JPS62227492A - Method and apparatus for making pure water - Google Patents

Method and apparatus for making pure water

Info

Publication number
JPS62227492A
JPS62227492A JP7162686A JP7162686A JPS62227492A JP S62227492 A JPS62227492 A JP S62227492A JP 7162686 A JP7162686 A JP 7162686A JP 7162686 A JP7162686 A JP 7162686A JP S62227492 A JPS62227492 A JP S62227492A
Authority
JP
Japan
Prior art keywords
water
membrane
tube
raw water
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7162686A
Other languages
Japanese (ja)
Inventor
Shunichi Shimatani
俊一 島谷
Masakatsu Urairi
正勝 浦入
Takeshi Sasaki
武 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP7162686A priority Critical patent/JPS62227492A/en
Publication of JPS62227492A publication Critical patent/JPS62227492A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To economically make high quality pure water, by contacting heated general use tap water with air before thermo-vaporation and subsequently degassing the same. CONSTITUTION:A heat transfer pipe 9 is coaxially arranged in an outer pipe 1 and a membrane tube 2 comprising a hydrophobic polymer porous membrane is coaxially arranged in the heat transfer pipe 9. An introducing pipe 11 and a lead-out pipe 12 for cooling water are connected to a cooling water passage and a raw water introducing pipe 4 and a raw water lead-out pipe 5 are con nected to a raw water passage and a lead-out pipe 13 of transmitted water transmitted through the membrane tube and cooled and condensed by the wall of the heat transfer pipe is connected to a steam diffusion space 10. Further, a heater 31 for heating tap water and an air blow pipe 32 for blowing air in general tap water are inserted in the membrane tube. Then, air is blown into general use tap water under heating to degas dissolved gas and, at the same time, thermo-vaparation treatment is applied to tap water in this state.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、一般上水から純水を製造する方法及び装置に
関し、詳しくは、所謂サーモパーベーパレーション法に
よって一般上水を処理して純水を製造する方法において
、一般上水を加熱下に空気と気液接触させ、溶存ガスを
脱気させる操作を併用することによって、容易に高品質
の純水を製造する方法、及びそのための簡便な装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for producing pure water from general tap water, and more specifically, to purify general tap water by treating general tap water by a so-called thermopervaporation method. A method for easily producing high quality pure water by bringing ordinary tap water into gas-liquid contact with air under heating and degassing dissolved gas, and a simple method for producing water. related to equipment.

(従来の技術) 従来、−股上水を原水として純水を製造する方法が種々
提案されており、また、実用化されている。かかる方法
として、例えば、原水としての一般上水を予備濾過し、
イオン交換処理し、蒸留し、更に、濾過する方法が知ら
れている。かかる方法によって、通常、電導度が1.0
μS / cm以下の純水が得られる。純水の用途によ
っては、更に処理が付加されることがあり、例えば、医
療用の純水の製造の場合には、薬品処理や紫外線による
殺菌がなされることもある。
(Prior Art) Various methods have been proposed and put into practical use for producing pure water using rise water as raw water. As such a method, for example, prefiltration of general tap water as raw water,
A method of ion exchange treatment, distillation, and further filtration is known. Such a method usually results in a conductivity of 1.0.
Pure water of μS/cm or less can be obtained. Depending on the use of pure water, further processing may be added. For example, in the case of producing pure water for medical use, chemical treatment or sterilization with ultraviolet rays may be performed.

本発明において、−a上水とは、通常、河川水、井水、
水道水、工業用水、局方常水等を含み、一般に、Ca、
Mg、Na、に等の陽イオン、塩素イオン、硫酸イオン
、炭酸水素イオン等の陰イオン、生物が腐敗分解した有
機物質、酸素、炭酸ガス、窒素、塩素、アンモニア等の
溶存ガス等の溶解物質や、無機及び有機質の微粒子、微
生物等の浮遊物質を不純物として含有している。また、
本発明において、純水とは、一般に、例えば、分析機器
用の標準液の作製、器具の洗浄、微生物の培養等に用い
られる水をはじめとして、ボイラ用水、日本薬局方で規
定されている精製水、注射器用蒸留水、無菌水等の病院
水等を含む。
In the present invention, -a tap water usually refers to river water, well water,
Including tap water, industrial water, pharmacopoeia regular water, etc., and generally contains Ca,
Dissolved substances such as cations such as Mg, Na, etc., anions such as chlorine ions, sulfate ions, bicarbonate ions, organic substances decomposed by organisms, dissolved gases such as oxygen, carbon dioxide, nitrogen, chlorine, ammonia, etc. Contains suspended substances such as microorganisms, inorganic and organic particles, and microorganisms as impurities. Also,
In the present invention, pure water generally refers to, for example, water used for preparing standard solutions for analytical instruments, cleaning instruments, culturing microorganisms, etc., water for boilers, and purified water specified in the Japanese Pharmacopoeia. Including hospital water such as water, distilled water for syringes, and sterile water.

従来より知られている一般上水から純水を製造する方法
によれば、上記したような性状の異なる種々の不純物を
除去するために、基本的には、無機物質を除去するため
にイオン交換や蒸留、膜分離等を、また、微生物や微粒
子の分離のために濾過を必要とし、更に、これら分離操
作に加えて、種々の前処理や後処理を付加して、全体の
純水製造プロセスを構成している。
According to the conventionally known method of producing pure water from general tap water, in order to remove various impurities with different properties as described above, basically ion exchange is used to remove inorganic substances. , distillation, membrane separation, etc., as well as filtration to separate microorganisms and fine particles, and in addition to these separation operations, various pre-treatments and post-treatments are added to complete the entire pure water production process. It consists of

しかし、このように、多数の工程にて純水を製造するこ
とは、製造費用が高いのみならず、製造装置の保守管理
も容易ではない。更に、このように多数の工程を経る方
法によれば、各工程の間に処理ずみの水を貯蔵すること
が必要となり、この貯蔵の間に微生物が繁殖するおそれ
もある。
However, producing pure water through a large number of steps as described above not only increases production costs, but also makes it difficult to maintain and manage the production equipment. Moreover, such a multi-step method requires storage of the treated water between each step, and there is a risk that microorganisms will grow during storage.

(発明の目的) 本発明者らは、−股上水からの純水の製造における上記
した問題を解決するために、従来より所謂サーモパーベ
ーパレーション法に着目シ、特に、−股上水に含まれる
溶存ガスを除けば、前記した不純物はすべてサーモパー
ベーパレーション法にて除去することができることを見
出し、かくして、−股上水から溶存ガスを除去した後に
、又は除去しつつ、サーモパーベーパレーション法にて
処理すれば、前記した従来法と同等若しくはそれ以上の
高品質を有する純水を非常に簡単に且つ経済的に製造し
得ることを見出して、本発明に至ったものである。
(Object of the Invention) In order to solve the above-mentioned problems in the production of pure water from rise water, the present inventors have focused on the so-called thermopervaporation method, in particular - We have found that, with the exception of dissolved gases, all of the above-mentioned impurities can be removed by thermopervaporation, and thus: The present invention was achieved based on the discovery that pure water having a quality equal to or higher than that of the conventional method described above can be produced very easily and economically by treating the water with the same or higher quality.

