect the exhaust gas (exhaust gas) discharged from the exhaust port 323 when the pressure of the ozone water (supply liquid) measured by the pressure sensor 316 increases with respect to the target constant pressure. Exhaust gas (exhaust gas) discharged from the exhaust port 323 when the pressure of the ozone water (supply liquid) measured by the pressure sensor 316 decreases with respect to the target constant pressure. Reduce the amount.
  • control for keeping the flow rate of ozone water (supply liquid) supplied to the use point 318 constant (flow rate control), and ozone supplied to the use point 318.
  • Control pressure constant control
  • Control that keeps the pressure of water (supply liquid) constant can be selected.
  • the pressure of the ozone water (supply liquid) supplied to the use point 318 increases with respect to the target constant pressure, that is, the pressure of the ozone water (supply liquid) measured by the pressure sensor 316.
  • the target constant pressure that is, the pressure of the ozone water (supply liquid) measured by the pressure sensor 316.
  • the amount of exhaust gas (exhaust gas) discharged from the exhaust port 323 is increased, and the pressure in the gas-liquid separation tank 312 is lowered, thereby reducing the use point.
  • the pressure of ozone water (supply liquid) supplied to 318 is decreased.
  • the pressure of the ozone water (supply liquid) supplied to the use point 318 decreases with respect to the target constant pressure, that is, the pressure of the ozone water (supply liquid) measured by the pressure sensor 316 is the target.
  • the pressure decreases with respect to a certain pressure, the amount of exhaust gas (exhaust gas) discharged from the exhaust port 323 is reduced, and the pressure in the gas-liquid separation tank 312 is increased to supply to the use point 318.
  • Increase the pressure of ozone water (supply liquid) supplied to the use point 318 can be kept constant.
  • ozone gas or a chemical raw material (such as ammonia) and water are mixed is exemplified, but other chemicals (for example, H 2 CO 3 (carbonic acid), HF (hydrofluoric acid), DHF ( Dilute hydrofluoric acid), BHF (buffered hydrofluoric acid, ie, a mixture of NH 4 F and HF), HCl (hydrochloric acid, dilute hydrochloric acid), H 2 SO 4 (sulfuric acid, dilute sulfuric acid), HNO 3 (sulfuric acid, dilute sulfuric acid), It is also possible to mix aqua regia or an acid mixed with these and water.
  • H 2 CO 3 carbonic acid
  • HF hydrofluoric acid
  • DHF Dilute hydrofluoric acid
  • BHF biuffered hydrofluoric acid, ie, a mixture of NH 4 F and HF
  • HCl hydroochloric acid, dilute hydrochloric acid
  • H 2 SO 4 sulfuric acid, dilute sulfuric acid
  • the supply liquid manufacturing apparatus has an effect that the supply liquid can be manufactured as much as required at the use point, and is used for cleaning electronic components such as semiconductor devices and liquid crystals. Used and useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Accessories For Mixers (AREA)

Abstract

Provided is a supply-liquid producing apparatus that can produce a supply liquid in an amount needed at a point of use. A supply-liquid producing apparatus according to the present invention includes: a mixer 113 that mixes water and ozone gas to produce ozone water; a booster pump 112 that increases the pressure of the water to be supplied to the mixer 113; a gas-liquid separation tank 114 that separates the ozone water produced by the mixer 113 into ozone water to be supplied to a point of use 119 and exhaust gas to be discharged from an exhaust port 125; a flowmeter 117 that measures the flow rate of the ozone water to be supplied from the gas-liquid separation tank 114 to the point of use 119; a flow-rate control unit 126 that adjusts the pressure (flow rate) of water to be increased in pressure and supplied to the mixer 113 by controlling the booster pump 112 according to the flow rate of the ozone water measured by the flowmeter 117; and an exhaust pressure control unit 123 that controls the exhaust pressure of the exhaust gas so as to maintain the water level constant in the gas-liquid separation tank 114.

