JP2000197815A - Device for making ozone-dissolved water - Google Patents

Device for making ozone-dissolved water

Info

Publication number
JP2000197815A
JP2000197815A JP11003177A JP317799A JP2000197815A JP 2000197815 A JP2000197815 A JP 2000197815A JP 11003177 A JP11003177 A JP 11003177A JP 317799 A JP317799 A JP 317799A JP 2000197815 A JP2000197815 A JP 2000197815A
Authority
JP
Japan
Prior art keywords
water
dissolved
oxygen
ozone
dissolved water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11003177A
Other languages
Japanese (ja)
Inventor
Junichi Ida
純一 井田
Hiroshi Morita
博志 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP11003177A priority Critical patent/JP2000197815A/en
Publication of JP2000197815A publication Critical patent/JP2000197815A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily make extremely high-purity ozone-dissolved water by providing the device with a deaeration device for making deaerated water from ultrapure water, an oxygen dissolving device for making oxygen-dissolved water by dissolving oxygen into the deaerated water and an ultraviolet radiation device for making the ozone-dissolved water by emitting ultraviolet rays to the oxygen-dissolved water. SOLUTION: Ultrapure water is supplied to a deaeration device 2 whose gas chamber is subjected to pressure reduction by an evacuation pump 1 and gas dissolved in the water is deaerated to flow out as deaerated water. Oxygen is fed by an oxygen dissolving device 3 to be dissolved into the deaerated water through an oxygen permeable membrane and the oxygen-dissolved water flows out. This oxygen-dissolved water is further sent to an ultraviolet emission device 4, where the oxygen-dissolved water receives the radiation of ultraviolet rays, and a part or the whole of the dissolved oxygen is converted to ozone, and as ozone-dissolved water it flows out. The ultraviolet radiation device 4 preferably has a radiation source capable of emitting ultraviolet rays of about 185 nm wavelength. Consequently, it is possible to make ozone-dissolved water of a high purity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、オゾン溶解水の製
造装置に関する。さらに詳しくは、本発明は、電子材料
などのウェット洗浄工程で洗浄水として用いられる極め
て純度の高いオゾン溶解水を容易に製造することがで
き、所要の濃度のオゾン溶解水を各ユースポイントに供
給することができるオゾン溶解水の製造装置に関する。
The present invention relates to an apparatus for producing ozone-dissolved water. More specifically, the present invention can easily produce extremely high-purity ozone-dissolved water used as washing water in a wet washing step for electronic materials and the like, and supply a required concentration of ozone-dissolved water to each use point. The present invention relates to an apparatus for producing ozone-dissolved water.

【0002】[0002]

【従来の技術】半導体用シリコン基板、液晶用ガラス基
板、フォトマスク用石英基板などの電子材料の表面か
ら、微粒子、有機物、金属などを除去することは、製品
の品質と歩留まりを確保する上で極めて重要である。こ
の目的のために、いわゆるRCA洗浄法と呼ばれる過酸
化水素をベースとする濃厚薬液による高温でのウェット
洗浄が行われ、アンモニアと過酸化水素水の混合溶液
(APM)や塩酸と過酸化水素水の混合溶液(HPM)
などが用いられていた。これらの洗浄法を採用した場合
の多大な薬液コスト、リンス用の超純水コスト、廃液処
理コスト、薬品蒸気を排気し新たに清浄空気を調製する
空調コストなどを低減し、さらに水の大量使用、薬物の
大量廃棄、排ガスの放出などの環境への負荷を低減する
ために、近年ウェット洗浄工程の見直しが進められてい
る。本発明者らは、先に純水にオゾンを溶解した電子材
料洗浄用のオゾン溶解水を開発した。オゾン溶解水は、
溶存オゾン濃度が数mg/リットル程度の低濃度でありな
がら、極めて高い酸化力を発揮し、電子材料表面に付着
した有機物や金属などの不純物による汚染を除去する工
程や、シリコン基板の表面を均一に酸化してケミカル酸
化膜層を形成する工程などで活用されている。オゾン溶
解水は、残留性がないので被洗浄物の表面を清浄に保
ち、また、オゾンの分解又は除去によりふたたび高純度
の水となり、再利用することができるという利点も有す
る。オゾン溶解水は、オゾン発生器で製造したオゾン含
有ガスを水に溶解することにより製造することができ
る。オゾン発生器には、空気又は酸素を原料とし、電極
間で無声放電を行うことによりオゾンを発生させる装置
や、白金又は過酸化鉛電極を用いて希硫酸を電気分解す
ることによりオゾンを発生させる装置などがある。オゾ
ンの溶解方法としては、オゾン含有ガスを水中にバブリ
ングさせて直接気液を接触させたり、あるいは、気体透
過膜モジュールを用い、疎水性の気体透過膜を介して気
相から液相へオゾンを移動させる方法が実用化されてい
る。気体透過膜モジュールを用いると、溶存オゾン濃度
の比較的安定した、気泡を含まないオゾン溶解水を得る
ことができる。オゾンの水への溶解処理においては、高
い溶解率で気相のオゾンを水相に移動させることが重要
であり、オゾン溶解水を使用する際には、自己分解によ
り経時的に減少する溶存オゾン濃度を、実質的に一定に
保つことが最大の課題である。また、電子材料などのウ
ェット洗浄用のオゾン溶解水の製造においては、高純度
のオゾン水を調製することも重要な課題である。ウェッ
ト洗浄用のオゾン溶解水は、一般的に超純水に高純度の
オゾン含有ガスを溶解することにより製造されるが、通
常のオゾン発生器を用いると、オゾン発生時の電極のス
パッタリングにより、オゾン含有ガス中に不純物として
金属分が混入するおそれがある。このために、電極をセ
ラミックや石英でコーティングし、金属分の混入を抑え
ることにより対応されてきた。しかし、より簡単かつ容
易に高純度のオゾン溶解水を製造することができる装置
が求められるようになった。オゾン溶解水は、電子産業
分野におけるウェット洗浄に限らず、医薬品工業、食品
工業などの分野でも、洗浄、殺菌などに広く利用されて
いるので、高純度という点を除外しても、オゾン溶解水
を簡便に製造し得る装置について、多方面から強い要求
が出されている。
2. Description of the Related Art Removal of fine particles, organic substances, metals, and the like from the surface of electronic materials such as silicon substrates for semiconductors, glass substrates for liquid crystals, and quartz substrates for photomasks is necessary to ensure product quality and yield. Very important. For this purpose, wet cleaning is performed at a high temperature using a concentrated chemical based on hydrogen peroxide, which is a so-called RCA cleaning method, and a mixed solution of ammonia and hydrogen peroxide (APM) or hydrochloric acid and hydrogen peroxide is used. Mixed solution (HPM)
And so on. The use of these cleaning methods reduces the cost of chemical solutions, the cost of ultrapure water for rinsing, the cost of waste liquid treatment, and the cost of air conditioning that exhausts chemical vapors and prepares fresh air. In recent years, the wet cleaning process has been reviewed in order to reduce the burden on the environment such as mass disposal of drugs and emission of exhaust gas. The present inventors have previously developed ozone-dissolved water for cleaning electronic materials in which ozone is dissolved in pure water. Ozone-dissolved water is
Despite having a low dissolved ozone concentration of only a few mg / liter, it exhibits extremely high oxidizing power and removes contamination by impurities such as organic substances and metals attached to the surface of electronic materials. It is used in the process of oxidizing to form a chemical oxide film layer. The ozone-dissolved water has the advantage that the surface of the object to be cleaned is kept clean because there is no residual property, and the ozone-dissolved water becomes high-purity water again by decomposing or removing the ozone and can be reused. Ozone-dissolved water can be produced by dissolving ozone-containing gas produced by an ozone generator in water. The ozone generator uses air or oxygen as a raw material and generates ozone by performing silent discharge between the electrodes, or generates ozone by electrolyzing dilute sulfuric acid using a platinum or lead peroxide electrode. There are devices. As a method for dissolving ozone, an ozone-containing gas is bubbled into water to directly contact gas-liquid, or a gas-permeable membrane module is used to convert ozone from a gas phase into a liquid phase through a hydrophobic gas-permeable membrane. Movement methods have been put to practical use. When the gas permeable membrane module is used, ozone-dissolved water having a relatively stable dissolved ozone concentration and containing no air bubbles can be obtained. In the process of dissolving ozone in water, it is important to transfer gaseous ozone to the aqueous phase at a high dissolution rate, and when using ozone-dissolved water, the dissolved ozone that decreases over time due to self-decomposition The biggest challenge is to keep the concentration substantially constant. In addition, in the production of ozone-dissolved water for wet cleaning of electronic materials and the like, it is also important to prepare high-purity ozone water. Ozone-dissolved water for wet cleaning is generally produced by dissolving a high-purity ozone-containing gas in ultrapure water. There is a possibility that a metal component may be mixed as an impurity into the ozone-containing gas. For this purpose, the electrodes have been coated with ceramics or quartz to suppress mixing of metal components. However, an apparatus that can more easily and easily produce high-purity ozone-dissolved water has been required. Ozone-dissolved water is widely used not only in wet cleaning in the electronics industry but also in the pharmaceutical and food industries for cleaning and disinfection. There has been a strong demand from various fields for an apparatus that can easily produce.