(発明の構成) 本発明による純水の製造方法は、加熱した一般上水を、
水蒸気は透過させるが、水は透過させない疎水性重合体
多孔質膜の一面側に原水として接触させ、この原水から
水蒸気を発生させ、これを上記多孔質膜の他面側に透過
させ、冷却して凝縮させて、純水としての透過水を得る
サーモパーベーパレーション法において、上記サーモパ
ーベーパレーションの前又は間に加熱した一般上水を気
液接触させて、−股上水を脱気することを特徴とする。
(Structure of the Invention) The method for producing pure water according to the present invention includes heating ordinary tap water,
Raw water is brought into contact with one side of a hydrophobic polymer porous membrane that allows water vapor to pass through but does not allow water to pass through, and water vapor is generated from this raw water, which is passed through the other side of the porous membrane and cooled. In the thermopervaporation method, in which permeated water is obtained as pure water by condensation, the heated common tap water is brought into gas-liquid contact before or during the thermopervaporation, and the rise water is deaerated. It is characterized by

−i上水中に含まれる溶存ガスは、後述するサーモパー
ベーパレーション法によっても除去することができず、
サーモパーベーパレーション法によって純水として得ら
れる透過水中に混入し、一部が解離して、その電導度の
増大を招き、純水としての品質を低下させる。本発明に
おいて、溶存ガスとは、炭酸ガス(炭酸を含む。以下、
これらを炭酸成分ということがある。)を主成分とし、
これ以外に酸素、窒素、塩素、アンモニア、有機性の揮
発性成分等をいう。−股上水には、他の溶存ガスよりも
炭酸成分が比較的多量に含まれており、通常、数ppm
乃至数十ppm程度含まれる。炭酸成分以外の溶存ガス
は、極く僅かに含まれるにすぎない。例えば、約2 p
pmの炭酸成分を含有する一般上水をサーモパーベーパ
レーション法にて処理するとき、得られる透過水は電導
度が1μS/ cmを越える。
-i Dissolved gases contained in tap water cannot be removed even by the thermopervaporation method described below.
It mixes into the permeated water obtained as pure water by the thermopervaporation method, and a part of it dissociates, leading to an increase in its electrical conductivity and degrading the quality of pure water. In the present invention, dissolved gas refers to carbon dioxide gas (including carbonic acid. Hereinafter,
These are sometimes called carbonic acid components. ) as the main component,
In addition to these, it refers to oxygen, nitrogen, chlorine, ammonia, organic volatile components, etc. - Rise water contains a relatively large amount of carbonic acid components compared to other dissolved gases, usually several ppm.
It is contained in an amount of about several tens of ppm. Dissolved gases other than carbonic acid components are only contained in a very small amount. For example, about 2p
When general tap water containing pm carbonate components is treated by the thermopervaporation method, the permeated water obtained has an electrical conductivity of more than 1 μS/cm.

そこで、本発明者らは、特に、一般上水に含まれる炭酸
成分と、サーモパーベーパレーション法によって得られ
る透過水の電導度との関係を詳細に研究したところ、−
船上水中の炭酸成分を2 ppm以下、好ましくは1 
ppm以下とすることにより、サーモパーベーパレーシ
ョン法にてM at 度1.0μS / cm以下の通
過水を得ることができ、他方、加熱した一般上水を気液
接触させることによって、その炭酸成分を2 ppm以
下にすることができることを見出したものである。
Therefore, the present inventors conducted a detailed study on the relationship between the carbonic acid components contained in general tap water and the conductivity of permeated water obtained by the thermopervaporation method, and found that -
Reduce carbon dioxide content in ship water to 2 ppm or less, preferably 1 ppm or less
ppm or less, it is possible to obtain passing water with a Mat degree of 1.0 μS/cm or less using the thermopervaporation method, and on the other hand, by bringing heated general tap water into gas-liquid contact, its carbonic acid component can be removed. It was discovered that it is possible to reduce the amount of carbon dioxide to 2 ppm or less.

即ち、本発明の方法によれば、上記した溶存ガス、詩に
、炭酸成分を脱気にて除去するために、−C上水を加熱
し、これを空気と気液接触させた後、又は気液接触させ
つつ、サーモパーベーパレーション法にて処理して、型
温度1.0μS / am以下の純水を得ることができ
る。
That is, according to the method of the present invention, in order to remove the above-mentioned dissolved gases and carbonic acid components by degassing, -C water is heated and brought into gas-liquid contact with air, or Purified water with a mold temperature of 1.0 μS/am or less can be obtained by processing with a thermopervaporation method while making gas-liquid contact.

本発明において、上記気液接触の方法としては、例えば
、濡れ壁塔や向流接触塔を用いる方法、一般上水をノズ
ルから大気中に噴霧する方法、−船上水中に空気を細か
い泡状に吹き込む方法等を採用することができるが、サ
ーモパーベーパレーション法においては、加熱した一般
上水を用いことが必要であり、一方、気液接触による脱
気効率は、一般上水野温度が高いほどよいので、本発明
においては、加熱した一般上水中に空気を吹き込んで、
気液接触させるのが最も有利である。
In the present invention, the above-mentioned gas-liquid contacting method includes, for example, a method using a wet wall tower or a countercurrent contact tower, a method of spraying general tap water into the atmosphere from a nozzle, and a method of spraying air into the ship's water in the form of fine bubbles. However, in the thermopervaporation method, it is necessary to use heated general water, and on the other hand, the degassing efficiency by gas-liquid contact decreases as the temperature of the general water field increases. Therefore, in the present invention, air is blown into heated general water,
Gas-liquid contact is most advantageous.

次に、本発明の方法におけるサーモパーベーパレーショ
ン法について説明する。
Next, the thermopervaporation method in the method of the present invention will be explained.

サーモパーベーパレーション法とは、一般に、原水を加
熱して、原水から水蒸気を発生させ、この水蒸気をして
選択的に疎水性重合体からなる多孔質膜を透過させて、
これを冷却し、凝縮させて、純水としての透過水を得る
ものである。
The thermopervaporation method generally involves heating raw water to generate water vapor, and selectively passing this water vapor through a porous membrane made of a hydrophobic polymer.
This is cooled and condensed to obtain permeated water as pure water.

このようなサーモパーベーパレーション法にて一般上水
を処理するために、次のいずれかの方法によることがで
きる。
In order to treat general tap water using such a thermopervaporation method, one of the following methods can be used.

第1の方法は、水蒸気は透過させるが、水や溶質は透過
させない疎水性重合体多孔質膜の一面側に所定の温度の
原水を接触させ、この多孔質膜の他面側に膜面から適宜
の間隔をおいて所定の低温に保持した伝熱壁を設け、上
記原水から発生し、多孔質膜を透過した水蒸気を上記伝
熱壁上で冷却し、凝縮させて透過水を得るものである。
The first method is to bring raw water at a predetermined temperature into contact with one side of a hydrophobic polymer porous membrane that allows water vapor to pass through but does not allow water or solutes to pass through, and the other side of this porous membrane is exposed to water from the membrane surface. Heat transfer walls maintained at a predetermined low temperature are provided at appropriate intervals, and water vapor generated from the raw water and transmitted through the porous membrane is cooled on the heat transfer walls and condensed to obtain permeated water. be.

第2の方法は、疎水性重合体多孔質膜の一面側に上記の
ように所定温度の原水を接触させ、他面側には所定の低
温の冷却媒体、例えば、冷却用の純水を接触させること
により、原水から発生し、多孔質膜を透過した水蒸気を
直接に冷却媒体としての純水にて冷却して凝縮させ、こ
れを冷却媒体中に得るものである。
The second method involves contacting one side of the hydrophobic polymer porous membrane with raw water at a predetermined temperature as described above, and contacting the other side with a predetermined low-temperature cooling medium, such as pure water for cooling. By doing so, water vapor generated from raw water and passed through the porous membrane is directly cooled and condensed with pure water as a cooling medium, and this is obtained in the cooling medium.

上記いずれの方法においても、上記重合体多孔質膜は、
水に対して疎水性であり、更にカビや菌類等の微生物及
び水自体は透過させないが、水蒸気は透過させる性質を
有することが必要である。
In any of the above methods, the polymer porous membrane is
It must be hydrophobic to water, and must have the property of not allowing microorganisms such as molds and fungi to pass through, as well as water itself, but allowing water vapor to pass through.

