WO2016042740A1 - Device and method for manufacturing gas-dissolved water - Google Patents

Device and method for manufacturing gas-dissolved water Download PDF

Info

Publication number
WO2016042740A1
WO2016042740A1 PCT/JP2015/004586 JP2015004586W WO2016042740A1 WO 2016042740 A1 WO2016042740 A1 WO 2016042740A1 JP 2015004586 W JP2015004586 W JP 2015004586W WO 2016042740 A1 WO2016042740 A1 WO 2016042740A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
water
pressure
flow rate
ozone
Prior art date
Application number
PCT/JP2015/004586
Other languages
French (fr)
Japanese (ja)
Inventor
卓 小澤
原田 稔
宗人 高橋
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014240990A external-priority patent/JP2016064386A/en
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to CN201580050402.5A priority Critical patent/CN106714954A/en
Priority to EP15842759.1A priority patent/EP3195926A4/en
Priority to KR1020177007266A priority patent/KR20170058928A/en
Priority to SG11201702242PA priority patent/SG11201702242PA/en
Priority to US15/511,803 priority patent/US20170282132A1/en
Publication of WO2016042740A1 publication Critical patent/WO2016042740A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • a cleaning method in addition to the “batch processing method” in which a plurality of silicon wafers are dipped and cleaned at the same time, chemical cleaning and ultrapure water cleaning are performed for each wafer corresponding to products of low-volume production.
  • a “single wafer processing method” is used.
  • the single wafer processing method has a longer cleaning process time (takt time) per wafer than the batch processing method, and the amount of cleaning liquid used is increased. Therefore, it is required to shorten the tact time and reduce the amount of cleaning liquid used. It has been.
  • takt time cleaning process time
  • an advanced cleaning process is performed in which a plurality of functional waters and chemicals are used alone or simultaneously to switch the cleaning process in a short time. .
  • the conventional ozone water supply device is a circulation type that circulates ozone water (unused ozone water) to be reused, the temperature rise or contamination of ozone water due to the circulation of ozone water (unused ozone water) It was necessary to take measures against the outbreak. Therefore, it has been desired to develop a technology for producing ozone water as much as it is required at the point of use.
  • the gas-dissolved water production apparatus of the present invention includes a concentration measuring unit that measures the concentration of the gas-dissolved water, and an actual measured value of the concentration of the gas-dissolved water based on the concentration of the gas-dissolved water measured by the concentration measuring unit.
  • a control unit that controls the flow rate of the gas so as to reduce the deviation from the target value.
  • the flow rate of the gas is controlled based on the concentration of the dissolved gas water, and the deviation between the measured value of the dissolved gas water and the target value can be reduced (displaced). Therefore, even when the measured value of the dissolved gas concentration tends to be different from the target value, such as when the operation is restarted after not operating for a certain period (for example, several days), the dissolved gas concentration close to the target value is likely to occur. Can be manufactured.
  • the gas dissolved water generating unit may include a mixer that mixes gas and water using the Venturi effect.
  • the gas dissolved water production apparatus of the present invention includes an ozone gas generation unit that generates ozone gas
  • the ozone gas generation unit includes an electrode for discharge used for generating ozone gas
  • the holding member that holds the electrode is stainless steel. It may be made of steel and have a wall thickness of 10 mm or more.
  • the pressure of water is controlled and supplied to the gas-dissolved water generating unit so that the pressure of the gas-dissolved water supplied to the use point is constant, as in the above-described manufacturing apparatus. Since the gas flow rate is controlled according to the water flow rate, the gas-dissolved water is produced as much as required at the use point. For example, when a large amount of gas-dissolved water is required at the use point, the pressure of the gas-dissolved water supplied to the use point is fixed, so that a large amount of water is supplied to the gas-dissolved water generating unit. Thus, a large amount of gas is supplied to the gas-dissolved water generating unit according to the amount of the water. As a result, a large amount of gas-dissolved water is produced.
  • FIG. 2 is a plan view of the discharge body 70
  • FIG. 3 is a cross-sectional view of the discharge body 70.
  • the discharge body 70 of the ozone gas generation unit 7 is disposed between a pair of the low-voltage electrode 71 and the high-voltage electrode 72 having circular electrode surfaces facing each other and the electrode surfaces facing each other.
  • a dielectric 73 and a disc-shaped space 74 are provided.
  • the disk-shaped space 74 is a space where a gentle discharge occurs between the opposing electrode surfaces.
  • dielectric 73 When clean ozone gas such as that used in semiconductor manufacturing is required, the material of dielectric 73 is sapphire, which is a clean material. However, when high purity is not required, dielectric 73 is made of alumina ceramics. It can form with ceramic materials, such as.
  • the source gas is introduced into the disc-shaped space 74 through the inlet passage 77 and the outer peripheral space 78, and flows in the disc-shaped space 74 substantially inward in the radial direction, and a central space 79 provided at the center of the low-pressure electrode 71. And are guided radially outward through the guide passage 80.
  • the source gas may be flowed radially outward in the disk-shaped space 74 instead of being flowed substantially radially inward. In that case, the raw material gas is first supplied to the central space 79 through the guide passage 80, flows in the disk-shaped space 74 substantially outward in the radial direction, and is guided to the inlet passage 77 through the outer peripheral space 78.
  • a first gas (O2 gas) and a second gas (CO2 gas or N2 gas) as raw materials are supplied as sources. Supply from 2 and 3.
  • the flow rate of the gas (first gas and second gas) is controlled by the flow rate controllers 4 and 5.
  • water (ultra pure water) as a raw material is supplied from a supply source 9.
  • the flow rate of water is measured by the flow meter 12.
  • the flow rate controllers 4 and 5 control the flow rate of the gas according to the flow rate of water measured by the flow meter 12, as indicated by broken line arrows in FIG.
  • the concentration required for the use point 19 is constant ( (Constant pressure) ozone water can be supplied. Therefore, it is suitable for a multi-chamber type single wafer cleaning apparatus.
  • the ozone water manufacturing apparatus 1 of this Embodiment since it is not necessary to circulate ozone water, it is not necessary to take measures against the temperature rise of ozone water by a circulation and generation
  • gas and water can be efficiently mixed by utilizing the Venturi effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

 A device (1) for manufacturing ozone water, provided with flow rate controllers (4, 5) for controlling the flow rate of a gas used as a raw material, a flow rate meter (12) for measuring the flow rate of water used as a raw material, a booster pump (13) for controlling the pressure of the water, an ozone water generation unit (8) for mixing ozone gas and water and generating ozone water, and a pressure sensor (17) for measuring the pressure of the ozone water supplied to a use point (19). The booster pump (13) controls the pressure of the water such that the pressure of the ozone water measured by the pressure sensor (17) is uniform, and the flow rate controllers (4, 5) control the flow rate of the gas according to the flow rate of the water as measured by the flow rate meter (12).