Description

供給液体製造装置および供給液体製造方法Supply liquid manufacturing apparatus and supply liquid manufacturing method
 本発明は、第1原料と第2原料を混合して供給液体を製造する供給液体製造装置に関する。 The present invention relates to a supply liquid production apparatus for producing a supply liquid by mixing a first raw material and a second raw material.
 近年、半導体デバイス工場や液晶などの電子部品製造工場における製品の洗浄は、製造プロセスの複雑化、回路パターンの微細化に伴なってますます高度化している。例えば、機能水(超純水など)に高純度ガスまたは高純度ガスと薬品を溶解した特殊な液体(洗浄液と呼ばれる)を使用して、シリコンウエハに付着した微粒子、金属、有機物などを除去している。 In recent years, the cleaning of products in semiconductor device factories and liquid crystal and other electronic component manufacturing factories has become increasingly sophisticated as the manufacturing process becomes more complex and circuit patterns become finer. For example, using high-purity gas or special liquid (cleaning liquid) in which high-purity gas and chemicals are dissolved in functional water (such as ultrapure water), fine particles, metals, organic substances, etc. adhering to the silicon wafer are removed. ing.
 洗浄処理方式としては、複数のシリコンウエハを同時に浸漬及び洗浄する操作を繰り返す“バッチ処理方式”のほかに、多品種少量生産の製品に対応して1枚のウエハごとに薬品洗浄及び超純水洗浄を行う“枚葉処理方式”が採用される。枚葉処理方式は、バッチ処理方式と比べて、ウエハ1枚当たりの洗浄工程時間(タクトタイム)が長く、洗浄液の使用量が多くなるために、タクトタイムの短縮及び洗浄液使用量の低減が求められている。現状、短時間での効果的な洗浄及び洗浄液使用量を低減するために、複数の機能水及び薬品を単独でまたは同時に使用して、短時間で洗浄工程を切り替える高度な洗浄プロセスが行われている。 As a cleaning method, in addition to the “batch processing method” that repeats the operation of simultaneously immersing and cleaning a plurality of silicon wafers, chemical cleaning and ultrapure water are performed for each wafer corresponding to products of various types and small quantities. A “single-wafer processing method” for cleaning is adopted. The single wafer processing method has a longer cleaning process time (takt time) per wafer than the batch processing method, and the amount of cleaning liquid used is increased. Therefore, it is required to shorten the tact time and reduce the amount of cleaning liquid used. It has been. At present, in order to reduce effective cleaning and usage of cleaning liquid in a short time, an advanced cleaning process is performed in which a plurality of functional waters and chemicals are used alone or simultaneously to switch the cleaning process in a short time. Yes.
 機能水としては、例えば、超純水にオゾンガスを溶解したオゾン水が用いられる。超純水に溶解させたオゾンは、低い濃度(数ppm)でも酸化力が非常に強いため、有機物や金属の除去を行うことが可能である。このオゾン水は、一般的にオゾン水製造装置で製造される。洗浄プロセスの高度化及び複雑化に伴ない、短時間での洗浄装置へのオゾン水の供給及び停止が要求されるが、従来の装置は、一旦オゾン水の製造を停止すると、再度、要求オゾン濃度及び要求流量のオゾン水の供給が可能となるまでに一定の時間(立ち上がり時間)を要する。そこで、洗浄装置へのオゾン水の供給要求に応じるために、オゾン水製造装置でオゾン水を常時製造し、洗浄装置に連続的に供給していた。その結果、洗浄装置に過剰量のオゾン水が供給されることになり、シリコンウエハの洗浄に使用されない未使用のオゾン水は排水として洗浄装置から排出されていた。 As functional water, for example, ozone water in which ozone gas is dissolved in ultrapure water is used. Since ozone dissolved in ultrapure water has a very strong oxidizing power even at a low concentration (several ppm), it is possible to remove organic substances and metals. This ozone water is generally produced by an ozone water production apparatus. With the sophistication and complexity of the cleaning process, it is required to supply and stop ozone water to the cleaning device in a short time. However, once the production of ozone water is stopped, the conventional device once again requires the required ozone. It takes a certain time (rise time) before the ozone water having the concentration and the required flow rate can be supplied. Therefore, in order to meet the demand for supplying ozone water to the cleaning device, ozone water is always manufactured by the ozone water manufacturing device and continuously supplied to the cleaning device. As a result, an excessive amount of ozone water is supplied to the cleaning device, and unused ozone water that is not used for cleaning the silicon wafer is discharged from the cleaning device as waste water.
 そこで、従来、ユースポイントにおけるオゾン水の使用量に関わらず、一定濃度及び一定圧力のオゾン水を供給でき、かつ、未使用のオゾン水を再利用できる循環式のオゾン水供給装置が提案されている(特許文献1参照)。 Therefore, conventionally, a circulation type ozone water supply device that can supply ozone water with a constant concentration and a constant pressure regardless of the amount of ozone water used at the point of use and that can reuse unused ozone water has been proposed. (See Patent Document 1).
 従来の循環式のオゾン水供給装置では、図6に示すように、水とオゾンガスをオゾン溶解槽12に供給してオゾン水を生成し、オゾン水をオゾン溶解槽12から循環槽21に供給し、循環槽21からオゾン水送水配管22を介してユースポイントに供給し、ユースポイントにて消費されなかったオゾン水をオゾン水戻り配管23を介して循環槽21に戻し、再び、循環槽21からユースポイントにオゾン水を供給する。そして、オゾン溶解槽12の槽内圧力、循環槽21の槽内圧力、オゾン水戻り配管23の管内圧力がそれぞれ一定に維持され、循環槽21の槽内圧力が、オゾン溶解槽12の槽内圧力及びオゾン水戻り配管23の管内圧力の各圧力よりも低い圧力に制御される。 In the conventional circulation type ozone water supply apparatus, as shown in FIG. 6, water and ozone gas are supplied to the ozone dissolution tank 12 to generate ozone water, and ozone water is supplied from the ozone dissolution tank 12 to the circulation tank 21. The ozone water supplied from the circulation tank 21 to the use point via the ozone water supply pipe 22 is returned to the circulation tank 21 via the ozone water return pipe 23, and again from the circulation tank 21. Supply ozone water to the point of use. And the tank internal pressure of the ozone dissolution tank 12, the tank internal pressure of the circulation tank 21, and the internal pressure of the ozone water return pipe 23 are kept constant, and the tank internal pressure of the circulation tank 21 is maintained in the tank of the ozone dissolution tank 12. The pressure and the pressure in the ozone water return pipe 23 are controlled to be lower than each pressure.
特開2014-117628号公報JP 2014-117628 A
 しかしながら、従来のオゾン水供給装置では、再利用するオゾン水(未使用のオゾン水)を循環させる循環式であるため、オゾン水(未使用のオゾン水)の循環によるオゾン水の温度上昇や汚れ発生に対策を講じる必要があった。そこで、ユースポイントで必要とされる分量だけオゾン水を製造する技術の開発が望まれていた。 However, since the conventional ozone water supply device is a circulation type that circulates ozone water (unused ozone water) to be reused, the temperature rise or contamination of ozone water due to the circulation of ozone water (unused ozone water) It was necessary to take measures against the outbreak. Therefore, it has been desired to develop a technique for producing ozone water in an amount necessary for a use point.
 本発明は、上記の課題に鑑みてなされたもので、循環による供給液体(例えばオゾン水など)の温度上昇や汚れ発生に対策を講じる必要がなく、あるいはその必要性を少なくとも低減させ、ユースポイントで必要とされる分だけ供給液体を製造することのできる供給液体製造装置を提供することを1つの目的とする。より具体的には、ユースポイントに一定の流量あるいは一定の圧力で、かつ一定濃度の供給液体を供給できる供給液体製造装置を提供することを1つの目的とする。 The present invention has been made in view of the above-mentioned problems, and it is not necessary to take measures against the temperature rise or the occurrence of contamination of a supply liquid (for example, ozone water) by circulation, or at least reduce the necessity thereof, and the use point One object of the present invention is to provide a supply liquid production apparatus capable of producing a supply liquid as much as necessary. More specifically, an object is to provide a supply liquid production apparatus that can supply a supply liquid with a constant flow rate or a constant pressure and a constant concentration to a use point.
 本発明の供給液体製造装置は、第1原料と第2原料を混合して混合液体を生成する混合部と、前記混合部に供給される前記第1原料の流量を変更するポンプ部と、前記混合部により生成された前記混合液体を、ユースポイントに供給される供給液体と、排気口から排出される排出気体とに気液分離する気液分離タンク部と、前記排出気体の排出量を定めるように開度を調整するバルブと、前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の流量を測定する流量測定部と、前記流量測定部で測定した前記供給液体の流量値を受信し、受信した流量値に応じて前記ポンプ部を制御する制御信号を生成し、当該制御信号をポンプ部に送信してポンプを制御することにより、前記混合部に供給する前記第1原料の流量を調整する流量制御部と、を備える。 The supply liquid manufacturing apparatus of the present invention includes a mixing unit that mixes a first raw material and a second raw material to generate a mixed liquid, a pump unit that changes a flow rate of the first raw material supplied to the mixing unit, A gas-liquid separation tank unit that gas-liquid separates the mixed liquid generated by the mixing unit into a supply liquid supplied to a use point and an exhaust gas discharged from an exhaust port, and a discharge amount of the exhaust gas is determined. A valve for adjusting the opening degree, a flow rate measurement unit for measuring the flow rate of the supply liquid supplied from the gas-liquid separation tank unit to the use point, and a flow rate value of the supply liquid measured by the flow rate measurement unit The first raw material supplied to the mixing unit by generating a control signal for controlling the pump unit according to the received flow rate value and transmitting the control signal to the pump unit to control the pump Adjust the flow rate of Provided that the flow rate control unit.
 この構成によれば、ユースポイントに供給される液体(供給液体)の流量を、気液分離をした後に測定するので、第1原料と第2原料を混合することにより発生する気体(排出気体)の気泡の影響を実質的に受けることなく、供給液体の流量を正確に測定することができる。そして、流量測定部で測定した前記供給液体の流量値を受信し、受信した流量値に応じて前記ポンプ部を制御する制御信号を生成し、当該制御信号をポンプ部に送信してポンプを制御することにより、このように測定した供給液体の流量に応じて第1の原料の流量が調整されるので、ユースポイントで必要とされる分だけ供給液体(例えばオゾン水など)を製造することができる。 According to this configuration, since the flow rate of the liquid (supply liquid) supplied to the use point is measured after gas-liquid separation, the gas (exhaust gas) generated by mixing the first raw material and the second raw material The flow rate of the supplied liquid can be accurately measured without being substantially affected by the bubbles. Then, the flow rate value of the supply liquid measured by the flow rate measurement unit is received, a control signal for controlling the pump unit is generated according to the received flow rate value, and the control signal is transmitted to the pump unit to control the pump As a result, the flow rate of the first raw material is adjusted according to the flow rate of the supply liquid measured in this way, so that the supply liquid (for example, ozone water) can be produced as much as required at the use point. it can.
 また、本発明の供給液体製造装置は、前記混合部に供給される前記第1原料の流量を測定する第2の流量測定部を備え、前記第2の流量測定部にて測定した前記第1原料の流量が前記流量測定部で測定した前記供給液体の流量と一致させるようなフィードバック制御を前記流量制御部にて行ってもよい。 In addition, the supply liquid manufacturing apparatus of the present invention includes a second flow rate measurement unit that measures the flow rate of the first raw material supplied to the mixing unit, and the first flow rate measured by the second flow rate measurement unit. The flow rate control unit may perform feedback control so that the flow rate of the raw material matches the flow rate of the supply liquid measured by the flow rate measurement unit.
 この構成によれば、第1原料の流量をモニタリングしており、所望の流量からずれてきたときに流量を補正させるために、ポンプのフィードバック制御を行うことができる。 According to this configuration, the flow rate of the first raw material is monitored, and the feedback control of the pump can be performed to correct the flow rate when it deviates from the desired flow rate.
 また、本発明の供給液体製造装置は、前記第2原料の流量を定める流量コントローラを備え、前記第2の流量測定部にて測定した前記第1原料の流量に応じて、前記流量コントローラにて第2原料の生成量を調整してもよい。 In addition, the supply liquid manufacturing apparatus of the present invention includes a flow rate controller that determines the flow rate of the second raw material, and the flow rate controller uses the flow rate controller according to the flow rate of the first raw material measured by the second flow rate measurement unit. You may adjust the production amount of a 2nd raw material.
 この構成によれば、目標の濃度の供給液体が得られるように、第1原料と第2原料の流量の関係を予め求めておき、第1原料の流量に応じて第2原料を流すことができる。 According to this configuration, the relationship between the flow rates of the first raw material and the second raw material is obtained in advance so that a supply liquid with a target concentration can be obtained, and the second raw material is allowed to flow according to the flow rate of the first raw material. it can.
 本発明の供給液体製造装置は、第1原料と第2原料を混合して混合液体を生成する混合部と、前記混合部に供給される前記第1原料を昇圧する昇圧ポンプ部と、前記混合部により生成された前記混合液体を、ユースポイントに供給される供給液体と、排気口から排出される排出気体とに気液分離する気液分離タンク部と、前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の流量を測定する流量測定部と、前記流量測定部で測定した前記供給液体の流量に応じて、前記昇圧ポンプ部を制御して、前記混合部に昇圧して供給する前記第1原料の圧力を調整する昇圧制御部と、前記気液分離タンク部内の液体量を一定に保つように、前記排出気体の排気圧力を制御する排気圧力制御部と、を備えている。 The supply liquid manufacturing apparatus of the present invention includes a mixing unit that mixes a first raw material and a second raw material to generate a mixed liquid, a booster pump unit that pressurizes the first raw material supplied to the mixing unit, and the mixing The liquid mixture generated by the gas-liquid separation tank unit for gas-liquid separation into the supply liquid supplied to the use point and the exhaust gas discharged from the exhaust port, and the gas-liquid separation tank unit from the use liquid A flow rate measuring unit that measures the flow rate of the supply liquid supplied to the point, and the boost pump unit is controlled according to the flow rate of the supply liquid measured by the flow rate measurement unit to boost the pressure to the mixing unit A pressure increase control unit that adjusts the pressure of the first raw material to be supplied; and an exhaust pressure control unit that controls the exhaust pressure of the exhaust gas so as to keep the amount of liquid in the gas-liquid separation tank unit constant. Yes.
 この構成によれば、ユースポイントに供給される液体(供給液体)の流量を、気液分離をした後に測定するので、第1原料と第2原料を混合することにより発生する気体(排出気体)の気泡の影響を実質的に受けることなく、供給液体の流量を正確に測定することができる。そして、このように測定した供給液体の流量に応じて第1の原料(混合部に昇圧して供給される)の圧力が調整されるとともに、排出気体の排気圧力が制御されて気液分離タンク部内の液体量が一定に保たれる。これにより、ユースポイントで必要とされる分だけ供給液体(例えばオゾン水など)を製造することができる。 According to this configuration, since the flow rate of the liquid (supply liquid) supplied to the use point is measured after gas-liquid separation, the gas (exhaust gas) generated by mixing the first raw material and the second raw material The flow rate of the supplied liquid can be accurately measured without being substantially affected by the bubbles. The pressure of the first raw material (suppressed and supplied to the mixing unit) is adjusted according to the flow rate of the supply liquid thus measured, and the exhaust pressure of the exhaust gas is controlled to control the gas-liquid separation tank. The amount of liquid in the section is kept constant. Thereby, supply liquid (for example, ozone water etc.) can be manufactured as much as required at the use point.
 また、本発明の供給液体製造装置は、前記気液分離タンク部内の液体量を一定に調整するための液体量調整部を備えてもよい。 The supply liquid manufacturing apparatus of the present invention may further include a liquid amount adjusting unit for adjusting the liquid amount in the gas-liquid separation tank unit to be constant.
 この構成によれば、気液分離タンク部内の液体量を一定に保つことが可能になり、ユースポイントで必要とされる分だけ供給液体(例えばオゾン水など)を製造することができる。 According to this configuration, the amount of liquid in the gas-liquid separation tank can be kept constant, and a supply liquid (for example, ozone water) can be produced as much as required at the use point.
 また、本発明の供給液体製造装置では、前記液体量調整部は、前記気液分離タンク部内の液体量を測定する液体量測定部を含んでもよい。 In the supply liquid manufacturing apparatus of the present invention, the liquid amount adjusting unit may include a liquid amount measuring unit that measures the amount of liquid in the gas-liquid separation tank unit.
 この構成によれば、液体量測定部で気液分離タンク部内の液体量を測定して、気液分離タンク部内の液体量を一定に保つことが可能になり、ユースポイントで必要とされる分だけ供給液体(例えばオゾン水など)を製造することができる。 According to this configuration, the amount of liquid in the gas-liquid separation tank unit can be measured by the liquid amount measurement unit, so that the amount of liquid in the gas-liquid separation tank unit can be kept constant. Only a supply liquid (such as ozone water) can be produced.
 また、本発明の供給液体製造装置では、前記液体量調整部は、前記流量測定部と、前記混合部に供給される液体の流量を測定する第2の流量測定部とを含んでもよい。 In the supply liquid manufacturing apparatus of the present invention, the liquid amount adjustment unit may include the flow rate measurement unit and a second flow rate measurement unit that measures the flow rate of the liquid supplied to the mixing unit.
 この構成によれば、混合部に供給される液体の流量を測定するとともに、気液分離タンク部から排出される(ユースポイントに供給される)液体の流量を測定して、混合部に供給される液体の流量と気液分離タンクから排出される液体の流量を同じにすることにより、気液分離タンク部内の液体量を一定に保つことが可能になり、ユースポイントで必要とされる分だけ供給液体(例えばオゾン水など)を製造することができる。 According to this configuration, the flow rate of the liquid supplied to the mixing unit is measured, and the flow rate of the liquid discharged from the gas-liquid separation tank unit (supplied to the use point) is measured and supplied to the mixing unit. By making the flow rate of the liquid to be the same as the flow rate of the liquid discharged from the gas-liquid separation tank, it becomes possible to keep the amount of liquid in the gas-liquid separation tank part constant and only as much as needed at the point of use. A supply liquid (such as ozone water) can be produced.
 また、本発明の供給液体製造装置では、前記第1原料は水であり、前記第2原料はオゾンガスまたはケミカル原料であってもよい。 In the supply liquid manufacturing apparatus of the present invention, the first raw material may be water, and the second raw material may be ozone gas or a chemical raw material.
 この構成によれば、混合部で水とオゾンガスを混合してオゾン水を製造することができる。または、混合部で水とケミカル原料(例えばアンモニアなど)を混合してケミカル水(例えばアンモニア水など)を製造することができる。この場合、昇圧ポンプ部が混合部の前段(混合部より上流側)に配置されているので、昇圧ポンプ部には水しか通されない。したがって、昇圧ポンプ部が混合部の後段に設けられる場合に比べて、昇圧ポンプ部の寿命が長くなる。 According to this configuration, ozone water can be produced by mixing water and ozone gas in the mixing section. Alternatively, chemical water (for example, ammonia water) can be produced by mixing water and a chemical raw material (for example, ammonia) in the mixing section. In this case, since the booster pump unit is disposed upstream of the mixing unit (upstream side of the mixing unit), only water is passed through the booster pump unit. Therefore, the lifetime of the booster pump unit is longer than when the booster pump unit is provided at the subsequent stage of the mixing unit.
 本発明の供給液体製造方法は、第1原料を昇圧ポンプ部で昇圧して混合部に供給するステップと、前記第1原料と第2原料を前記混合部で混合して混合液体を生成するステップと、前記混合部により生成された前記混合液体を、ユースポイントに供給される供給液体と、排気口から排出される排出気体とに気液分離タンク部で気液分離するステップと、前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の流量を測定するステップと、測定した前記供給液体の流量に応じて、前記昇圧ポンプ部を制御して、前記混合部に昇圧して供給する前記第1原料の圧力を調整するステップと、前記気液分離タンク部内の液体量を一定に保つように、前記排出気体の排気圧力を制御するステップと、を含んでいる。 The supply liquid manufacturing method of the present invention includes a step of boosting a first raw material by a boosting pump unit and supplying the first raw material to a mixing unit, and a step of mixing the first raw material and the second raw material in the mixing unit to generate a mixed liquid Gas-liquid separation of the mixed liquid generated by the mixing unit into a supply liquid supplied to a use point and an exhaust gas discharged from an exhaust port in a gas-liquid separation tank unit; Measuring the flow rate of the supply liquid supplied from the separation tank unit to the use point, and controlling the boost pump unit according to the measured flow rate of the supply liquid to boost the pressure to the mixing unit Adjusting the pressure of the first raw material, and controlling the exhaust pressure of the exhaust gas so as to keep the amount of liquid in the gas-liquid separation tank unit constant.
 この製造方法によっても、ユースポイントに供給される液体(供給液体)の流量を、気液分離をした後に測定するので、第1原料と第2原料を混合することにより発生する気体(排出気体)の気泡の影響を受けることなく、供給液体の流量を正確に測定することができる。そして、このように測定した供給液体の流量に応じて第1の原料(混合部に昇圧して供給される)の圧力(ないし流量)が調整されるとともに、排出気体の排気圧力が制御されて気液分離タンク部内の液体量(ないし圧力)が一定に保たれる。これにより、ユースポイントで必要とされる分だけ供給液体(例えばオゾン水など)を製造することができる。 Also in this manufacturing method, since the flow rate of the liquid (supply liquid) supplied to the use point is measured after gas-liquid separation, a gas (exhaust gas) generated by mixing the first raw material and the second raw material The flow rate of the supplied liquid can be accurately measured without being affected by the bubbles. Then, the pressure (or flow rate) of the first raw material (suppressed and supplied to the mixing unit) is adjusted according to the flow rate of the supply liquid thus measured, and the exhaust pressure of the exhaust gas is controlled. The amount of liquid (or pressure) in the gas-liquid separation tank is kept constant. Thereby, supply liquid (for example, ozone water etc.) can be manufactured as much as required at the use point.
 本発明の供給液体製造装置は、第1原料と第2原料を混合して混合液体を生成する混合部と、前記混合部に供給される前記第1原料の流量を変更するポンプ部と、前記混合部により生成された前記混合液体を、ユースポイントに供給される供給液体と、排気口から排出される排出気体とに気液分離する気液分離タンク部と、前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の流量を測定する第1流量測定部と、前記排気口から排出される前記排出気体の排出量を調整する排気バルブと、前記ユースポイントに供給される前記供給液体の流量を一定流量に保つように、前記流量測定部で測定した前記供給液体の流量に応じて、前記排気バルブを制御して前記排気口から排出される前記排出気体の排出量を調整する排気制御部と、を備え、前記排気制御部は、前記第1流量測定部で測定した前記供給液体の流量が前記一定流量に対して増加した場合には前記排気口から排出される前記排出気体の排出量を増加させ、前記第1流量測定部で測定した前記供給液体の流量が前記一定流量に対して減少した場合には前記排気口から排出される前記排出気体の排出量を減少させる。 The supply liquid manufacturing apparatus of the present invention includes a mixing unit that mixes a first raw material and a second raw material to generate a mixed liquid, a pump unit that changes a flow rate of the first raw material supplied to the mixing unit, From the gas-liquid separation tank unit, the gas-liquid separation tank unit that gas-liquid separates the mixed liquid generated by the mixing unit into a supply liquid supplied to a use point and an exhaust gas discharged from an exhaust port; A first flow rate measuring unit for measuring a flow rate of the supply liquid supplied to the use point; an exhaust valve for adjusting a discharge amount of the exhaust gas discharged from the exhaust port; and the supply supplied to the use point. According to the flow rate of the supply liquid measured by the flow rate measuring unit, the exhaust valve is controlled to adjust the discharge amount of the exhaust gas discharged from the exhaust port so as to keep the liquid flow rate constant. exhaust And the exhaust controller controls the amount of the exhaust gas discharged from the exhaust port when the flow rate of the supply liquid measured by the first flow rate measuring unit increases with respect to the constant flow rate. The discharge amount is increased, and when the flow rate of the supply liquid measured by the first flow rate measurement unit decreases with respect to the constant flow rate, the discharge amount of the exhaust gas discharged from the exhaust port is decreased.
 この構成によれば、ユースポイントに供給される供給液体の流量が目標となる一定流量に対して増加した場合、すなわち、第1流量測定部で測定される供給液体の流量が目標となる一定流量に対して増加した場合には、排気口から排出される排出気体の排出量を増加させて、気液分離タンク部内の圧力を下げることにより、ユースポイントに供給する供給液体の流量を減少させる。一方、ユースポイントに供給される供給液体の流量が目標となる一定流量に対して減少した場合、すなわち、第1流量測定部で測定される供給液体の流量が目標となる一定流量に対して減少した場合には、排気口から排出される排出気体の排出量を減少させて、気液分離タンク部内の圧力を上げることにより、ユースポイントに供給する供給液体の流量を増加させる。このようにして、ユースポイントに供給される供給液体の流量を一定に保つことができる。 According to this configuration, when the flow rate of the supply liquid supplied to the use point increases with respect to the target constant flow rate, that is, the constant flow rate where the flow rate of the supply liquid measured by the first flow rate measurement unit is the target. In this case, the flow rate of the supply liquid supplied to the use point is decreased by increasing the discharge amount of the exhaust gas discharged from the exhaust port and lowering the pressure in the gas-liquid separation tank unit. On the other hand, when the flow rate of the supply liquid supplied to the use point decreases with respect to the target constant flow rate, that is, the flow rate of the supply liquid measured by the first flow rate measurement unit decreases with respect to the target constant flow rate. In this case, the flow rate of the supply liquid supplied to the use point is increased by decreasing the discharge amount of the exhaust gas discharged from the exhaust port and increasing the pressure in the gas-liquid separation tank unit. In this way, the flow rate of the supply liquid supplied to the use point can be kept constant.