【0003】[0003]

【発明が解決しようとする課題】本発明は、電子材料な
どのウェット洗浄工程で洗浄水として用いられる極めて
純度の高いオゾン溶解水を容易に製造することができ、
所要の濃度のオゾン溶解水を各ユースポイントに供給す
ることができるオゾン溶解水の製造装置を提供すること
を目的としてなされたものである。
The present invention makes it possible to easily produce extremely pure ozone-dissolved water used as washing water in a wet washing step for electronic materials and the like,
An object of the present invention is to provide an apparatus for producing ozone-dissolved water that can supply ozone-dissolved water having a required concentration to each use point.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、超純水を脱気し
て脱気水としたのち、酸素を溶解して高濃度の酸素溶解
水を調製し、この酸素溶解水に紫外線を照射することに
より、金属分が不純物として混入しない高純度のオゾン
溶解水を容易に得ることができ、また、紫外線照射装置
をユースポイントの近傍に設置することにより、所要の
濃度のオゾン溶解水を安定してユースポイントに供給し
得ることを見いだし、この知見に基づいて本発明を完成
するに至った。すなわち、本発明は、(1)超純水を脱
気して脱気水を得る脱気装置、脱気水に酸素を溶解して
酸素溶解水を得る酸素溶解装置及び酸素溶解水に紫外線
を照射してオゾン溶解水を得る紫外線照射装置を有する
ことを特徴とするオゾン溶解水の製造装置、を提供する
ものである。さらに、本発明の好ましい態様として、
(2)脱気装置が、脱気膜モジュールである第(1)項記
載のオゾン溶解水の製造装置、(3)酸素溶解装置が、
酸素透過膜モジュールである第(1)項記載のオゾン溶解
水の製造装置、(4)酸素溶解水の溶存酸素濃度が10
mg/リットル以上である第(1)項記載のオゾン溶解水の
製造装置、(5)酸素溶解水の溶存酸素濃度が20mg/
リットル以上である第(4)項記載のオゾン溶解水の製造
装置、(6)紫外線照射装置が、波長185nm付近の
紫外線を照射する第(1)項記載のオゾン溶解水の製造装
置、及び、(7)紫外線照射装置内部が加圧状態に維持
された第(1)項記載のオゾン溶解水の製造装置、を挙げ
ることができる。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, after degassing ultrapure water to form degassed water, dissolve oxygen to increase the purity. By preparing oxygen-dissolved water having a high concentration and irradiating the oxygen-dissolved water with ultraviolet rays, it is possible to easily obtain high-purity ozone-dissolved water in which metals are not mixed as impurities. It has been found that the ozone-dissolved water having a required concentration can be stably supplied to the use point by installing the device in the vicinity of the device, and the present invention has been completed based on this finding. That is, the present invention provides (1) a deaerator for deaerated ultrapure water to obtain deaerated water, an oxygen dissolver for dissolving oxygen in the deaerated water to obtain oxygen-dissolved water, and an ultraviolet ray for the oxygen-dissolved water. It is intended to provide an apparatus for producing ozone-dissolved water, which has an ultraviolet irradiation apparatus for obtaining ozone-dissolved water by irradiation. Further, as a preferred embodiment of the present invention,
(2) The apparatus for producing ozone-dissolved water according to item (1), wherein the deaerator is a deaerator module, and (3) the oxygen-dissolver is:
(4) The apparatus for producing ozone-dissolved water according to (1), which is an oxygen-permeable membrane module;
(1) The apparatus for producing ozone-dissolved water according to item (1), wherein the concentration of dissolved oxygen is 20 mg / liter or more.
(4) The apparatus for producing ozone-dissolved water according to item (4), which is not less than 1 liter, (6) the apparatus for producing ozone-dissolved water according to item (1), wherein the ultraviolet irradiation device irradiates ultraviolet light having a wavelength of about 185 nm, and (7) The apparatus for producing ozone-dissolved water according to (1), wherein the inside of the ultraviolet irradiation device is maintained in a pressurized state.