Description

ガス溶解水製造装置および製造方法Gas dissolved water production apparatus and production method
 本発明は、原料となるガスと水を混合してガス溶解水を製造するガス溶解水製造装置に関する。 The present invention relates to a gas-dissolved water production apparatus for producing gas-dissolved water by mixing raw material gas and water.
 近年、半導体デバイス工場や液晶などの電子部品製造工場における製品の洗浄は、製造プロセスの複雑化、回路パターンの微細化に伴ってますます高度化している。例えば、機能水(超純水など)に高純度のガスまたは高純度ガスと薬品とを溶解した特殊な液体(洗浄液と呼ばれる)を使用して、シリコンウエハに付着した微粒子、金属、有機物などを除去している。 In recent years, the cleaning of products in semiconductor device factories and liquid crystal and other electronic component factories has become increasingly sophisticated as the manufacturing process becomes more complex and circuit patterns become finer. For example, using high-purity gas or high-purity gas and chemicals dissolved in functional water (such as ultrapure water) to remove fine particles, metals, organic substances, etc. adhering to the silicon wafer. It has been removed.
 洗浄処理方式としては、複数のシリコンウエハを同時に浸漬及び洗浄操作を繰り返す“バッチ処理方式”のほかに、多品種少量生産の製品に対応して1枚のウエハごとに薬品洗浄及び超純水洗浄を行う“枚葉処理方式”が採用される。枚葉処理方式は、バッチ処理方式と比べて、ウエハ1枚当たりの洗浄工程時間(タクトタイム)が長く、洗浄液の使用量が多くなるために、タクトタイムの短縮及び洗浄液使用量の低減が求められている。現状、短時間での効果的な洗浄及び洗浄液使用量を低減するために、複数の機能水並びに薬品を単独または同時に使用して、短時間で洗浄工程を切り替える高度な洗浄プロセスが行われている。 As a cleaning method, in addition to the “batch processing method” in which a plurality of silicon wafers are dipped and cleaned at the same time, chemical cleaning and ultrapure water cleaning are performed for each wafer corresponding to products of low-volume production. A “single wafer processing method” is used. The single wafer processing method has a longer cleaning process time (takt time) per wafer than the batch processing method, and the amount of cleaning liquid used is increased. Therefore, it is required to shorten the tact time and reduce the amount of cleaning liquid used. It has been. At present, in order to reduce the effective cleaning in a short time and the amount of cleaning liquid used, an advanced cleaning process is performed in which a plurality of functional waters and chemicals are used alone or simultaneously to switch the cleaning process in a short time. .
 機能水としては、超純水にオゾンガスを溶解したオゾン水が用いられる。オゾン水は、一般的にオゾン水製造装置で製造される。洗浄プロセスの高度化及び複雑化に伴い、短時間での洗浄装置へのオゾン水の供給及び停止が要求されるが、従来の装置は一旦オゾン水の製造を停止すると、再度、要求オゾン濃度及び要求流量のオゾン水の供給が可能となるまでに一定の時間(立ち上がり時間)を要する。そこで、洗浄装置へのオゾン水の供給要求に応じるために、オゾン水製造装置でオゾン水を常時製造し、洗浄装置に連続的に供給していた。その結果、洗浄装置に過剰のオゾン水が供給されることになり、シリコンウエハの洗浄に使用されない未使用のオゾン水は排水として洗浄装置から排出されていた。 As the functional water, ozone water in which ozone gas is dissolved in ultrapure water is used. Ozone water is generally produced by an ozone water production apparatus. With the sophistication and complexity of the cleaning process, it is required to supply and stop ozone water to the cleaning device in a short time, but once the conventional device stops producing ozone water, the required ozone concentration and It takes a certain time (rise time) before the ozone water can be supplied at the required flow rate. Therefore, in order to meet the demand for supplying ozone water to the cleaning device, ozone water is always manufactured by the ozone water manufacturing device and continuously supplied to the cleaning device. As a result, excess ozone water is supplied to the cleaning device, and unused ozone water that is not used for cleaning the silicon wafer is discharged from the cleaning device as waste water.
 そこで、従来、ユースポイントにおけるオゾン水の使用量に関わらず、一定濃度及び一定圧力のオゾン水を供給でき、かつ、未使用のオゾン水を再利用できる循環式のオゾン水供給装置が提案されている(特許文献1参照)。 Therefore, conventionally, a circulation type ozone water supply device that can supply ozone water with a constant concentration and a constant pressure regardless of the amount of ozone water used at the point of use and that can reuse unused ozone water has been proposed. (See Patent Document 1).
 従来の循環式のオゾン水供給装置では、図4に示すように、水とオゾンガスをオゾン溶解槽12に供給してオゾン水を生成し、オゾン水をオゾン溶解槽12から循環槽21に供給し、循環槽21からオゾン水送水配管22を介してユースポイントに供給し、ユースポイントにて消費されなかったオゾン水をオゾン水戻り配管23を介して循環槽21に戻し、再び、循環槽21からユースポイントにオゾン水を供給する。そして、オゾン溶解槽12槽内圧力、循環槽21内圧力、オゾン水戻り配管23内圧力がそれぞれ一定に維持され、循環槽内圧力が、オゾン溶解槽内及びオゾン水戻り配管内の各圧力よりも低い圧力に制御される。 In the conventional circulation type ozone water supply device, as shown in FIG. 4, water and ozone gas are supplied to the ozone dissolution tank 12 to generate ozone water, and the ozone water is supplied from the ozone dissolution tank 12 to the circulation tank 21. The ozone water supplied from the circulation tank 21 to the use point via the ozone water supply pipe 22 is returned to the circulation tank 21 via the ozone water return pipe 23, and again from the circulation tank 21. Supply ozone water to the point of use. The pressure in the ozone dissolution tank 12, the pressure in the circulation tank 21, and the pressure in the ozone water return pipe 23 are maintained constant, and the pressure in the circulation tank is determined from the pressures in the ozone dissolution tank and the ozone water return pipe. Is also controlled to a low pressure.
 しかしながら、従来のオゾン水供給装置では、再利用するオゾン水(未使用のオゾン水)を循環させる循環式であるため、オゾン水(未使用のオゾン水)の循環によるオゾン水の温度上昇や汚れ発生に対策を講じる必要があった。そこで、ユースポイントで必要とされる分だけオゾン水を製造する技術の開発が望まれていた。 However, since the conventional ozone water supply device is a circulation type that circulates ozone water (unused ozone water) to be reused, the temperature rise or contamination of ozone water due to the circulation of ozone water (unused ozone water) It was necessary to take measures against the outbreak. Therefore, it has been desired to develop a technology for producing ozone water as much as it is required at the point of use.
特開2014-117628号公報JP 2014-117628 A
 本発明は、上記の課題に鑑みてなされたものである。本発明の目的は、循環によるオゾン水の温度上昇や汚れ発生に対策を講じる必要がなく、ユースポイントで必要とされる分だけオゾン水を製造することのできるガス溶解水製造装置を提供することにある。 The present invention has been made in view of the above problems. An object of the present invention is to provide a gas-dissolved water production apparatus capable of producing ozone water as much as it is required at a use point, without taking measures against the temperature rise and contamination of ozone water due to circulation. It is in.
 本発明の一の態様は、ガス溶解水製造装置であり、このガス溶解水製造装置は、原料となるガスの流量を制御するガス流量制御部と、原料となる水の流量を測定する水流量測定部と、水の圧力を制御する水圧力制御部と、ガスと水を混合してガス溶解水を生成するガス溶解水生成部と、ユースポイントに供給されるガス溶解水の圧力を測定する圧力測定部と、を備え、水圧力制御部は、圧力測定部により測定されるガス溶解水の圧力が一定となるように、水の圧力を制御し、ガス流量制御部は、水流量測定部により測定される水の流量に応じて、ガスの流量を制御する。 One aspect of the present invention is a gas-dissolved water production apparatus, which includes a gas flow rate control unit that controls the flow rate of a gas that is a raw material, and a water flow rate that measures the flow rate of water that is a raw material. Measures the pressure of the dissolved water supplied to the use point, the water pressure controller that controls the pressure of the water, the gas dissolved water generator that mixes gas and water to generate the dissolved gas, and the use point A water pressure control unit, the water pressure control unit controls the water pressure so that the pressure of the gas dissolved water measured by the pressure measurement unit is constant, and the gas flow rate control unit is a water flow rate measurement unit. The flow rate of gas is controlled according to the flow rate of water measured by.
 本発明の別の態様は、ガス溶解水製造方法であり、このガス溶解水製造方法は、原料となるガスの流量を制御するガス流量制御工程と、原料となる水の流量を測定する水流量測定工程と、水の圧力を制御する水圧力制御工程と、ガスと水を混合してガス溶解水を生成するガス溶解水生成工程と、ユースポイントに供給されるガス溶解水の圧力を測定する圧力測定工程と、を含み、水圧力制御工程では、圧力測定工程で測定されるガス溶解水の圧力が一定となるように、水の圧力を制御し、ガス流量制御工程では、水流量測定工程で測定される水の流量に応じて、ガスの流量を制御する。 Another aspect of the present invention is a gas-dissolved water production method. This gas-dissolved water production method includes a gas flow rate control step for controlling the flow rate of gas as a raw material, and a water flow rate for measuring the flow rate of water as a raw material. Measuring process, water pressure control process for controlling water pressure, gas dissolved water generating process for mixing gas and water to generate gas dissolved water, and measuring the pressure of gas dissolved water supplied to the use point A pressure measurement step, and in the water pressure control step, the water pressure is controlled so that the pressure of the gas dissolved water measured in the pressure measurement step is constant, and in the gas flow rate control step, the water flow rate measurement step The gas flow rate is controlled in accordance with the water flow rate measured in step (1).
 以下に説明するように、本発明には他の態様が存在する。したがって、この発明の開示は、本発明の一部の態様の提供を意図しており、ここで記述され請求される発明の範囲を制限することは意図していない。 As described below, there are other aspects of the present invention. Accordingly, this disclosure is intended to provide some aspects of the invention and is not intended to limit the scope of the invention described and claimed herein.