 また、本発明の供給液体製造装置は、前記第1流量測定部で測定した前記供給液体の流量に応じて、前記ポンプ部を制御して前記混合部に供給する前記第1原料の流量を調整する流量制御部、を備え、前記流量制御部は、前記第1流量測定部で測定した前記供給液体の流量と前記混合部に供給する前記第1原料の流量が同じになるように制御してよい。 The supply liquid manufacturing apparatus of the present invention adjusts the flow rate of the first raw material to be supplied to the mixing unit by controlling the pump unit according to the flow rate of the supply liquid measured by the first flow rate measurement unit. A flow rate control unit that controls the flow rate of the supply liquid measured by the first flow rate measurement unit to be the same as the flow rate of the first raw material supplied to the mixing unit. Good.
 この構成によれば、第1流量測定部で測定した供給液体の流量と混合部に供給する第1原料の流量が同じになるように、混合部に供給する第1原料の流量を調整するので、気液分離タンク部内の液体量を一定に保つことができる。 According to this configuration, the flow rate of the first raw material supplied to the mixing unit is adjusted so that the flow rate of the supply liquid measured by the first flow rate measuring unit and the flow rate of the first raw material supplied to the mixing unit are the same. The amount of liquid in the gas-liquid separation tank can be kept constant.
 また、本発明の供給液体製造装置は、前記混合部に供給する前記第1原料の流量を測定する第2流量測定部を備えてよい。 Moreover, the supply liquid manufacturing apparatus of the present invention may include a second flow rate measurement unit that measures the flow rate of the first raw material supplied to the mixing unit.
 この構成によれば、第2流量測定部で測定された流量が前記第1流量測定部で測定された流量と同じになるように、前記混合部に供給する前記第1原料の流量を調整することができる。 According to this configuration, the flow rate of the first raw material supplied to the mixing unit is adjusted so that the flow rate measured by the second flow rate measurement unit is the same as the flow rate measured by the first flow rate measurement unit. be able to.
 また、本発明の供給液体製造装置は、前記気液分離タンク部内の液体量を検知する液体量測定部を有し、前記昇圧制御部は、前記液体量測定部で測定した前記気液分離タンク部内の液体量が所定の液体量に対して増加した場合には前記混合部に供給する前記第1原料の流量を少なくし、前記液体量測定部で測定した前記気液分離タンク部内の液体量が所定の液体量に対して減少した場合には前記混合部に供給する前記第1原料の流量を増やしてよい。 The supply liquid manufacturing apparatus of the present invention further includes a liquid amount measuring unit that detects the amount of liquid in the gas-liquid separation tank unit, and the boost control unit is configured to measure the gas-liquid separation tank measured by the liquid amount measuring unit. When the amount of liquid in the unit increases with respect to a predetermined amount of liquid, the flow rate of the first raw material supplied to the mixing unit is decreased, and the amount of liquid in the gas-liquid separation tank unit measured by the liquid amount measuring unit May be increased with respect to a predetermined amount of liquid, the flow rate of the first raw material supplied to the mixing unit may be increased.
 この構成によれば、前記混合部に供給する前記第1原料の流量を測定しなくても、気液分離タンク部内の液体量を検知することで、気液分離タンク部内の液体量を一定に保つように前記混合部に供給する前記第1原料の流量を調整することができる。 According to this configuration, the liquid amount in the gas-liquid separation tank unit can be kept constant by detecting the liquid amount in the gas-liquid separation tank unit without measuring the flow rate of the first raw material supplied to the mixing unit. The flow rate of the first raw material supplied to the mixing unit can be adjusted so as to maintain.
 本発明の供給液体製造方法は、第1原料と第2原料を混合部で混合して混合液体を生成するステップと、前記混合部で生成された前記混合液体を、ユースポイントに供給される供給液体と、排気口から排出される排出気体とに気液分離タンク部で気液分離するステップと、前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の流量を第1流量測定部で測定するステップと、前記ユースポイントに供給される前記供給液体の流量を一定流量に保つように、前記第1流量測定部で測定した前記供給液体の流量に応じて、前記排気口から排出される前記排出気体の排出量を排気バルブで調整するステップと、を含み、前記排出気体の排出量を調整するステップでは、前記第1流量測定部で測定した前記供給液体の流量が前記一定流量に対して増加した場合には前記排気口から排出される前記排出気体の排出量を増加させ、前記流量測定部で測定した前記供給液体の流量が前記一定流量に対して減少した場合には前記排気口から排出される前記排出気体の排出量を減少させる。 The supply liquid manufacturing method of the present invention includes a step of mixing a first raw material and a second raw material in a mixing unit to generate a mixed liquid, and a supply in which the mixed liquid generated in the mixing unit is supplied to a use point Gas-liquid separation in a gas-liquid separation tank unit into liquid and exhaust gas discharged from an exhaust port; and first flow rate measurement of the supply liquid supplied from the gas-liquid separation tank unit to the use point And a discharge from the exhaust port according to the flow rate of the supply liquid measured by the first flow rate measurement unit so that the flow rate of the supply liquid supplied to the use point is kept constant. Adjusting the discharge amount of the exhaust gas with an exhaust valve, and adjusting the discharge amount of the exhaust gas, wherein the flow rate of the supply liquid measured by the first flow rate measurement unit is When the flow rate of the supply liquid measured by the flow rate measurement unit decreases with respect to the constant flow rate, the discharge amount of the exhaust gas discharged from the exhaust port is increased when the flow rate increases with respect to the constant flow rate. Decreases the amount of exhaust gas discharged from the exhaust port.
 この製造方法によっても、ユースポイントに供給される供給液体の流量が目標となる一定流量に対して増加した場合、すなわち、流量測定部で測定される供給液体の流量が目標となる一定流量に対して増加した場合には、排気口から排出される排出気体の排出量を増加させて、気液分離タンク部内の圧力を下げることにより、ユースポイントに供給する供給液体の流量を減少させる。一方、ユースポイントに供給される供給液体の流量が目標となる一定流量に対して減少した場合、すなわち、流量測定部で測定される供給液体の流量が目標となる一定流量に対して減少した場合には、排気口から排出される排出気体の排出量を減少させて、気液分離タンク部内の圧力を上げることにより、ユースポイントに供給する供給液体の流量を増加させる。このようにして、ユースポイントに供給される供給液体の流量を一定に保つことができる。 Even in this manufacturing method, when the flow rate of the supply liquid supplied to the use point increases with respect to the target constant flow rate, that is, the flow rate of the supply liquid measured by the flow rate measuring unit is compared with the target constant flow rate. In this case, the flow rate of the supply liquid supplied to the use point is decreased by increasing the discharge amount of the exhaust gas discharged from the exhaust port and lowering the pressure in the gas-liquid separation tank unit. On the other hand, when the flow rate of the supply liquid supplied to the use point decreases with respect to the target constant flow rate, that is, when the flow rate of the supply liquid measured by the flow measurement unit decreases with respect to the target constant flow rate First, the flow rate of the supply liquid supplied to the use point is increased by decreasing the discharge amount of the exhaust gas discharged from the exhaust port and increasing the pressure in the gas-liquid separation tank unit. In this way, the flow rate of the supply liquid supplied to the use point can be kept constant.
 本発明の供給液体製造装置は、第1原料と第2原料を混合して混合液体を生成する混合部と、前記混合部に供給される前記第1原料の流量を変更するポンプ部と、前記混合部により生成された前記混合液体を、ユースポイントに供給される供給液体と、排気口から排出される排出気体とに気液分離する気液分離タンク部と、前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の圧力を測定する圧力測定部と、前記排気口から排出される前記排出気体の排出量を調整する排気バルブと、前記ユースポイントに供給される前記供給液体の圧力を一定圧力に保つように、前記圧力測定部で測定した前記供給液体の圧力に応じて、前記排気バルブを制御して前記排気口から排出される前記排出気体の排出量を調整する排気制御部と、を備え、前記排気制御部は、前記圧力測定部で測定した前記供給液体の圧力が前記一定圧力に対して増加した場合には前記排気口から排出される前記排出気体の排出量を増加させ、前記圧力測定部で測定した前記供給液体の圧力が前記一定圧力に対して減少した場合には前記排気口から排出される前記排出気体の排出量を減少させる。 The supply liquid manufacturing apparatus of the present invention includes a mixing unit that mixes a first raw material and a second raw material to generate a mixed liquid, a pump unit that changes a flow rate of the first raw material supplied to the mixing unit, From the gas-liquid separation tank unit, the gas-liquid separation tank unit that gas-liquid separates the mixed liquid generated by the mixing unit into a supply liquid supplied to a use point and an exhaust gas discharged from an exhaust port; A pressure measuring unit for measuring a pressure of the supply liquid supplied to the use point; an exhaust valve for adjusting a discharge amount of the exhaust gas discharged from the exhaust port; and a supply liquid supplied to the use point. Exhaust control that controls the exhaust valve and adjusts the exhaust gas discharged from the exhaust port according to the pressure of the supply liquid measured by the pressure measuring unit so as to keep the pressure constant. And the exhaust control unit increases the discharge amount of the exhaust gas discharged from the exhaust port when the pressure of the supply liquid measured by the pressure measurement unit increases with respect to the constant pressure. When the pressure of the supply liquid measured by the pressure measuring unit decreases with respect to the constant pressure, the discharge amount of the exhaust gas discharged from the exhaust port is decreased.
 この構成によれば、ユースポイントに供給される供給液体の圧力が増加した場合、すなわち、圧力測定部で測定される供給液体の圧力が増加した場合には、排気口から排出される排出気体の排出量を増加させて、気液分離タンク部内の圧力を下げることにより、ユースポイントに供給する供給液体の圧力を減少させる。一方、ユースポイントに供給される供給液体の圧力が減少した場合、すなわち、圧力測定部で測定される供給液体の圧力が減少した場合には、排気口から排出される排出気体の排出量を減少させて、気液分離タンク部内の圧力を上げることにより、ユースポイントに供給する供給液体の圧力を増加させる。このようにして、ユースポイントに供給される供給液体の圧力を一定に保つことができる。 According to this configuration, when the pressure of the supply liquid supplied to the use point increases, that is, when the pressure of the supply liquid measured by the pressure measuring unit increases, the amount of the exhaust gas discharged from the exhaust port is increased. By increasing the discharge amount and lowering the pressure in the gas-liquid separation tank, the pressure of the supply liquid supplied to the use point is decreased. On the other hand, when the pressure of the supply liquid supplied to the use point decreases, that is, when the pressure of the supply liquid measured by the pressure measuring unit decreases, the discharge amount of the exhaust gas discharged from the exhaust port is decreased. By increasing the pressure in the gas-liquid separation tank, the pressure of the supply liquid supplied to the use point is increased. In this way, the pressure of the supply liquid supplied to the use point can be kept constant.
 また、本発明の供給液体製造装置は、前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の流量を測定する第1流量測定部と、前記第1流量測定部で測定した前記供給液体の流量に応じて、前記ポンプ部を制御して前記混合部に供給する前記第1原料の流量を調整する流量制御部と、を備え、前記流量制御部は、前記第1流量測定部で測定した前記供給液体の流量と前記混合部に供給する前記第1原料の流量が同じになるように制御してよい。 The supply liquid manufacturing apparatus of the present invention is a first flow rate measurement unit that measures a flow rate of the supply liquid supplied from the gas-liquid separation tank unit to the use point, and the first flow rate measurement unit that measures the flow rate. A flow rate control unit that controls the pump unit and adjusts the flow rate of the first raw material supplied to the mixing unit according to the flow rate of the supply liquid, and the flow rate control unit includes the first flow rate measurement unit. The flow rate of the supply liquid measured in step 1 may be controlled to be the same as the flow rate of the first raw material supplied to the mixing unit.
 この構成によれば、第1流量測定部で測定した供給液体の流量と混合部に供給する第1原料の流量が同じになるように、混合部に供給する第1原料の流量を調整するので、気液分離タンク部内の液体量を一定に保つことができる。 According to this configuration, the flow rate of the first raw material supplied to the mixing unit is adjusted so that the flow rate of the supply liquid measured by the first flow rate measuring unit and the flow rate of the first raw material supplied to the mixing unit are the same. The amount of liquid in the gas-liquid separation tank can be kept constant.
 また、本発明の供給液体製造装置は、前記混合部に供給する前記第1原料の流量を測定する第2流量測定部を備えてよい。 Moreover, the supply liquid manufacturing apparatus of the present invention may include a second flow rate measurement unit that measures the flow rate of the first raw material supplied to the mixing unit.
 この構成によれば、第2流量測定部で測定された流量が前記第1流量測定部で測定された流量と同じになるように、前記混合部に供給する前記第1原料の流量を調整することができる。 According to this configuration, the flow rate of the first raw material supplied to the mixing unit is adjusted so that the flow rate measured by the second flow rate measurement unit is the same as the flow rate measured by the first flow rate measurement unit. be able to.
 また、本発明の供給液体製造装置は、前記気液分離タンク部内の液体量を検知する液体量測定部を有し、前記流量制御部は、前記液体量測定部で測定した前記気液分離タンク部内の液体量が所定の液体量に対して増加した場合には前記混合部に供給する前記第1原料の流量を少なくし、前記液体量測定部で測定した前記気液分離タンク部内の液体量が所定の液体量に対して減少した場合には前記混合部に供給する前記第1原料の流量を増やしてもよい。 In addition, the supply liquid manufacturing apparatus of the present invention has a liquid amount measurement unit that detects the amount of liquid in the gas-liquid separation tank unit, and the flow rate control unit is the gas-liquid separation tank measured by the liquid amount measurement unit When the amount of liquid in the unit increases with respect to a predetermined amount of liquid, the flow rate of the first raw material supplied to the mixing unit is decreased, and the amount of liquid in the gas-liquid separation tank unit measured by the liquid amount measuring unit May decrease the flow rate of the first raw material supplied to the mixing unit when the amount of liquid decreases with respect to a predetermined amount of liquid.
 この構成によれば、前記混合部に供給する前記第1原料の流量を測定しなくても、気液分離タンク部内の液体量を検知することで、気液分離タンク部内の液体量を一定に保つように前記混合部に供給する前記第1原料の流量を調整することができる。 According to this configuration, the liquid amount in the gas-liquid separation tank unit can be kept constant by detecting the liquid amount in the gas-liquid separation tank unit without measuring the flow rate of the first raw material supplied to the mixing unit. The flow rate of the first raw material supplied to the mixing unit can be adjusted so as to maintain.
 本発明の供給液体製造方法は、第1原料と第2原料を混合して混合部で混合液体を生成するステップと、前記混合部で生成された前記混合液体を、ユースポイントに供給される供給液体と、排気口から排出される排出気体とに気液分離タンク部で気液分離するステップと、前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の圧力を圧力測定部で測定するステップと、前記ユースポイントに供給される前記供給液体の圧力を一定圧力に保つように、前記圧力測定部で測定した前記供給液体の圧力に応じて、前記排気口から排出される前記排出気体の排出量を排気バルブで調整するステップと、を含み、前記排出気体の排出量を調整するステップでは、前記圧力測定部で測定した前記供給液体の圧力が一定圧力に対して増加した場合には前記排気口から排出される前記排出気体の排出量を増加させ、前記圧力測定部で測定した前記供給液体の圧力が一定圧力に対して減少した場合には前記排気口から排出される前記排出気体の排出量を減少させる。 The supply liquid manufacturing method of the present invention includes a step of mixing a first raw material and a second raw material to generate a mixed liquid in a mixing unit, and a supply for supplying the mixed liquid generated in the mixing unit to a use point Gas-liquid separation in the gas-liquid separation tank unit into liquid and exhaust gas discharged from the exhaust port, and pressure of the supply liquid supplied from the gas-liquid separation tank unit to the point of use in the pressure measurement unit A step of measuring, and the discharge discharged from the exhaust port according to the pressure of the supply liquid measured by the pressure measurement unit so as to keep the pressure of the supply liquid supplied to the use point at a constant pressure Adjusting the discharge amount of the gas with an exhaust valve, and adjusting the discharge amount of the discharge gas, wherein the pressure of the supply liquid measured by the pressure measuring unit is a constant pressure When the pressure is applied, the discharge amount of the exhaust gas discharged from the exhaust port is increased. When the pressure of the supply liquid measured by the pressure measuring unit decreases with respect to a constant pressure, the discharge gas is discharged from the exhaust port. The amount of exhaust gas discharged is reduced.
 この製造方法によっても、ユースポイントに供給される供給液体の圧力が目標となる一定圧力に対して増加した場合、すなわち、圧力測定部で測定される供給液体の圧力が目標となる一定圧力に対して増加した場合には、排気口から排出される排出気体の排出量を増加させて、気液分離タンク部内の圧力を下げることにより、ユースポイントに供給する供給液体の圧力を減少させる。一方、ユースポイントに供給される供給液体の圧力が目標となる一定圧力に対して減少した場合、すなわち、圧力測定部で測定される供給液体の圧力が目標となる一定圧力に対して減少した場合には、排気口から排出される排出気体の排出量を減少させて、気液分離タンク部内の圧力を上げることにより、ユースポイントに供給する供給液体の圧力を増加させる。このようにして、ユースポイントに供給される供給液体の圧力を一定に保つことができる。 Even in this manufacturing method, when the pressure of the supply liquid supplied to the use point increases with respect to the target constant pressure, that is, the pressure of the supply liquid measured by the pressure measuring unit with respect to the target constant pressure. In this case, the pressure of the supply liquid supplied to the use point is decreased by increasing the discharge amount of the exhaust gas discharged from the exhaust port and lowering the pressure in the gas-liquid separation tank unit. On the other hand, when the pressure of the supply liquid supplied to the use point decreases with respect to the target constant pressure, that is, when the pressure of the supply liquid measured by the pressure measuring unit decreases with respect to the target constant pressure. In this case, the pressure of the supply liquid supplied to the use point is increased by decreasing the discharge amount of the exhaust gas discharged from the exhaust port and increasing the pressure in the gas-liquid separation tank unit. In this way, the pressure of the supply liquid supplied to the use point can be kept constant.
 本発明の供給液体製造装置は、第1原料と第2原料を混合して混合液体を生成する混合部と、前記混合部に供給される前記第1原料の流量を変更するポンプ部と、前記混合部により生成された前記混合液体を、ユースポイントに供給される供給液体と、排気口から排出される排出気体とに気液分離する気液分離タンク部と、前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の流量を測定する第1流量測定部と、前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の圧力を測定する圧力測定部と、前記排気口から排出される前記排出気体の排出量を調整する排気バルブと、前記ユースポイントに供給される前記供給液体の流量を一定流量に保つように、前記第1流量測定部で測定した前記供給液体の流量に応じて、前記排気バルブを制御して前記排気口から排出される前記排出気体の排出量を調整する流量一定制御部と、前記ユースポイントに供給される前記供給液体の圧力を一定圧力に保つように、前記圧力測定部で測定した前記供給液体の圧力に応じて、前記排気バルブを制御して前記排気口から排出される前記排出気体の排出量を調整する圧力一定制御部と、前記流量一定制御部により前記排出気体の排出量を調整する流量一定制御と、前記圧力一定制御部により前記排出気体の排出量を調整する圧力一定制御のいずれか一方を選択する制御選択部と、を備え、前記制御選択部により前記流量一定制御が選択された場合には、前記流量一定制御部は、前記第1流量測定部で測定した前記供給液体の流量が前記一定流量に対して増加したときに前記排気口から排出される前記排出気体の排出量を増加させ、前記流量測定部で測定した前記供給液体の流量が前記一定流量に対して減少したときに前記排気口から排出される前記排出気体の排出量を減少させ、前記制御選択部により前記圧力一定制御が選択された場合には、前記圧力一定制御部は、前記圧力測定部で測定した前記供給液体の圧力が前記一定圧力に対して増加したときに前記排気口から排出される前記排出気体の排出量を増加させ、前記圧力測定部で測定した前記供給液体の圧力が前記一定圧力に対して減少したときに前記排気口から排出される前記排出気体の排出量を減少させる。 The supply liquid manufacturing apparatus of the present invention includes a mixing unit that mixes a first raw material and a second raw material to generate a mixed liquid, a pump unit that changes a flow rate of the first raw material supplied to the mixing unit, From the gas-liquid separation tank unit, the gas-liquid separation tank unit that gas-liquid separates the mixed liquid generated by the mixing unit into a supply liquid supplied to a use point and an exhaust gas discharged from an exhaust port; A first flow rate measurement unit for measuring a flow rate of the supply liquid supplied to the use point; a pressure measurement unit for measuring a pressure of the supply liquid supplied from the gas-liquid separation tank unit to the use point; and the exhaust gas An exhaust valve for adjusting an exhaust amount of the exhaust gas discharged from the mouth; and the supply liquid measured by the first flow rate measurement unit so as to maintain a constant flow rate of the supply liquid supplied to the use point A constant flow control unit for controlling the exhaust valve according to the flow rate of the exhaust gas to adjust the discharge amount of the exhaust gas discharged from the exhaust port, and a constant pressure of the supply liquid supplied to the use point A pressure constant controller that controls the exhaust valve and adjusts the amount of exhaust gas discharged from the exhaust port according to the pressure of the supply liquid measured by the pressure measurement unit, A control selection unit that selects one of a constant flow control for adjusting the discharge amount of the exhaust gas by the constant flow control unit, and a constant pressure control for adjusting the discharge amount of the exhaust gas by the constant pressure control unit; And the constant flow rate control unit increases the flow rate of the supply liquid measured by the first flow rate measurement unit with respect to the constant flow rate. When the flow rate of the supply liquid measured by the flow rate measurement unit decreases with respect to the constant flow rate, the discharge amount of the exhaust gas discharged from the exhaust port is increased. When the discharge amount of the exhaust gas is decreased and the constant pressure control is selected by the control selection unit, the constant pressure control unit is configured such that the pressure of the supply liquid measured by the pressure measurement unit is the constant pressure. When the pressure of the supply liquid measured by the pressure measuring unit decreases with respect to the constant pressure, the amount of exhaust gas discharged from the exhaust port is increased when the pressure increases. The amount of the exhaust gas discharged from the exhaust gas is reduced.
 この構成によれば、ユースポイントに供給される供給液体の流量を一定に保つ制御(流量一定制御)と、ユースポイントに供給される供給液体の圧力を一定に保つ制御(圧力一定制御)を選択することができる。 According to this configuration, a control for keeping the flow rate of the supply liquid supplied to the use point constant (constant flow control) and a control for keeping the pressure of the supply liquid supplied to the use point constant (pressure constant control) are selected. can do.
 流量一定制御では、ユースポイントに供給される供給液体の流量が目標となる一定流量に対して増加した場合、すなわち、流量測定部で測定される供給液体の流量が目標となる一定流量に対して増加した場合には、排気口から排出される排出気体の排出量を増加させて、気液分離タンク部内の圧力を下げることにより、ユースポイントに供給する供給液体の流量を減少させる。一方、ユースポイントに供給される供給液体の流量が目標となる一定流量に対して減少した場合、すなわち、流量測定部で測定される供給液体の流量が目標となる一定流量に対して減少した場合には、排気口から排出される排出気体の排出量を減少させて、気液分離タンク部内の圧力を上げることにより、ユースポイントに供給する供給液体の流量を増加させる。このようにして、ユースポイントに供給される供給液体の流量を一定に保つことができる。 In the constant flow control, when the flow rate of the supply liquid supplied to the use point increases with respect to the target constant flow rate, that is, the flow rate of the supply liquid measured by the flow rate measurement unit is compared with the target constant flow rate. When it increases, the flow rate of the supply liquid supplied to the use point is decreased by increasing the discharge amount of the exhaust gas discharged from the exhaust port and lowering the pressure in the gas-liquid separation tank unit. On the other hand, when the flow rate of the supply liquid supplied to the use point decreases with respect to the target constant flow rate, that is, when the flow rate of the supply liquid measured by the flow measurement unit decreases with respect to the target constant flow rate First, the flow rate of the supply liquid supplied to the use point is increased by decreasing the discharge amount of the exhaust gas discharged from the exhaust port and increasing the pressure in the gas-liquid separation tank unit. In this way, the flow rate of the supply liquid supplied to the use point can be kept constant.