従って、かかる疎水性重合体多孔質膜は、通常、0.0
5〜50μm、好ましくは0.1〜10.czm程度の
微孔を有し、且つ、多孔度が50%以上であることが好
ましい。また、膜厚は特に制限されるものではないが、
通常、1μm乃至2B、好ましくは50μm乃至1日程
度である。
Therefore, such hydrophobic polymer porous membranes usually have 0.0
5-50 μm, preferably 0.1-10. It is preferable to have micropores of about czm and have a porosity of 50% or more. In addition, although the film thickness is not particularly limited,
Usually, it is about 1 μm to 2B, preferably about 50 μm to 1 day.

従って、本発明においては、かかる多孔質膜として、ポ
リテトラフルオロエチレン樹脂のようなフッ素系樹脂か
らなる多孔質膜が、疎水性であると共に耐熱性にすぐれ
、例えば、膜を加熱殺菌洗浄し、或いは膜処理時に一般
上水を同時に高温殺菌し得るために特に好ましく用いら
れる。また、例えば、フッ化ビニリデン樹脂やエチレン
−テトラフルオロエチレン共重合樹脂等のようなフッ素
系樹脂の溶液又は溶融液を押出成形して得られる多孔質
膜も好ましく用いられる。しかし、例えばポリスルホン
やセルロース樹脂のような親水性樹脂からなる多孔質膜
でも、表面にフッ素系樹脂やシリコーン樹脂等の撥水性
樹脂を被覆して疎水性の多孔質表面を付与するときは、
これら樹脂膜も使用することができる。
Therefore, in the present invention, as such a porous membrane, a porous membrane made of a fluororesin such as polytetrafluoroethylene resin is hydrophobic and has excellent heat resistance. Alternatively, it is particularly preferably used because common tap water can be sterilized at high temperature at the same time during membrane treatment. Also preferably used is a porous membrane obtained by extrusion molding a solution or melt of a fluororesin such as vinylidene fluoride resin or ethylene-tetrafluoroethylene copolymer resin. However, when a porous membrane made of a hydrophilic resin such as polysulfone or cellulose resin is coated with a water-repellent resin such as a fluororesin or silicone resin to provide a hydrophobic porous surface,
These resin films can also be used.

次に、本発明の方法において用いるに好適なサーモパー
ベーパレーション装置について、図面に基づいて説明す
る。
Next, a thermopervaporation device suitable for use in the method of the present invention will be described based on the drawings.

第1図及び第2図は、本発明の方法において好適に用い
得るサーモパーベーパレーション装置の一例を示す。
FIGS. 1 and 2 show an example of a thermopervaporation device that can be suitably used in the method of the present invention.

即ち、外管1内には上記したような疎水性重合体多孔質
膜よりなる膜管2が同軸的に配設されており、外管と膜
管との間に所定の温度の原水のための原水通路3が形成
されている。従って、外管は保温性を有することが好ま
しく、例えば樹脂より形成される。原水通路3には原水
の導入管4及び導出管5が接続され、必要に応じてこれ
ら管路に設けた加熱器6により所定の温度に加熱された
原水が上記管4及び5にて原水回路に循環して流通され
る。原水は、弁7を備えた供給管8から適宜に原水回路
に補充され、また、図示しないが、排出管により必要に
応じて原水回路から一部が排出される。
That is, the membrane tube 2 made of the above-mentioned hydrophobic polymer porous membrane is coaxially disposed inside the outer tube 1, and the raw water at a predetermined temperature is placed between the outer tube and the membrane tube. A raw water passage 3 is formed. Therefore, the outer tube preferably has heat retaining properties, and is made of resin, for example. A raw water inlet pipe 4 and a raw water outlet pipe 5 are connected to the raw water passage 3, and the raw water heated to a predetermined temperature by a heater 6 installed in these pipes as necessary is passed through the raw water circuit through the pipes 4 and 5. It is circulated and distributed. Raw water is appropriately replenished into the raw water circuit through a supply pipe 8 equipped with a valve 7, and a portion of the raw water is discharged from the raw water circuit as necessary through a discharge pipe (not shown).

膜管2の内側には、更にこれと同軸的に伝熱管9が配設
され、前記膜管との間に蒸気拡散空間10を存するよう
に適宜の間隔がおかれている。蒸気拡散空間は、水蒸気
の凝縮効率の点からは狭い方が好ましいが、あまり狭く
するときは、却って透過水の流通抵抗となるので、通常
、0.2〜511程度が好適である。伝熱管は伝熱性が
高く、且つ、イオン抽出のないステンレス鋼製薄肉管が
好適である。この伝熱管には冷却媒体のための導入管1
1及び導出管12が接続され、例えば冷却水のような冷
却媒体が伝熱管内に循環して流通される。
A heat transfer tube 9 is further disposed coaxially inside the membrane tube 2, and is spaced at an appropriate distance so that a vapor diffusion space 10 exists between the tube and the membrane tube. It is preferable for the vapor diffusion space to be narrow from the point of view of water vapor condensation efficiency, but if it is too narrow, it will actually create a flow resistance for permeated water, so it is usually preferably about 0.2 to 511 mm. The heat transfer tube is preferably a thin-walled stainless steel tube that has high heat conductivity and is free from ion extraction. This heat transfer tube includes an inlet pipe 1 for the cooling medium.
1 and an outlet pipe 12 are connected, and a cooling medium such as cooling water is circulated within the heat transfer tube.

また、蒸気拡散空間には膜管を透過し、伝熱管にて冷却
され、凝縮した透過水の導出管13が接続されている。
Further, connected to the vapor diffusion space is an outlet pipe 13 for permeated water that has permeated through the membrane tube, been cooled by the heat exchanger tube, and condensed.

尚、膜管を構成する前記多孔質膜は、強度が小さい場合
、図示しないが、適宜の支持体上に支持されて形成され
ていてもよい。このような支持体は、多孔質膜を補強す
ると共に、水蒸気を透過させることができれば足り、例
えば、ポリアミドからなる織布又は不織布や、セラミッ
ク製の多孔質管が好適に用いられる。
Note that, if the porous membrane constituting the membrane tube has low strength, it may be supported on an appropriate support (not shown). Such a support only needs to be able to reinforce the porous membrane and allow water vapor to pass therethrough, and for example, a woven or nonwoven fabric made of polyamide or a porous tube made of ceramic is preferably used.

また、サーモパーベーパレーション装置は、第3図に示
すように、外管1内に複数の膜管2が配設され、各膜管
が内部に伝熱管9を有すると共に、外管と各膜管との間
の空間が原水通路3であるように構成されていてもよい
Further, as shown in FIG. 3, the thermopervaporation device includes a plurality of membrane tubes 2 disposed inside an outer tube 1, each membrane tube having a heat transfer tube 9 inside, and an outer tube and each membrane tube. The space between the pipe and the pipe may be configured to be the raw water passage 3.

第4図及び第5図も、前記第1の方法を実施するための
サーモパーベーパレーション装置の例を示し、第1図と
同じ部材には同じ参照番号が付されている。即ち、外管
1内に膜管2が同軸的に配設されており、外管と膜管と
の間に原水通路3が形成されている点は、前記した第1
図のサーモパーベーパレーション装置と同じであるが、
この装置においては、膜管2の内側にこれに接してスペ
ーサ14が配設され、更に、このスペーサの内側にこれ
に接して伝熱管9が配設されている。即ち、スペーサは
伝熱管によって冷却されるので、スペーサ自体が冷却さ
れた蒸気拡散空間を形成していると共に、透過水の通路
を形成する。従って、原水から発生し、膜管を透過した
蒸気は、このスペーサ及び伝熱管にて冷却され、スペー
サは凝縮した透過水の導出管13に連通されている。
4 and 5 also show an example of a thermopervaporation device for carrying out the first method, and the same parts as in FIG. 1 are given the same reference numerals. That is, the membrane tube 2 is disposed coaxially within the outer tube 1, and the raw water passage 3 is formed between the outer tube and the membrane tube.
It is the same as the thermopervaporation device shown in the figure, but
In this device, a spacer 14 is disposed on the inside of the membrane tube 2 in contact with it, and a heat exchanger tube 9 is further disposed on the inside of this spacer in contact with it. That is, since the spacer is cooled by the heat transfer tube, the spacer itself forms a cooled vapor diffusion space and also forms a passage for permeated water. Therefore, the steam generated from the raw water and permeated through the membrane tube is cooled by the spacer and the heat transfer tube, and the spacer is communicated with the condensed permeated water outlet tube 13.