【0005】[0005]

【発明の実施の形態】本発明のオゾン溶解水の製造装置
は、超純水を脱気して脱気水を得る脱気装置、脱気水に
酸素を溶解して酸素溶解水を得る酸素溶解装置及び酸素
溶解水に紫外線を照射してオゾン溶解水を得る紫外線照
射装置を有するものである。図1は、本発明のオゾン溶
解水の製造装置の一態様の工程系統図である。減圧ポン
プ1により気体室を減圧にした脱気装置2に、超純水が
供給され、溶解している気体が脱気され、脱気水となっ
て流出する。脱気水は、次いで酸素溶解装置3に送られ
る。酸素溶解装置においては、気体室に酸素が送り込ま
れ、酸素透過膜を通して脱気水に溶解され、酸素溶解水
となって流出する。酸素溶解水は、さらに紫外線照射装
置4に送られ、紫外線の照射を受けて、溶解している酸
素の一部又は全部がオゾンとなり、オゾン溶解水となっ
て流出する。本発明のオゾン溶解水の製造装置において
は、脱気装置において超純水の脱気を行って脱気水とす
る。使用する脱気装置に特に制限はなく、例えば、真空
脱気装置、減圧膜脱気装置などを挙げることができる。
これらの中で、脱気膜モジュールを用いる減圧膜脱気装
置は、超純水の純度を損なうことなく、微量に溶存する
気体を脱気することができるので、特に好適に用いるこ
とができる。本発明装置に供給する超純水は、得られる
オゾン溶解水を電子材料などの洗浄に用いる場合は、2
5℃における電気抵抗率が18.0MΩ・cm以上であり、
有機体炭素の濃度が10μg/リットル以下であり、銅
及び鉄の濃度がそれぞれ20ng/リットル以下である
ことが好ましい。供給する超純水としては、窒素脱気に
より溶存酸素を除去して、ほぼ窒素のみにより飽和した
窒素溶解水を用いることができ、あるいは、大気と平衡
状態にある超純水を用いることもできる。圧力105P
a、温度20℃のとき、窒素のみにより飽和した窒素溶
解水は、窒素19.2mg/リットルを溶解している。ま
た、圧力105Pa、温度20℃のとき、大気と平衡状態
にある超純水は、窒素14.9mg/リットルと酸素9.1
mg/リットルを溶解して飽和状態にある。
BEST MODE FOR CARRYING OUT THE INVENTION An apparatus for producing ozone-dissolved water according to the present invention is a deaerator for deaeration of ultrapure water to obtain deaerated water, and oxygen for dissolving oxygen in the deaerated water to obtain oxygen-dissolved water. It has a dissolving device and an ultraviolet irradiation device for irradiating ultraviolet light to oxygen-dissolved water to obtain ozone-dissolved water. FIG. 1 is a process flow chart of one embodiment of the apparatus for producing ozone-dissolved water of the present invention. Ultrapure water is supplied to the deaerator 2 in which the gas chamber is depressurized by the decompression pump 1, and the dissolved gas is deaerated and flows out as deaerated water. The degassed water is then sent to the oxygen dissolving device 3. In the oxygen dissolving device, oxygen is fed into a gas chamber, dissolved in deaerated water through an oxygen permeable membrane, and flows out as oxygen dissolved water. The oxygen-dissolved water is further sent to the ultraviolet irradiation device 4 and, when irradiated with ultraviolet light, part or all of the dissolved oxygen becomes ozone and flows out as ozone-dissolved water. In the apparatus for producing ozone-dissolved water of the present invention, deaerated water is obtained by deaeration of ultrapure water in a deaerator. The deaerator to be used is not particularly limited, and examples thereof include a vacuum deaerator and a decompression membrane deaerator.
Among these, a decompression membrane deaerator using a degassing membrane module can be used particularly preferably because a very small amount of dissolved gas can be degassed without impairing the purity of ultrapure water. The ultrapure water to be supplied to the apparatus of the present invention may be 2
An electric resistivity at 5 ° C. of 18.0 MΩ · cm or more;
It is preferable that the concentration of organic carbon be 10 μg / liter or less, and the concentrations of copper and iron be 20 ng / liter or less, respectively. As the ultrapure water to be supplied, dissolved oxygen can be used by removing dissolved oxygen by degassing with nitrogen and saturated with almost only nitrogen, or ultrapure water in equilibrium with the atmosphere can be used. . Pressure 10 5 P
a, At a temperature of 20 ° C., nitrogen-dissolved water saturated only with nitrogen has dissolved 19.2 mg / liter of nitrogen. At a pressure of 10 5 Pa and a temperature of 20 ° C., ultrapure water in equilibrium with the atmosphere contains 14.9 mg / liter of nitrogen and 9.1 oxygen.
mg / litre dissolved and saturated.