 圧力一定制御では、ユースポイントに供給される供給液体の圧力が目標となる一定圧力に対して増加した場合、すなわち、圧力測定部で測定される供給液体の圧力が目標となる一定圧力に対して増加した場合には、排気口から排出される排出気体の排出量を増加させて、気液分離タンク部内の圧力を下げることにより、ユースポイントに供給する供給液体の圧力を減少させる。一方、ユースポイントに供給される供給液体の圧力が目標となる一定圧力に対して減少した場合、すなわち、圧力測定部で測定される供給液体の圧力が目標となる一定圧力に対して減少した場合には、排気口から排出される排出気体の排出量を減少させて、気液分離タンク部内の圧力を上げることにより、ユースポイントに供給する供給液体の圧力を増加させる。このようにして、ユースポイントに供給される供給液体の圧力を一定に保つことができる。 In the constant pressure control, when the pressure of the supply liquid supplied to the use point is increased with respect to the target constant pressure, that is, the pressure of the supply liquid measured by the pressure measuring unit with respect to the target constant pressure. When it increases, the pressure of the supply liquid supplied to a use point is decreased by increasing the discharge amount of the exhaust gas discharged from the exhaust port and lowering the pressure in the gas-liquid separation tank unit. On the other hand, when the pressure of the supply liquid supplied to the use point decreases with respect to the target constant pressure, that is, when the pressure of the supply liquid measured by the pressure measuring unit decreases with respect to the target constant pressure. In this case, the pressure of the supply liquid supplied to the use point is increased by decreasing the discharge amount of the exhaust gas discharged from the exhaust port and increasing the pressure in the gas-liquid separation tank unit. In this way, the pressure of the supply liquid supplied to the use point can be kept constant.
 本発明の供給液体製造方法は、第1原料と第2原料を混合部で混合して混合液体を生成するステップと、前記混合部で生成された前記混合液体を、ユースポイントに供給される供給液体と、排気口から排出される排出気体とに気液分離タンク部で気液分離するステップと、前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の流量を流量測定部で測定するステップと、前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の圧力を圧力測定部で測定するステップと、前記ユースポイントに供給される前記供給液体の流量を一定流量に保つように、前記流量測定部で測定した前記供給液体の流量に応じて、前記排気バルブを制御して前記排気口から排出される前記排出気体の排出量を調整する流量一定制御と、前記ユースポイントに供給される前記供給液体の圧力を一定圧力に保つように、前記圧力測定部で測定した前記供給液体の圧力に応じて、前記排気バルブを制御して前記排気口から排出される前記排出気体の排出量を調整する圧力一定制御と、のいずれか一方を選択するステップと、を含み、前記流量一定制御が選択された場合には、前記流量測定部で測定した前記供給液体の流量が前記一定流量に対して増加したときに前記排気口から排出される前記排出気体の排出量を増加させ、前記流量測定部で測定した前記供給液体の流量が前記一定流量に対して減少したときに前記排気口から排出される前記排出気体の排出量を減少させ、前記圧力一定制御が選択された場合には、前記圧力測定部で測定した前記供給液体の圧力が前記一定圧力に対して増加したときに前記排気口から排出される前記排出気体の排出量を増加させ、前記圧力測定部で測定した前記供給液体の圧力が前記一定圧力に対して減少したときに前記排気口から排出される前記排出気体の排出量を減少させる。 The supply liquid manufacturing method of the present invention includes a step of mixing a first raw material and a second raw material in a mixing unit to generate a mixed liquid, and a supply in which the mixed liquid generated in the mixing unit is supplied to a use point Gas-liquid separation in the gas-liquid separation tank unit into liquid and exhaust gas discharged from the exhaust port, and the flow rate of the supply liquid supplied from the gas-liquid separation tank unit to the point of use A step of measuring, a step of measuring a pressure of the supply liquid supplied from the gas-liquid separation tank unit to the use point by a pressure measurement unit, and a flow rate of the supply liquid supplied to the use point to a constant flow rate In order to maintain the flow rate, the flow rate of the exhaust gas discharged from the exhaust port is adjusted by controlling the exhaust valve according to the flow rate of the supply liquid measured by the flow rate measurement unit. Control and control the exhaust valve according to the pressure of the supply liquid measured by the pressure measurement unit so as to keep the pressure of the supply liquid supplied to the use point constant. Pressure constant control for adjusting the discharge amount of the exhaust gas to be discharged, and selecting either one of them, and when the constant flow control is selected, the flow rate measurement unit measures the When the flow rate of the supply liquid is increased with respect to the constant flow rate, the discharge amount of the exhaust gas discharged from the exhaust port is increased, and the flow rate of the supply liquid measured by the flow rate measurement unit is increased with respect to the constant flow rate. When the discharge pressure of the exhaust gas discharged from the exhaust port is reduced and the constant pressure control is selected, the pressure of the supply liquid measured by the pressure measurement unit is The exhaust gas discharged from the exhaust port when increased with respect to pressure is increased, and the exhaust gas when the pressure of the supply liquid measured by the pressure measuring unit decreases with respect to the constant pressure. The discharge amount of the exhaust gas discharged from the mouth is reduced.
 この製造方法によっても、ユースポイントに供給される供給液体の流量を一定に保つ制御(流量一定制御)と、ユースポイントに供給される供給液体の圧力を一定に保つ制御(圧力一定制御)を選択することができる。 Even with this manufacturing method, control that keeps the flow rate of the supply liquid supplied to the use point constant (constant flow control) and control that keeps the pressure of the supply liquid supplied to the use point constant (pressure constant control) are selected. can do.
 流量一定制御では、ユースポイントに供給される供給液体の流量が目標となる一定流量に対して増加した場合、すなわち、流量測定部で測定される供給液体の流量が目標となる一定流量に対して増加した場合には、排気口から排出される排出気体の排出量を増加させて、気液分離タンク部内の圧力を下げることにより、ユースポイントに供給する供給液体の流量を減少させる。一方、ユースポイントに供給される供給液体の流量が目標となる一定流量に対して減少した場合、すなわち、流量測定部で測定される供給液体の流量が目標となる一定流量に対して減少した場合には、排気口から排出される排出気体の排出量を減少させて、気液分離タンク部内の圧力を上げることにより、ユースポイントに供給する供給液体の流量を増加させる。このようにして、ユースポイントに供給される供給液体の流量を一定に保つことができる。 In the constant flow control, when the flow rate of the supply liquid supplied to the use point increases with respect to the target constant flow rate, that is, the flow rate of the supply liquid measured by the flow rate measurement unit is compared with the target constant flow rate. When it increases, the flow rate of the supply liquid supplied to the use point is decreased by increasing the discharge amount of the exhaust gas discharged from the exhaust port and lowering the pressure in the gas-liquid separation tank unit. On the other hand, when the flow rate of the supply liquid supplied to the use point decreases with respect to the target constant flow rate, that is, when the flow rate of the supply liquid measured by the flow measurement unit decreases with respect to the target constant flow rate First, the flow rate of the supply liquid supplied to the use point is increased by decreasing the discharge amount of the exhaust gas discharged from the exhaust port and increasing the pressure in the gas-liquid separation tank unit. In this way, the flow rate of the supply liquid supplied to the use point can be kept constant.
 圧力一定制御では、ユースポイントに供給される供給液体の圧力が目標となる一定圧力に対して増加した場合、すなわち、圧力測定部で測定される供給液体の圧力が目標となる一定圧力に対して増加した場合には、排気口から排出される排出気体の排出量を増加させて、気液分離タンク部内の圧力を下げることにより、ユースポイントに供給する供給液体の圧力を減少させる。一方、ユースポイントに供給される供給液体の圧力が目標となる一定圧力に対して減少した場合、すなわち、圧力測定部で測定される供給液体の圧力が目標となる一定圧力に対して減少した場合には、排気口から排出される排出気体の排出量を減少させて、気液分離タンク部内の圧力を上げることにより、ユースポイントに供給する供給液体の圧力を増加させる。このようにして、ユースポイントに供給される供給液体の圧力を一定に保つことができる。 In the constant pressure control, when the pressure of the supply liquid supplied to the use point is increased with respect to the target constant pressure, that is, the pressure of the supply liquid measured by the pressure measuring unit with respect to the target constant pressure. When it increases, the pressure of the supply liquid supplied to a use point is decreased by increasing the discharge amount of the exhaust gas discharged from the exhaust port and lowering the pressure in the gas-liquid separation tank unit. On the other hand, when the pressure of the supply liquid supplied to the use point decreases with respect to the target constant pressure, that is, when the pressure of the supply liquid measured by the pressure measuring unit decreases with respect to the target constant pressure. In this case, the pressure of the supply liquid supplied to the use point is increased by decreasing the discharge amount of the exhaust gas discharged from the exhaust port and increasing the pressure in the gas-liquid separation tank unit. In this way, the pressure of the supply liquid supplied to the use point can be kept constant.
 本発明によれば、ユースポイントで必要とされる分だけ供給液体(例えばオゾン水など)を製造することができる。さらに、本発明によれば、オゾン水とオゾンガスとを共存させた気液混合状態で、ユースポイントまで、オゾン水(供給液体)を適正量供給させることができる。 According to the present invention, it is possible to produce a supply liquid (for example, ozone water) as much as needed at the point of use. Furthermore, according to the present invention, it is possible to supply an appropriate amount of ozone water (supply liquid) to the use point in a gas-liquid mixed state in which ozone water and ozone gas coexist.
本発明の第1の実施の形態における供給液体製造装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the supply liquid manufacturing apparatus in the 1st Embodiment of this invention. 本発明の第2の実施の形態における供給液体製造装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the supply liquid manufacturing apparatus in the 2nd Embodiment of this invention. 本発明の第3の実施の形態における供給液体製造装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the supply liquid manufacturing apparatus in the 3rd Embodiment of this invention. 本発明の第3の実施の形態における流量一定制御の説明図である。It is explanatory drawing of the flow volume fixed control in the 3rd Embodiment of this invention. 本発明の第4の実施の形態における供給液体製造装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the supply liquid manufacturing apparatus in the 4th Embodiment of this invention. 従来のオゾン水供給装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the conventional ozone water supply apparatus.
 以下、本発明の実施の形態の供給液体製造装置について、図面を用いて説明する。本実施の形態では、半導体デバイスや液晶などの電子部品の洗浄に用いられるオゾン水などの製造に用いられる供給液体製造装置の場合を例示する。 Hereinafter, a supply liquid manufacturing apparatus according to an embodiment of the present invention will be described with reference to the drawings. In this embodiment, the case of a supply liquid manufacturing apparatus used for manufacturing ozone water or the like used for cleaning an electronic component such as a semiconductor device or a liquid crystal is illustrated.
 なお、本明細書において「圧力一定」、「一定の圧力」とは、ある所定または任意の時間間隔内における平均圧力値が一定、あるいは実質的に一定であることをいう。また、本明細書において「流量一定」、「一定の流量」とは、ある所定または任意の時間間隔内における平均流量値が一定、あるいは実質的に一定であることをいう。さらにまた、本明細書において「濃度一定」、「一定の濃度」とは、ある液体中に溶存している化学種の、所定または任意の時間間隔内における平均的な成分濃度の値が一定、あるいは実質的に一定であることをいう。 In the present specification, “constant pressure” and “constant pressure” mean that the average pressure value within a predetermined or arbitrary time interval is constant or substantially constant. Further, in this specification, “constant flow rate” and “constant flow rate” mean that the average flow rate value within a predetermined or arbitrary time interval is constant or substantially constant. Furthermore, in this specification, “constant concentration” and “constant concentration” mean that the value of the average component concentration of a chemical species dissolved in a certain liquid within a predetermined or arbitrary time interval is constant. Or it means that it is substantially constant.
(第1の実施の形態)
 本発明の第1の実施の形態の供給液体製造装置の構成を、図面を参照して説明する。図1は、本実施の形態の供給液体製造装置の構成を示す説明図である。図1に示すように、供給液体製造装置100は、原料となる第1ガス(O2ガス)と第2ガス(CO2ガス、N2ガス、またはCO2ガスとN2ガスの混合気体)の供給源101、102と、それぞれのガス(第1ガスと第2ガス)の流量を制御する流量コントローラ103、104を備えている。なお、第2ガス(CO2ガス、N2ガス、またはCO2ガスとN2ガスの混合気体)は必ずしも必須ではなく、第1ガス(O2ガス)のみを用いてもよい。第1ガスと第2ガスは、圧力センサ105で圧力を測定された後、オゾンガス生成部106へ送られる。オゾンガス生成部106で生成されたオゾンガスは、オゾン水生成部107へ送られる。
(First embodiment)
The configuration of the supply liquid manufacturing apparatus according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing the configuration of the supply liquid manufacturing apparatus of the present embodiment. As shown in FIG. 1, the supply liquid manufacturing apparatus 100 includes a first gas (O 2 gas) and a second gas (CO 2 gas, N 2 gas, or a mixed gas of CO 2 gas and N 2 gas) as raw materials. Supply sources 101 and 102 and flow rate controllers 103 and 104 for controlling the flow rates of the respective gases (first gas and second gas). The second gas (CO 2 gas, N 2 gas, or a mixed gas of CO 2 gas and N 2 gas) is not necessarily essential, and only the first gas (O 2 gas) may be used. The first gas and the second gas are sent to the ozone gas generation unit 106 after the pressure is measured by the pressure sensor 105. The ozone gas generated by the ozone gas generation unit 106 is sent to the ozone water generation unit 107.
 また、供給液体製造装置100は、第1原料である水(超純水)の供給源108を備えている。この供給液体製造装置100には、第1原料である水の中の余剰ガス(酸素、窒素、炭酸ガスなど)を除去するために、脱気処理をする脱気処理部109が備えられている。なお、脱気処理は、例えば脱気処理膜を介して真空引きを行うなどの公知の方法を利用することができる。また、供給液体製造装置100には、第1原料である水の流量を調整するためのバルブ110と、第1原料である水の流量を測定するための流量計111が設けられている。第1原料である水は、流量計111で流量が測定された後、昇圧ポンプ(あるいは単にポンプともいう。以下、同じ。)112へ送られ、昇圧ポンプ112で圧力を調整(昇圧)された後、オゾン水生成部107へ送られる。オゾン水生成部107へ送られる水の圧力は、例えば、0.1~1.0MPaに設定される。そして、ポンプ112の圧力を変更することにより、オゾン水生成部107へ送られる水の流量が調整される。 Further, the supply liquid manufacturing apparatus 100 includes a supply source 108 of water (ultra pure water) that is the first raw material. The supply liquid manufacturing apparatus 100 includes a deaeration processing unit 109 that performs a deaeration process in order to remove surplus gas (oxygen, nitrogen, carbon dioxide, etc.) in the water that is the first raw material. . For the deaeration treatment, a known method such as evacuation through a deaeration treatment film can be used. Further, the supply liquid manufacturing apparatus 100 is provided with a valve 110 for adjusting the flow rate of water as the first raw material and a flow meter 111 for measuring the flow rate of water as the first raw material. After the flow rate of the water, which is the first raw material, is measured by the flow meter 111, it is sent to a booster pump (or simply referred to as a pump, hereinafter the same) 112, and the pressure is adjusted (boosted) by the pressure pump 112. Then, it is sent to the ozone water generator 107. The pressure of water sent to the ozone water generation unit 107 is set to 0.1 to 1.0 MPa, for example. And the flow volume of the water sent to the ozone water production | generation part 107 is adjusted by changing the pressure of the pump 112. FIG.
 オゾン水生成部107は、水(第1原料)とオゾンガス(第2原料)を混合してオゾン水(混合液体)を生成する混合器113を備えている。混合器113は、ベンチュリー効果を利用して水とガスを混合するものが望ましい。そのような混合器113として、例えば、アスピレータやエジェクターなどが用いられる。生成されたオゾン水は、気液分離タンク114に送られる。気液分離タンク114では、混合器113で生成されたオゾン水(混合液体)が、オゾン水(供給液体)と排ガス(排出気体)に気液分離される。この気液分離タンク114には、オゾン水の水位を測定するための水位センサ115が設けられている。気液分離されたオゾン水(供給液体)は、圧力センサ116で圧力が測定され、流量計117で流量が測定された後、バルブ118を介してユースポイント119(例えば、多チャンバー式の枚葉型洗浄装置など)に送られる。 The ozone water generator 107 includes a mixer 113 that mixes water (first raw material) and ozone gas (second raw material) to generate ozone water (mixed liquid). The mixer 113 is preferably one that mixes water and gas using the Venturi effect. For example, an aspirator or an ejector is used as such a mixer 113. The generated ozone water is sent to the gas-liquid separation tank 114. In the gas-liquid separation tank 114, the ozone water (mixed liquid) generated in the mixer 113 is gas-liquid separated into ozone water (supply liquid) and exhaust gas (exhaust gas). The gas-liquid separation tank 114 is provided with a water level sensor 115 for measuring the water level of ozone water. The pressure of the ozone water (supply liquid) that has been gas-liquid separated is measured by the pressure sensor 116, the flow rate is measured by the flow meter 117, and then the use point 119 (for example, a multi-chamber type single wafer is provided via the valve 118. Sent to a mold cleaning device).
 また、気液分離されたオゾン水(供給液体)は、オゾン水濃度計120で濃度が測定された後、ドレン121から排出される。一方、気液分離された排ガス(排出気体)は、気液分離タンク114からバルブ122を介して排ガス分解触媒123へ送られて分解処理された後、圧力リリーフバルブ124で大気圧に戻されてから、排出口125から排出される。圧力リリーフバルブ124では、急激な圧力変動を防いで圧力を一定に保つことができる点で、エアー制御式のリリーフ弁を採用することが望ましい。なお、急激な圧力変動が発生するおそれがない場合には、バネ式のリリーフ弁を採用することもできる。バネ式のリリーフ弁は、エアー制御式のリリーフ弁に比べて安価であり、低コスト化を図るうえで有利である。 Further, the ozone water (supply liquid) subjected to gas-liquid separation is discharged from the drain 121 after the concentration is measured by the ozone water concentration meter 120. On the other hand, the gas-liquid separated exhaust gas (exhaust gas) is sent from the gas-liquid separation tank 114 to the exhaust gas decomposition catalyst 123 via the valve 122 and decomposed, and then returned to the atmospheric pressure by the pressure relief valve 124. From the outlet 125. In the pressure relief valve 124, it is desirable to employ an air-controlled relief valve in that the pressure can be kept constant by preventing sudden pressure fluctuations. If there is no risk of sudden pressure fluctuations, a spring-type relief valve can be employed. The spring type relief valve is less expensive than the air control type relief valve, and is advantageous in reducing the cost.
 供給液体製造装置100は、流量制御部(すなわち、昇圧制御部)126と排気圧力制御部127を備えている。流量制御部(すなわち、昇圧制御部)126は、流量計111で測定した水流量、または、流量計117で測定したオゾン水の流量に応じて、昇圧ポンプ112を制御して、混合器113に昇圧して供給する水の圧力を調整する。より具体的には、例えば、流量計117で測定したオゾン水の流量値を受信し、受信した流量値に応じて昇圧ポンプ112を制御する制御信号を生成し、この制御信号を昇圧ポンプ112に送信して、昇圧ポンプ112に設けられた図示しない駆動部を制御することによりポンプの回転数を制御し、混合器113に供給する水の圧力(あるいは流量)を調整することができる。また、排気圧力制御部127は、流量計111で測定した水の流量、流量計117で測定したオゾン水の流量、オゾン水濃度計120で測定したオゾン水の濃度に応じて、圧力リリーフバルブ124を制御して、気液分離タンク114内の水位を一定に保つように排ガスの排気圧力を調整する。 The supply liquid manufacturing apparatus 100 includes a flow rate control unit (that is, a pressure increase control unit) 126 and an exhaust pressure control unit 127. The flow rate control unit (that is, the pressure increase control unit) 126 controls the pressure increase pump 112 according to the flow rate of water measured by the flow meter 111 or the flow rate of ozone water measured by the flow meter 117, and Adjust the pressure of water to be supplied by increasing the pressure. More specifically, for example, the flow value of ozone water measured by the flow meter 117 is received, a control signal for controlling the booster pump 112 is generated according to the received flow value, and this control signal is sent to the booster pump 112. By transmitting and controlling a drive unit (not shown) provided in the booster pump 112, the number of rotations of the pump can be controlled, and the pressure (or flow rate) of water supplied to the mixer 113 can be adjusted. Further, the exhaust pressure control unit 127 is configured to change the pressure relief valve 124 according to the flow rate of water measured by the flow meter 111, the flow rate of ozone water measured by the flow meter 117, and the concentration of ozone water measured by the ozone water concentration meter 120. And the exhaust pressure of the exhaust gas is adjusted so as to keep the water level in the gas-liquid separation tank 114 constant.
 この供給液体製造装置100は、気液分離タンク114の水位を一定に調整することができる。例えば、気液分離タンク114内の水位を水位センサ115で測定することにより、気液分離タンク114の水位を一定に調整することができる。また、流量計111で測定される水の流量と流量計117で測定されるオゾン水の流量が同じになるように流量を制御することにより、気液分離タンク114の水位を一定に調整することができる。 This supply liquid manufacturing apparatus 100 can adjust the water level of the gas-liquid separation tank 114 to be constant. For example, the water level in the gas-liquid separation tank 114 can be adjusted to be constant by measuring the water level in the gas-liquid separation tank 114 with the water level sensor 115. Further, the water level of the gas-liquid separation tank 114 is adjusted to be constant by controlling the flow rate so that the flow rate of water measured by the flow meter 111 and the flow rate of ozone water measured by the flow meter 117 are the same. Can do.
 以上のように構成された第1の実施の形態の供給液体製造装置100について、その動作を説明する。 The operation of the supply liquid manufacturing apparatus 100 according to the first embodiment configured as described above will be described.
 第1の実施の形態の供給液体製造装置100を用いてオゾン水を製造する場合には、まず、原料となる第1ガス(O2ガス)と第2ガス(CO2ガス、N2ガス、またはCO2ガスとN2ガスの混合気体)を供給源101、102から供給する。第1ガスと第2ガスの流量は、流量コントローラ103、104によって制御される。また、第1原料である水(純水)を供給源108から供給する。水の流量は、流量計111によって測定される。流量コントローラ103、104は、流量計111により測定される水の流量に応じて、第1ガスと第2ガスの流量を制御する。すなわち、所定の濃度のオゾン水を生成するために、水の流量と第1ガスと第2ガスの流量の関係を予め求めておき、流量計111により測定される水の流量に応じて、第1ガスと第2ガスの流量を制御する。 When ozone water is manufactured using the supply liquid manufacturing apparatus 100 of the first embodiment, first, a first gas (O 2 gas) and a second gas (CO 2 gas, N 2 gas, Alternatively, a mixed gas of CO 2 gas and N 2 gas) is supplied from the supply sources 101 and 102. The flow rates of the first gas and the second gas are controlled by the flow rate controllers 103 and 104. Further, water (pure water) as the first raw material is supplied from the supply source 108. The flow rate of water is measured by the flow meter 111. The flow controllers 103 and 104 control the flow rates of the first gas and the second gas according to the flow rate of water measured by the flow meter 111. That is, in order to generate ozone water having a predetermined concentration, a relationship between the flow rate of water and the flow rates of the first gas and the second gas is obtained in advance, The flow rates of the first gas and the second gas are controlled.
 第1ガスと第2ガスは、圧力センサ105で圧力を測定した後、オゾンガス生成部106へ送られる。オゾンガス生成部106では、放電によって、第1ガス(O2ガス)と第2ガス(CO2ガス、N2ガス、またはCO2ガスとN2ガスの混合気体)からオゾンガスが生成される。生成されたオゾンガス(第2原料)は、オゾン水生成部107へ送られる。一方、水(第1原料)は、流量計111で流量が測定された後、昇圧ポンプ112へ送られ、昇圧ポンプ112で圧力を調整された後、オゾン水生成部107へ送られる。昇圧ポンプ112は、流量制御部126によって制御され、0.1MPa~1MPaの圧力範囲内でオゾン水生成部107へ送る水の圧力を調整する。昇圧ポンプ112としては、例えば遠心ポンプなどが用いられる。 The first gas and the second gas are sent to the ozone gas generation unit 106 after the pressure is measured by the pressure sensor 105. The ozone gas generator 106 generates ozone gas from the first gas (O 2 gas) and the second gas (CO 2 gas, N 2 gas, or a mixed gas of CO 2 gas and N 2 gas) by discharge. The generated ozone gas (second raw material) is sent to the ozone water generation unit 107. On the other hand, after the flow rate is measured by the flow meter 111, the water (first raw material) is sent to the booster pump 112, the pressure is adjusted by the booster pump 112, and then sent to the ozone water generator 107. The booster pump 112 is controlled by the flow rate control unit 126 and adjusts the pressure of water sent to the ozone water generation unit 107 within a pressure range of 0.1 MPa to 1 MPa. As the booster pump 112, for example, a centrifugal pump or the like is used.