図1は、本発明の第1の実施の形態におけるオゾン水製造装置の構成を示す説明図である。FIG. 1 is an explanatory diagram showing a configuration of an ozone water production apparatus according to the first embodiment of the present invention. 図2は、本発明の第1の実施の形態における放電体の平面図である。FIG. 2 is a plan view of the discharge body according to the first embodiment of the present invention. 図3は、本発明の第1の実施の形態における放電体の断面図である。FIG. 3 is a cross-sectional view of the discharge body in the first embodiment of the present invention. 図4は、従来のオゾン水製造装置の構成を示す説明図である。FIG. 4 is an explanatory view showing a configuration of a conventional ozone water production apparatus. 図5は、本発明の第2の実施の形態におけるオゾン水製造装置の構成を示す説明図である。FIG. 5 is an explanatory diagram showing a configuration of an ozone water production apparatus according to the second embodiment of the present invention. 図6は、本発明の第2の実施の形態におけるガス量フィードバック制御の説明図である。FIG. 6 is an explanatory diagram of the gas amount feedback control in the second embodiment of the present invention.
 以下に本発明の詳細な説明を述べる。ただし、以下の詳細な説明と添付の図面は発明を限定するものではない。 The detailed description of the present invention will be described below. However, the following detailed description and the accompanying drawings do not limit the invention.
 本発明のガス溶解水製造装置は、原料となるガスの流量を制御するガス流量制御部と、原料となる水の流量を測定する水流量測定部と、水の圧力を制御する水圧力制御部と、ガスと水を混合してガス溶解水を生成するガス溶解水生成部と、ユースポイントに供給されるガス溶解水の圧力を測定する圧力測定部と、を備え、水圧力制御部は、圧力測定部により測定されるガス溶解水の圧力が一定となるように、水の圧力を制御し、ガス流量制御部は、水流量測定部により測定される水の流量に応じて、ガスの流量を制御する。 The gas-dissolved water production apparatus of the present invention includes a gas flow rate control unit that controls the flow rate of gas that is a raw material, a water flow rate measurement unit that measures the flow rate of water that is a raw material, and a water pressure control unit that controls the pressure of water A gas-dissolved water generating unit that generates gas-dissolved water by mixing gas and water, and a pressure-measuring unit that measures the pressure of the gas-dissolved water supplied to the use point. The water pressure is controlled so that the pressure of the gas dissolved water measured by the pressure measuring unit is constant, and the gas flow rate control unit is configured to control the gas flow rate according to the water flow rate measured by the water flow rate measuring unit. To control.
 この構成により、ユースポイントに供給されるガス溶解水の圧力が一定となるように、水の圧力が制御されるとともに、ガス溶解水生成部に供給される水の流量に応じてガスの流量が制御されるので、ユースポイントで必要とされる分だけガス溶解水が製造される。例えば、ユースポイントで大量のガス溶解水が必要とされる場合、ユースポイントに供給されるガス溶解水の圧力が一定とされるので、大量の水がガス溶解水生成部に供給されることになり、その水の量に応じてガス溶解水生成部に大量のガスが供給される。その結果、大量のガス溶解水が製造される。また、ユースポイントで少量のガス溶解水しか必要とされない場合、ユースポイントに供給されるガス溶解水の圧力が一定とされるので、少量の水がガス溶解水生成部に供給されることになり、その水の量に応じてガス溶解水生成部に少量のガスが供給される。その結果、少量のガス溶解水が製造される。このように、ユースポイントで必要とされる分だけガス溶解水を製造することができる。また、従来のように、循環によるガス溶解水の温度上昇や汚れ発生に対策を講じる必要がない。 With this configuration, the pressure of the water is controlled so that the pressure of the gas-dissolved water supplied to the use point is constant, and the gas flow rate is adjusted according to the flow rate of the water supplied to the gas-dissolved water generating unit. Since it is controlled, dissolved gas water is produced as much as required at the point of use. For example, when a large amount of gas-dissolved water is required at the use point, the pressure of the gas-dissolved water supplied to the use point is fixed, so that a large amount of water is supplied to the gas-dissolved water generating unit. Thus, a large amount of gas is supplied to the gas-dissolved water generating unit according to the amount of the water. As a result, a large amount of gas-dissolved water is produced. In addition, when only a small amount of gas-dissolved water is required at the use point, the pressure of the gas-dissolved water supplied to the use point is kept constant, so that a small amount of water is supplied to the gas-dissolved water generating unit. Depending on the amount of the water, a small amount of gas is supplied to the gas-dissolved water generating unit. As a result, a small amount of gas-dissolved water is produced. In this way, gas-dissolved water can be produced as much as required at the use point. Further, unlike the conventional case, it is not necessary to take measures against the temperature rise of the gas-dissolved water due to circulation and the occurrence of contamination.
 また、本発明のガス溶解水製造装置は、ガス溶解水の濃度を測定する濃度測定部と、濃度測定部により測定されるガス溶解水の濃度に基づいて、ガス溶解水の濃度の実測値と目標値とのずれを小さくするようにガスの流量を制御する制御部と、を備えてもよい。 Further, the gas-dissolved water production apparatus of the present invention includes a concentration measuring unit that measures the concentration of the gas-dissolved water, and an actual measured value of the concentration of the gas-dissolved water based on the concentration of the gas-dissolved water measured by the concentration measuring unit. A control unit that controls the flow rate of the gas so as to reduce the deviation from the target value.
 この構成により、ガス溶解水の濃度に基づいてガスの流量が制御され、ガス溶解水の濃度の実測値と目標値とのずれを小さくする(ずれをなくす)ことが可能になる。したがって、一定期間(例えば数日)運転しなかった後に運転を再開する場合など、ガス溶解水の濃度の実測値と目標値にずれが生じやすい場合にも、目標値に近い濃度のガス溶解水を製造することができる。 With this configuration, the flow rate of the gas is controlled based on the concentration of the dissolved gas water, and the deviation between the measured value of the dissolved gas water and the target value can be reduced (displaced). Therefore, even when the measured value of the dissolved gas concentration tends to be different from the target value, such as when the operation is restarted after not operating for a certain period (for example, several days), the dissolved gas concentration close to the target value is likely to occur. Can be manufactured.
 また、本発明のガス溶解水製造装置では、水圧力制御部は、0.1MPa~1MPaの圧力範囲内で、水の圧力を制御してもよい。 In the gas dissolved water production apparatus of the present invention, the water pressure control unit may control the water pressure within a pressure range of 0.1 MPa to 1 MPa.
 この構成により、高圧力(0.1MPa~1MPa)に昇圧された状態で水とガスが混合されるので、高濃度のガス溶解水を製造することができる。 With this configuration, water and gas are mixed in a state where the pressure is increased to a high pressure (0.1 MPa to 1 MPa), so that high-concentration gas-dissolved water can be produced.
 また、本発明のガス溶解水製造装置では、ガス溶解水生成部は、ベンチュリー効果を利用してガスと水を混合する混合器を備えてもよい。 Further, in the gas dissolved water production apparatus of the present invention, the gas dissolved water generating unit may include a mixer that mixes gas and water using the Venturi effect.
 この構成により、ベンチュリー効果を利用してガスと水を効率よく混合することが可能になる。 This configuration makes it possible to efficiently mix gas and water using the Venturi effect.
 また、本発明のガス溶解水製造装置では、ガス溶解水生成部に供給される水を脱気処理する脱気処理部を備えてもよい。 Further, the gas-dissolved water production apparatus of the present invention may include a degassing treatment unit that degasses the water supplied to the gas-dissolved water generating unit.
 この構成により、脱気処理によって水の中の余剰ガスを除去することができ、ガスを水に溶解し易くすることが可能になる。 With this configuration, excess gas in the water can be removed by deaeration treatment, and the gas can be easily dissolved in water.
 また、本発明のガス溶解水製造装置では、原料となるガスはオゾンガスであり、ガス溶解水はオゾン水であってもよい。 Further, in the gas dissolved water production apparatus of the present invention, the raw material gas may be ozone gas, and the gas dissolved water may be ozone water.
 この構成により、オゾン水をユースポイントで必要とされる分だけ製造することができる。また、従来のように、循環によるオゾン水の温度上昇や汚れ発生に対策を講じる必要がない。 This configuration makes it possible to produce only the amount of ozone water required at the point of use. Further, unlike the conventional case, it is not necessary to take measures against the temperature rise of the ozone water due to circulation and the occurrence of contamination.
 また、本発明のガス溶解水製造装置では、オゾンガスを生成するオゾンガス生成部を備え、オゾンガス生成部は、オゾンガスの生成に用いる放電用の電極を備えており、電極を保持する保持部材は、ステンレス鋼を材料とし、10mm以上の肉厚を有してもよい。 Further, the gas dissolved water production apparatus of the present invention includes an ozone gas generation unit that generates ozone gas, the ozone gas generation unit includes an electrode for discharge used for generating ozone gas, and the holding member that holds the electrode is stainless steel. It may be made of steel and have a wall thickness of 10 mm or more.
 この構成により、オゾンガスの生成に用いる放電用の電極の保持部材の強度を十分に高くすることができ、高圧力(0.1MPa~1MPa)のオゾンガスを生成することが可能になる。 With this configuration, the strength of the discharge electrode holding member used for generating ozone gas can be sufficiently increased, and ozone gas at a high pressure (0.1 MPa to 1 MPa) can be generated.
 本発明のガス溶解水製造方法は、原料となるガスの流量を制御するガス流量制御工程と、原料となる水の流量を測定する水流量測定工程と、水の圧力を制御する水圧力制御工程と、ガスと水を混合してガス溶解水を生成するガス溶解水生成工程と、ユースポイントに供給されるガス溶解水の圧力を測定する圧力測定工程と、を含み、水圧力制御工程では、圧力測定工程で測定されるガス溶解水の圧力が一定となるように、水の圧力を制御し、ガス流量制御工程では、水流量測定工程で測定される水の流量に応じて、ガスの流量を制御する。 The gas-dissolved water production method of the present invention includes a gas flow rate control step for controlling the flow rate of gas as a raw material, a water flow rate measurement step for measuring the flow rate of water as a raw material, and a water pressure control step for controlling the pressure of water. A gas-dissolved water generating step for generating gas-dissolved water by mixing gas and water, and a pressure measuring step for measuring the pressure of the gas-dissolved water supplied to the use point. In the water pressure control step, The water pressure is controlled so that the pressure of the dissolved gas measured in the pressure measurement process is constant. In the gas flow control process, the gas flow rate is determined according to the flow rate of water measured in the water flow measurement process. To control.