【0006】本発明装置においては、超純水を脱気して
飽和度を下げた脱気水とすることにより、気体の溶解キ
ャパシティに空きをつくり、酸素溶解装置における酸素
の溶解を容易にする。飽和度とは、圧力105Paにおい
て超純水に溶解している気体の量をその気体の溶解度で
除した値であり、温度20℃において窒素9.6mg/リ
ットルを溶解している超純水の飽和度は0.5倍であ
る。窒素で飽和した飽和度1倍の超純水をそのまま酸素
溶解装置に送ると、気体透過膜を通して、窒素の除去と
酸素の溶解を同時に行うことになり、酸素の溶解に長時
間を要するのみならず、気体室に発生する酸素と窒素の
混合気体を廃棄する必要が生ずるが、超純水に気体の溶
解キャパシティに空きをつくって酸素溶解装置に送る
と、酸素は迅速に脱気水に溶解し、かつ気体室は酸素で
満たされた状態が維持されるので、酸素を無駄に放出す
ることなく、ほぼ定量的に溶解することができる。温度
20℃のとき、水に対する酸素の溶解度は44.0mg/
リットルである。窒素のみで飽和した窒素溶解水から窒
素14.4mg/リットルを脱気すると、溶存窒素の量は
4.8mg/リットル、すなわち飽和度は0.25倍とな
り、溶解キャパシティに飽和度の0.75倍に相当する
空きができるので、酸素溶解装置において、飽和度の
0.75倍に相当する酸素33.0mg/リットルを容易に
溶解することができる。本発明装置において、脱気装置
に用いる気体透過膜に特に制限はなく、例えば、ポリプ
ロピレン膜、ポリジメチルシロキサン膜、ポリカーボネ
ート−ポリジメチルシロキサンブロック共重合体膜、ポ
リビニルフェノール−ポリジメチルシロキサン−ポリス
ルホンブロック共重合体膜、ポリ(4−メチルペンテン
−1)膜、ポリ(2,6−ジメチルフェニレンオキシド)
膜、ポリテトラフルオロエチレン膜などを挙げることが
できる。
[0006] In the apparatus of the present invention, ultrapure water is degassed to form degassed water having a reduced degree of saturation, thereby creating a space in the gas dissolving capacity and facilitating the dissolution of oxygen in the oxygen dissolving apparatus. I do. The degree of saturation is a value obtained by dividing the amount of gas dissolved in ultrapure water at a pressure of 10 5 Pa by the solubility of the gas. The water saturation is 0.5 times. If ultrapure water with a saturation level of 1 times saturated with nitrogen is sent to the oxygen dissolving apparatus as it is, the removal of nitrogen and the dissolution of oxygen will be performed simultaneously through the gas permeable membrane. However, it is necessary to discard the mixed gas of oxygen and nitrogen generated in the gas chamber.However, if the space for dissolving the gas in ultrapure water is made and sent to the oxygen dissolving device, the oxygen is quickly turned into deaerated water. Since the gas is dissolved and the gas chamber is maintained in a state filled with oxygen, the gas can be dissolved almost quantitatively without wasteful release of oxygen. At a temperature of 20 ° C., the solubility of oxygen in water is 44.0 mg /
Liters. When 14.4 mg / liter of nitrogen is degassed from nitrogen-dissolved water saturated only with nitrogen, the amount of dissolved nitrogen becomes 4.8 mg / liter, that is, the saturation becomes 0.25 times, and the dissolution capacity becomes 0.2% of the saturation. Since a space equivalent to 75 times is created, 33.0 mg / liter of oxygen equivalent to 0.75 times the degree of saturation can be easily dissolved in the oxygen dissolving apparatus. In the apparatus of the present invention, the gas permeable membrane used for the deaerator is not particularly limited. For example, a polypropylene membrane, a polydimethylsiloxane membrane, a polycarbonate-polydimethylsiloxane block copolymer membrane, and a polyvinylphenol-polydimethylsiloxane-polysulfone block copolymer may be used. Polymer membrane, poly (4-methylpentene-1) membrane, poly (2,6-dimethylphenylene oxide)
And a polytetrafluoroethylene film.

【0007】本発明のオゾン溶解水の製造装置において
は、酸素溶解装置において脱気水に酸素を溶解して酸素
溶解水とする。使用する酸素溶解装置に特に制限はな
く、例えば、バブリング装置、ラインミキシング装置、
気体透過膜装置などを挙げることができる。これらの中
で、気体透過膜モジュールを用いる気体透過膜装置は、
単位時間、単位スペース当たりの酸素の溶解量が大き
く、超純水の純度を損なうことなく、酸素の溶解効率を
高めることができるので、特に好適に用いることができ
る。本発明装置において、酸素溶解水の濃度に特に制限
はなく、所要のオゾン溶解水のオゾン濃度に応じて適宜
選択することができる。同じ紫外線照射装置を用いて、
同じ波長かつ同じ線量の紫外線を照射しても、酸素溶解
水の酸素濃度が高いほど、得られるオゾン溶解水のオゾ
ン濃度も高くなる。本発明装置においては、紫外線照射
装置内部を加圧状態に、より好ましくは2×105Pa以
上にすることができる。紫外線照射装置内部を加圧状態
にすることにより、酸素がオゾンに変化してオゾン溶解
水の飽和度が1倍を超え、常圧における過飽和状態とな
っても、発泡による気体の揮散を防止することができ
る。本発明装置において、酸素溶解装置に用いる気体透
過膜に特に制限はなく、例えば、ポリプロピレン膜、ポ
リジメチルシロキサン膜、ポリカーボネート−ポリジメ
チルシロキサンブロック共重合体膜、ポリビニルフェノ
ール−ポリジメチルシロキサン−ポリスルホンブロック
共重合体膜、ポリ(4−メチルペンテン−1)膜、ポリ
(2,6−ジメチルフェニレンオキシド)膜、ポリテトラ
フルオロエチレン膜などを挙げることができる。
In the apparatus for producing ozone-dissolved water according to the present invention, oxygen is dissolved in deaerated water in an oxygen dissolution apparatus to obtain oxygen-dissolved water. There is no particular limitation on the oxygen dissolving device used, for example, a bubbling device, a line mixing device,
A gas permeable membrane device can be used. Among these, the gas permeable membrane device using the gas permeable membrane module,
It is particularly preferably used because the amount of dissolved oxygen per unit time and per unit space is large, and the efficiency of dissolving oxygen can be increased without impairing the purity of ultrapure water. In the apparatus of the present invention, the concentration of the oxygen-dissolved water is not particularly limited, and can be appropriately selected according to the required ozone concentration of the ozone-dissolved water. Using the same ultraviolet irradiation device,
Even if the same wavelength and the same dose of ultraviolet rays are irradiated, the higher the oxygen concentration of the oxygen-dissolved water, the higher the ozone concentration of the obtained ozone-dissolved water. In the apparatus of the present invention, the inside of the ultraviolet irradiation device can be pressurized, more preferably 2 × 10 5 Pa or more. By changing the inside of the ultraviolet irradiation device to a pressurized state, the oxygen changes to ozone, the saturation of the ozone-dissolved water exceeds 1 time, and even when the supersaturated state at normal pressure is reached, the gas is prevented from being volatilized by foaming. be able to. In the apparatus of the present invention, the gas permeable membrane used in the oxygen dissolving apparatus is not particularly limited. For example, a polypropylene membrane, a polydimethylsiloxane membrane, a polycarbonate-polydimethylsiloxane block copolymer membrane, and a polyvinylphenol-polydimethylsiloxane-polysulfone block copolymer may be used. Polymer membrane, poly (4-methylpentene-1) membrane, poly
(2,6-dimethylphenylene oxide) film, polytetrafluoroethylene film and the like.