 オゾン水生成部107の混合器113では、水とオゾンガスを混合してオゾン水が生成され、生成されたオゾン水は、気液分離タンク114へ送られる。気液分離タンク114では、混合器113で生成されたオゾン水(混合液体)が、オゾン水(供給液体)と排ガス(排出気体)に気液分離される。気液分離されたオゾン水(供給液体)は、圧力センサ116で圧力が測定され、流量計117で流量が測定された後、バルブ118を介してユースポイント119(例えば、多チャンバー式の枚葉型洗浄装置)に送られる。この場合、流量制御部126は、流量計111または流量計117で測定した流量に応じて昇圧ポンプ112を制御する。 In the mixer 113 of the ozone water generation unit 107, water and ozone gas are mixed to generate ozone water, and the generated ozone water is sent to the gas-liquid separation tank 114. In the gas-liquid separation tank 114, the ozone water (mixed liquid) generated in the mixer 113 is gas-liquid separated into ozone water (supply liquid) and exhaust gas (exhaust gas). The pressure of the ozone water (supply liquid) that has been gas-liquid separated is measured by the pressure sensor 116, the flow rate is measured by the flow meter 117, and then the use point 119 (for example, a multi-chamber type single wafer is provided via the valve 118. Mold cleaning device). In this case, the flow control unit 126 controls the booster pump 112 according to the flow measured by the flow meter 111 or the flow meter 117.
 一方、排ガス(排出気体)は、バルブ122を介して排ガス分解触媒123へ送られて分解処理された後、圧力リリーフバルブ124で大気圧に戻されてから、排出口125から排出される。この場合、排気圧力制御部127は、流量計111で測定した水の流量、流量計117で測定したオゾン水の流量、オゾン水濃度計120で測定したオゾン水の濃度に応じて、圧力リリーフバルブ124を制御して、気液分離タンク114内の水位を一定に保つように排ガスの排気圧力を調整する。また、排気圧力制御部は、水位センサ115で測定した気液分離タンク114内の水位に応じて、圧力リリーフバルブ124を制御して、気液分離タンク114内の水位を一定に保つように排ガスの排気圧力を調整する。 On the other hand, the exhaust gas (exhaust gas) is sent to the exhaust gas decomposition catalyst 123 via the valve 122 and decomposed, and then returned to atmospheric pressure by the pressure relief valve 124 and then discharged from the discharge port 125. In this case, the exhaust pressure control unit 127 uses a pressure relief valve according to the flow rate of water measured by the flow meter 111, the flow rate of ozone water measured by the flow meter 117, and the concentration of ozone water measured by the ozone water concentration meter 120. 124 is controlled to adjust the exhaust gas exhaust pressure so that the water level in the gas-liquid separation tank 114 is kept constant. Further, the exhaust pressure control unit controls the pressure relief valve 124 according to the water level in the gas-liquid separation tank 114 measured by the water level sensor 115, and exhaust gas so as to keep the water level in the gas-liquid separation tank 114 constant. Adjust the exhaust pressure.
 このような第1の実施の形態の供給液体製造装置100によれば、ユースポイント119に供給される供給液体(オゾン水)の流量を、気液分離をした後に測定するので、第1原料(水)と第2原料(オゾンガス)を混合することにより発生する気体(排ガス)の気泡の影響を受けることなく、供給液体(オゾン水)の流量を正確に測定することができる。そして、このように測定した供給液体(オゾン水)の流量に応じて第1の原料である水(混合部に昇圧して供給される)の圧力が調整されるとともに、排ガスの排気圧力が制御されて気液分離タンク114内の水位が一定に保たれる。これにより、ユースポイント119で必要とされる分だけ供給液体(オゾン水)を製造することができる。 According to the supply liquid manufacturing apparatus 100 of the first embodiment as described above, the flow rate of the supply liquid (ozone water) supplied to the use point 119 is measured after gas-liquid separation. The flow rate of the supply liquid (ozone water) can be accurately measured without being affected by bubbles of gas (exhaust gas) generated by mixing water) and the second raw material (ozone gas). The pressure of the first raw material water (suppressed and supplied to the mixing section) is adjusted according to the flow rate of the supply liquid (ozone water) measured in this way, and the exhaust gas exhaust pressure is controlled. Thus, the water level in the gas-liquid separation tank 114 is kept constant. As a result, the supply liquid (ozone water) can be produced as much as required at the use point 119.
 また、本実施の形態では、気液分離タンク114内の水位を一定に保つことができるので、ユースポイント119で必要とされる分だけ供給液体(オゾン水)を製造することができる。例えば、水位センサ115で気液分離タンク114内の水位を測定する。これにより、気液分離タンク114内の水位を一定に保つことが可能になり、ユースポイント119で必要とされる分だけ供給液体(オゾン水)を製造することができる。 Further, in the present embodiment, the water level in the gas-liquid separation tank 114 can be kept constant, so that the supply liquid (ozone water) can be produced as much as required at the use point 119. For example, the water level in the gas-liquid separation tank 114 is measured by the water level sensor 115. As a result, the water level in the gas-liquid separation tank 114 can be kept constant, and the supply liquid (ozone water) can be produced as much as required at the use point 119.
 あるいは、混合器113に供給される水の流量を流量計111で測定するとともに、気液分離タンク114から排出される(ユースポイント119に供給される)オゾン水の流量を測定する。そして、混合器113に供給される水の流量と気液分離タンク114から排出されるオゾン水の流量を同じにすることにより、気液分離タンク114内の液体量を一定に保つことが可能になり、ユースポイント119で必要とされる分だけ供給液体(オゾン水)を製造することができる。 Alternatively, the flow rate of water supplied to the mixer 113 is measured by the flow meter 111, and the flow rate of ozone water discharged from the gas-liquid separation tank 114 (supplied to the use point 119) is measured. In addition, by making the flow rate of water supplied to the mixer 113 and the flow rate of ozone water discharged from the gas-liquid separation tank 114 the same, the amount of liquid in the gas-liquid separation tank 114 can be kept constant. Thus, the supply liquid (ozone water) can be produced as much as required at the use point 119.
 また、本実施の形態では、混合器113で水とオゾンガスを混合してオゾン水を製造することができる。この場合、昇圧ポンプ112が混合器113の前段(混合器113より上流側)に配置されているので、昇圧ポンプ112には水しか通されない(昇圧ポンプ112にオゾン水は通されない)。したがって、昇圧ポンプ112が混合器113の後段に設けられる場合(昇圧ポンプ112にオゾン水が通される場合)に比べて、昇圧ポンプ112の寿命が長くなる。 In this embodiment, ozone water can be produced by mixing water and ozone gas in the mixer 113. In this case, since the booster pump 112 is disposed upstream of the mixer 113 (upstream from the mixer 113), only water is passed through the booster pump 112 (no ozone water is passed through the booster pump 112). Therefore, the lifetime of the booster pump 112 is longer than when the booster pump 112 is provided at the subsequent stage of the mixer 113 (when ozone water is passed through the booster pump 112).
(第2の実施の形態)
 次に、本発明の第2の実施の形態の供給液体製造装置について説明する。ここでは、第2の実施の形態の供給液体製造装置が、第1の実施の形態と相違する点を中心に説明する。ここで特に言及しない限り、本実施の形態の構成および動作は、第1の実施の形態と同様である。
(Second Embodiment)
Next, the supply liquid manufacturing apparatus according to the second embodiment of the present invention will be described. Here, the supply liquid manufacturing apparatus according to the second embodiment will be described with a focus on differences from the first embodiment. Unless otherwise specified, the configuration and operation of the present embodiment are the same as those of the first embodiment.
 図2は、本実施の形態の供給液体製造装置の構成を示す説明図である。図2に示すように、供給液体製造装置200は、第1原料である水(超純水)の供給源201と第2原料であるケミカル原料(例えばアンモニアなど)の供給源202を備えている。また、供給液体製造装置200には、第1原料である水の流量を調整するためのバルブ203と、第1原料である水の流量を測定するための流量計204が設けられている。第1原料である水は、流量計204で流量が測定された後、昇圧ポンプ205へ送られ、昇圧ポンプ205で圧力を調整(昇圧)された後、混合器206へ送られる。第2原料であるケミカル原料も、混合器206へ送られる。 FIG. 2 is an explanatory diagram showing the configuration of the supply liquid manufacturing apparatus of the present embodiment. As shown in FIG. 2, the supply liquid manufacturing apparatus 200 includes a supply source 201 for water (ultra pure water) as a first raw material and a supply source 202 for a chemical raw material (for example, ammonia) as a second raw material. . Further, the supply liquid manufacturing apparatus 200 is provided with a valve 203 for adjusting the flow rate of water as the first raw material and a flow meter 204 for measuring the flow rate of water as the first raw material. Water, which is the first raw material, is sent to the booster pump 205 after the flow rate is measured by the flow meter 204, the pressure is adjusted (pressurized) by the booster pump 205, and then sent to the mixer 206. The chemical raw material that is the second raw material is also sent to the mixer 206.
 混合器206は、水とケミカル原料(アンモニア)を混合して、ケミカル水(アンモニア水)を生成する。生成されたケミカル水(アンモニア水)は、気液分離タンク207に送られる。気液分離タンク207では、混合器206で生成されたケミカル水(混合液体)が、ケミカル水(供給液体)と排ガス(排出気体)に気液分離される。この気液分離タンク207には、ケミカル水の上限水位および下限水位を測定するための2つの水位センサ208、209が設けられている。気液分離されたケミカル水(供給液体)は、圧力センサ210で圧力が測定され、流量計211で流量が測定された後、バルブ212を介してユースポイント213(例えば、多チャンバー式の枚葉型洗浄装置など)に送られる。 The mixer 206 mixes water and a chemical raw material (ammonia) to generate chemical water (ammonia water). The generated chemical water (ammonia water) is sent to the gas-liquid separation tank 207. In the gas-liquid separation tank 207, the chemical water (mixed liquid) generated by the mixer 206 is gas-liquid separated into chemical water (supply liquid) and exhaust gas (exhaust gas). The gas-liquid separation tank 207 is provided with two water level sensors 208 and 209 for measuring the upper and lower water levels of chemical water. The chemical water (supply liquid) that has been subjected to gas-liquid separation is measured for pressure by the pressure sensor 210, and after the flow rate is measured by the flow meter 211, the use point 213 (for example, multi-chamber type single wafer) is provided via the valve 212. Sent to a mold cleaning device).
 一方、気液分離された排ガス(排出気体)は、気液分離タンク207からバルブ214を介して圧力リリーフバルブ215へ送られて、圧力リリーフバルブ215で大気圧に戻されてから、排出口216から排出される。 On the other hand, the gas-liquid separated exhaust gas (exhaust gas) is sent from the gas-liquid separation tank 207 to the pressure relief valve 215 via the valve 214 and returned to the atmospheric pressure by the pressure relief valve 215 before the exhaust port 216. Discharged from.
 また、供給液体製造装置200は、流量制御部(すなわち、昇圧制御部)217と排気圧力制御部218を備えている。流量制御部(すなわち、昇圧制御部)217は、流量計204または流量計211で測定したケミカル水(アンモニア水)の流量に応じて、昇圧ポンプ205を制御して、混合器206に昇圧して供給する水の圧力を調整する。より具体的には、流量計204または流量計211で測定した流量値を受信し、受信した流量値に応じて昇圧ポンプ205を制御する制御信号を生成し、この制御信号を昇圧ポンプ205に送信して、昇圧ポンプ205に設けられた図示しない駆動部を制御することによりポンプの回転数を制御し、混合器206に供給する水の圧力(あるいは流量)を調整することができる。また、排気圧力制御部218は、流量計204で測定した水の流量、流量計211で測定したアンモニア水の流量に応じて、圧力リリーフバルブ215を制御して、気液分離タンク207内の水位を一定に保つように排ガスの排気圧力を調整する。 The supply liquid manufacturing apparatus 200 includes a flow rate control unit (that is, a pressure increase control unit) 217 and an exhaust pressure control unit 218. The flow rate control unit (that is, the pressure increase control unit) 217 controls the pressure increase pump 205 according to the flow rate of the chemical water (ammonia water) measured by the flow meter 204 or the flow meter 211 to increase the pressure in the mixer 206. Adjust the pressure of the supplied water. More specifically, the flow value measured by the flow meter 204 or the flow meter 211 is received, a control signal for controlling the booster pump 205 is generated according to the received flow value, and this control signal is transmitted to the booster pump 205. Then, the pressure (or flow rate) of water supplied to the mixer 206 can be adjusted by controlling the number of rotations of the pump by controlling a driving unit (not shown) provided in the booster pump 205. Further, the exhaust pressure control unit 218 controls the pressure relief valve 215 according to the flow rate of water measured by the flow meter 204 and the flow rate of ammonia water measured by the flow meter 211, and the water level in the gas-liquid separation tank 207. The exhaust gas pressure is adjusted so that the air pressure is kept constant.
 この供給液体製造装置200は、気液分離タンク207の水位を一定に調整することができる。例えば、気液分離タンク207内の上限水位と下限水位を2つの水位センサ208、209で測定することにより、気液分離タンク207の水位を一定に調整することができる。また、流量計204で測定される水の流量と流量計211で測定されるケミカル水(アンモニア水)の流量が同じになるように流量を制御することにより、気液分離タンク207の水位を一定に調整することができる。 This supply liquid manufacturing apparatus 200 can adjust the water level of the gas-liquid separation tank 207 to be constant. For example, the water level in the gas-liquid separation tank 207 can be adjusted to be constant by measuring the upper and lower water levels in the gas-liquid separation tank 207 with the two water level sensors 208 and 209. Further, the water level of the gas-liquid separation tank 207 is kept constant by controlling the flow rate so that the flow rate of water measured by the flow meter 204 and the flow rate of chemical water (ammonia water) measured by the flow meter 211 are the same. Can be adjusted.
 このような第2の実施の形態の供給液体製造装置によっても、第1の実施の形態と同様の作用効果が奏される。本実施の形態では、混合部で水とケミカル原料(例えばアンモニアなど)を混合してケミカル水(例えばアンモニア水など)を製造することができる。 The same effects as those of the first embodiment can be obtained by the supply liquid manufacturing apparatus of the second embodiment. In the present embodiment, chemical water (for example, ammonia water) can be produced by mixing water and a chemical raw material (for example, ammonia) in the mixing section.
(第3の実施の形態)
 次に、本発明の第3の実施の形態の供給液体製造装置について説明する。ここでは、第3の実施の形態の供給液体製造装置が、第1の実施の形態と相違する点を中心に説明する。ここで特に言及しない限り、本実施の形態の構成および動作は、第1の実施の形態と同様である。
(Third embodiment)
Next, a supply liquid manufacturing apparatus according to a third embodiment of the present invention will be described. Here, the supply liquid manufacturing apparatus according to the third embodiment will be described focusing on the differences from the first embodiment. Unless otherwise specified, the configuration and operation of the present embodiment are the same as those of the first embodiment.
 図3は、本実施の形態の供給液体製造装置の構成を示す説明図である。図3に示すように、供給液体製造装置300は、原料となる第1ガス(O2ガス)と第2ガス(CO2ガス、N2ガス、またはCO2ガスとN2ガスの混合気体)の供給源301、302と、それぞれのガス(第1ガスと第2ガス)の流量を制御する流量コントローラ303、304を備えている。なお、第2ガス(CO2ガス、N2ガス、またはCO2ガスとN2ガスの混合気体)は必ずしも必須ではなく、第1ガス(O2ガス)のみを用いてもよい。第1ガスと第2ガスは、圧力センサ305で圧力を測定された後、オゾンガス生成部306へ送られる。このオゾンガス生成部306では、無声放電方式、電気分解方式、あるいは紫外線ランプ方式を採用して、オゾンガスを生成する構成とされている。オゾンガス生成部306で生成されたオゾンガスは、混合部307へ送られる。なお、圧力センサ305で測定された圧力値を用いて、流量コントローラ303、304にて第1ガスと第2ガスの流量が適正範囲内となっているかを監視することができる。 FIG. 3 is an explanatory diagram showing the configuration of the supply liquid manufacturing apparatus of the present embodiment. As shown in FIG. 3, the supply liquid manufacturing apparatus 300 includes a first gas (O 2 gas) and a second gas (CO 2 gas, N 2 gas, or a mixed gas of CO 2 gas and N 2 gas) as raw materials. Supply sources 301 and 302 and flow rate controllers 303 and 304 for controlling the flow rates of the respective gases (first gas and second gas). The second gas (CO 2 gas, N 2 gas, or a mixed gas of CO 2 gas and N 2 gas) is not necessarily essential, and only the first gas (O 2 gas) may be used. The first gas and the second gas are sent to the ozone gas generation unit 306 after the pressure is measured by the pressure sensor 305. The ozone gas generation unit 306 employs a silent discharge method, an electrolysis method, or an ultraviolet lamp method to generate ozone gas. The ozone gas generated by the ozone gas generation unit 306 is sent to the mixing unit 307. Note that, using the pressure value measured by the pressure sensor 305, the flow rate controllers 303 and 304 can monitor whether the flow rates of the first gas and the second gas are within an appropriate range.
 また、供給液体製造装置300は、第1原料である水(超純水)の供給源308を備えている。また、供給液体製造装置100には、第1原料である水の供給をオンオフするバルブ309と、第1原料である水の流量を測定するための流量計310が設けられている。第1原料である水は、流量計310で流量が測定された後、ポンプ311へ送られ、ポンプ311で流量を調整された後、混合部307へ送られる。ここで、ポンプ311は、例えば遠心ポンプが用いられる。以下では、ポンプ311は遠心ポンプを例として説明する。なお、流量計310が第2流量測定部に相当する。 Further, the supply liquid manufacturing apparatus 300 includes a supply source 308 of water (ultra pure water) that is the first raw material. In addition, the supply liquid manufacturing apparatus 100 is provided with a valve 309 for turning on and off the supply of water as the first raw material, and a flow meter 310 for measuring the flow rate of the water as the first raw material. After the flow rate is measured by the flow meter 310, the water that is the first raw material is sent to the pump 311, the flow rate is adjusted by the pump 311, and then sent to the mixing unit 307. Here, for example, a centrifugal pump is used as the pump 311. Hereinafter, the pump 311 will be described by taking a centrifugal pump as an example. The flow meter 310 corresponds to the second flow rate measuring unit.
 混合部307は、水(第1原料)とオゾンガス(第2原料)を混合してオゾン水(混合液体)を生成する。混合部307は、ベンチュリー効果を利用して水とガスを混合するものが望ましく、例えばアスピレータやエジェクターなどが用いられる。 The mixing unit 307 mixes water (first raw material) and ozone gas (second raw material) to generate ozone water (mixed liquid). The mixing unit 307 preferably uses a venturi effect to mix water and gas. For example, an aspirator or an ejector is used.
 混合部307で生成されたオゾン水は、気液分離タンク312に送られる。気液分離タンク312では、混合部307で生成されたオゾン水(混合液体)が、オゾン水(供給液体)と排ガス(排出気体)に気液分離される。この気液分離タンク312には、オゾン水の水位を測定するための水位センサ313が設けられている。水位センサ313は、例えば気液分離タンク312内の所定の高さに設置され、オゾン水の液面が水位センサ313の高さよりも上であるか下であるかを検知するセンサである。あるいは、水位センサ313は気液分離タンク312内のオゾン水の水位(液量)を常に測定するものであってもよい。気液分離されたオゾン水(供給液体)は、オゾン水濃度計314で濃度が測定され、流量計315で流量が測定され、圧力センサ316で圧力が測定された後に、バルブ317を介してユースポイント318(例えば、多チャンバー式の枚葉型洗浄装置など)またはドレン319に送られる。 The ozone water generated in the mixing unit 307 is sent to the gas-liquid separation tank 312. In the gas-liquid separation tank 312, the ozone water (mixed liquid) generated in the mixing unit 307 is gas-liquid separated into ozone water (supply liquid) and exhaust gas (exhaust gas). The gas-liquid separation tank 312 is provided with a water level sensor 313 for measuring the water level of ozone water. The water level sensor 313 is, for example, a sensor that is installed at a predetermined height in the gas-liquid separation tank 312 and detects whether the level of ozone water is above or below the height of the water level sensor 313. Alternatively, the water level sensor 313 may always measure the water level (liquid amount) of ozone water in the gas-liquid separation tank 312. The ozone water (supply liquid) that has been gas-liquid separated is measured by the ozone water concentration meter 314, the flow rate is measured by the flow meter 315, the pressure is measured by the pressure sensor 316, and then used through the valve 317. It is sent to a point 318 (for example, a multi-chamber type single wafer cleaning device) or a drain 319.
 なお、本装置の定常運転中においてユースポイントでオゾン水を使用しないタイミングでは、バルブ317をドレン319側に切り替えて最小流量でオゾン水をドレン319に流すようにしている。これは、オゾン水の品質を一定に保つためである。また、装置の立ち上げ時やメンテナンス時などにおいて不要なオゾン水をドレン319から排出するようにしている。 It should be noted that at the timing when ozone water is not used at the use point during steady operation of this apparatus, the valve 317 is switched to the drain 319 side so that ozone water flows to the drain 319 at a minimum flow rate. This is to keep the quality of the ozone water constant. Further, unnecessary ozone water is discharged from the drain 319 at the time of starting up the apparatus or during maintenance.
 一方、気液分離された排ガス(排出気体)は、気液分離タンク312からバルブ320を介して排ガス分解触媒321へ送られて分解処理された後、開度調整バルブ322を介して排気口323から排出される。ここでは、流量計315が本発明の第1流量測定部に相当し、圧力センサ316が本発明の圧力測定部に相当する。また、開度調整バルブ322が本発明の排気バルブに相当する。 On the other hand, the gas-liquid separated exhaust gas (exhaust gas) is sent from the gas-liquid separation tank 312 to the exhaust gas decomposition catalyst 321 via the valve 320 and decomposed, and then the exhaust port 323 via the opening adjustment valve 322. Discharged from. Here, the flow meter 315 corresponds to the first flow measurement unit of the present invention, and the pressure sensor 316 corresponds to the pressure measurement unit of the present invention. The opening adjustment valve 322 corresponds to the exhaust valve of the present invention.
(流量一定制御)
 供給液体製造装置300は、排気制御部324と流量制御部325を備えている。排気制御部324は、ユースポイント318に供給されるオゾン水(供給液体)の流量を一定流量に保つ流量一定制御を行う機能を備えている。ここで、一定流量とは、目標流量とも言い換えられる。一定流量あるいは目標流量とは、供給液体製造装置300において必ずしも固定された値ではなく、ユースポイントで必要とされる流量として任意に設定される。
 気液分離タンク312は開度調整バルブ322とつながっており、気液分離タンク312内のオゾン水液面の上部空間の圧力は開度調整バルブ322によって調整される。オゾン水からはオゾンガスが抜けていくため、気液分離タンク322内のオゾン水液面の上部空間の圧力は、経時的に変化する。ユースポイント318に供給されるオゾン水(供給液体)の流量は、ポンプ311の回転数だけでなく、気液分離タンク内の上部空間の圧力によっても影響を受ける。
(Constant flow control)
The supply liquid manufacturing apparatus 300 includes an exhaust control unit 324 and a flow rate control unit 325. The exhaust control unit 324 has a function of performing a constant flow rate control for keeping the flow rate of ozone water (supply liquid) supplied to the use point 318 at a constant flow rate. Here, the constant flow rate is also referred to as a target flow rate. The constant flow rate or the target flow rate is not necessarily a fixed value in the supply liquid manufacturing apparatus 300, but is arbitrarily set as a flow rate required at a use point.
The gas-liquid separation tank 312 is connected to the opening adjustment valve 322, and the pressure in the upper space of the ozone water level in the gas-liquid separation tank 312 is adjusted by the opening adjustment valve 322. Since ozone gas escapes from the ozone water, the pressure in the upper space of the ozone water liquid level in the gas-liquid separation tank 322 changes over time. The flow rate of ozone water (supply liquid) supplied to the use point 318 is influenced not only by the rotation speed of the pump 311 but also by the pressure in the upper space in the gas-liquid separation tank.
 流量一定制御を行う場合には、排気制御部324は、流量計315で測定したオゾン水(供給液体)の流量に応じて、開度調整バルブ322を制御して排気口323から排出される排ガス(排出気体)の排出量を調整する。より具体的には、排気制御部324は、流量計315で測定したオゾン水(供給液体)の流量が目標となる一定流量に対して増加した場合には排気口323から排出される排ガス(排出気体)の排出量を増加させ、流量計315で測定したオゾン水(供給液体)の流量が目標となる一定流量に対して減少した場合には排気口323から排出される排ガス(排出気体)の排出量を減少させる。 When performing constant flow control, the exhaust control unit 324 controls the opening adjustment valve 322 in accordance with the flow rate of ozone water (supply liquid) measured by the flow meter 315 and exhaust gas discharged from the exhaust port 323. Adjust the amount of exhaust gas. More specifically, the exhaust control unit 324 detects exhaust gas (exhaust gas) discharged from the exhaust port 323 when the flow rate of ozone water (supply liquid) measured by the flow meter 315 increases with respect to the target constant flow rate. When the flow rate of ozone water (supply liquid) measured by the flow meter 315 decreases with respect to the target constant flow rate, the exhaust gas (exhaust gas) discharged from the exhaust port 323 is increased. Reduce emissions.
 流量制御部325は、流量計315で測定したオゾン水(供給液体)の流量に応じて、ポンプ310の回転数を制御して混合部に供給する第1原料の流量を調整する。
より具体的には、流量計310で測定される混合部に供給する第1原料の流量が、流量計315で測定されるオゾン水(供給液体)の流量と同じになるように制御する。そのため、この実施例では、流量計315で測定した流量値を受信し、受信した流量値に応じてポンプ310の回転数を制御する制御信号を生成し、この制御信号をポンプ310に送信して、ポンプ310の回転数を制御することにより、混合部に供給する流量を調整するようにしている。
The flow control unit 325 adjusts the flow rate of the first raw material supplied to the mixing unit by controlling the rotation speed of the pump 310 according to the flow rate of ozone water (supply liquid) measured by the flow meter 315.
More specifically, control is performed so that the flow rate of the first raw material supplied to the mixing unit measured by the flow meter 310 is the same as the flow rate of ozone water (supply liquid) measured by the flow meter 315. Therefore, in this embodiment, the flow value measured by the flow meter 315 is received, a control signal for controlling the rotation speed of the pump 310 is generated according to the received flow value, and this control signal is transmitted to the pump 310. The flow rate supplied to the mixing unit is adjusted by controlling the rotational speed of the pump 310.