このスペーサは、膜管を透過した蒸気が伝熱管まで透過
し得るように多孔質であると共に、伝熱壁によって冷却
されて凝縮した水が少なくとも所定方向に通液性を有す
ることが必要であり、更に、熱伝導性にすぐれているこ
とが好ましい。図示した装置においては、スペーサは生
じた透過水が鉛直方向に流下し得るように、スペーサは
少なくとも鉛直方向に通液性を有することが必要である
This spacer must be porous so that the steam that has passed through the membrane tube can pass through to the heat transfer tube, and must also have liquid permeability in at least a predetermined direction for water that has been cooled and condensed by the heat transfer wall. Furthermore, it is preferable that the material has excellent thermal conductivity. In the illustrated apparatus, the spacer needs to have liquid permeability at least in the vertical direction so that the generated permeated water can flow down in the vertical direction.

勿論、スペーサは多孔質膜又は伝熱管表面に、又はこれ
らの両者に予め接合されていてもよい。
Of course, the spacer may be bonded in advance to the porous membrane, the heat exchanger tube surface, or both.

上記スペーサとしては、例えば、10〜1000メツシ
ユの天然又は合成の繊維、例えば、ポリエチレン、ポリ
エステル、ポリアミド等の繊維からなる織布、不織布、
炭素繊維布、金属網等が好ましく用いられる。スペーサ
の厚みは特に制限されるものではないが、余りに厚いと
きは、却って蒸気の凝縮効率を低下させるので、通常、
5寵以下、特に0.2〜3龍の範囲が好ましい。即ち、
厚みの小さいスペーサを用いることにより、蒸気拡散空
間の間隔を小さくすることができると同時に水蒸気の凝
縮効率及び透過水としての純水の取得速度を高めること
ができる。
Examples of the spacer include woven fabrics, non-woven fabrics made of 10 to 1000 meshes of natural or synthetic fibers, such as polyethylene, polyester, polyamide, etc.
Carbon fiber cloth, metal mesh, etc. are preferably used. The thickness of the spacer is not particularly limited, but if it is too thick, it will actually reduce the steam condensation efficiency, so normally,
A range of 5 or less, particularly 0.2 to 3 is preferred. That is,
By using a spacer with a small thickness, the interval between the vapor diffusion spaces can be reduced, and at the same time, the efficiency of condensing water vapor and the acquisition rate of pure water as permeated water can be increased.

原水通路3には原水としての一般上水の導入管4及び導
出管5が接続され、必要に応じてこの管路に加熱器6が
備えられる。原水が弁7を備えた供給管8から原水回路
に補充されるのは、前記装置と同じである。また、伝熱
管には前記と同様に、冷却媒体のための導入管11及び
導出管12が接続され、冷却媒体が伝熱管内に循環して
流通される。
An inlet pipe 4 and an outlet pipe 5 for general tap water as raw water are connected to the raw water passage 3, and a heater 6 is provided in this pipe as necessary. It is the same as in the previous device that raw water is replenished into the raw water circuit through a supply pipe 8 equipped with a valve 7. Further, the heat exchanger tube is connected to the inlet tube 11 and the outlet tube 12 for the cooling medium, as described above, and the cooling medium is circulated within the heat exchanger tube.

第1図及び第2図に示したサーモパーベーパレーション
装置においては、所定の温度の原水は、原水通路3に導
入され、臘水より発生した水蒸気は膜管2を透過して蒸
気空間10に至り、伝熱管9の表面上で冷却されて、透
過水を生じ、伝熱管表面を流下して通過水導出管13よ
り装置外に導かれる。原水中の微粒子や微生物は膜管に
より透過を阻止され、原水中に留まる。
In the thermopervaporation apparatus shown in FIGS. 1 and 2, raw water at a predetermined temperature is introduced into the raw water passage 3, and the water vapor generated from the liquefied water passes through the membrane tube 2 and enters the steam space 10. The permeated water is then cooled on the surface of the heat exchanger tube 9 to produce permeated water, which flows down the surface of the heat exchanger tube and is led out of the apparatus through the passed water outlet tube 13. Fine particles and microorganisms in the raw water are blocked from permeation by the membrane tube and remain in the raw water.

第4図に示したサーモパーベーパレーション装置によれ
ば、原水より発生した水蒸気は膜管2を透過し、スペー
サ14及び伝熱管9によって冷却され、凝縮して、スペ
ーサを流下して通過水導出管13より装置外に導かれる
According to the thermopervaporation device shown in FIG. 4, water vapor generated from raw water passes through the membrane tube 2, is cooled by the spacer 14 and the heat transfer tube 9, is condensed, and flows down the spacer to lead out the passing water. It is led out of the device through a pipe 13.

第6図及び第7図は、別のサーモパーベーパレーション
装置の一例を示し、第1図と同じ部材には同じ参照番号
が付されている。
6 and 7 show another example of a thermopervaporation device, in which the same parts as in FIG. 1 are given the same reference numerals.

外管l内には前記したような疎水性重合体多孔質膜より
なる膜管2が同軸的に配設されて、外管と膜管との間に
原水通路3が形成され、この原水通路に所定の温度の原
水が流通され、膜管内には純水が冷却媒体として流通さ
れる。即ち、原水と冷却媒体としての純水が上記膜管を
介して接触される。原水通路3には原水を流通させるた
めの導入管4及び導出管5が接続され、同様に、膜管2
にも冷却媒体を流通させるための導入管11及び導出管
12が接続されている。
A membrane tube 2 made of a hydrophobic polymer porous membrane as described above is disposed coaxially within the outer tube 1, and a raw water passage 3 is formed between the outer tube and the membrane tube. Raw water at a predetermined temperature is passed through the membrane tube, and pure water is passed through the membrane tube as a cooling medium. That is, raw water and pure water as a cooling medium are brought into contact through the membrane tube. An inlet pipe 4 and an outlet pipe 5 for flowing raw water are connected to the raw water passage 3, and similarly, a membrane pipe 2 is connected to the raw water passage 3.
An inlet pipe 11 and an outlet pipe 12 for circulating a cooling medium are also connected to the pipe.

この第2のサーモパーベーパレーション装置によれば、
原水より発生し、膜管壁を透過した水蒸気は、冷却媒体
としての純水にて直ちに冷却されて凝縮し、冷却媒体と
しての純水中に回収される。
According to this second thermopervaporation device,
Water vapor generated from raw water and permeated through the membrane tube wall is immediately cooled and condensed in pure water as a cooling medium, and is recovered in pure water as a cooling medium.

前記したと同様に、必要に応じて、原水は供給管8より
補充されつつ、加熱器6にて加熱されて、管路4及び5
により原水回路を循環され、また、冷却媒体は、必要に
応じて冷却媒体回路□に設けた冷却器14により所定の
温度に冷却されつつ、冷却媒体回路を循環され、その一
部は得られた透過水と共に取出管15から装置外に取り
出される。
In the same way as described above, raw water is replenished from the supply pipe 8 as necessary, heated by the heater 6, and then supplied to the pipes 4 and 5.
The cooling medium is circulated through the cooling medium circuit while being cooled to a predetermined temperature by the cooler 14 provided in the cooling medium circuit □ as necessary. The permeated water is taken out of the apparatus through the take-out pipe 15.