【0008】本発明のオゾン溶解水の製造装置におい
て、紫外線照射装置は、波長185nm付近の紫外線を
照射し得る線源を有するものであることが好ましい。波
長185nm付近の紫外線は、酸素により吸収されて、
酸素をオゾンに変化させる。波長185nm付近の紫外
線の線源としては、例えば、低圧水銀灯、水素放電管、
色素レーザーの高次高調波などを挙げることができる。
また、波長185nmの紫外線を透過する窓、プリズ
ム、レンズの材料としては、融解石英、サファイアなど
を用いることができる。波長254nm付近の紫外線
は、オゾンを分解するので、波長254nm付近の紫外
線をなるべく含まない線源を用いることが好ましい。本
発明のオゾン溶解水の製造装置において、紫外線照射装
置は酸素溶解装置と近接して配置することができ、ユー
スポイントの近傍に配置することもでき、あるいは、複
数個の紫外線照射装置を距離を離して配置することもで
きる。酸素溶解水中の酸素には自己分解性がないので、
酸素濃度は一定に保たれる。したがって、酸素溶解装置
に近接した位置で紫外線を照射しても、ユースポイント
の近傍において紫外線を照射しても、同様に酸素をオゾ
ンに変えてオゾン溶解水を得ることができる。また、酸
素溶解装置に近接した紫外線照射装置により調製したオ
ゾン溶解水を配管を通じて長距離を送水し、自己分解に
よりオゾン濃度が低下したとき、ユースポイント近傍に
おいて小型の紫外線照射装置を用いて紫外線を照射し、
酸素をふたたびオゾンに変えてオゾン溶解水のオゾン濃
度を回復することができる。さらに、ユースポイントに
よって必要とするオゾン濃度が異なる場合も、ユースポ
イントの近傍に設けた紫外線照射装置を用いて紫外線を
照射することにより、それぞれのユースポイントに所要
の濃度のオゾン溶解水を供給することができる。本発明
のオゾン溶解水の製造装置においては、無声放電方式や
電気分解方式のいわゆるオゾン発生器を使用せず、酸素
溶解水に紫外線を照射することによりオゾン溶解水を調
製するので、電極に原料気体やオゾン含有気体が接触す
ることがなく、したがって電極に由来する不純物である
金属分による汚染の全くない極めて純度の高いオゾン溶
解水を製造することができる。また、オゾン溶解水中で
オゾンが自己分解して酸素となり、オゾン濃度が低下し
たとき、小型の紫外線照射装置を設けて紫外線を照射
し、酸素をふたたびオゾンに変えることにより、容易に
オゾン濃度を回復することができる。
[0008] In the apparatus for producing ozone-dissolved water of the present invention, it is preferable that the ultraviolet irradiation device has a radiation source capable of irradiating ultraviolet light having a wavelength of about 185 nm. Ultraviolet light having a wavelength of about 185 nm is absorbed by oxygen,
Converts oxygen to ozone. Examples of the ultraviolet ray source having a wavelength of about 185 nm include a low-pressure mercury lamp, a hydrogen discharge tube,
Higher harmonics of a dye laser can be used.
In addition, as a material of a window, a prism, and a lens that transmit ultraviolet light having a wavelength of 185 nm, fused quartz, sapphire, or the like can be used. Since ultraviolet rays having a wavelength of about 254 nm decompose ozone, it is preferable to use a radiation source containing as little as possible ultraviolet rays having a wavelength of about 254 nm. In the apparatus for producing ozone-dissolved water of the present invention, the ultraviolet irradiation device can be arranged close to the oxygen dissolving device, can be arranged near the use point, or a plurality of ultraviolet irradiation devices can be arranged at a distance. They can also be placed apart. Since oxygen in oxygen-dissolved water has no self-decomposition property,
The oxygen concentration is kept constant. Therefore, even if the ultraviolet ray is irradiated near the oxygen dissolving device or the ultraviolet ray is irradiated near the use point, ozone-dissolved water can be obtained by similarly changing oxygen to ozone. Also, ozone-dissolved water prepared by an ultraviolet irradiator close to the oxygen dissolver is sent over a long distance through a pipe, and when the ozone concentration decreases due to self-decomposition, ultraviolet light is emitted using a small ultraviolet irradiator near the point of use. Irradiate,
The ozone concentration can be restored by changing the oxygen to ozone again. Furthermore, even when the required ozone concentration differs depending on the use point, the required concentration of ozone-dissolved water is supplied to each use point by irradiating ultraviolet rays using an ultraviolet irradiation device provided near the use point. be able to. In the apparatus for producing ozone-dissolved water of the present invention, the ozone-dissolved water is prepared by irradiating ultraviolet rays to the oxygen-dissolved water without using a so-called ozone generator of a silent discharge method or an electrolysis method. An extremely high-purity ozone-dissolved water can be produced without any gas or ozone-containing gas coming into contact with it, and hence no contamination by metals, which are impurities derived from the electrodes. In addition, when ozone is self-decomposed in ozone-dissolved water and becomes oxygen, and the ozone concentration drops, a small ultraviolet irradiation device is installed to irradiate ultraviolet light, and the oxygen is easily restored to ozone, thereby easily recovering the ozone concentration. can do.