 また、流量制御部315は、水位センサ313で測定した気液分離タンク312内の液体量が所定の液量よりも増加した場合には混合部に供給する第1原料の流量を減少させ、水位センサ313で測定した気液分離タンク312内の液体量が所定の液量よりも減少した場合には混合部に供給する第1原料の流量を増加させてもよい。より具体的には、気液分離タンク312内のオゾン水の水位がある高さ以上であるか否かを検知する水位センサ313を用いて、オゾン水の水位が水位センサの高さを上回ったら混合部に供給する第1原料の流量を下げる。そして、オゾン水の水位が水位センサの高さを下回ったら混合部に供給する第1原料の流量を上げる。このようにすれば、気液分離タンク312内のオゾン水の水位(液量)を一定に保つことができる。もちろん、2つの水位センサを異なる高さに設置して、オゾン水の水位が一定範囲になるように制御しても良い。オゾン水の水位を一定に保つことが出来れば、基本的にはユースポイント318に供給されるオゾン水(供給液体)の流量と混合部に供給する第1原料の流量が同じになっていることを意味する。 In addition, the flow rate control unit 315 reduces the flow rate of the first raw material supplied to the mixing unit when the amount of liquid in the gas-liquid separation tank 312 measured by the water level sensor 313 increases beyond a predetermined amount of liquid. When the amount of liquid in the gas-liquid separation tank 312 measured by the sensor 313 decreases below a predetermined amount, the flow rate of the first raw material supplied to the mixing unit may be increased. More specifically, when the water level of the ozone water in the gas-liquid separation tank 312 is higher than a certain level by using a water level sensor 313 that detects whether or not the water level is higher than a certain level, The flow rate of the first raw material supplied to the mixing unit is reduced. And if the water level of ozone water falls below the height of a water level sensor, the flow volume of the 1st raw material supplied to a mixing part will be raised. In this way, the water level (liquid amount) of ozone water in the gas-liquid separation tank 312 can be kept constant. Of course, two water level sensors may be installed at different heights and controlled so that the water level of ozone water falls within a certain range. If the water level of ozone water can be kept constant, the flow rate of ozone water (supply liquid) supplied to the use point 318 is basically the same as the flow rate of the first raw material supplied to the mixing section. Means.
 水位センサ313で気液分離タンク312内のオゾン水の水位を検知する構成であれば、オゾン水の水位を一定に保つためには必ずしも流量計310は必要ない。しかし、オゾンガスの濃度を一定に維持するためには水の流量を測定して原料ガスの流量を制御する必要があるので、流量計310も設けることが望ましい。またオゾン水の水位を検知する水位センサ313を用いてオゾン水の水位が一定になるように混合部に供給する第1原料の流量をコントロールする構成であれば、流量計315を設けずに、流量計310のみを設けるようにしても良い。 If the water level sensor 313 detects the ozone water level in the gas-liquid separation tank 312, the flow meter 310 is not necessarily required to keep the ozone water level constant. However, in order to maintain the ozone gas concentration constant, it is necessary to control the flow rate of the raw material gas by measuring the flow rate of water. If the flow rate of the first raw material supplied to the mixing unit is controlled using a water level sensor 313 that detects the water level of the ozone water so that the water level of the ozone water is constant, the flow meter 315 is not provided. Only the flow meter 310 may be provided.
 また、排気制御部324は、水位センサ313で測定した気液分離タンク312内の液体量が所定の液量に対して増加した場合には排気口323から排出される排ガス(排出気体)の排出量を減少させ、気液分離タンク312内の圧力を上げることにより、気液分離タンク312内の液体量を減少させてもよい。一方、水位センサ313で測定した気液分離タンク312内の液体量が所定の液量に対して減少した場合には排気口323から排出される排ガス(排出気体)の排出量を増加させて、気液分離タンク312内の圧力を下げることにより、気液分離タンク312内の液体量を増加させてもよい。このようにしても、気液分離タンク312内の液体量を一定に保つことができる。 Further, the exhaust control unit 324 discharges exhaust gas (exhaust gas) discharged from the exhaust port 323 when the liquid amount in the gas-liquid separation tank 312 measured by the water level sensor 313 increases with respect to a predetermined liquid amount. The amount of liquid in the gas-liquid separation tank 312 may be decreased by decreasing the amount and increasing the pressure in the gas-liquid separation tank 312. On the other hand, when the amount of liquid in the gas-liquid separation tank 312 measured by the water level sensor 313 decreases with respect to a predetermined amount of liquid, the amount of exhaust gas (exhaust gas) discharged from the exhaust port 323 is increased, The amount of liquid in the gas-liquid separation tank 312 may be increased by lowering the pressure in the gas-liquid separation tank 312. Even in this case, the amount of liquid in the gas-liquid separation tank 312 can be kept constant.
 このような第3の実施の形態の供給液体製造装置300によれば、流量一定制御が可能である。したがって、ユースポイント318に供給されるオゾン水(供給液体)の流量が目標となる一定流量に対して増加した場合、すなわち、流量計315で測定されるオゾン水(供給液体)の流量が目標となる一定流量に対して増加した場合には、排気口323から排出される排ガス(排出気体)の排出量を増加させて、気液分離タンク312内の圧力を下げることにより、ユースポイント318に供給するオゾン水(供給液体)の流量を減少させる。一方、ユースポイント318に供給されるオゾン水(供給液体)の流量が目標となる一定流量に対して減少した場合、すなわち、流量計315で測定されるオゾン水(供給液体)の流量が目標となる一定流量に対して減少した場合には、排気口323から排出される排ガス(排出気体)の排出量を減少させて、気液分離タンク312内の圧力を上げることにより、ユースポイント318に供給するオゾン水(供給液体)の流量を増加させる。このようにして、ユースポイント318に供給されるオゾン水(供給液体)の流量を一定に保つことができる。気液分離タンク部内の圧力を調整することにより、ユースポイントに供給するオゾン水の流量を応答性よくコントロールすることができる。 According to the supply liquid manufacturing apparatus 300 of the third embodiment as described above, a constant flow rate control is possible. Therefore, when the flow rate of ozone water (supply liquid) supplied to the use point 318 is increased with respect to the target constant flow rate, that is, the flow rate of ozone water (supply liquid) measured by the flow meter 315 is the target. Is increased to a certain flow rate, the exhaust gas (exhaust gas) discharged from the exhaust port 323 is increased, and the pressure in the gas-liquid separation tank 312 is lowered to supply to the use point 318. Reduce the flow rate of ozone water (supply liquid). On the other hand, when the flow rate of the ozone water (supply liquid) supplied to the use point 318 decreases with respect to the target constant flow rate, that is, the flow rate of the ozone water (supply liquid) measured by the flow meter 315 is the target. When the flow rate decreases with respect to a certain flow rate, the exhaust gas (exhaust gas) discharged from the exhaust port 323 is reduced and the pressure in the gas-liquid separation tank 312 is increased to supply to the use point 318. Increase the flow rate of ozone water (supply liquid). In this way, the flow rate of ozone water (supply liquid) supplied to the use point 318 can be kept constant. By adjusting the pressure in the gas-liquid separation tank, the flow rate of ozone water supplied to the use point can be controlled with good responsiveness.
(圧力一定制御)
 他の実施の形態として、図3に示した供給液体製造装置の構成を用いて、ユースポイント318に供給されるオゾン水(供給液体)の圧力を一定圧力に保つ圧力一定制御を行うこともできる。ここで、一定圧力とは、目標圧力とも言い換えられる。一定圧力あるいは目標圧力とは、供給液体製造装置300において必ずしも固定された値ではなく、供給液体製造装置300が供給するべき供給液体の圧力として任意に設定される。
(Constant pressure control)
As another embodiment, by using the configuration of the supply liquid manufacturing apparatus shown in FIG. 3, it is possible to perform constant pressure control that maintains the pressure of ozone water (supply liquid) supplied to the use point 318 at a constant pressure. . Here, the constant pressure is also referred to as a target pressure. The constant pressure or the target pressure is not necessarily a fixed value in the supply liquid manufacturing apparatus 300, but is arbitrarily set as the pressure of the supply liquid to be supplied by the supply liquid manufacturing apparatus 300.
 圧力一定制御を行う場合には、排気制御部324は、圧力センサ316で測定したオゾン水(供給液体)の圧力に応じて、開度調整バルブ322を制御して排気口323から排出される排ガス(排出気体)の排出量を調整する。
 より具体的には、ユースポイント318に供給されるオゾン水(供給液体)の圧力が目標となる一定圧力に対して増加した場合、すなわち、圧力センサ316で測定されるオゾン水(供給液体)の圧力が目標となる一定圧力に対して増加した場合には、排気口323から排出される排ガス(排出気体)の排出量を増加させて、気液分離タンク312内の圧力を下げることにより、ユースポイント318に供給するオゾン水(供給液体)の圧力を減少させる。一方、ユースポイント318に供給されるオゾン水(供給液体)の圧力が目標となる一定圧力に対して減少した場合、すなわち、圧力センサ316で測定されるオゾン水(供給液体)の圧力が目標となる一定圧力に対して減少した場合には、排気口323から排出される排ガス(排出気体)の排出量を減少させて、気液分離タンク312内の圧力を上げることにより、ユースポイント318に供給するオゾン水(供給液体)の圧力を増加させる。このようにして、ユースポイント318に供給されるオゾン水(供給液体)の圧力を一定に保つことができる。圧力センサ316で測定され、一定に維持される圧力は、例えば、0.1~1.0MPaに設定される。
When performing constant pressure control, the exhaust control unit 324 controls the opening adjustment valve 322 according to the pressure of ozone water (supply liquid) measured by the pressure sensor 316 and exhaust gas discharged from the exhaust port 323. Adjust the amount of exhaust gas.
More specifically, when the pressure of the ozone water (supply liquid) supplied to the use point 318 increases with respect to the target constant pressure, that is, the ozone water (supply liquid) measured by the pressure sensor 316. When the pressure increases with respect to the target constant pressure, the amount of exhaust gas (exhaust gas) exhausted from the exhaust port 323 is increased, and the pressure in the gas-liquid separation tank 312 is lowered, so that the use The pressure of ozone water (supply liquid) supplied to the point 318 is decreased. On the other hand, when the pressure of the ozone water (supply liquid) supplied to the use point 318 decreases with respect to the target constant pressure, that is, the pressure of the ozone water (supply liquid) measured by the pressure sensor 316 is the target. When the pressure decreases with respect to a certain pressure, the amount of exhaust gas (exhaust gas) discharged from the exhaust port 323 is reduced, and the pressure in the gas-liquid separation tank 312 is increased to supply to the use point 318. Increase the pressure of ozone water (supply liquid). In this way, the pressure of ozone water (supply liquid) supplied to the use point 318 can be kept constant. The pressure measured by the pressure sensor 316 and kept constant is set to 0.1 to 1.0 MPa, for example.
 圧力一定制御を行う場合も、混合部に供給する第1原料の流量を、ユースポイントに送るオゾン水の流量と同じになるように制御する。その具体的手段は、流量一定制御で述べた手段と同じである。 ∙ When performing constant pressure control, the flow rate of the first raw material supplied to the mixing unit is controlled to be the same as the flow rate of ozone water sent to the use point. The specific means is the same as the means described in the constant flow rate control.
 また、本実施の形態でも同様に、水位センサ313で測定した気液分離タンク312内の液体量が所定の液量に対して増減した場合に、排気口323から排出される排ガス(排出気体)の排出量を調整して、気液分離タンク312内の液体量を一定に保つようにしてもよい。 Similarly, in the present embodiment, when the amount of liquid in the gas-liquid separation tank 312 measured by the water level sensor 313 increases or decreases with respect to a predetermined amount, exhaust gas (exhaust gas) discharged from the exhaust port 323. The amount of liquid in the gas-liquid separation tank 312 may be kept constant by adjusting the discharge amount of the gas.
 図4は、ユースポイントに供給するオゾン水の送水流量を変動させながら圧力一定制御した場合の、オゾン水濃度とオゾン水送水圧力を測定したグラフである。このように本実施の形態によれば、ユースポイントで必要な流量が変動しても、オゾン水の圧力を一定にし、且つオゾン水の濃度を一定に維持しながらオゾン水を供給することができる。 FIG. 4 is a graph obtained by measuring the ozone water concentration and the ozone water supply pressure when the pressure is controlled to be constant while changing the flow rate of the ozone water supplied to the use point. As described above, according to the present embodiment, even when the flow rate required at the use point fluctuates, it is possible to supply the ozone water while keeping the pressure of the ozone water constant and maintaining the concentration of the ozone water constant. .
(第3の実施の形態の変形例)
 図5には、第3の実施の形態の供給液体製造装置300の変形例が示される。本実施の形態の供給液体製造装置300では、流量一定制御と圧力一定制御を切り替えることが可能である。そのため、本実施の形態の排気制御部324は、流量一定制御を行う流量一定制御部3240と、圧力一定制御を行う圧力一定制御部3241と、流量一定制御と圧力一定制御を切り替える制御選択部3242を備えている。
(Modification of the third embodiment)
FIG. 5 shows a modified example of the supply liquid manufacturing apparatus 300 according to the third embodiment. In the supply liquid manufacturing apparatus 300 of the present embodiment, it is possible to switch between constant flow control and constant pressure control. Therefore, the exhaust control unit 324 of the present embodiment includes a constant flow control unit 3240 that performs constant flow control, a constant pressure control unit 3241 that performs constant pressure control, and a control selection unit 3242 that switches between constant flow control and constant pressure control. It has.
 流量一定制御部3240は、ユースポイント318に供給されるオゾン水(供給液体)の流量を一定に保つように、流量計315で測定したオゾン水(供給液体)の流量に応じて、開度調整バルブ322を制御して排気口323から排出される排ガス(排出気体)の排出量を調整する。 The constant flow rate control unit 3240 adjusts the opening according to the flow rate of ozone water (supply liquid) measured by the flow meter 315 so as to keep the flow rate of ozone water (supply liquid) supplied to the use point 318 constant. The amount of exhaust gas (exhaust gas) discharged from the exhaust port 323 is adjusted by controlling the valve 322.
 圧力一定制御部3241は、ユースポイント318に供給されるオゾン水(供給液体)の圧力を一定に保つように、圧力センサ316で測定したオゾン水(供給液体)の圧力に応じて、開度調整バルブ322を制御して排気口323から排出される排ガス(排出気体)の排出量を調整する。 The constant pressure control unit 3241 adjusts the opening degree according to the pressure of the ozone water (supply liquid) measured by the pressure sensor 316 so as to keep the pressure of the ozone water (supply liquid) supplied to the use point 318 constant. The amount of exhaust gas (exhaust gas) discharged from the exhaust port 323 is adjusted by controlling the valve 322.
 制御選択部3242は、流量一定制御部3240により排ガス(排出気体)の排出量を調整する流量一定制御と、圧力一定制御部3241により排ガス(排出気体)の排出量を調整する圧力一定制御のいずれか一方を選択する。例えば、供給液体製造装置300に設けられたタッチパネル(図示せず)などの操作によって、流量一定制御と圧力一定制御の切り替えを行うことができる。また、ユースポイント318からの要求信号に基づいて、流量一定制御と圧力一定制御の切り替えが行われてもよい。 The control selection unit 3242 includes either a constant flow control that adjusts the exhaust amount of exhaust gas (exhaust gas) by the constant flow rate control unit 3240, or a constant pressure control that adjusts the exhaust amount of exhaust gas (exhaust gas) by the constant pressure control unit 3241. Select either one. For example, switching between constant flow control and constant pressure control can be performed by operating a touch panel (not shown) provided in the supply liquid manufacturing apparatus 300. Further, switching between constant flow control and constant pressure control may be performed based on a request signal from the use point 318.
 制御選択部3242により流量一定制御が選択された場合、流量一定制御部3240が流量一定制御を行う。より具体的には、流量一定制御部3240は、流量計315で測定したオゾン水(供給液体)の流量が目標となる一定流量に対して増加したときに排気口323から排出される排ガス(排出気体)の排出量を増加させ、流量計315で測定したオゾン水(供給液体)の流量が目標となる一定流量に対して減少したときに排気口323から排出される排ガス(排出気体)の排出量を減少させる。 When the constant flow control is selected by the control selection unit 3242, the constant flow control unit 3240 performs the constant flow control. More specifically, the constant flow rate control unit 3240 controls the exhaust gas (exhaust gas) discharged from the exhaust port 323 when the flow rate of ozone water (supply liquid) measured by the flow meter 315 increases with respect to the target constant flow rate. Exhaust gas (exhaust gas) discharged from the exhaust port 323 when the flow rate of ozone water (supply liquid) measured by the flow meter 315 decreases with respect to the target constant flow rate. Reduce the amount.
 制御選択部3242により圧力一定制御が選択された場合、圧力一定制御部3241が圧力一定制御を行う。より具体的には、圧力一定制御部3241は、圧力センサ316で測定したオゾン水(供給液体)の圧力が目標となる一定圧力に対して増加したときに排気口323から排出される排ガス(排出気体)の排出量を増加させ、圧力センサ316で測定したオゾン水(供給液体)の圧力が目標となる一定圧力に対して減少したときに排気口323から排出される排ガス(排出気体)の排出量を減少させる。 When the constant pressure control is selected by the control selection unit 3242, the constant pressure control unit 3241 performs the constant pressure control. More specifically, the constant pressure control unit 3241 is configured to detect the exhaust gas (exhaust gas) discharged from the exhaust port 323 when the pressure of the ozone water (supply liquid) measured by the pressure sensor 316 increases with respect to the target constant pressure. Exhaust gas (exhaust gas) discharged from the exhaust port 323 when the pressure of the ozone water (supply liquid) measured by the pressure sensor 316 decreases with respect to the target constant pressure. Reduce the amount.
 このような供給液体製造装置300の変形例によれば、ユースポイント318に供給されるオゾン水(供給液体)の流量を一定に保つ制御(流量一定制御)と、ユースポイント318に供給されるオゾン水(供給液体)の圧力を一定に保つ制御(圧力一定制御)を選択することができる。 According to such a modified example of the supply liquid manufacturing apparatus 300, control for keeping the flow rate of ozone water (supply liquid) supplied to the use point 318 constant (flow rate control), and ozone supplied to the use point 318. Control (pressure constant control) that keeps the pressure of water (supply liquid) constant can be selected.
 流量一定制御では、ユースポイント318に供給されるオゾン水(供給液体)の流量が目標となる一定流量に対して増加した場合、すなわち、流量計315で測定されるオゾン水(供給液体)の流量が目標となる一定流量に対して増加した場合には、排気口323から排出される排ガス(排出気体)の排出量を増加させて、気液分離タンク312内の圧力を下げることにより、ユースポイント318に供給するオゾン水(供給液体)の流量を減少させる。一方、ユースポイント318に供給されるオゾン水(供給液体)の流量が目標となる一定流量に対して減少した場合、すなわち、流量計315で測定されるオゾン水(供給液体)の流量が目標となる一定流量に対して減少した場合には、排気口323から排出される排ガス(排出気体)の排出量を減少させて、気液分離タンク312内の圧力を上げることにより、ユースポイント318に供給するオゾン水(供給液体)の流量を増加させる。このようにして、ユースポイント318に供給されるオゾン水(供給液体)の流量を一定に保つことができる。 In the constant flow control, when the flow rate of ozone water (supply liquid) supplied to the use point 318 increases with respect to the target constant flow rate, that is, the flow rate of ozone water (supply liquid) measured by the flow meter 315. Is increased with respect to the target constant flow rate, the amount of exhaust gas (exhaust gas) discharged from the exhaust port 323 is increased, and the pressure in the gas-liquid separation tank 312 is lowered, thereby reducing the use point. The flow rate of ozone water (supply liquid) supplied to 318 is decreased. On the other hand, when the flow rate of the ozone water (supply liquid) supplied to the use point 318 decreases with respect to the target constant flow rate, that is, the flow rate of the ozone water (supply liquid) measured by the flow meter 315 is the target. When the flow rate decreases with respect to a certain flow rate, the exhaust gas (exhaust gas) discharged from the exhaust port 323 is reduced and the pressure in the gas-liquid separation tank 312 is increased to supply to the use point 318. Increase the flow rate of ozone water (supply liquid). In this way, the flow rate of ozone water (supply liquid) supplied to the use point 318 can be kept constant.
 圧力一定制御では、ユースポイント318に供給されるオゾン水(供給液体)の圧力が目標となる一定圧力に対して増加した場合、すなわち、圧力センサ316で測定されるオゾン水(供給液体)の圧力が目標となる一定圧力に対して増加した場合には、排気口323から排出される排ガス(排出気体)の排出量を増加させて、気液分離タンク312内の圧力を下げることにより、ユースポイント318に供給するオゾン水(供給液体)の圧力を減少させる。一方、ユースポイント318に供給されるオゾン水(供給液体)の圧力が目標となる一定圧力に対して減少した場合、すなわち、圧力センサ316で測定されるオゾン水(供給液体)の圧力が目標となる一定圧力に対して減少した場合には、排気口323から排出される排ガス(排出気体)の排出量を減少させて、気液分離タンク312内の圧力を上げることにより、ユースポイント318に供給するオゾン水(供給液体)の圧力を増加させる。このようにして、ユースポイント318に供給されるオゾン水(供給液体)の圧力を一定に保つことができる。 In the constant pressure control, when the pressure of the ozone water (supply liquid) supplied to the use point 318 increases with respect to the target constant pressure, that is, the pressure of the ozone water (supply liquid) measured by the pressure sensor 316. Is increased with respect to the target constant pressure, the amount of exhaust gas (exhaust gas) discharged from the exhaust port 323 is increased, and the pressure in the gas-liquid separation tank 312 is lowered, thereby reducing the use point. The pressure of ozone water (supply liquid) supplied to 318 is decreased. On the other hand, when the pressure of the ozone water (supply liquid) supplied to the use point 318 decreases with respect to the target constant pressure, that is, the pressure of the ozone water (supply liquid) measured by the pressure sensor 316 is the target. When the pressure decreases with respect to a certain pressure, the amount of exhaust gas (exhaust gas) discharged from the exhaust port 323 is reduced, and the pressure in the gas-liquid separation tank 312 is increased to supply to the use point 318. Increase the pressure of ozone water (supply liquid). In this way, the pressure of ozone water (supply liquid) supplied to the use point 318 can be kept constant.
 以上、本発明の実施の形態を例示により説明したが、本発明の範囲はこれらに限定されるものではなく、請求項に記載された範囲内において目的に応じて変更・変形することが可能である。 The embodiments of the present invention have been described above by way of example, but the scope of the present invention is not limited to these embodiments, and can be changed or modified according to the purpose within the scope of the claims. is there.
 例えば、上記の実施の形態では、オゾンガスまたはケミカル原料(アンモニアなど)と水を混合する場合について例示したが、他の薬剤(例えば、HCO(炭酸)、HF(フッ酸)、DHF(希フッ酸)、BHF(バッファードフッ酸、すなわちNHFとHFとの混合物)、HCl(塩酸、希塩酸)、HSO(硫酸、希硫酸)、HNO(硫酸、希硫酸)、王水、又は、これらを混合した酸など)と水を混合することも可能である。 For example, in the above embodiment, the case where ozone gas or a chemical raw material (such as ammonia) and water are mixed is exemplified, but other chemicals (for example, H 2 CO 3 (carbonic acid), HF (hydrofluoric acid), DHF ( Dilute hydrofluoric acid), BHF (buffered hydrofluoric acid, ie, a mixture of NH 4 F and HF), HCl (hydrochloric acid, dilute hydrochloric acid), H 2 SO 4 (sulfuric acid, dilute sulfuric acid), HNO 3 (sulfuric acid, dilute sulfuric acid), It is also possible to mix aqua regia or an acid mixed with these and water.
 以上のように、本発明にかかる供給液体製造装置は、ユースポイントで必要とされる分だけ供給液体を製造することができるという効果を有し、半導体デバイスや液晶などの電子部品の洗浄等に用いられ、有用である。 As described above, the supply liquid manufacturing apparatus according to the present invention has an effect that the supply liquid can be manufactured as much as required at the use point, and is used for cleaning electronic components such as semiconductor devices and liquid crystals. Used and useful.
 100 供給液体製造装置
 106 オゾンガス生成部
 111 流量計(第2の流量測定部)
 112 昇圧ポンプ(昇圧ポンプ部、又はポンプ)
 113 混合器(混合部)
 114 気液分離タンク(気液分離タンク部)
 115 水位センサ(液体量測定部)
 117 流量計(流量測定部)
 119 ユースポイント
 124 圧力リリーフバルブ
 125 排出口
 126 流量制御部(昇圧制御部)
 127 排気圧力制御部
 200 供給液体製造装置
 211 流量計(第2の流量測定部)
 205 昇圧ポンプ(昇圧ポンプ部又はポンプ)
 206 混合器(混合部)
 207 気液分離タンク(気液分離タンク部)
 208 水位センサ(液体量測定部)
 209 水位センサ(液体量測定部)
 211 流量計(流量測定部)
 213 ユースポイント
 215 圧力リリーフバルブ
 216 排出口
 217 流量制御部(昇圧制御部)
 218 排気圧力制御部
 300 供給液体製造装置
 307 混合部
 311 ポンプ
 312 気液分離タンク(気液分離タンク部)
 313 水位センサ(液体量測定部)
 315 流量計(流量測定部)
 316 圧力センサ(圧力測定部)
 318 ユースポイント
 322 開度調整バルブ(排気バルブ)
 324 排気制御部
 325 流量制御部
 3240 流量一定制御部
 3241 圧力一定制御部
 3242 制御選択部
100 Supply Liquid Manufacturing Device 106 Ozone Gas Generation Unit 111 Flowmeter (Second Flow Rate Measurement Unit)
112 Booster pump (Boost pump part or pump)
113 Mixer (mixing part)
114 Gas-liquid separation tank (gas-liquid separation tank)
115 Water level sensor (Liquid quantity measuring part)
117 Flowmeter (flow rate measurement part)
119 Use point 124 Pressure relief valve 125 Discharge port 126 Flow rate control unit (step-up control unit)
127 Exhaust pressure control unit 200 Supply liquid manufacturing apparatus 211 Flow meter (second flow rate measuring unit)
205 Booster pump (Boost pump part or pump)
206 Mixer (mixing part)
207 Gas-liquid separation tank (gas-liquid separation tank)
208 Water level sensor (Liquid quantity measuring part)
209 Water level sensor (Liquid quantity measuring part)
211 Flowmeter (Flow measurement unit)
213 Use point 215 Pressure relief valve 216 Discharge port 217 Flow rate control unit (step-up control unit)
218 Exhaust pressure control unit 300 Supply liquid manufacturing apparatus 307 Mixing unit 311 Pump 312 Gas-liquid separation tank (gas-liquid separation tank unit)
313 Water level sensor (Liquid quantity measuring unit)
315 Flowmeter (Flow measurement unit)
316 Pressure sensor (pressure measurement unit)
318 Use point 322 Opening adjustment valve (exhaust valve)
324 Exhaust control unit 325 Flow rate control unit 3240 Constant flow rate control unit 3241 Constant pressure control unit 3242 Control selection unit