 この製造方法によっても、上記の製造装置と同様に、ユースポイントに供給されるガス溶解水の圧力が一定となるように、水の圧力が制御されるとともに、ガス溶解水生成部に供給される水の流量に応じてガスの流量が制御されるので、ユースポイントで必要とされる分だけガス溶解水が製造される。例えば、ユースポイントで大量のガス溶解水が必要とされる場合、ユースポイントに供給されるガス溶解水の圧力が一定とされるので、大量の水がガス溶解水生成部に供給されることになり、その水の量に応じてガス溶解水生成部に大量のガスが供給される。その結果、大量のガス溶解水が製造される。また、ユースポイントで少量のガス溶解水しか必要とされない場合、ユースポイントに供給されるガス溶解水の圧力が一定とされるので、少量の水がガス溶解水生成部に供給されることになり、その水の量に応じてガス溶解水生成部に少量のガスが供給される。その結果、少量のガス溶解水が製造される。このように、ユースポイントで必要とされる分だけガス溶解水を製造することができる。また、従来のように、循環によるガス溶解水の温度上昇や汚れ発生に対策を講じる必要がない。 Also with this manufacturing method, the pressure of water is controlled and supplied to the gas-dissolved water generating unit so that the pressure of the gas-dissolved water supplied to the use point is constant, as in the above-described manufacturing apparatus. Since the gas flow rate is controlled according to the water flow rate, the gas-dissolved water is produced as much as required at the use point. For example, when a large amount of gas-dissolved water is required at the use point, the pressure of the gas-dissolved water supplied to the use point is fixed, so that a large amount of water is supplied to the gas-dissolved water generating unit. Thus, a large amount of gas is supplied to the gas-dissolved water generating unit according to the amount of the water. As a result, a large amount of gas-dissolved water is produced. In addition, when only a small amount of gas-dissolved water is required at the use point, the pressure of the gas-dissolved water supplied to the use point is kept constant, so that a small amount of water is supplied to the gas-dissolved water generating unit. Depending on the amount of the water, a small amount of gas is supplied to the gas-dissolved water generating unit. As a result, a small amount of gas-dissolved water is produced. In this way, gas-dissolved water can be produced as much as required at the use point. Further, unlike the conventional case, it is not necessary to take measures against the temperature rise of the gas-dissolved water due to circulation and the occurrence of contamination.
 本発明によれば、循環によるガス溶解水の温度上昇や汚れ発生に対策を講じる必要がなく、ユースポイントで必要とされる分だけガス溶解水を製造することができる。 According to the present invention, it is not necessary to take measures against the temperature rise of the gas-dissolved water due to circulation and the occurrence of dirt, and the gas-dissolved water can be produced as much as necessary at the point of use.
 以下、本発明の実施の形態のガス溶解水製造装置について、図面を用いて説明する。本実施の形態では、半導体デバイスや液晶などの電子部品の洗浄に用いられるオゾン水製造装置の場合を例示する。 Hereinafter, a gas-dissolved water production apparatus according to an embodiment of the present invention will be described with reference to the drawings. In the present embodiment, the case of an ozone water production apparatus used for cleaning electronic components such as semiconductor devices and liquid crystals is illustrated.
(第1の実施の形態)
 本発明の第1の実施の形態のガス溶解水製造装置の構成を、図面を参照して説明する。図1は、第1の実施の形態のオゾン水製造装置の構成を示す説明図である。図1に示すように、オゾン水製造装置1は、原料となる第1ガス(O2ガス)と第2ガス(CO2ガスまたはN2ガス)の供給源2、3と、それぞれのガス(第1ガスと第2ガス)の流量を制御する流量コントローラ4、5を備えている。なお、第2ガス(CO2ガスまたはN2ガス)は必ずしも必須ではなく、第1ガス(O2ガス)のみを用いてもよい。第1ガスと第2ガスは、圧力センサ6で圧力を測定された後、オゾンガス生成部7へ送られる。オゾンガス生成部7は、放電によって、第1ガス(O2ガス)と第2ガス(CO2ガスまたはN2ガス)からオゾンガスを生成するための放電体70を備えている(図2および図3参照)。オゾンガス生成部7で生成されたオゾンガスはオゾン水生成部8へ送られる。
(First embodiment)
The structure of the gas dissolved water manufacturing apparatus of the 1st Embodiment of this invention is demonstrated with reference to drawings. Drawing 1 is an explanatory view showing the composition of the ozone water manufacture device of a 1st embodiment. As shown in FIG. 1, the ozone water production apparatus 1 includes supply sources 2 and 3 of a first gas (O 2 gas) and a second gas (CO 2 gas or N 2 gas) as raw materials, and respective gases ( Flow rate controllers 4 and 5 for controlling the flow rates of the first gas and the second gas are provided. The second gas (CO 2 gas or N 2 gas) is not always essential, and only the first gas (O 2 gas) may be used. The first gas and the second gas are sent to the ozone gas generation unit 7 after the pressure is measured by the pressure sensor 6. The ozone gas generation unit 7 includes a discharge body 70 for generating ozone gas from a first gas (O 2 gas) and a second gas (CO 2 gas or N 2 gas) by discharge (FIGS. 2 and 3). reference). The ozone gas generated by the ozone gas generator 7 is sent to the ozone water generator 8.
 また、オゾン水製造装置1は、原料となる水(超純水)の供給源9を備えている。このオゾン水製造装置1には、原料となる水の中の余剰ガス(酸素、窒素、炭酸ガスなど)を除去するために、脱気処理をする脱気処理部10が備えられている。なお、脱気処理は、例えば脱気処理膜を介して真空引きを行うなどの公知の方法を利用することができる。また、オゾン水製造装置1には、水の流量を調整するためのバルブ11と、水の流量を測定するための流量計12が設けられている。原料となる水は、流量計12で流量が測定された後、昇圧ポンプ13へ送られ、昇圧ポンプ13で圧力を調整された後、オゾン水生成部8へ送られる。オゾン水生成部8へ送られる水の圧力は、例えば、0.1~1.0MPaに設定される。 Moreover, the ozone water production apparatus 1 includes a supply source 9 of water (ultra pure water) as a raw material. The ozone water production apparatus 1 includes a deaeration processing unit 10 that performs a deaeration process in order to remove surplus gas (oxygen, nitrogen, carbon dioxide gas, etc.) in water as a raw material. For the deaeration treatment, a known method such as evacuation through a deaeration treatment film can be used. In addition, the ozone water production apparatus 1 is provided with a valve 11 for adjusting the flow rate of water and a flow meter 12 for measuring the flow rate of water. After the flow rate is measured by the flow meter 12, the raw material water is sent to the booster pump 13, the pressure is adjusted by the booster pump 13, and then sent to the ozone water generator 8. The pressure of the water sent to the ozone water generation unit 8 is set to 0.1 to 1.0 MPa, for example.
 オゾン水生成部8は、オゾンガスと水を混合してオゾン水を生成する混合器14を備えている。混合器14は、ベンチュリー効果を利用してガスと水を混合するものが望ましい。そのような混合器14として、例えば、アスピレータやエジェクターなどが用いられる。生成されたオゾン水は、気液分離タンク15に送られる。気液分離タンク15では、オゾン水とガス(排ガス)が分離される。この気液分離タンク15には、オゾン水の水位を測定するために水位センサ16が設けられてもよい。気液分離されたオゾン水は、圧力センサ17で圧力が測定され、バルブ18を介してユースポイント19(例えば、多チャンバー式の枚葉型洗浄装置など)に送られる。また、気液分離されたオゾン水は、オゾン水濃度計20で濃度が測定された後、ドレン21に排出される。一方、排ガスは、バルブ22を介して排ガス分解触媒23へ送られて分解処理された後、圧力リリーフバルブ24で大気圧に戻されて、排気口25から排出される。 The ozone water generator 8 includes a mixer 14 that generates ozone water by mixing ozone gas and water. The mixer 14 is preferably one that mixes gas and water using the Venturi effect. For example, an aspirator or an ejector is used as such a mixer 14. The generated ozone water is sent to the gas-liquid separation tank 15. In the gas-liquid separation tank 15, ozone water and gas (exhaust gas) are separated. The gas-liquid separation tank 15 may be provided with a water level sensor 16 for measuring the water level of ozone water. The gas-liquid separated ozone water is measured for pressure by the pressure sensor 17 and sent to a use point 19 (for example, a multi-chamber type single wafer cleaning device) through a valve 18. Further, the ozone water that has been subjected to gas-liquid separation is discharged to the drain 21 after the concentration is measured by the ozone water concentration meter 20. On the other hand, after the exhaust gas is sent to the exhaust gas decomposition catalyst 23 through the valve 22 and decomposed, it is returned to atmospheric pressure by the pressure relief valve 24 and discharged from the exhaust port 25.
 圧力リリーフバルブ24では、急激な圧力変動を防いで圧力を一定に保つことができる点で、エアー制御式のリリーフ弁を採用することが望ましい。なお、急激な圧力変動が発生するおそれがない場合には、バネ式のリリーフ弁を採用することもできる。バネ式のリリーフ弁は、エアー制御式のリリーフ弁に比べて安価であり、低コスト化を図るうえで有利である。 In the pressure relief valve 24, it is desirable to employ an air-controlled relief valve in that it can keep a constant pressure by preventing sudden pressure fluctuations. If there is no risk of sudden pressure fluctuations, a spring-type relief valve can be employed. The spring type relief valve is less expensive than the air control type relief valve, and is advantageous in reducing the cost.
 ここで、図面を参照して、オゾンガス生成部7の放電体70の構成について説明しておく。図2は、放電体70の平面図であり、図3は、放電体70の断面図である。図2および図3に示すように、オゾンガス生成部7の放電体70は、互いに対向する円形電極面を有する対の低圧電極71及び高圧電極72と、両電極の対向する電極面の間に配置される誘電体73及び円板形空間74を有している。円板形空間74は、対向する電極面の間にあって穏やかな放電が生じる空間であり、この空間へ酸素を含む原料ガス(第1ガスと第2ガス)を流すと放電により酸素がオゾンに変換される。 Here, the configuration of the discharge body 70 of the ozone gas generation unit 7 will be described with reference to the drawings. FIG. 2 is a plan view of the discharge body 70, and FIG. 3 is a cross-sectional view of the discharge body 70. As shown in FIGS. 2 and 3, the discharge body 70 of the ozone gas generation unit 7 is disposed between a pair of the low-voltage electrode 71 and the high-voltage electrode 72 having circular electrode surfaces facing each other and the electrode surfaces facing each other. A dielectric 73 and a disc-shaped space 74 are provided. The disk-shaped space 74 is a space where a gentle discharge occurs between the opposing electrode surfaces. When a source gas containing oxygen (first gas and second gas) is allowed to flow into this space, oxygen is converted into ozone by the discharge. Is done.