【0009】[0009]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。 実施例1 図1に示す脱気装置、酸素溶解装置及び紫外線照射装置
を接続した装置を用いて、オゾン溶解水を調製した。ポ
リプロピレン膜を備えた脱気装置の気体室を、水封式真
空ポンプを用いて20Torrに保ち、水室に超純水を供給
して脱気を行い、溶存窒素濃度5.5mg/リットルの脱
気水を調製した。この脱気水を、配管を通じてポリプロ
ピレン膜を備えた酸素溶解装置に送り、高純度酸素を溶
解して、溶存酸素濃度20.0mg/リットル、溶存窒素
濃度5.5mg/リットルの酸素溶解水を調製した。この
酸素溶解水を、配管を通じて融解石英製のランプ電力4
00Wの低圧水銀灯を備えた紫外線照射装置に送り、1
85nmの線スペクトルを含む紫外線を照射して、溶存
オゾン濃度3.5mg/リットル、溶存酸素濃度16.5mg
/リットル、溶存窒素濃度5.5mg/リットルのオゾン
溶解水を調製した。得られたオゾン溶解水について、誘
導結合プラズマ質量分析装置を用いて、マグネシウム、
アルミニウム、チタン、クロム、鉄、ニッケル、銅、亜
鉛、銀、タンタル、タングステン及び鉛の分析を行っ
た。オゾン溶解水中のこれらの金属分の濃度は、すべて
1ng/リットル以下であり、原料として用いた超純水
との間に差は認められなかった。 比較例1 脱気装置、オゾン発生器及びオゾン溶解膜モジュールを
備えた装置を用いて、オゾン溶解水を調製した。ポリプ
ロピレン膜を備えた脱気装置の気体室を、水封式真空ポ
ンプを用いて20Torrに保ち、水室に超純水を供給して
脱気を行い、溶存窒素濃度5.5mg/リットルの脱気水
を調製した。この脱気水を、配管を通じて直径100m
m、長さ1,000mmの市販のオゾン溶解膜モジュールに
送り、市販の無声放電式オゾン発生器で発生させたオゾ
ンと酸素の混合気体を溶解して、溶存オゾン濃度3.5m
g/リットル、溶存酸素濃度10.0mg/リットル、溶存
窒素濃度5.5mg/リットルのオゾン溶解水を調製し
た。得られたオゾン溶解水について、誘導結合プラズマ
質量分析装置を用いて、マグネシウム、アルミニウム、
チタン、クロム、鉄、ニッケル、銅、亜鉛、銀、タンタ
ル、タングステン及び鉛の分析を行った。オゾン溶解水
中に、チタン3ng/リットル、鉄2ng/リットル及
び鉛3ng/リットルが検出され、それ以外の金属分の
濃度は、すべて1ng/リットル以下であった。原料と
して用いた超純水、実施例1のオゾン溶解水及び比較例
1のオゾン溶解水の分析結果を、第1表に示す。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. Example 1 Ozone-dissolved water was prepared using an apparatus connected to a degassing apparatus, an oxygen dissolving apparatus, and an ultraviolet irradiation apparatus shown in FIG. The gas chamber of the deaerator equipped with a polypropylene membrane is maintained at 20 Torr using a water ring vacuum pump, and ultrapure water is supplied to the water chamber to perform deaeration, and a degassing with a dissolved nitrogen concentration of 5.5 mg / liter. Steam water was prepared. The degassed water is sent through a pipe to an oxygen dissolving apparatus equipped with a polypropylene membrane to dissolve high-purity oxygen to prepare oxygen-dissolved water having a dissolved oxygen concentration of 20.0 mg / liter and a dissolved nitrogen concentration of 5.5 mg / liter. did. This oxygen-dissolved water is supplied through a pipe to a fused quartz lamp power 4
Sent to an ultraviolet irradiation device equipped with a 00W low-pressure mercury lamp,
Irradiation with ultraviolet light having a line spectrum of 85 nm, dissolved ozone concentration 3.5 mg / liter, dissolved oxygen concentration 16.5 mg
Per liter of ozone-dissolved water having a dissolved nitrogen concentration of 5.5 mg / liter was prepared. About the obtained ozone dissolved water, using an inductively coupled plasma mass spectrometer, magnesium,
Aluminum, titanium, chromium, iron, nickel, copper, zinc, silver, tantalum, tungsten and lead were analyzed. The concentrations of these metals in the ozone-dissolved water were all 1 ng / liter or less, and no difference was observed between the ozone-dissolved water and the ultrapure water used as the raw material. Comparative Example 1 Ozone-dissolved water was prepared using an apparatus equipped with a deaerator, an ozone generator, and an ozone-dissolving film module. The gas chamber of the deaerator equipped with a polypropylene membrane is maintained at 20 Torr using a water ring vacuum pump, and ultrapure water is supplied to the water chamber to perform deaeration, and a degassing with a dissolved nitrogen concentration of 5.5 mg / liter. Steam water was prepared. This degassed water is passed through a pipe and the diameter is 100m.
m, a mixed ozone and oxygen gas generated by a commercially available silent discharge type ozone generator is sent to a commercially available ozone dissolving membrane module with a length of 1,000 mm and a dissolved ozone concentration of 3.5 m
g / L, dissolved oxygen concentration 10.0 mg / L, and dissolved nitrogen concentration 5.5 mg / L were prepared. About the obtained ozone dissolved water, using an inductively coupled plasma mass spectrometer, magnesium, aluminum,
Titanium, chromium, iron, nickel, copper, zinc, silver, tantalum, tungsten and lead were analyzed. In the ozone-dissolved water, 3 ng / l of titanium, 2 ng / l of iron and 3 ng / l of lead were detected, and the concentrations of other metals were all 1 ng / l or less. Table 1 shows the analysis results of the ultrapure water used as the raw material, the ozone-dissolved water of Example 1, and the ozone-dissolved water of Comparative Example 1.