Claims (19)

  1.  第1原料と第2原料を混合して混合液体を生成する混合部と、
     前記混合部に供給される前記第1原料の流量を変更するポンプ部と、
     前記混合部により生成された前記混合液体を、ユースポイントに供給される供給液体と、排気口から排出される排出気体とに気液分離する気液分離タンク部と、
     前記排出気体の排出量を定めるように開度を調整するバルブと、
     前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の流量を測定する流量測定部と、
     前記流量測定部で測定した前記供給液体の流量値を受信し、受信した流量値に応じて前記ポンプ部を制御する制御信号を生成し、当該制御信号をポンプ部に送信してポンプを制御することにより、前記混合部に供給する前記第1原料の流量を調整する流量制御部と、
    を備えることを特徴とする供給液体製造装置。
    A mixing section for mixing the first raw material and the second raw material to generate a mixed liquid;
    A pump unit for changing a flow rate of the first raw material supplied to the mixing unit;
    A gas-liquid separation tank unit that gas-liquid separates the mixed liquid generated by the mixing unit into a supply liquid supplied to a use point and an exhaust gas discharged from an exhaust port;
    A valve for adjusting the opening so as to determine the discharge amount of the exhaust gas;
    A flow rate measuring unit for measuring a flow rate of the supply liquid supplied from the gas-liquid separation tank unit to the use point;
    The flow rate value of the supply liquid measured by the flow rate measurement unit is received, a control signal for controlling the pump unit is generated according to the received flow rate value, and the control signal is transmitted to the pump unit to control the pump A flow rate control unit for adjusting the flow rate of the first raw material supplied to the mixing unit;
    A supply liquid production apparatus comprising:
  2.  前記混合部に供給される前記第1原料の流量を測定する第2の流量測定部を備え、
     前記第2の流量測定部にて測定した前記第1原料の流量が前記流量測定部で測定した前記供給液体の流量と一致させるようなフィードバック制御を前記流量制御部にて行う、請求項1に記載の供給液体製造装置。
    A second flow rate measurement unit for measuring a flow rate of the first raw material supplied to the mixing unit;
    The flow rate control unit performs feedback control so that the flow rate of the first raw material measured by the second flow rate measurement unit matches the flow rate of the supply liquid measured by the flow rate measurement unit. The supply liquid production apparatus as described.
  3.  前記第2原料の流量を定める流量コントローラを備え、
     前記第2の流量測定部にて測定した前記第1原料の流量に応じて、前記流量コントローラにて第2原料の生成量を調整する、請求項2記載の供給液体製造装置。
    A flow controller for determining the flow rate of the second raw material;
    The supply liquid manufacturing apparatus according to claim 2, wherein a production amount of the second raw material is adjusted by the flow rate controller according to a flow rate of the first raw material measured by the second flow rate measurement unit.
  4.  第1原料と第2原料を混合して混合液体を生成する混合部と、
     前記混合部に供給される前記第1原料を昇圧する昇圧ポンプ部と、
     前記混合部により生成された前記混合液体を、ユースポイントに供給される供給液体と、排気口から排出される排出気体とに気液分離する気液分離タンク部と、
     前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の流量を測定する流量測定部と、
     前記流量測定部で測定した前記供給液体の流量に応じて、前記昇圧ポンプ部を制御して、前記混合部に昇圧して供給する前記第1原料の圧力を調整する昇圧制御部と、
     前記気液分離タンク部内の液体量を一定に保つように、前記排出気体の排気圧力を制御する排気圧力制御部と、
    を備えることを特徴とする供給液体製造装置。
    A mixing section for mixing the first raw material and the second raw material to generate a mixed liquid;
    A booster pump unit that pressurizes the first raw material supplied to the mixing unit;
    A gas-liquid separation tank unit that gas-liquid separates the mixed liquid generated by the mixing unit into a supply liquid supplied to a use point and an exhaust gas discharged from an exhaust port;
    A flow rate measuring unit for measuring a flow rate of the supply liquid supplied from the gas-liquid separation tank unit to the use point;
    A boost control unit that controls the boost pump unit according to the flow rate of the supply liquid measured by the flow rate measurement unit and adjusts the pressure of the first raw material to be supplied to the mixing unit after being boosted;
    An exhaust pressure control unit for controlling the exhaust pressure of the exhaust gas so as to keep the amount of liquid in the gas-liquid separation tank unit constant;
    A supply liquid production apparatus comprising:
  5.  前記気液分離タンク部内の液体量を一定に調整するための液体量調整部を備える、請求項4に記載の供給液体製造装置。 The supply liquid manufacturing apparatus according to claim 4, further comprising a liquid amount adjusting unit for adjusting a liquid amount in the gas-liquid separation tank unit to be constant.
  6.  前記第1原料は水であり、前記第2原料はオゾンガスまたはケミカル原料である、請求項4または5に記載の供給液体製造装置。 The supply liquid manufacturing apparatus according to claim 4 or 5, wherein the first raw material is water and the second raw material is ozone gas or a chemical raw material.
  7.  第1原料を昇圧ポンプ部で昇圧して混合部に供給するステップと、
     前記第1原料と第2原料を前記混合部で混合して混合液体を生成するステップと、
     前記混合部により生成された前記混合液体を、ユースポイントに供給される供給液体と、排気口から排出される排出気体とに気液分離タンク部で気液分離するステップと、
     前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の流量を測定するステップと、
     測定した前記供給液体の流量に応じて、前記昇圧ポンプ部を制御して、前記混合部に昇圧して供給する前記第1原料の圧力を調整するステップと、
     前記気液分離タンク部内の液体量を一定に保つように、前記排出気体の排気圧力を制御するステップと、
    を含むことを特徴とする供給液体製造方法。
    Boosting the first raw material with a booster pump unit and supplying it to the mixing unit;
    Mixing the first raw material and the second raw material in the mixing unit to produce a mixed liquid;
    Gas-liquid separation of the mixed liquid generated by the mixing unit into a supply liquid supplied to a use point and an exhaust gas discharged from an exhaust port in a gas-liquid separation tank unit;
    Measuring the flow rate of the supply liquid supplied from the gas-liquid separation tank unit to the use point;
    According to the measured flow rate of the supply liquid, controlling the booster pump unit to adjust the pressure of the first raw material to be supplied after being pressurized to the mixing unit;
    Controlling the exhaust pressure of the exhaust gas so as to keep the amount of liquid in the gas-liquid separation tank part constant;
    A method for producing a supply liquid, comprising:
  8.  第1原料と第2原料を混合して混合液体を生成する混合部と、
     前記混合部に供給される前記第1原料の流量を変更するポンプ部と、
     前記混合部により生成された前記混合液体を、ユースポイントに供給される供給液体と、排気口から排出される排出気体とに気液分離する気液分離タンク部と、
     前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の流量を測定する第1流量測定部と、
     前記排気口から排出される前記排出気体の排出量を調整する排気バルブと、
     前記ユースポイントに供給される前記供給液体の流量を一定流量に保つように、前記流量測定部で測定した前記供給液体の流量に応じて、前記排気バルブを制御して前記排気口から排出される前記排出気体の排出量を調整する排気制御部と、
    を備え、
     前記排気制御部は、前記第1流量測定部で測定した前記供給液体の流量が前記一定流量に対して増加した場合には前記排気口から排出される前記排出気体の排出量を増加させ、前記第1流量測定部で測定した前記供給液体の流量が前記一定流量に対して減少した場合には前記排気口から排出される前記排出気体の排出量を減少させることを特徴とする供給液体製造装置。
    A mixing section for mixing the first raw material and the second raw material to generate a mixed liquid;
    A pump unit for changing a flow rate of the first raw material supplied to the mixing unit;
    A gas-liquid separation tank unit that gas-liquid separates the mixed liquid generated by the mixing unit into a supply liquid supplied to a use point and an exhaust gas discharged from an exhaust port;
    A first flow rate measurement unit for measuring a flow rate of the supply liquid supplied from the gas-liquid separation tank unit to the use point;
    An exhaust valve for adjusting an exhaust amount of the exhaust gas discharged from the exhaust port;
    The exhaust valve is controlled and discharged from the exhaust port according to the flow rate of the supply liquid measured by the flow rate measurement unit so that the flow rate of the supply liquid supplied to the use point is kept constant. An exhaust control unit for adjusting an exhaust amount of the exhaust gas;
    With
    The exhaust control unit increases the discharge amount of the exhaust gas discharged from the exhaust port when the flow rate of the supply liquid measured by the first flow rate measurement unit increases with respect to the constant flow rate, The supply liquid manufacturing apparatus, wherein when the flow rate of the supply liquid measured by the first flow rate measurement unit decreases with respect to the constant flow rate, the discharge amount of the exhaust gas discharged from the exhaust port is decreased. .
  9.  前記第1流量測定部で測定した前記供給液体の流量に応じて、前記ポンプ部を制御して前記混合部に供給する前記第1原料の流量を調整する流量制御部を備え、
     前記流量制御部は、前記第1流量測定部で測定した前記供給液体の流量と前記混合部に供給する前記第1原料の流量が同じになるように制御する、請求項8に記載の供給液体製造装置。
    In accordance with the flow rate of the supply liquid measured by the first flow rate measurement unit, the flow rate control unit that controls the pump unit and adjusts the flow rate of the first raw material supplied to the mixing unit,
    9. The supply liquid according to claim 8, wherein the flow rate control unit controls the flow rate of the supply liquid measured by the first flow rate measurement unit and the flow rate of the first raw material supplied to the mixing unit to be the same. Manufacturing equipment.
  10.  前記混合部に供給する前記第1原料の流量を測定する第2流量測定部を備える、請求項9に記載の供給液体製造装置。 The supply liquid manufacturing apparatus according to claim 9, further comprising a second flow rate measuring unit that measures a flow rate of the first raw material supplied to the mixing unit.
  11.  前記気液分離タンク部内の液体量を検知する液体量測定部を備え、
     前記昇圧制御部は、前記液体量測定部で測定した前記気液分離タンク部内の液体量が所定の液体量に対して増加した場合には前記混合部に供給する前記第1原料の流量を少なくし、前記液体量測定部で測定した前記気液分離タンク部内の液体量が所定の液体量に対して減少した場合には前記混合部に供給する前記第1原料の流量を増やす、請求項9に記載の供給液体製造装置。
    A liquid amount measuring unit for detecting the amount of liquid in the gas-liquid separation tank unit;
    The boost control unit reduces the flow rate of the first raw material supplied to the mixing unit when the liquid amount in the gas-liquid separation tank unit measured by the liquid amount measuring unit increases with respect to a predetermined liquid amount. The flow rate of the first raw material supplied to the mixing unit is increased when the liquid amount in the gas-liquid separation tank unit measured by the liquid amount measuring unit decreases with respect to a predetermined liquid amount. The supply liquid manufacturing apparatus described in 1.
  12.  第1原料と第2原料を混合部で混合して混合液体を生成するステップと、
     前記混合部で生成された前記混合液体を、ユースポイントに供給される供給液体と、排気口から排出される排出気体とに気液分離タンク部で気液分離するステップと、
     前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の流量を第1流量測定部で測定するステップと、
     前記ユースポイントに供給される前記供給液体の流量を一定流量に保つように、前記第1流量測定部で測定した前記供給液体の流量に応じて、前記排気口から排出される前記排出気体の排出量を排気バルブで調整するステップと、
    を含み、
     前記排出気体の排出量を調整するステップでは、前記第1流量測定部で測定した前記供給液体の流量が前記一定流量に対して増加した場合には前記排気口から排出される前記排出気体の排出量を増加させ、前記流量測定部で測定した前記供給液体の流量が前記一定流量に対して減少した場合には前記排気口から排出される前記排出気体の排出量を減少させることを特徴とする供給液体製造方法。
    Mixing a first raw material and a second raw material in a mixing unit to produce a mixed liquid;
    Gas-liquid separation of the mixed liquid generated in the mixing unit into a supply liquid supplied to a use point and an exhaust gas discharged from an exhaust port in a gas-liquid separation tank unit;
    Measuring a flow rate of the supply liquid supplied from the gas-liquid separation tank unit to the use point by a first flow rate measurement unit;
    Discharge of the exhaust gas discharged from the exhaust port according to the flow rate of the supply liquid measured by the first flow rate measurement unit so that the flow rate of the supply liquid supplied to the use point is kept constant. Adjusting the amount with the exhaust valve;
    Including
    In the step of adjusting the discharge amount of the exhaust gas, the exhaust gas discharged from the exhaust port when the flow rate of the supply liquid measured by the first flow rate measuring unit increases with respect to the constant flow rate. When the flow rate of the supply liquid measured by the flow rate measurement unit decreases with respect to the constant flow rate, the discharge amount of the exhaust gas discharged from the exhaust port is decreased. Supply liquid manufacturing method.
  13.  第1原料と第2原料を混合して混合液体を生成する混合部と、
     前記混合部に供給される前記第1原料の流量を変更するポンプ部と、
     前記混合部により生成された前記混合液体を、ユースポイントに供給される供給液体と、排気口から排出される排出気体とに気液分離する気液分離タンク部と、
     前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の圧力を測定する圧力測定部と、前記排気口から排出される前記排出気体の排出量を調整する排気バルブと、
     前記ユースポイントに供給される前記供給液体の圧力を一定圧力に保つように、前記圧力測定部で測定した前記供給液体の圧力に応じて、前記排気バルブを制御して前記排気口から排出される前記排出気体の排出量を調整する排気制御部と、
    を備え、
     前記排気制御部は、前記圧力測定部で測定した前記供給液体の圧力が前記一定圧力に対して増加した場合には前記排気口から排出される前記排出気体の排出量を増加させ、前記圧力測定部で測定した前記供給液体の圧力が前記一定圧力に対して減少した場合には前記排気口から排出される前記排出気体の排出量を減少させることを特徴とする供給液体製造装置。
    A mixing section for mixing the first raw material and the second raw material to generate a mixed liquid;
    A pump unit for changing a flow rate of the first raw material supplied to the mixing unit;
    A gas-liquid separation tank unit that gas-liquid separates the mixed liquid generated by the mixing unit into a supply liquid supplied to a use point and an exhaust gas discharged from an exhaust port;
    A pressure measuring unit that measures the pressure of the supply liquid supplied from the gas-liquid separation tank unit to the use point, an exhaust valve that adjusts an exhaust amount of the exhaust gas exhausted from the exhaust port, and
    The exhaust valve is controlled and discharged from the exhaust port according to the pressure of the supply liquid measured by the pressure measuring unit so as to keep the pressure of the supply liquid supplied to the use point at a constant pressure. An exhaust control unit for adjusting an exhaust amount of the exhaust gas;
    With
    The exhaust control unit increases the discharge amount of the exhaust gas discharged from the exhaust port when the pressure of the supply liquid measured by the pressure measurement unit increases with respect to the constant pressure, and the pressure measurement An apparatus for producing a supply liquid, wherein the discharge amount of the exhaust gas discharged from the exhaust port is reduced when the pressure of the supply liquid measured in the section decreases with respect to the constant pressure.
  14.  前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の流量を測定する第1流量測定部と、
     前記第1流量測定部で測定した前記供給液体の流量に応じて、前記ポンプ部を制御して前記混合部に供給する前記第1原料の流量を調整する流量制御部と、
    を備え、
     前記流量制御部は、前記第1流量測定部で測定した前記供給液体の流量と前記混合部に供給する前記第1原料の流量が同じになるように制御する、請求項13に記載の供給液体製造装置。
    A first flow rate measurement unit for measuring a flow rate of the supply liquid supplied from the gas-liquid separation tank unit to the use point;
    According to the flow rate of the supply liquid measured by the first flow rate measurement unit, the flow rate control unit that controls the pump unit and adjusts the flow rate of the first raw material supplied to the mixing unit;
    With
    14. The supply liquid according to claim 13, wherein the flow rate control unit controls the flow rate of the supply liquid measured by the first flow rate measurement unit and the flow rate of the first raw material supplied to the mixing unit to be the same. Manufacturing equipment.
  15.  前記混合部に供給する前記第1原料の流量を測定する第2流量測定部を備える、請求項14に記載の供給液体製造装置。 The supply liquid manufacturing apparatus according to claim 14, further comprising a second flow rate measuring unit that measures a flow rate of the first raw material supplied to the mixing unit.
  16.  前記気液分離タンク部内の液体量を検知する液体量測定部を備え、
     前記流量制御部は、前記液体量測定部で測定した前記気液分離タンク部内の液体量が所定の液体量に対して増加した場合には前記混合部に供給する前記第1原料の流量を少なくし、前記液体量測定部で測定した前記気液分離タンク部内の液体量が所定の液体量に対して減少した場合には前記混合部に供給する前記第1原料の流量を増やす、請求項14に記載の供給液体製造装置。
    A liquid amount measuring unit for detecting the amount of liquid in the gas-liquid separation tank unit;
    The flow rate control unit reduces the flow rate of the first raw material supplied to the mixing unit when the liquid amount in the gas-liquid separation tank unit measured by the liquid amount measurement unit increases with respect to a predetermined liquid amount. The flow rate of the first raw material supplied to the mixing unit is increased when the liquid amount in the gas-liquid separation tank unit measured by the liquid amount measuring unit decreases with respect to a predetermined liquid amount. The supply liquid manufacturing apparatus described in 1.
  17.  第1原料と第2原料を混合して混合部で混合液体を生成するステップと、
     前記混合部で生成された前記混合液体を、ユースポイントに供給される供給液体と、排気口から排出される排出気体とに気液分離タンク部で気液分離するステップと、
     前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の圧力を圧力測定部で測定するステップと、
     前記ユースポイントに供給される前記供給液体の圧力を一定圧力に保つように、前記圧力測定部で測定した前記供給液体の圧力に応じて、前記排気口から排出される前記排出気体の排出量を排気バルブで調整するステップと、
    を含み、
     前記排出気体の排出量を調整するステップでは、前記圧力測定部で測定した前記供給液体の圧力が一定圧力に対して増加した場合には前記排気口から排出される前記排出気体の排出量を増加させ、前記圧力測定部で測定した前記供給液体の圧力が一定圧力に対して減少した場合には前記排気口から排出される前記排出気体の排出量を減少させることを特徴とする供給液体製造方法。
    Mixing the first raw material and the second raw material to produce a mixed liquid in the mixing section;
    Gas-liquid separation of the mixed liquid generated in the mixing unit into a supply liquid supplied to a use point and an exhaust gas discharged from an exhaust port in a gas-liquid separation tank unit;
    Measuring a pressure of the supply liquid supplied from the gas-liquid separation tank unit to the use point by a pressure measuring unit;
    In order to keep the pressure of the supply liquid supplied to the use point at a constant pressure, the discharge amount of the exhaust gas discharged from the exhaust port is set according to the pressure of the supply liquid measured by the pressure measurement unit. Adjusting with the exhaust valve;
    Including
    In the step of adjusting the discharge amount of the exhaust gas, the discharge amount of the exhaust gas discharged from the exhaust port is increased when the pressure of the supply liquid measured by the pressure measuring unit increases with respect to a constant pressure. And a supply liquid manufacturing method for reducing the discharge amount of the exhaust gas discharged from the exhaust port when the pressure of the supply liquid measured by the pressure measuring unit decreases with respect to a constant pressure. .
  18.  第1原料と第2原料を混合して混合液体を生成する混合部と、
     前記混合部に供給される前記第1原料の流量を変更するポンプ部と、
     前記混合部により生成された前記混合液体を、ユースポイントに供給される供給液体と、排気口から排出される排出気体とに気液分離する気液分離タンク部と、
     前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の流量を測定する第1流量測定部と、
     前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の圧力を測定する圧力測定部と、
     前記排気口から排出される前記排出気体の排出量を調整する排気バルブと、
     前記ユースポイントに供給される前記供給液体の流量を一定流量に保つように、前記第1流量測定部で測定した前記供給液体の流量に応じて、前記排気バルブを制御して前記排気口から排出される前記排出気体の排出量を調整する流量一定制御部と、
     前記ユースポイントに供給される前記供給液体の圧力を一定圧力に保つように、前記圧力測定部で測定した前記供給液体の圧力に応じて、前記排気バルブを制御して前記排気口から排出される前記排出気体の排出量を調整する圧力一定制御部と、
     前記流量一定制御部により前記排出気体の排出量を調整する流量一定制御と、
     前記圧力一定制御部により前記排出気体の排出量を調整する圧力一定制御のいずれか一方を選択する制御選択部と、
    を備え、
     前記制御選択部により前記流量一定制御が選択された場合には、前記流量一定制御部は、前記第1流量測定部で測定した前記供給液体の流量が前記一定流量に対して増加したときに前記排気口から排出される前記排出気体の排出量を増加させ、前記流量測定部で測定した前記供給液体の流量が前記一定流量に対して減少したときに前記排気口から排出される前記排出気体の排出量を減少させ、
     前記制御選択部により前記圧力一定制御が選択された場合には、前記圧力一定制御部は、前記圧力測定部で測定した前記供給液体の圧力が前記一定圧力に対して増加したときに前記排気口から排出される前記排出気体の排出量を増加させ、前記圧力測定部で測定した前記供給液体の圧力が前記一定圧力に対して減少したときに前記排気口から排出される前記排出気体の排出量を減少させることを特徴とする供給液体製造装置。
    A mixing section for mixing the first raw material and the second raw material to generate a mixed liquid;
    A pump unit for changing a flow rate of the first raw material supplied to the mixing unit;
    A gas-liquid separation tank unit that gas-liquid separates the mixed liquid generated by the mixing unit into a supply liquid supplied to a use point and an exhaust gas discharged from an exhaust port;
    A first flow rate measurement unit for measuring a flow rate of the supply liquid supplied from the gas-liquid separation tank unit to the use point;
    A pressure measuring unit for measuring the pressure of the supply liquid supplied from the gas-liquid separation tank unit to the use point;
    An exhaust valve for adjusting an exhaust amount of the exhaust gas discharged from the exhaust port;
    The exhaust valve is controlled and discharged from the exhaust port according to the flow rate of the supply liquid measured by the first flow rate measurement unit so that the flow rate of the supply liquid supplied to the use point is kept constant. A constant flow rate control unit for adjusting the discharge amount of the exhaust gas to be
    The exhaust valve is controlled and discharged from the exhaust port according to the pressure of the supply liquid measured by the pressure measuring unit so as to keep the pressure of the supply liquid supplied to the use point at a constant pressure. A constant pressure control unit for adjusting the discharge amount of the exhaust gas;
    A constant flow control for adjusting the discharge amount of the exhaust gas by the constant flow control unit;
    A control selection unit for selecting either one of the constant pressure controls for adjusting the discharge amount of the exhaust gas by the constant pressure control unit;
    With
    When the constant flow rate control is selected by the control selection unit, the constant flow rate control unit is configured such that when the flow rate of the supply liquid measured by the first flow rate measurement unit increases with respect to the constant flow rate, The amount of the exhaust gas discharged from the exhaust port is increased, and the amount of the exhaust gas discharged from the exhaust port when the flow rate of the supply liquid measured by the flow rate measurement unit decreases with respect to the constant flow rate. Reduce emissions,
    When the constant pressure control is selected by the control selection unit, the constant pressure control unit is configured so that the pressure of the supply liquid measured by the pressure measurement unit increases when the pressure of the supply liquid increases with respect to the constant pressure. The amount of exhaust gas discharged from the exhaust port when the pressure of the supply liquid measured by the pressure measuring unit decreases with respect to the constant pressure is increased. An apparatus for producing a supply liquid, characterized in that
  19.  第1原料と第2原料を混合部で混合して混合液体を生成するステップと、
     前記混合部で生成された前記混合液体を、ユースポイントに供給される供給液体と、排気口から排出される排出気体とに気液分離タンク部で気液分離するステップと、
     前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の流量を流量測定部で測定するステップと、
     前記気液分離タンク部から前記ユースポイントに供給される前記供給液体の圧力を圧力測定部で測定するステップと、
     前記ユースポイントに供給される前記供給液体の流量を一定流量に保つように、前記流量測定部で測定した前記供給液体の流量に応じて、前記排気バルブを制御して前記排気口から排出される前記排出気体の排出量を調整する流量一定制御と、前記ユースポイントに供給される前記供給液体の圧力を一定圧力に保つように、前記圧力測定部で測定した前記供給液体の圧力に応じて、前記排気バルブを制御して前記排気口から排出される前記排出気体の排出量を調整する圧力一定制御と、のいずれか一方を選択するステップと、
    を含み、
     前記流量一定制御が選択された場合には、前記流量測定部で測定した前記供給液体の流量が前記一定流量に対して増加したときに前記排気口から排出される前記排出気体の排出量を増加させ、前記流量測定部で測定した前記供給液体の流量が前記一定流量に対して減少したときに前記排気口から排出される前記排出気体の排出量を減少させ、
     前記圧力一定制御が選択された場合には、前記圧力測定部で測定した前記供給液体の圧力が前記一定圧力に対して増加したときに前記排気口から排出される前記排出気体の排出量を増加させ、前記圧力測定部で測定した前記供給液体の圧力が前記一定圧力に対して減少したときに前記排気口から排出される前記排出気体の排出量を減少させることを特徴とする供給液体製造方法。
    Mixing a first raw material and a second raw material in a mixing unit to produce a mixed liquid;
    Gas-liquid separation of the mixed liquid generated in the mixing unit into a supply liquid supplied to a use point and an exhaust gas discharged from an exhaust port in a gas-liquid separation tank unit;
    Measuring a flow rate of the supply liquid supplied from the gas-liquid separation tank unit to the use point by a flow rate measurement unit;
    Measuring a pressure of the supply liquid supplied from the gas-liquid separation tank unit to the use point by a pressure measuring unit;
    The exhaust valve is controlled and discharged from the exhaust port according to the flow rate of the supply liquid measured by the flow rate measurement unit so that the flow rate of the supply liquid supplied to the use point is kept constant. In accordance with the pressure of the supply liquid measured by the pressure measuring unit so as to keep the pressure of the supply liquid supplied to the use point at a constant pressure, the flow rate constant control for adjusting the discharge amount of the exhaust gas, Selecting one of pressure constant control for controlling the exhaust valve to adjust the discharge amount of the exhaust gas discharged from the exhaust port; and
    Including
    When the constant flow control is selected, the discharge amount of the exhaust gas discharged from the exhaust port is increased when the flow rate of the supply liquid measured by the flow rate measuring unit increases with respect to the constant flow rate. And reducing the discharge amount of the exhaust gas discharged from the exhaust port when the flow rate of the supply liquid measured by the flow rate measurement unit decreases with respect to the constant flow rate,
    When the constant pressure control is selected, the discharge amount of the exhaust gas discharged from the exhaust port is increased when the pressure of the supply liquid measured by the pressure measuring unit increases with respect to the constant pressure. And a method for producing a supply liquid, wherein the discharge amount of the exhaust gas discharged from the exhaust port is reduced when the pressure of the supply liquid measured by the pressure measuring unit decreases with respect to the constant pressure. .
PCT/JP2017/000983 2016-01-15 2017-01-13 Supply-liquid producing apparatus and supply-liquid producing method WO2017122771A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187019107A KR102571000B1 (en) 2016-01-15 2017-01-13 Feed liquid preparation method
CN201780006815.2A CN108472610B (en) 2016-01-15 2017-01-13 Apparatus and method for producing supply liquid
SG11201805417PA SG11201805417PA (en) 2016-01-15 2017-01-13 Supply-liquid producing apparatus and supply-liquid producing method
EP17738523.4A EP3403717B1 (en) 2016-01-15 2017-01-13 Supply-liquid producing apparatus and associated producing method
US16/069,862 US10654017B2 (en) 2016-01-15 2017-01-13 Supply-liquid producing apparatus and supply-liquid producing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-005814 2016-01-15
JP2016005814 2016-01-15
JP2017-001731 2017-01-10
JP2017001731A JP6826437B2 (en) 2016-01-15 2017-01-10 Supply liquid manufacturing equipment and supply liquid manufacturing method