 高圧電極72は、高圧交流電源の高圧側に接続され、低圧電極71は、交流電源の低圧側(アース)に接続される。図2および図3に示すように低圧電極71の電極面は、多数の互いにほぼ平行に伸長するトレンチ溝(同心状に配置される溝)を有している。トレンチ溝の構造は、公知のものと同様とすることができる。 The high voltage electrode 72 is connected to the high voltage side of the high voltage AC power supply, and the low voltage electrode 71 is connected to the low voltage side (earth) of the AC power supply. As shown in FIGS. 2 and 3, the electrode surface of the low-voltage electrode 71 has a large number of trench grooves (grooves arranged concentrically) extending substantially in parallel with each other. The structure of the trench groove can be the same as a known one.
 高圧電極72は、保持部材75に支持される絶縁体76及び誘電体73の間の金属層により形成される。この保持部材75は、ステンレス鋼(SUS)を材料とし、10mm以上(好ましくは16mm以上)の肉厚を有している。誘電体73は、円板状の単結晶サファイアからなり、高圧電極72は、サファイアの裏面に施した銀系のメタライズ層により形成される。この場合、トレンチ溝の山部と誘電板表面の間の空間が放電空間となる。例えば、トレンチ溝の山部と誘電板表面の間の距離は、0.01mm~0.3mm(好ましくは0.03mm~0.05mm)である。半導体製造に使用されるようなクリーンなオゾンガスを必要とする場合は、誘電体73の材料はクリーンな材質であるサファイアが適当であるが、高純度が要求されない場合は、誘電体73をアルミナセラミックス等のセラミックス材により形成することができる。 The high voltage electrode 72 is formed of a metal layer between the insulator 76 and the dielectric 73 supported by the holding member 75. The holding member 75 is made of stainless steel (SUS) and has a thickness of 10 mm or more (preferably 16 mm or more). The dielectric 73 is made of disk-shaped single crystal sapphire, and the high-voltage electrode 72 is formed by a silver-based metallization layer applied to the back surface of the sapphire. In this case, a space between the peak portion of the trench groove and the surface of the dielectric plate becomes a discharge space. For example, the distance between the peak of the trench groove and the surface of the dielectric plate is 0.01 mm to 0.3 mm (preferably 0.03 mm to 0.05 mm). When clean ozone gas such as that used in semiconductor manufacturing is required, the material of dielectric 73 is sapphire, which is a clean material. However, when high purity is not required, dielectric 73 is made of alumina ceramics. It can form with ceramic materials, such as.
 原料ガスは、入口通路77、外周空間78を経て円板形空間74へ導入され、円板形空間74内をほぼ半径方向内向きに流され、低圧電極71の中心部に設けられる中心空間79へ集められ、案内通路80を経て電極の半径方向外方へ案内される。なお、原料ガスは、円板形空間74内をほぼ半径方向内向きに流される代りに半径方向外向きに流されてもよい。その場合、原料ガスは、最初に案内通路80を経て中心空間79へ供給され、円板形空間74内をほぼ半径方向外向きに流され、外周空間78を経て入口通路77へ案内される。 The source gas is introduced into the disc-shaped space 74 through the inlet passage 77 and the outer peripheral space 78, and flows in the disc-shaped space 74 substantially inward in the radial direction, and a central space 79 provided at the center of the low-pressure electrode 71. And are guided radially outward through the guide passage 80. The source gas may be flowed radially outward in the disk-shaped space 74 instead of being flowed substantially radially inward. In that case, the raw material gas is first supplied to the central space 79 through the guide passage 80, flows in the disk-shaped space 74 substantially outward in the radial direction, and is guided to the inlet passage 77 through the outer peripheral space 78.
 高圧電極72は、高周波高圧交流電源の高圧側へ連結され、低圧電極71は、同電源の低圧側へ連結され、両電極の間の円板形空間74に高圧交流電圧が印加され両電極の間の円板形空間74にマイルドな放電が生じる。この円板形空間74を通り、酸素を含む原料ガス(第1ガスと第2ガス)が流され、その一部がオゾンに変換される。図2および図3の放電体70においては、原料ガスが多数のトレンチ溝を横切る方向に流され、放電密度の高い溝の頂部を必ず通過するので、高濃度のオゾンを発生することが可能である。 The high voltage electrode 72 is connected to the high voltage side of the high frequency high voltage AC power source, and the low voltage electrode 71 is connected to the low voltage side of the power source, and a high voltage AC voltage is applied to the disc-shaped space 74 between the two electrodes. A mild discharge occurs in the disc space 74 between them. Through this disk-shaped space 74, a source gas containing oxygen (first gas and second gas) is flowed, and a part thereof is converted into ozone. In the discharge body 70 shown in FIGS. 2 and 3, since the source gas flows in a direction crossing many trench grooves and always passes through the top of the groove having a high discharge density, it is possible to generate high-concentration ozone. is there.
 以上のように構成されたオゾン水製造装置1について、その動作を説明する。 The operation of the ozone water production apparatus 1 configured as described above will be described.
 本発明の実施の形態のオゾン水製造装置1を用いてオゾン水を製造する場合には、まず、原料となる第1ガス(O2ガス)と第2ガス(CO2ガスまたはN2ガス)を供給源2、3から供給する。ガス(第1ガスと第2ガス)の流量が流量コントローラ4、5によって制御される。一方、原料となる水(超純水)を供給源9から供給する。水の流量は、流量計12によって測定される。本実施の形態では、図1において破線矢印で示すように、流量コントローラ4、5は、流量計12により測定される水の流量に応じて、ガスの流量を制御する。 In the case of producing ozone water using the ozone water production apparatus 1 according to the embodiment of the present invention, first, a first gas (O2 gas) and a second gas (CO2 gas or N2 gas) as raw materials are supplied as sources. Supply from 2 and 3. The flow rate of the gas (first gas and second gas) is controlled by the flow rate controllers 4 and 5. On the other hand, water (ultra pure water) as a raw material is supplied from a supply source 9. The flow rate of water is measured by the flow meter 12. In the present embodiment, the flow rate controllers 4 and 5 control the flow rate of the gas according to the flow rate of water measured by the flow meter 12, as indicated by broken line arrows in FIG.
 第1ガスと第2ガスは、圧力センサ6で圧力を測定された後、オゾンガス生成部7へ送られる。オゾンガス生成部7では、放電によって、第1ガス(O2ガス)と第2ガス(CO2ガスまたはN2ガス)からオゾンガスが生成される。生成されたオゾンガスは、オゾン水生成部8へ送られる。一方、原料となる水は、流量計12で流量が測定された後、昇圧ポンプ13へ送られ、昇圧ポンプ13で圧力を調整された後、オゾン水生成部8へ送られる。昇圧ポンプ13は、0.1MPa~1MPaの圧力範囲内で、オゾン水生成部8へ送る水の圧力を制御する機能を備えている。このような昇圧ポンプ13として、例えば、遠心ポンプが用いられる。本実施の形態では、昇圧ポンプ13は、圧力センサ17により測定されるオゾン水の圧力が一定となるように、水の圧力を制御する。このとき、水の圧力とオゾンガスの圧力との差圧は、150KPa以内であることが望ましい。 The first gas and the second gas are sent to the ozone gas generation unit 7 after the pressure is measured by the pressure sensor 6. In the ozone gas generation unit 7, ozone gas is generated from the first gas (O 2 gas) and the second gas (CO 2 gas or N 2 gas) by discharge. The generated ozone gas is sent to the ozone water generator 8. On the other hand, after the flow rate is measured by the flow meter 12, the raw material water is sent to the booster pump 13, the pressure is adjusted by the booster pump 13, and then sent to the ozone water generator 8. The booster pump 13 has a function of controlling the pressure of water sent to the ozone water generator 8 within a pressure range of 0.1 MPa to 1 MPa. As such a booster pump 13, for example, a centrifugal pump is used. In the present embodiment, the booster pump 13 controls the water pressure so that the pressure of the ozone water measured by the pressure sensor 17 is constant. At this time, the differential pressure between the water pressure and the ozone gas pressure is preferably within 150 KPa.
 オゾン水生成部8の混合器14では、オゾンガスと水を混合してオゾン水が生成され、生成されたオゾン水は、気液分離タンク15に送られる。気液分離タンク15では、オゾン水とガス(排ガス)が分離され、気液分離されたオゾン水は、圧力センサ17で圧力が測定され、バルブ18を介してユースポイント19(例えば、多チャンバー式の枚葉型洗浄装置など)に送られる。 In the mixer 14 of the ozone water generator 8, ozone gas and water are mixed to generate ozone water, and the generated ozone water is sent to the gas-liquid separation tank 15. In the gas-liquid separation tank 15, ozone water and gas (exhaust gas) are separated, and the pressure of the ozone water separated into gas and liquid is measured by a pressure sensor 17, and a use point 19 (for example, a multi-chamber type) is connected via a valve 18. To a single wafer cleaning device).
 このような本実施の形態のオゾン水製造装置1によれば、ユースポイント19に供給されるオゾン水の圧力が一定となるように、水の圧力が制御されるとともに、オゾン水生成部8に供給される水の流量に応じてガスの流量が制御されるので、ユースポイント19で必要とされる分だけオゾン水が製造される。 According to the ozone water production apparatus 1 of this embodiment, the pressure of water is controlled so that the pressure of the ozone water supplied to the use point 19 is constant, and the ozone water generation unit 8 Since the flow rate of the gas is controlled according to the flow rate of the supplied water, ozone water is produced by the amount required at the use point 19.
 例えば、ユースポイント19で大量のオゾン水が必要とされる場合、ユースポイント19に供給されるオゾン水の圧力が一定とされるので、大量の水がオゾン水生成部8に供給されることになり、その水の量に応じてオゾン水生成部8に大量のガスが供給される。その結果、大量のオゾン水が製造される。 For example, when a large amount of ozone water is required at the use point 19, since the pressure of the ozone water supplied to the use point 19 is constant, a large amount of water is supplied to the ozone water generation unit 8. Thus, a large amount of gas is supplied to the ozone water generator 8 according to the amount of the water. As a result, a large amount of ozone water is produced.