この第2のサーモパーベーパレーション装置によれば、
膜管を介して所定の温度の原水と冷却媒体としての純水
とが直接に接触されるので、原水から発生した水蒸気は
直ちに冷却媒体である純水により冷却されて凝縮し、冷
却媒体としての純水中に回収される。従って、蒸気の透
過速度が大きいのみならず、膜管と伝熱壁との間に蒸気
空間を設けた単位装置よりも小型化し得、単位体積当り
の有効膜面積が大きいので、効率よく純水を得ることが
できる。
According to this second thermopervaporation device,
Since raw water at a predetermined temperature and pure water as a cooling medium are brought into direct contact through the membrane tube, the water vapor generated from the raw water is immediately cooled and condensed by the pure water as a cooling medium. Collected in pure water. Therefore, not only the vapor transmission rate is high, but it can also be made smaller than a unit device with a vapor space between the membrane tube and the heat transfer wall, and the effective membrane area per unit volume is large, so it is possible to efficiently purify water. can be obtained.

図示しないが、第6図に示すサーモパーベーパレーショ
ン装置の変形として、装置は、複数の膜管が外管内に収
容され、各膜管内に冷却媒体が循環され、外管内に・お
いて膜管外の空間が原水通路をなすように形成されてい
てもよい。
Although not shown, as a modification of the thermopervaporation device shown in FIG. The outside space may be formed to form a raw water passage.

尚、上記したいずれのサーモパーベーパレーション装置
の場合についても、原水を外管と膜管との間の原水通路
3に流通させ、膜管内に冷却媒体を流通させるとして本
発明の詳細な説明したが、しかし、原水通路に冷却媒体
を流通させ、一方、冷却媒体通路に原水を流通させてよ
いのは勿論である。
In addition, in the case of any of the above-mentioned thermopervaporation devices, the present invention has been described in detail assuming that raw water is passed through the raw water passage 3 between the outer tube and the membrane tube, and a cooling medium is circulated within the membrane tube. However, it goes without saying that the cooling medium may be passed through the raw water passage, while the raw water may be made to flow through the cooling medium passage.

マタ、サーモパーベーパレーション装置が膜管と伝熱管
との間にスペーサを有するときは、スペーサ自体も低温
の伝熱壁によって冷却されているので、膜を透過した蒸
気はスペーサ及び伝熱壁によって直ちに冷却されて凝縮
し、その結果、蒸気の凝縮速度が大きくなって、透過水
としての純水を高い効率にて得ることができる。
When a thermopervaporation device has a spacer between the membrane tube and the heat transfer tube, the spacer itself is also cooled by the low-temperature heat transfer wall, so the vapor that permeates through the membrane is absorbed by the spacer and the heat transfer wall. It is immediately cooled and condensed, and as a result, the condensation rate of the steam increases, making it possible to obtain pure water as permeated water with high efficiency.

また、図示したサーモパーベーパレーション装置はいず
れも、原水通路又は冷却媒体通路が環状に形成されてい
るが、膜管に代わる平板状の膜壁と伝熱管に代わる平板
状の伝熱壁とを、その間に蒸気拡散空間を設けて、或い
は設けることなく、少なくとも一組を対向して配設し、
前記外管に相当する適宜の容器内に各通路を封入し、各
通路に原水又は冷却媒体のWi環のための回路を接続す
れば、前記した各サーモパーベーパレーション装置に対
応して、断面が方形に延びる原水通路及び冷却媒体通路
を有する有するサーモパーベーパレーション装置を得る
ことができる。
In addition, in all of the illustrated thermopervaporation devices, the raw water passage or the cooling medium passage is formed in an annular shape. , at least one pair are arranged facing each other with or without a vapor diffusion space therebetween;
By enclosing each passage in a suitable container corresponding to the outer tube and connecting a circuit for the Wi ring of raw water or cooling medium to each passage, the cross section can be adjusted to correspond to each of the above-mentioned thermopervaporation devices. It is possible to obtain a thermopervaporation device having a rectangular raw water passage and a cooling medium passage.

更に、上記膜壁と伝熱壁とをスペーサを介して接触させ
て配設すれば、第4図に対応したサーモパーベーパレー
ション装置を得ることができる。
Furthermore, by arranging the membrane wall and the heat transfer wall in contact with each other via a spacer, a thermopervaporation device corresponding to FIG. 4 can be obtained.

このようなサーモパーベーパレーション装置も、本発明
の方法を実施するのに好適に用い得ることは明らかであ
ろう。
It will be clear that such a thermopervaporation device can also be suitably used to carry out the method of the present invention.

第8図は、本発明による方法を実施するための装置構成
の一例を示す。この装置は、−股上水を加熱しつつ脱気
するための加熱脱気槽21とサーモパーベーパレーショ
ン装置22とを有し、加熱脱気槽21は加熱器23と空
気吹き込み管24とを備えている。−股上水は適宜の管
路25にて加熱脱気槽21に導かれて、ここで加熱下に
空気を吹き込まれて溶存ガスを脱気された後、サーモパ
ーベーパレーション装置22における前記原水通路3に
供給され、ここで、前述したように、純水としての透過
水を導出管13から得ることができる。
FIG. 8 shows an example of an apparatus configuration for carrying out the method according to the present invention. This device includes: a heating deaeration tank 21 and a thermopervaporation device 22 for heating and deaerating rise water; the heating deaeration tank 21 includes a heater 23 and an air blowing pipe 24; ing. - The rise water is led to the heating deaeration tank 21 through a suitable pipe line 25, where air is blown under heating to remove dissolved gas, and then the raw water passage in the thermopervaporation device 22 3, and here, as described above, permeated water as pure water can be obtained from the outlet pipe 13.

また、本発明の方法によれば、−C上水を加熱しつつ、
サーモパーベーパレーション処理して、純水を得ること
もできる。このような方法を実施するための簡便な装置
は、加熱した一般上水を脱気しつつ、水蒸気は透過させ
るが、水は透過させない疎水性重合体多孔質膜の一面側
に接触させ、この原水から水蒸気を発生させ、これを上
記多孔質膜の他面側に透過させ、伝熱壁にて冷却して凝
縮させて、純水としての透過水を得るための純水製造装
置において、外側から外管、伝熱管及び膜管を同軸的に
配設して、膜管内を原水通路、伝熱管と膜管との間の環
状空隙を原水からの水蒸気が拡散して凝縮する蒸気拡散
空間、及び外管と伝熱管との間の環状空隙を冷却水通路
とし、上記膜管を前記疎水性重合体多孔質膜から形成す
ると共に、上記膜管にはその内側に原水を加熱するため
のの加熱器、原水を気液接触させて脱気するための空気
吹き込み管及び脱気のための開口を備えさせてなること
を特徴とする。
Further, according to the method of the present invention, while heating -C clean water,
Pure water can also be obtained by thermopervaporation treatment. A simple device for carrying out such a method is to degas heated general water and bring it into contact with one side of a hydrophobic polymer porous membrane that allows water vapor to pass through but not water. In a pure water production device that generates water vapor from raw water, transmits it to the other side of the porous membrane, cools it on the heat transfer wall, and condenses it to obtain permeated water as pure water. An outer tube, a heat transfer tube, and a membrane tube are arranged coaxially, the inside of the membrane tube is a raw water passage, and the annular gap between the heat transfer tube and the membrane tube is a vapor diffusion space where water vapor from the raw water diffuses and condenses. The annular gap between the outer tube and the heat transfer tube is used as a cooling water passage, and the membrane tube is formed from the hydrophobic polymer porous membrane. It is characterized by being equipped with a heater, an air blowing pipe for bringing raw water into gas-liquid contact and degassing it, and an opening for degassing.

第9図及び第10図にかかる装置の実施例を示す。第1
図と同じ部材には同じ参照番号が付されている。即ち、
外管1内には伝熱管9が同軸的に配設されており、この
伝熱管9内に前記したような疎水性重合体多孔質膜より
なる膜管2が同軸的に配設されており、外管と伝熱管と
の間の環状空隙が冷却水通路16に、また、伝熱管と膜
管との間の環状空隙が蒸気拡散空間10に形成されてい
る。冷却水通路には冷却水のための4入管11及び導出
管12が接続され、また、原水通路には原水の導入管4
及び導出管5が接続されていると共に、蒸気拡散空間1
0には、膜管を透過し、伝熱管壁にて冷却され、凝縮し
た透過水の導出管13が接続されている。
An embodiment of the apparatus according to FIGS. 9 and 10 is shown. 1st
Elements that are the same as in the figures have been given the same reference numerals. That is,
A heat transfer tube 9 is disposed coaxially within the outer tube 1, and a membrane tube 2 made of a hydrophobic polymer porous membrane as described above is coaxially disposed within this heat transfer tube 9. An annular gap between the outer tube and the heat transfer tube is formed in the cooling water passage 16, and an annular gap between the heat transfer tube and the membrane tube is formed in the vapor diffusion space 10. Four inlet pipes 11 and four outlet pipes 12 for cooling water are connected to the cooling water passage, and an inlet pipe 4 for raw water is connected to the raw water passage.
and the outlet pipe 5 are connected, and the vapor diffusion space 1
0 is connected to a discharge pipe 13 for permeated water that has permeated through the membrane tube, been cooled and condensed on the wall of the heat transfer tube.

図示した装置においては、更に、膜管内に一般上水を加
熱するための加熱器31と一般上水中に空気を吹き込む
ための空気吹き込み管32とが挿入されていると共に、
脱気された溶存ガスを空気と共に大気に放散するために
空気口33に連通されている。
In the illustrated device, a heater 31 for heating general water and an air blowing pipe 32 for blowing air into the general water are further inserted into the membrane tube, and
It communicates with an air port 33 in order to diffuse the degassed dissolved gas into the atmosphere together with the air.

この装置によれば、−股上水を加熱下に空気を吹き込ん
で溶存ガスを脱気しつつ、同時にサーモパーベーパレー
ション処理するので、簡便に純水を得ることができる。
According to this apparatus, pure water can be easily obtained because air is blown into the heated water to degas the dissolved gas and at the same time thermopervaporation treatment is performed.

更に、本発明によれば、第8図に示したサーモパーベー
パレーション装置によって一般上水から純水’c 得る
と共に、サーモパーベーパレーション装置からの冷却水
を加熱し、及び/又は空気と気液接触させ、好ましくは
加熱下に空気を吹き込んで気液接触させた後、これを原
水としてサーモパーベーパレーション処理して、純水を
得ることもできる。サーモパーベーパレーション法にお
ける冷却水が加熱され、この加熱された冷却水を原水と
して用いるので、熱経済性にすぐれる。
Further, according to the present invention, pure water is obtained from general tap water by the thermopervaporation device shown in FIG. 8, and cooling water from the thermopervaporation device is heated and/or air and After bringing into liquid contact, preferably by blowing air under heating to bring into gas-liquid contact, this can be used as raw water and subjected to thermopervaporation treatment to obtain pure water. Since the cooling water in the thermopervaporation method is heated and this heated cooling water is used as raw water, it has excellent thermoeconomic efficiency.

以上のような方法及び装置において、原水の加熱温度を
高くするほど、サーモパーベーパレーションによって多
くの透過水が得られるので、脱気における加熱温度及び
サーモパーベーパレーションにおける加熱温度は、通常
、50℃以上であることが好ましい。また、サーモパー
ベーパレーションにおける冷却水温度は、低い方がよい
が、通常、10〜40℃程度が適当である。
In the above methods and devices, the higher the heating temperature of the raw water, the more permeated water can be obtained by thermopervaporation, so the heating temperature for deaeration and the heating temperature for thermopervaporation are usually 50°C. It is preferable that the temperature is at least ℃. Furthermore, the temperature of the cooling water in thermopervaporation is preferably lower, but is usually about 10 to 40°C.

尚、必要に応じて、サーモパーベーパレーション装置を
複数段に構成し、第1の装置からの透過水を更に第2段
の装置においてサーモパーベーパレーション処理するこ
ともできる。
Note that, if necessary, the thermopervaporation device can be configured in multiple stages, and the permeated water from the first device can be further subjected to thermopervaporation treatment in the second stage device.

(発明の効果) 以上のように、本発明の方法によれば、−股上水をサー
モパーベーパレーション法にて処理する前又は間に加熱
した一般上水を気液接触によって、に主として炭酸成分
と共にその他の溶存ガスを除去し、サーモパーベーパレ
ーション処理によって、前述した陽イオン、有機物質等
の溶解物′質や、微粒子及び微生物等の浮遊物質が実質
的に完全に除去する。従って、本発明の方法によれば、
僅かの工程によって、電導度1.0μS/cI11以下
の高品質の純水を容易に且つ経済的に製造することがで
きる。
(Effects of the Invention) As described above, according to the method of the present invention, - By gas-liquid contact, heated general tap water is heated before or during the treatment of rise water by the thermopervaporation method, and the main carbonic acid components are At the same time, other dissolved gases are removed, and the above-mentioned dissolved substances such as cations and organic substances, as well as suspended substances such as fine particles and microorganisms, are substantially completely removed by thermopervaporation treatment. Therefore, according to the method of the invention,
High quality pure water with an electrical conductivity of 1.0 μS/cI11 or less can be easily and economically produced through a few steps.

更に、本発明の方法によれば、例えば、圧力差を駆動力
とする逆浸透法と異なり、温度差を駆動力としているた
めに加圧を必要としないうえに、加熱脱気した一般上水
をサーモバーヘーパレーション処理する方法によれば、
高温の一般上水をそのまま、サーモパーベーパレーショ
ン法にて処理することができるから、熱経済性にすぐれ
るのみならず、処理の過程における膜や一般上水におけ
る微生物の増殖を抑え、或いは処理中に膜や一般上水を
同時に高温殺菌することもできる。更に、疎水性の膜を
使用するので、膜の目詰りや濃度分極がなく、−股上水
から効率よく高度の純水を得ることができる。
Furthermore, according to the method of the present invention, unlike reverse osmosis, which uses a pressure difference as a driving force, it uses a temperature difference as a driving force, so pressurization is not required, and it can also be used with general tap water that has been heated and deaerated. According to the method of processing the thermovar heparation,
Because high-temperature general water can be treated directly using the thermopervaporation method, it not only has excellent thermoeconomic efficiency, but also suppresses the growth of microorganisms in the membrane and general water during the treatment process. It is also possible to sterilize the membrane and general water at high temperature at the same time. Furthermore, since a hydrophobic membrane is used, there is no clogging of the membrane or concentration polarization, and - highly purified water can be efficiently obtained from water.

また、本発明の装置によれば、−i上水を加熱下に気液
接触によって脱気しつつ、サーモパーベーパレーション
処理するので、装置として非常に簡単でありながら、効
率よ(高品質の純水を製造することができる。
In addition, according to the device of the present invention, the -i tap water is degassed by gas-liquid contact while being heated and subjected to thermopervaporation treatment, so the device is very simple and efficient (high quality). Pure water can be produced.

(実施例) 以下に本発明の実施例を挙げる。(Example) Examples of the present invention are listed below.