Publications (1)

Publication Number Publication Date
WO2017122771A1 true WO2017122771A1 (en) 2017-07-20

Family

ID=59311267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000983 WO2017122771A1 (en) 2016-01-15 2017-01-13 Supply-liquid producing apparatus and supply-liquid producing method

Country Status (1)

Country Link
WO (1) WO2017122771A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109839963A (en) * 2019-01-23 2019-06-04 北京雪迪龙科技股份有限公司 A kind of ultraviolet irradiation formula ozone generator concentration control method
US10654017B2 (en) 2016-01-15 2020-05-19 Ebara Corporation Supply-liquid producing apparatus and supply-liquid producing method
CN112237856A (en) * 2019-07-19 2021-01-19 株式会社荏原制作所 Gas solution manufacturing device
CN113213610A (en) * 2020-02-06 2021-08-06 株式会社荏原制作所 Gas solution manufacturing device
JP7099603B1 (en) * 2021-09-07 2022-07-12 栗田工業株式会社 Liquid supply equipment for semiconductor manufacturing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09906A (en) * 1995-06-21 1997-01-07 Ishikawajima Harima Heavy Ind Co Ltd Ozonized water producing device and its method
JP2003236353A (en) * 2002-02-19 2003-08-26 Advan Riken:Kk Apparatus for producing ozonized water
JP2010214263A (en) * 2009-03-16 2010-09-30 Kazumasa Ikuta Ozone dissolving device and automatic ozone dissolving system
JP2012024719A (en) * 2010-07-26 2012-02-09 Shibaura Mechatronics Corp Device for supplying microscopic bubble-containing liquid
JP2014117628A (en) * 2012-12-13 2014-06-30 Ebara Corp Circulation type method and apparatus for supplying ozone water
JP2015181976A (en) * 2014-03-20 2015-10-22 Idec株式会社 Fine bubble liquid generation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09906A (en) * 1995-06-21 1997-01-07 Ishikawajima Harima Heavy Ind Co Ltd Ozonized water producing device and its method
JP2003236353A (en) * 2002-02-19 2003-08-26 Advan Riken:Kk Apparatus for producing ozonized water
JP2010214263A (en) * 2009-03-16 2010-09-30 Kazumasa Ikuta Ozone dissolving device and automatic ozone dissolving system
JP2012024719A (en) * 2010-07-26 2012-02-09 Shibaura Mechatronics Corp Device for supplying microscopic bubble-containing liquid
JP2014117628A (en) * 2012-12-13 2014-06-30 Ebara Corp Circulation type method and apparatus for supplying ozone water
JP2015181976A (en) * 2014-03-20 2015-10-22 Idec株式会社 Fine bubble liquid generation device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3403717A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10654017B2 (en) 2016-01-15 2020-05-19 Ebara Corporation Supply-liquid producing apparatus and supply-liquid producing method
CN109839963A (en) * 2019-01-23 2019-06-04 北京雪迪龙科技股份有限公司 A kind of ultraviolet irradiation formula ozone generator concentration control method
CN112237856A (en) * 2019-07-19 2021-01-19 株式会社荏原制作所 Gas solution manufacturing device
CN112237856B (en) * 2019-07-19 2024-04-23 株式会社荏原制作所 Gas dissolved liquid manufacturing device
CN113213610A (en) * 2020-02-06 2021-08-06 株式会社荏原制作所 Gas solution manufacturing device
JP7099603B1 (en) * 2021-09-07 2022-07-12 栗田工業株式会社 Liquid supply equipment for semiconductor manufacturing
WO2023037618A1 (en) * 2021-09-07 2023-03-16 栗田工業株式会社 Device for supplying liquid for semiconductor manufacturing

Similar Documents

Publication Publication Date Title
JP6826437B2 (en) Supply liquid manufacturing equipment and supply liquid manufacturing method
WO2017122771A1 (en) Supply-liquid producing apparatus and supply-liquid producing method
KR101406411B1 (en) Systems and methods for carbonation of deionized water
JP6734621B2 (en) Ozone water supply method and ozone water supply device
KR20170058928A (en) Device and method for manufacturing gas-dissolved water
KR102519333B1 (en) Device for manufacturing gas-dissolved solution
JP2013528949A (en) Device, system and method for carbonation of deionized water
KR102573112B1 (en) Gas solution manufacturing apparatus
TWI815010B (en) Gas-dissolved liquid supply apparatus and gas-dissolved liquid supply method
JP2019155221A (en) Circulation type gas dissolution liquid supply device and circulation type gas dissolution liquid supply method
JP2014117628A (en) Circulation type method and apparatus for supplying ozone water
KR102635710B1 (en) Device for manufacturing gas-dissolved solution
WO2016042740A1 (en) Device and method for manufacturing gas-dissolved water
JP2022185727A (en) Supplied liquid manufacturing apparatus
JP2019150760A (en) Ozone-dissolved water manufacturing apparatus and ozone-dissolved water manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738523

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201805417P

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 20187019107

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017738523

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017738523

Country of ref document: EP

Effective date: 20180816