 一方、ユースポイント19で少量のオゾン水しか必要とされない場合、ユースポイント19に供給されるオゾン水の圧力が一定とされるので、少量の水がオゾン水生成部8に供給されることになり、その水の量に応じてオゾン水生成部8に少量のガスが供給される。その結果、少量のオゾン水が製造される。これにより、従来に比べて、使用ガス量を削減することが可能になる。また、従来に比べて、排水量の削減も可能になる。 On the other hand, when only a small amount of ozone water is required at the use point 19, the pressure of the ozone water supplied to the use point 19 is kept constant, so that a small amount of water is supplied to the ozone water generation unit 8. A small amount of gas is supplied to the ozone water generation unit 8 according to the amount of water. As a result, a small amount of ozone water is produced. Thereby, it becomes possible to reduce the amount of gas used compared with the past. In addition, the amount of drainage can be reduced as compared with the prior art.
 このように、本実施の形態のオゾン水製造装置1では、ユースポイント19で必要とされるオゾン水の流量が変動した場合であっても、ユースポイント19で必要とされる分だけ一定濃度(一定圧力)のオゾン水を供給することができる。したがって、多チャンバー式枚葉型洗浄装置に適している。また、本実施の形態のオゾン水製造装置1では、オゾン水を循環させる必要がないので、従来のように、循環によるオゾン水の温度上昇や汚れ発生に対策を講じる必要がない。 As described above, in the ozone water production apparatus 1 according to the present embodiment, even when the flow rate of ozone water required at the use point 19 fluctuates, the concentration required for the use point 19 is constant ( (Constant pressure) ozone water can be supplied. Therefore, it is suitable for a multi-chamber type single wafer cleaning apparatus. Moreover, in the ozone water manufacturing apparatus 1 of this Embodiment, since it is not necessary to circulate ozone water, it is not necessary to take measures against the temperature rise of ozone water by a circulation and generation | occurrence | production of dirt like the past.
 また、本実施の形態のオゾン水製造装置1では、高圧力(0.1MPa~1MPa)に昇圧された状態で水とガスが混合されるので、高濃度のオゾン水を製造することができる。 Moreover, in the ozone water production apparatus 1 of the present embodiment, since water and gas are mixed in a state where the pressure is increased to a high pressure (0.1 MPa to 1 MPa), high concentration ozone water can be produced.
 また、本実施の形態のオゾン水製造装置1では、ベンチュリー効果を利用することにより、ガスと水を効率よく混合することが可能になる。 Moreover, in the ozone water production apparatus 1 according to the present embodiment, gas and water can be efficiently mixed by utilizing the Venturi effect.
 また、本実施の形態のオゾン水製造装置1では、脱気処理によって水の中の余剰ガスを除去することができるので、オゾンガスを水に溶解し易くすることが可能になる。 Further, in the ozone water production apparatus 1 of the present embodiment, surplus gas in the water can be removed by the deaeration process, so that the ozone gas can be easily dissolved in water.
 また、本実施の形態のオゾン水製造装置1では、オゾンガスの生成に用いる放電用の電極の保持部材75の強度を十分に高いので、高圧力(0.1MPa~1MPa)のオゾンガスを生成することが可能になる。 Further, in the ozone water producing apparatus 1 of the present embodiment, since the strength of the discharge electrode holding member 75 used for generating ozone gas is sufficiently high, ozone gas having a high pressure (0.1 MPa to 1 MPa) is generated. Is possible.
(第2の実施の形態)
 次に、本発明の第2の実施の形態のオゾン水製造装置について説明する。ここでは、第2の実施の形態のオゾン水製造装置が、第1の実施の形態と相違する点を中心に説明する。ここで特に言及しない限り、本実施の形態の構成および動作は、第1の実施の形態と同様である。
(Second Embodiment)
Next, an ozone water production apparatus according to a second embodiment of the present invention will be described. Here, it demonstrates centering on the point from which the ozone water manufacturing apparatus of 2nd Embodiment differs from 1st Embodiment. Unless otherwise specified, the configuration and operation of the present embodiment are the same as those of the first embodiment.
 図5は、第2の実施の形態のオゾン水製造装置の構成を示す説明図である。図5に示すように、本実施の形態のオゾン水製造装置1は、オゾン水の原料となる第1ガス(O2ガス)と第2ガス(CO2ガスまたはN2ガス)の流量制御を行うための制御部26を備えている。 FIG. 5 is an explanatory diagram showing the configuration of the ozone water production apparatus according to the second embodiment. As shown in FIG. 5, the ozone water production apparatus 1 of the present embodiment performs flow control of the first gas (O 2 gas) and the second gas (CO 2 gas or N 2 gas) that are raw materials for ozone water. A control unit 26 is provided.
 この制御部26は、オゾン水濃度計20により測定されるオゾン水濃度(実測値)と、目標とするオゾン水濃度(目標値)とのずれに基づいて、オゾン水の原料となる第1ガス(O2ガス)と第2ガス(CO2ガスまたはN2ガス)の流量を制御する。この場合、制御部26は、オゾン水濃度の実測値と目標値とのずれを小さくする(ずれをなくす)ように、第1ガスと第2ガスの総流量にフィードバック制御をかける。 The control unit 26 is a first gas that is a raw material for ozone water based on the difference between the ozone water concentration (measured value) measured by the ozone water concentration meter 20 and the target ozone water concentration (target value). The flow rates of (O2 gas) and second gas (CO2 gas or N2 gas) are controlled. In this case, the control unit 26 applies feedback control to the total flow rate of the first gas and the second gas so as to reduce (eliminate) the deviation between the actually measured value and the target value of the ozone water concentration.
 具体的には、図6に示すように、オゾン水濃度の実測値が目標値より大きい場合には、ガス(第1ガスと第2ガスの総流量を減らすように流量補正をし、オゾン水濃度の実測値が目標値より小さい場合には、ガス(第1ガスと第2ガス)の総流量を増やすように流量補正をする。 Specifically, as shown in FIG. 6, when the measured value of the ozone water concentration is larger than the target value, the flow rate is corrected so as to reduce the total flow rate of the gas (first gas and second gas, When the measured value of the concentration is smaller than the target value, the flow rate is corrected so as to increase the total flow rate of the gas (first gas and second gas).
 このような第2の実施の形態のオゾン水製造装置1によっても、第1の実施の形態と同様の作用効果が奏される。 Also with the ozone water production apparatus 1 according to the second embodiment, the same effects as those of the first embodiment can be obtained.
 その上、本実施の形態では、制御部26によって第1ガスと第2ガスの総流量にフィードバック制御がかけられるので、オゾン水濃度の実測値と目標値とのずれを小さくする(ずれをなくす)ことが可能である。したがって、一定期間(例えば数日)運転しなかった後に運転を再開する場合など、オゾン水濃度の実測値と目標値にずれが生じやすい場合にも、目標値に近い濃度のオゾン水を製造することができる。 In addition, in the present embodiment, since the control unit 26 performs feedback control on the total flow rate of the first gas and the second gas, the deviation between the measured value of the ozone water concentration and the target value is reduced (the deviation is eliminated). )Is possible. Therefore, ozone water having a concentration close to the target value is produced even when the measured value of the ozone water concentration tends to be different from the target value, such as when the operation is restarted after not operating for a certain period (for example, several days). be able to.
 以上、本発明の実施の形態を例示により説明したが、本発明の範囲はこれらに限定されるものではなく、請求項に記載された範囲内において目的に応じて変更・変形することが可能である。 The embodiments of the present invention have been described above by way of example, but the scope of the present invention is not limited to these embodiments, and can be changed or modified according to the purpose within the scope of the claims. is there.
 例えば、以上の説明では、オゾンガスと水を混合してオゾン水を製造するオゾン水製造装置1について説明したが、オゾンガス以外のガス(例えば、H2、CO2、O2、N2、Ar、Xeなどのガス)と水を混合したガス溶解水を製造することも可能である。 For example, the above description has described the ozone water production apparatus 1 for manufacturing ozone water by mixing ozone gas and water, other than the ozone gas (e.g., H 2, CO 2, O 2, N 2, Ar, It is also possible to produce gas-dissolved water in which a gas such as Xe) and water are mixed.
 以上に現時点で考えられる本発明の好適な実施の形態を説明したが、本実施の形態に対して多様な変形が可能なことが理解され、そして、本発明の真実の精神と範囲内にあるそのようなすべての変形を添付の請求の範囲が含むことが意図されている。 Although the presently preferred embodiments of the present invention have been described above, it will be understood that various modifications can be made to the present embodiments and are within the true spirit and scope of the present invention. It is intended that the appended claims include all such variations.
 以上のように、本発明にかかるガス溶解水製造装置は、循環によるガス溶解水の温度上昇や汚れ発生に対策を講じる必要がなく、ユースポイントで必要とされる分だけガス溶解水を製造することができるという効果を有し、例えば半導体デバイスや液晶などの電子部品の洗浄に用いられるオゾン水製造装置等として有用である。 As described above, the gas-dissolved water production apparatus according to the present invention does not need to take measures against the temperature rise or dirt generation due to circulation, and produces gas-dissolved water as much as needed at the point of use. For example, it is useful as an ozone water production apparatus used for cleaning electronic components such as semiconductor devices and liquid crystals.
 1 オゾン水製造装置(ガス溶解水製造装置)
 2 供給源
 3 供給源
 4 流量コントローラ(ガス流量制御部)
 5 流量コントローラ(ガス流量制御部)
 6 圧力センサ
 7 オゾンガス生成部
 8 オゾン水生成部(ガス溶解水生成部)
 9 供給源
 10 脱気処理部
 11 バルブ
 12 流量計(水流量測定部)
 13 昇圧ポンプ(水圧力制御部)
 14 混合器
 15 気液分離タンク
 16 水位センサ
 17 圧力センサ(圧力測定部)
 18 バルブ
 19 ユースポイント
 70 放電体
 72 高圧電極(電極)
 75 保持部材
1 Ozone water production equipment (gas dissolved water production equipment)
2 Supply source 3 Supply source 4 Flow rate controller (gas flow rate control unit)
5 Flow controller (Gas flow controller)
6 Pressure sensor 7 Ozone gas generator 8 Ozone water generator (gas dissolved water generator)
9 Supply source 10 Deaeration processing unit 11 Valve 12 Flow meter (Water flow rate measurement unit)
13 Booster pump (water pressure control unit)
14 Mixer 15 Gas-Liquid Separation Tank 16 Water Level Sensor 17 Pressure Sensor (Pressure Measurement Unit)
18 Valve 19 Use point 70 Discharge body 72 High voltage electrode (electrode)
75 Holding member