【0010】[0010]

【表1】 [Table 1]

【0011】第1表に見られるように、本発明装置を用
い、酸素溶解水に紫外線を照射して製造された実施例1
のオゾン溶解水には、原料として用いた超純水との水質
の差は認められないが、オゾン発生器で発生させたオゾ
ン含有気体を、オゾン溶解膜モジュールを用いて脱気水
に溶解した比較例1のオゾン溶解水は、原料として用い
た超純水よりも、チタン、鉄及び鉛の濃度が高く、金属
分により汚染されていることが分かる。 実施例2 実施例1と同じ装置を用いて、オゾン溶解水を調製し
た。脱気装置において、溶存窒素濃度4.0mg/リット
ルの脱気水を調製し、この脱気水を酸素溶解装置に送
り、高純度酸素を溶解して、溶存酸素濃度2.0mg/リ
ットル、溶存窒素濃度4.0mg/リットルの酸素溶解水
を調製した。この酸素溶解水を、紫外線照射装置に送
り、紫外線を照射してオゾン溶解水を調製した。得られ
たオゾン溶解水の溶存オゾン濃度は1.2mg/リットル
であった。酸素溶解水の溶存酸素濃度を、10.0mg/
リットル、20.0mg/リットル及び30.0mg/リット
ルとして、同様にオゾン溶解水の調製を繰り返した。溶
存オゾン濃度は、それぞれ、2.5mg/リットル、3.3
mg/リットル及び4.0mg/リットルであった。実施例
2の結果を、第2表に示す。
As shown in Table 1, Example 1 was manufactured by irradiating oxygen-dissolved water with ultraviolet rays using the apparatus of the present invention.
No difference in water quality between the ultrapure water used as the raw material and the ozone-dissolved water was observed, but the ozone-containing gas generated by the ozone generator was dissolved in degassed water using an ozone-dissolved membrane module. It can be seen that the ozone-dissolved water of Comparative Example 1 has a higher concentration of titanium, iron and lead than the ultrapure water used as the raw material, and is contaminated by the metal. Example 2 Using the same apparatus as in Example 1, ozone-dissolved water was prepared. In the degassing device, degassed water having a dissolved nitrogen concentration of 4.0 mg / l was prepared, and the degassed water was sent to an oxygen dissolving device to dissolve high-purity oxygen, and a dissolved oxygen concentration of 2.0 mg / l was dissolved. Oxygen-dissolved water having a nitrogen concentration of 4.0 mg / liter was prepared. The oxygen-dissolved water was sent to an ultraviolet irradiation device and irradiated with ultraviolet light to prepare ozone-dissolved water. The dissolved ozone concentration of the obtained ozone-dissolved water was 1.2 mg / liter. The dissolved oxygen concentration of the oxygen-dissolved water was 10.0 mg /
The preparation of ozone-dissolved water was repeated in the same manner with the addition of 20.0 mg / liter and 30.0 mg / liter. The dissolved ozone concentrations were 2.5 mg / liter and 3.3, respectively.
mg / l and 4.0 mg / l. Table 2 shows the results of Example 2.

【0012】[0012]

【表2】 [Table 2]

【0013】第2表の結果から、酸素溶解水の溶存酸素
濃度によって、得られるオゾン溶解水の溶存オゾン濃度
が異なり、溶存酸素濃度が高いほど溶存オゾン濃度も高
くなることが分かる。 実施例3 調製したオゾン溶解水をテフロン製配管を用いて送水
し、その後さらに紫外線を照射して、減少した溶存オゾ
ン濃度を回復させた。ポリプロピレン膜を備えた脱気装
置の気体室を、水封式真空ポンプを用いて20Torrに保
ち、水室に超純水を供給して脱気を行い、溶存窒素濃度
4.0mg/リットルの脱気水を調製した。この脱気水
を、配管を通じてポリプロピレン膜を備えた酸素溶解装
置に送り、高純度酸素を溶解して、溶存酸素濃度30.
0mg/リットル、溶存窒素濃度4.0mg/リットルの酸
素溶解水を調製した。この酸素溶解水を、配管を通じて
融解石英製のランプ電力150Wの低圧水銀灯を備えた
紫外線照射装置Iに送り、185nmの線スペクトルを
含む紫外線を照射して、溶存オゾン濃度4.0mg/リッ
トル、溶存酸素濃度26.0mg/リットル、溶存窒素濃
度4.0mg/リットルのオゾン溶解水を調製した。この
オゾン溶解水を、テフロン製の配管を通じて100m送
水したところ、配管出口のオゾン溶解水の溶存オゾン濃
度は2.0mg/リットルに低下していた。そこで、配管
の先端に融解石英製のランプ電力150Wの低圧水銀灯
を備えた紫外線照射装置IIを取り付け、オゾン溶解水に
185nmの線スペクトルを含む紫外線を照射したとこ
ろ、紫外線照射装置IIから流出するオゾン溶解水の溶存
オゾン濃度は4.1mg/リットルであった。実施例3の
結果を、第3表に示す。
From the results shown in Table 2, it can be seen that the dissolved ozone concentration of the obtained ozone-dissolved water varies depending on the dissolved oxygen concentration of the oxygen-dissolved water, and the dissolved ozone concentration increases as the dissolved oxygen concentration increases. Example 3 The prepared ozone-dissolved water was fed using a Teflon-made pipe, and then irradiated with ultraviolet rays to recover the reduced dissolved ozone concentration. The gas chamber of the deaerator equipped with a polypropylene membrane was maintained at 20 Torr using a water ring vacuum pump, and degassing was performed by supplying ultrapure water to the water chamber, and degassing was performed with a dissolved nitrogen concentration of 4.0 mg / liter. Steam water was prepared. The degassed water is sent through a pipe to an oxygen dissolving apparatus equipped with a polypropylene membrane to dissolve high-purity oxygen, and to dissolve the dissolved oxygen at a concentration of 30.
Oxygen-dissolved water having a concentration of 0 mg / liter and a dissolved nitrogen concentration of 4.0 mg / liter was prepared. The oxygen-dissolved water is sent through a pipe to an ultraviolet irradiation device I equipped with a low-pressure mercury lamp with a lamp power of 150 W made of fused quartz and irradiated with ultraviolet light having a line spectrum of 185 nm to dissolve dissolved ozone at a concentration of 4.0 mg / liter. Ozone-dissolved water having an oxygen concentration of 26.0 mg / l and a dissolved nitrogen concentration of 4.0 mg / l was prepared. When this ozone-dissolved water was sent 100 m through a Teflon pipe, the dissolved ozone concentration at the outlet of the pipe was reduced to 2.0 mg / liter. Then, an ultraviolet irradiation device II equipped with a low-pressure mercury lamp with a lamp power of 150 W made of fused silica was attached to the end of the pipe, and the ozone-dissolved water was irradiated with ultraviolet light having a line spectrum of 185 nm. The dissolved ozone concentration of the dissolved water was 4.1 mg / liter. Table 3 shows the results of Example 3.