実施例1 第8図に示す装置を用いて、−股上水として茨木市水道
水を用いて、純水を製造した。尚、この−股上水の性状
は以下のとおりである。
Example 1 Using the apparatus shown in FIG. 8, pure water was produced using Ibaraki City tap water as water. The properties of this rise water are as follows.

Na          10,7  try/IK 
           2.08■/iCa     
     14.2  mg/j!Mg       
    3.84■/l炭酸ガス        8.
8  ■/l塩素イオン      16.9 ■/1
硫酸イオン      18.4 ■/lシリカ   
     18.2 ■/Il全リン        
0.05■/l遊離塩素        1.0  p
pm以下アンモニア性窒素    0.5  ppm以
下電導度       180  μS/CIII加熱
脱気槽において、上記茨木市水道水101を温度80℃
に加熱し、これに空気を517分の割合で10分間吹き
込んで気液接触させた後、管路にて約51/分の割合に
てサーモパーベーパレーション装置に供給′した。冷却
水通路には、温度20℃の冷却水を54’/分の割合で
供給した。
Na 10,7 try/IK
2.08■/iCa
14.2 mg/j! Mg
3.84■/l carbon dioxide gas 8.
8 ■/l Chlorine ion 16.9 ■/1
Sulfate ion 18.4 ■/l silica
18.2 ■/Il total phosphorus
0.05■/l Free chlorine 1.0 p
pm or less Ammonia nitrogen 0.5 ppm or less Electrical conductivity 180 μS/In a CIII heating deaeration tank, the above Ibaraki city tap water 101 was heated at a temperature of 80°C.
After heating it to a temperature of 517 min, air was blown into it for 10 minutes to bring it into gas-liquid contact, and then it was supplied to a thermopervaporation device through a pipe at a rate of about 51 min. Cooling water at a temperature of 20° C. was supplied to the cooling water passage at a rate of 54′/min.

脱気後の一般上水中の炭酸ガス量は0.5 ppmであ
り、装置からは電導度0.8μS / cmの純水を6
0cc/分の割合で得た。
The amount of carbon dioxide gas in general tap water after deaeration is 0.5 ppm, and the device supplies 60% of pure water with an electrical conductivity of 0.8 μS/cm.
It was obtained at a rate of 0 cc/min.

尚、サーモパーベーパレーション装置は、多孔質ポリア
ミド織布にて裏打ちされたポリテトラフルオロエチレン
多孔質膜からなる平膜にスペーサとして厚み0.5 m
のポリアミド網を重ね、このスペーサの表面にステンレ
ス板からなる伝熱壁を備えた冷却水通路を配設して構成
された平型セル装置であり、上記多孔質膜は平均孔径0
.2μmの微孔を有し、多孔度80%であって、装置に
おける有効膜面積は400cJである。
The thermopervaporation device uses a flat membrane made of a polytetrafluoroethylene porous membrane lined with a porous polyamide woven fabric, and a spacer with a thickness of 0.5 m.
This is a flat cell device constructed by stacking polyamide nets and arranging cooling water passages with heat transfer walls made of stainless steel plates on the surface of the spacer, and the porous membrane has an average pore diameter of 0.
.. It has micropores of 2 μm, a porosity of 80%, and an effective membrane area of 400 cJ in the device.

実施例2 第9図に示したように、樹脂製の外管内にステンレス伝
熱管とFEP樹脂にて裏打ちされたポリテトラフルオロ
エチレン多孔質膜からなる膜管を同軸的に配設すると共
に、膜管内に加熱器と空気吹き込み管を挿入して、装置
を構成した。上記膜管は、平均孔径0.2μmの微孔を
有する多孔度80%の多孔質膜からなり、装置における
有効膜面積は890c111である。
Example 2 As shown in Fig. 9, a stainless steel heat transfer tube and a membrane tube made of a polytetrafluoroethylene porous membrane lined with FEP resin were coaxially disposed inside a resin outer tube, and the membrane The device was constructed by inserting a heater and an air blowing tube into the tube. The membrane tube is made of a porous membrane with a porosity of 80% having micropores with an average pore diameter of 0.2 μm, and the effective membrane area in the device is 890cm111.

この装置において、一般上水を原水通路に1.81/分
の割合で供給し、これを加熱器にて約80°Cに加熱し
つつ、空気を31/分の割合で吹き込み、他方、冷却水
通路には温度15℃の冷却水を36/分の割合で供給し
た。
In this device, general tap water is supplied to the raw water passage at a rate of 1.81/min, and while it is heated to approximately 80°C with a heater, air is blown in at a rate of 31/min. Cooling water at a temperature of 15° C. was supplied to the water passage at a rate of 36/min.

膜管内の一般上水中の炭酸ガス量は0.5 ppmであ
り、装置からは電導度0.8μS / cmの純水を3
0cc/分の割合で得た。
The amount of carbon dioxide gas in the general tap water in the membrane tube is 0.5 ppm, and the device pumps pure water with an electrical conductivity of 0.8 μS/cm.
It was obtained at a rate of 0 cc/min.

尚、膜管内に空気の吹き込みを行なわなかった以外は同
様に処理したところ、得られた透過水は、電4度が1.
3μS/CInであった。
In addition, when the same treatment was carried out except that air was not blown into the membrane tube, the obtained permeated water had an electric power of 1.4 degrees.
It was 3 μS/CIn.

実施例3 第9図に示すサーモパーベーパレーション”AHからの
冷却水を加熱脱気し、これを原水としてサーモパーベー
パレーション処理することによって純水を製造した。
Example 3 Cooling water from the thermopervaporation "AH" shown in FIG. 9 was heated and degassed, and this was used as raw water and subjected to thermopervaporation treatment to produce pure water.

サーモパーベーパレーション装置において、一般上水を
原水通路に1,817分の割合で供給し、これを加熱器
にて約80℃に加熱しつつ、空気を2//分の割合で吹
き込み、他方、冷却水通路には温度20℃の冷却水を0
.7 A /分の割合で供給し、装置から約60℃の冷
却水を回収し、これを約85°Cに加熱しつつ、31/
分の割合で空気を吹き込んで脱気した後、原水としてサ
ーモパーベーパレーション装置に供給した。
In a thermopervaporation device, general tap water is supplied to the raw water passage at a rate of 1,817 min, and while it is heated to approximately 80°C with a heater, air is blown at a rate of 2/min, and the other , the cooling water passage has a temperature of 20°C.
.. 7 A/min, collecting cooling water at about 60°C from the device and heating it to about 85°C, at 31/min.
After deaerating the water by blowing air into it at a rate of 1.5 min, it was supplied as raw water to a thermopervaporation device.

膜管内の一般上水中の炭酸ガス量は0.08 ppmで
あり、装置からは電導度0.6μS / cmの純水を
30cc/分の割合で得た。
The amount of carbon dioxide gas in the general tap water in the membrane tube was 0.08 ppm, and pure water with an electrical conductivity of 0.6 μS/cm was obtained from the device at a rate of 30 cc/min.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法において用いるサーモパーベーパ
レーション装置の一例を示す縦断面図、第2図は第1図
において線A−A線に沿う断面図、第3図は別の装置を
示す断面図、第4図は更に別の装置を示す縦断面図、第
5図は第4図において線B−B線に沿う断面図、第6図
は更に別の装置を示す縦断面図、第7図は第6図におい
て線C−C線に沿う断面図である。 第8図は本発明の方法を実施するための装置構成の一例
を示す図、第9図は本発明の方法を実於するための好適
な装置の実施例を示す断面図、第10図はその横断面図
である。 1・・・外管、2・・・膜管、3・・・原水通路、9・
・・伝財管、10・・・蒸気拡散空間、13・・・純水
導出管、14・・・スペーサ、15・・・冷却水取出管
、16・・・冷月水通路、21・・・加熱脱気槽、22
・・・サーモパーベーパレーション装置、23・・・加
熱器、24・・・空り吹き込み管、25・・・管路、3
1・・・加熱器、32・・空気吹き込み管、33・・・
空気口。 特許出願人 日東電気工業株式会灸 代理人 弁理士  牧 野 逸 f!:「 :I 隅
FIG. 1 is a longitudinal sectional view showing an example of a thermopervaporation device used in the method of the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, and FIG. 3 is a different device. 4 is a longitudinal sectional view showing still another device, FIG. 5 is a sectional view taken along line B-B in FIG. 4, and FIG. 6 is a longitudinal sectional view showing still another device. FIG. 7 is a sectional view taken along line CC in FIG. 6. FIG. 8 is a diagram showing an example of the configuration of an apparatus for implementing the method of the present invention, FIG. 9 is a sectional view showing an embodiment of a preferred apparatus for implementing the method of the present invention, and FIG. FIG. 1...Outer tube, 2...Membrane tube, 3...Raw water passage, 9.
... Transfer pipe, 10... Vapor diffusion space, 13... Pure water outlet pipe, 14... Spacer, 15... Cooling water outlet pipe, 16... Cold moon water passage, 21...・Heating deaeration tank, 22
... thermopervaporation device, 23 ... heater, 24 ... empty blowing pipe, 25 ... pipe line, 3
1... Heater, 32... Air blowing pipe, 33...
air vent. Patent applicant Nitto Electric Industry Co., Ltd. Moxibustion agent Patent attorney Itsu Makino f! :" :I corner

Claims (3)

【特許請求の範囲】[Claims] (1)加熱した一般上水を、水蒸気は透過させるが、水
は透過させない疎水性重合体多孔質膜の一面側に原水と
して接触させ、この原水から水蒸気を発生させ、これを
上記多孔質膜の他面側に透過させ、冷却して凝縮させて
、純水としての透過水を得るサーモパーベーパレーシヨ
ン法において、上記サーモパーベーパレーシヨンの前又
は間に加熱した一般上水を気液接触させて、一般上水を
脱気することを特徴とする純水の製造方法。
(1) Heated general tap water is brought into contact with one side of a hydrophobic polymer porous membrane that allows water vapor to pass through but does not allow water to pass through as raw water, generates water vapor from this raw water, and transfers it to the above porous membrane. In the thermopervaporation method, which permeates through the other side, cools and condenses, and obtains permeated water as pure water, ordinary tap water heated before or during the thermopervaporation is converted into a gas-liquid. A method for producing pure water characterized by deaerating general tap water by contacting it.
(2)加熱した一般上水に空気を吹き込んで、気液接触
させることを特徴とする特許請求の範囲第1項記載の純
水の製造方法。
(2) The method for producing pure water according to claim 1, characterized in that air is blown into heated general tap water to bring it into gas-liquid contact.
(3)加熱した一般上水を脱気しつつ、水蒸気は透過さ
せるが、水は透過させない疎水性重合体多孔質膜の一面
側に接触させ、この原水から水蒸気を発生させ、これを
上記多孔質膜の他面側に透過させ、伝熱壁にて冷却して
凝縮させて、純水としての透過水を得るための純水製造
装置において、外側から外管、伝熱管及び膜管を同軸的
に配設して、膜管内を原水通路、伝熱管と膜管との間の
環状空隙を原水からの水蒸気が拡散して凝縮する蒸気拡
散空間、及び外管と伝熱管との間の環状空隙を冷却水通
路とし、上記膜管を前記疎水性重合体多孔質膜から形成
すると共に、上記膜管にはその内側に原水を加熱するた
めの加熱器、原水を気液接触させて脱気するための空気
吹き込み管及び脱気のための開口を備えさせてなること
を特徴とする純水製造装置。
(3) While degassing the heated general water, it is brought into contact with one side of a hydrophobic polymer porous membrane that allows water vapor to pass through but does not allow water to pass through, to generate water vapor from this raw water and transfer it to the above-mentioned porous water. In a water purification device that permeates through the other side of the membrane, cools and condenses on the heat transfer wall, and obtains permeated water as pure water, the outer tube, heat transfer tube, and membrane tube are coaxially connected from the outside. The inside of the membrane tube is a raw water passage, the annular gap between the heat transfer tube and the membrane tube is a vapor diffusion space where water vapor from the raw water diffuses and condenses, and the annular gap between the outer tube and the heat transfer tube is The void is used as a cooling water passage, and the membrane tube is formed from the hydrophobic polymer porous membrane, and the membrane tube has a heater inside it for heating the raw water, and the raw water is brought into gas-liquid contact for deaeration. 1. A pure water production device comprising an air blowing pipe for deaeration and an opening for deaeration.
JP7162686A 1986-03-28 1986-03-28 Method and apparatus for making pure water Pending JPS62227492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7162686A JPS62227492A (en) 1986-03-28 1986-03-28 Method and apparatus for making pure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7162686A JPS62227492A (en) 1986-03-28 1986-03-28 Method and apparatus for making pure water

Publications (1)

Publication Number Publication Date
JPS62227492A true JPS62227492A (en) 1987-10-06

Family

ID=13466050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7162686A Pending JPS62227492A (en) 1986-03-28 1986-03-28 Method and apparatus for making pure water

Country Status (1)

Country Link
JP (1) JPS62227492A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433650U (en) * 1990-07-06 1992-03-19
US6036746A (en) * 1998-09-23 2000-03-14 University Technology Corporation Condenser system for independently controlling humidity and temperature of treatable air in a closed environment
JP2017126545A (en) * 2016-01-12 2017-07-20 東京瓦斯株式会社 Fuel battery system
JP2017182908A (en) * 2016-03-28 2017-10-05 東京瓦斯株式会社 Fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433650U (en) * 1990-07-06 1992-03-19
US6036746A (en) * 1998-09-23 2000-03-14 University Technology Corporation Condenser system for independently controlling humidity and temperature of treatable air in a closed environment
JP2017126545A (en) * 2016-01-12 2017-07-20 東京瓦斯株式会社 Fuel battery system
JP2017182908A (en) * 2016-03-28 2017-10-05 東京瓦斯株式会社 Fuel cell system

Similar Documents

Publication Publication Date Title
JP4996925B2 (en) Apparatus and method for osmotic membrane distillation
AU587407B2 (en) Osmotic concentration by membrane
CA2970013A1 (en) Fluid distribution device for a gas-liquid contactor, gas-liquid contactor, and method for adding a gas to a liquid
JPH0760291A (en) Production of pyrogen-free high-purity water
JP2000051606A (en) Gas permeation membrane apparatus
JPS62227492A (en) Method and apparatus for making pure water
JPS62216695A (en) Method and apparatus for producing pure water
JP4447126B2 (en) Ultrapure water production equipment
JPS60147201A (en) Treatment of aqueous solution containing volatile substance
JPS62221489A (en) Method for making pure water
JP3009789B2 (en) Removal of dissolved oxygen in water
JP4403622B2 (en) Electrodemineralization treatment method and electrodesalination treatment apparatus
JPS62140694A (en) Production of demineralized water
JPS62262786A (en) Production of pure water
JPS61164195A (en) Method of treating nuclear power waste water
JP2020203231A (en) Membrane penetration water production apparatus and injection service water production system
JPS62221488A (en) Method and apparatus for making pure water
JPS61164604A (en) Preparation of sterile pure water
JPS60206408A (en) Concentration of stick-water
JPS60203173A (en) Concentration of fruit juice
JP3275978B2 (en) Gas-liquid separation device
JPH02160006A (en) Device for removing volatile organic matter
JPS6135805A (en) Continuous treatment of alcohol fermentation solution
JPS6185169A (en) Concentration of albumen
JP2020203228A (en) Purified water manufacturing apparatus and injection service water manufacturing system