Claims (8)

  1.  原料となるガスの流量を制御するガス流量制御部と、
     原料となる水の流量を測定する水流量測定部と、
     前記水の圧力を制御する水圧力制御部と、
     前記ガスと前記水を混合してガス溶解水を生成するガス溶解水生成部と、
     ユースポイントに供給される前記ガス溶解水の圧力を測定する圧力測定部と、
    を備え、
     前記水圧力制御部は、前記圧力測定部により測定される前記ガス溶解水の圧力が一定となるように、前記水の圧力を制御し、
     前記ガス流量制御部は、前記水流量測定部により測定される前記水の流量に応じて、前記ガスの流量を制御する、ガス溶解水製造装置。
    A gas flow rate control unit for controlling the flow rate of the raw material gas;
    A water flow rate measurement unit for measuring the flow rate of the raw material water,
    A water pressure control unit for controlling the pressure of the water;
    A gas-dissolved water generator that mixes the gas and the water to generate gas-dissolved water;
    A pressure measuring unit for measuring the pressure of the gas-dissolved water supplied to the use point;
    With
    The water pressure control unit controls the pressure of the water so that the pressure of the gas-dissolved water measured by the pressure measurement unit is constant,
    The gas flow control unit is a gas-dissolved water manufacturing apparatus that controls the flow rate of the gas according to the flow rate of the water measured by the water flow rate measurement unit.
  2.  前記ガス溶解水の濃度を測定する濃度測定部と、
     前記濃度測定部により測定される前記ガス溶解水の濃度に基づいて、前記ガス溶解水の濃度の実測値と目標値とのずれを小さくするように前記ガスの流量を制御する制御部と、を備える、請求項1に記載のガス溶解水製造装置。
    A concentration measuring unit for measuring the concentration of the gas-dissolved water;
    A control unit for controlling the flow rate of the gas so as to reduce the deviation between the actual value and the target value of the concentration of the gas dissolved water based on the concentration of the gas dissolved water measured by the concentration measuring unit; The gas-dissolved water manufacturing apparatus according to claim 1 provided.
  3.  前記水圧力制御部は、0.1MPa~1MPaの圧力範囲内で、前記水の圧力を制御する、請求項1に記載のガス溶解水製造装置。 2. The gas-dissolved water production apparatus according to claim 1, wherein the water pressure control unit controls the pressure of the water within a pressure range of 0.1 MPa to 1 MPa.
  4.  前記ガス溶解水生成部は、ベンチュリー効果を利用して前記ガスと前記水を混合する混合器を備える、請求項1に記載のガス溶解水製造装置。 The gas-dissolved water producing device according to claim 1, wherein the gas-dissolved water generating unit includes a mixer that mixes the gas and the water using a venturi effect.
  5.  前記ガス溶解水生成部に供給される前記水を脱気処理する脱気処理部を備える、請求項1に記載のガス溶解水製造装置。 The gas-dissolved water production apparatus according to claim 1, further comprising a degassing unit that degasses the water supplied to the gas-dissolved water generating unit.
  6.  前記原料となるガスはオゾンガスであり、前記ガス溶解水はオゾン水である、請求項1に記載のガス溶解水製造装置。 The gas dissolved water production apparatus according to claim 1, wherein the raw material gas is ozone gas, and the gas dissolved water is ozone water.
  7.  前記オゾンガスを生成するオゾンガス生成部を備え、
     前記オゾンガス生成部は、前記オゾンガスの生成に用いる放電用の電極を備えており、
     前記電極を保持する保持部材は、ステンレス鋼を材料とし、10mm以上の肉厚を有する、請求項6に記載のガス溶解水製造装置。
    An ozone gas generation unit for generating the ozone gas;
    The ozone gas generating unit includes an electrode for discharge used for generating the ozone gas,
    The gas dissolved water manufacturing apparatus according to claim 6, wherein the holding member that holds the electrode is made of stainless steel and has a thickness of 10 mm or more.
  8.  原料となるガスの流量を制御するガス流量制御工程と、
     原料となる水の流量を測定する水流量測定工程と、
     前記水の圧力を制御する水圧力制御工程と、
     前記ガスと前記水を混合してガス溶解水を生成するガス溶解水生成工程と、
     ユースポイントに供給される前記ガス溶解水の圧力を測定する圧力測定工程と、
    を含み、
     前記水圧力制御工程では、前記圧力測定工程で測定される前記ガス溶解水の圧力が一定となるように、前記水の圧力を制御し、
     前記ガス流量制御工程では、前記水流量測定工程で測定される前記水の流量に応じて、前記ガスの流量を制御することを特徴とするガス溶解水製造方法。
    A gas flow rate control step for controlling the flow rate of the raw material gas;
    A water flow measurement step for measuring the flow rate of the raw water,
    A water pressure control step for controlling the pressure of the water;
    A gas-dissolved water generating step of generating gas-dissolved water by mixing the gas and the water;
    A pressure measuring step for measuring the pressure of the gas-dissolved water supplied to the use point;
    Including
    In the water pressure control step, the water pressure is controlled so that the pressure of the gas-dissolved water measured in the pressure measurement step is constant,
    In the gas flow rate control step, the gas flow rate is controlled in accordance with the water flow rate measured in the water flow rate measurement step.
PCT/JP2015/004586 2014-09-18 2015-09-09 Device and method for manufacturing gas-dissolved water WO2016042740A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580050402.5A CN106714954A (en) 2014-09-18 2015-09-09 Device and method for manufacturing gas-dissolved water
EP15842759.1A EP3195926A4 (en) 2014-09-18 2015-09-09 Device and method for manufacturing gas-dissolved water
KR1020177007266A KR20170058928A (en) 2014-09-18 2015-09-09 Device and method for manufacturing gas-dissolved water
SG11201702242PA SG11201702242PA (en) 2014-09-18 2015-09-09 Gas-dissolved water production device and production method
US15/511,803 US20170282132A1 (en) 2014-09-18 2015-09-09 Gas-dissolved water production device and production method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014189639 2014-09-18
JP2014-189639 2014-09-18
JP2014240990A JP2016064386A (en) 2014-09-18 2014-11-28 Gas dissolved water production device and method
JP2014-240990 2014-11-28