【0014】[0014]

【表3】 [Table 3]

【0015】第3表に見られるように、長距離の配管を
通じて送水され、溶存オゾン濃度が低下したオゾン溶解
水であっても、紫外線照射装置を設けて紫外線を照射す
ることにより、溶存オゾン濃度が回復する。さらに、こ
の結果から、ユースポイントの近傍に紫外線照射装置を
設けてオゾン溶解水に必要な線量の紫外線を照射するこ
とにより、所要の溶存オゾン濃度を有するオゾン溶解水
の調製が可能となることが分かる。
As can be seen from Table 3, even with ozone-dissolved water having a reduced dissolved ozone concentration, which is sent through a long-distance pipe, the dissolved ozone concentration can be increased by irradiating ultraviolet rays with an ultraviolet irradiation device. Recovers. Furthermore, from this result, it is possible to prepare an ozone-dissolved water having a required dissolved ozone concentration by providing an ultraviolet irradiation device near the use point and irradiating the ozone-dissolved water with a necessary dose of ultraviolet light. I understand.

【0016】[0016]

【発明の効果】本発明のオゾン溶解水の製造装置を用い
ることにより、極めて純度の高いオゾン溶解水を容易に
製造することができ、長距離配管を通じて送水する場合
も、ユースポイントの近傍に小型の紫外線照射装置を設
けることにより、減少した溶存オゾン濃度を回復するこ
とができる。
By using the apparatus for producing ozone-dissolved water of the present invention, extremely high-purity ozone-dissolved water can be easily produced. The reduced dissolved ozone concentration can be recovered by providing the ultraviolet irradiation device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明のオゾン溶解水の製造装置の一
態様の工程系統図である。
FIG. 1 is a process flow diagram of one embodiment of an apparatus for producing ozone-dissolved water of the present invention.

【符号の説明】[Explanation of symbols]

1 減圧ポンプ 2 脱気装置 3 酸素溶解装置 4 紫外線照射装置 DESCRIPTION OF SYMBOLS 1 Decompression pump 2 Deaerator 3 Oxygen dissolving device 4 Ultraviolet irradiation device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】超純水を脱気して脱気水を得る脱気装置、
脱気水に酸素を溶解して酸素溶解水を得る酸素溶解装置
及び酸素溶解水に紫外線を照射してオゾン溶解水を得る
紫外線照射装置を有することを特徴とするオゾン溶解水
の製造装置。
1. A degassing device for degassing ultrapure water to obtain degassed water,
An apparatus for producing ozone-dissolved water, comprising: an oxygen dissolving apparatus for dissolving oxygen in degassed water to obtain oxygen-dissolved water; and an ultraviolet irradiation apparatus for irradiating ultraviolet light to the oxygen-dissolved water to obtain ozone-dissolved water.
JP11003177A 1999-01-08 1999-01-08 Device for making ozone-dissolved water Pending JP2000197815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11003177A JP2000197815A (en) 1999-01-08 1999-01-08 Device for making ozone-dissolved water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11003177A JP2000197815A (en) 1999-01-08 1999-01-08 Device for making ozone-dissolved water

Publications (1)

Publication Number Publication Date
JP2000197815A true JP2000197815A (en) 2000-07-18

Family

ID=11550118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11003177A Pending JP2000197815A (en) 1999-01-08 1999-01-08 Device for making ozone-dissolved water

Country Status (1)

Country Link
JP (1) JP2000197815A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069203A1 (en) * 2012-11-01 2014-05-08 栗田工業株式会社 Method for manufacturing ozone-gas-dissolved water and cleaning method for electronic materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069203A1 (en) * 2012-11-01 2014-05-08 栗田工業株式会社 Method for manufacturing ozone-gas-dissolved water and cleaning method for electronic materials
CN104995722A (en) * 2012-11-01 2015-10-21 栗田工业株式会社 Method for manufacturing ozone-gas-dissolved water and cleaning method for electronic materials
US20150303053A1 (en) * 2012-11-01 2015-10-22 Kurita Water Industries Ltd. Method for producing ozone gas-dissolved water and method for cleaning electronic material
TWI601695B (en) * 2012-11-01 2017-10-11 Kurita Water Ind Ltd Method for producing ozone gas dissolved water and washing method of electronic material

Similar Documents

Publication Publication Date Title
US6399022B1 (en) Simplified ozonator for a semiconductor wafer cleaner
JP5072062B2 (en) Method, apparatus and apparatus for producing hydrogen gas-dissolved cleaning water
CN1163946C (en) Method and device for washing electronic parts member or like
US20150303053A1 (en) Method for producing ozone gas-dissolved water and method for cleaning electronic material
JP2010017633A (en) Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component
JP6400918B2 (en) Hydrogen dissolved water production apparatus and pure water production system
JP4273440B2 (en) Cleaning water for electronic material and cleaning method for electronic material
JP2000197815A (en) Device for making ozone-dissolved water
KR0171584B1 (en) Process for removing dissolved oxygen from water and system therefor
JPH1129794A (en) Cleaning water for electronic material its reparation, and cleaning of electronic material
US6800257B1 (en) Process for preparing trichloracetic acid and apparatus for use in such process
JP5037748B2 (en) Ozone water concentration adjustment method and ozone water supply system
JP4438077B2 (en) Method for preparing gas-dissolved water for cleaning electronic materials
JP2005152803A (en) Ozone water supply method
JP3814719B2 (en) Production method and production apparatus for ozone-dissolved water
JP2000308815A (en) Producing device of ozone dissolved water
JPH01298003A (en) Method for generating ozone
JPH11138182A (en) Ozonized ultrapure water feeder
JP3381782B2 (en) High purity ozone gas generator
JP2006289231A (en) Method and system for decomposing and treating organic chlorine compound
JP2000319689A (en) Cleaning water for electronic material
JP2001240559A (en) Decomposition method of organic chlorine compounds and decomposition apparatus therefor
JP2012186348A (en) Cleaning water for electronic material, cleaning method of electronic material and supply system of gas dissolution water
JP2004243260A (en) Method and apparatus for manufacturing ozone-containing ultrapure water
JP3561904B2 (en) Reforming method of gas-dissolved cleaning water