Publications (1)

Publication Number Publication Date
WO2016042740A1 true WO2016042740A1 (en) 2016-03-24

Family

ID=55532798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004586 WO2016042740A1 (en) 2014-09-18 2015-09-09 Device and method for manufacturing gas-dissolved water

Country Status (1)

Country Link
WO (1) WO2016042740A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09906A (en) * 1995-06-21 1997-01-07 Ishikawajima Harima Heavy Ind Co Ltd Ozonized water producing device and its method
JP2000107509A (en) * 1998-10-02 2000-04-18 Kurita Water Ind Ltd Method and apparatus for preparation of pressurized water
JP2002020105A (en) * 2000-06-29 2002-01-23 Ebara Corp Ozone generating device
JP2003334433A (en) * 2002-05-16 2003-11-25 Kurita Water Ind Ltd Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water
JP2008012512A (en) * 2006-06-08 2008-01-24 Sanyo Electric Co Ltd Water-ozone mixing device, water purifying device, ozone water generation device, gas-liquid mixer, and check valve
JP2009114003A (en) * 2007-11-02 2009-05-28 Metawater Co Ltd Ozone production device
JP2010207724A (en) * 2009-03-10 2010-09-24 Yamatake Corp Gas dissolving system, gas dissolving method, and gas dissolving program
JP2010234298A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Device for supplying water containing dissolved gas and method for producing water containing dissolved gas
JP2012196589A (en) * 2011-03-18 2012-10-18 Sharp Corp Ozone solution generator and generating method thereof
JP2013103205A (en) * 2011-11-16 2013-05-30 Icst:Kk High concentration oxygen water production apparatus, high concentration oxygen water watering apparatus, and high concentration oxygen water production method
JP2014166629A (en) * 2013-02-04 2014-09-11 Matsumura Akiko Gas-liquid mixing device, gas dissolving liquid, ozone water generating system, water treating system and decontaminating method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09906A (en) * 1995-06-21 1997-01-07 Ishikawajima Harima Heavy Ind Co Ltd Ozonized water producing device and its method
JP2000107509A (en) * 1998-10-02 2000-04-18 Kurita Water Ind Ltd Method and apparatus for preparation of pressurized water
JP2002020105A (en) * 2000-06-29 2002-01-23 Ebara Corp Ozone generating device
JP2003334433A (en) * 2002-05-16 2003-11-25 Kurita Water Ind Ltd Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water
JP2008012512A (en) * 2006-06-08 2008-01-24 Sanyo Electric Co Ltd Water-ozone mixing device, water purifying device, ozone water generation device, gas-liquid mixer, and check valve
JP2009114003A (en) * 2007-11-02 2009-05-28 Metawater Co Ltd Ozone production device
JP2010207724A (en) * 2009-03-10 2010-09-24 Yamatake Corp Gas dissolving system, gas dissolving method, and gas dissolving program
JP2010234298A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Device for supplying water containing dissolved gas and method for producing water containing dissolved gas
JP2012196589A (en) * 2011-03-18 2012-10-18 Sharp Corp Ozone solution generator and generating method thereof
JP2013103205A (en) * 2011-11-16 2013-05-30 Icst:Kk High concentration oxygen water production apparatus, high concentration oxygen water watering apparatus, and high concentration oxygen water production method
JP2014166629A (en) * 2013-02-04 2014-09-11 Matsumura Akiko Gas-liquid mixing device, gas dissolving liquid, ozone water generating system, water treating system and decontaminating method

Similar Documents

Publication Publication Date Title
JP2016064386A (en) Gas dissolved water production device and method
CN108472610B (en) Apparatus and method for producing supply liquid
WO2015125500A1 (en) Ozone water supply method and ozone water supply device
TWI795559B (en) Production method of ozone water
WO2017122771A1 (en) Supply-liquid producing apparatus and supply-liquid producing method
US10710030B2 (en) Gas solution production apparatus
KR19990007226A (en) Method for producing cleaning liquid and apparatus therefor
JP2014093357A (en) Method for manufacturing ozone gas dissolved water and method for cleaning electronic material
JP2014117628A (en) Circulation type method and apparatus for supplying ozone water
JP2009112979A (en) Apparatus and method for producing ozone water
JP2019155221A (en) Circulation type gas dissolution liquid supply device and circulation type gas dissolution liquid supply method
US20050241673A1 (en) Resist removing apparatus and method of removing resist
US20180353911A1 (en) Gas solution production apparatus
US6039814A (en) Cleaning method utilizing degassed cleaning liquid with applied ultrasonics
WO2016042740A1 (en) Device and method for manufacturing gas-dissolved water
JP2010218801A (en) Atmospheric-pressure plasma generator
JP2005216908A (en) Apparatus and method of treating object
JP5358910B2 (en) Carbonated water manufacturing apparatus and manufacturing method
JP2022185727A (en) Supplied liquid manufacturing apparatus
US20240075410A1 (en) Gas solution supply apparatus
WO2024190530A1 (en) Substrate cleaning device, substrate cleaning method, and semiconductor device manufacturing method
JP2010123893A (en) Etching method and etching device
JP2019150760A (en) Ozone-dissolved water manufacturing apparatus and ozone-dissolved water manufacturing method
KR101222491B1 (en) Production apparatus and method of equal concentration functional water for batch type and in-line type of siliconwafer
JP2018181685A (en) Plasma processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842759

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177007266

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15511803

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015842759

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015842759

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE