JPS61164195A - Method of treating nuclear power waste water - Google Patents

Method of treating nuclear power waste water

Info

Publication number
JPS61164195A
JPS61164195A JP821385A JP821385A JPS61164195A JP S61164195 A JPS61164195 A JP S61164195A JP 821385 A JP821385 A JP 821385A JP 821385 A JP821385 A JP 821385A JP S61164195 A JPS61164195 A JP S61164195A
Authority
JP
Japan
Prior art keywords
nuclear power
power generation
tube
membrane
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP821385A
Other languages
Japanese (ja)
Inventor
中沢 準
俊一 島谷
雄士 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP821385A priority Critical patent/JPS61164195A/en
Publication of JPS61164195A publication Critical patent/JPS61164195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 木、発明は原子力発電廃水の処理方法に関する。[Detailed description of the invention] (Industrial application field) The invention relates to a method for treating nuclear power generation wastewater.

(従来の技術) 我国の原子力発電プラントは、プラント内の熱交換器に
おける冷却水として製本を使用し、また、プラント内の
循環冷却系の冷却水の一部に防錆剤としてクロム酸塩を
使用するために、原子力発電プラントにおける所謂床ド
レン廃水は、放射性核種のイオンと共に、海水に由来す
る種々のイオン類、特に、塩素イオンと防錆剤に由来す
るクロム酸イオ、ンとをそれぞれ数百ppm程度含有し
ている。
(Prior technology) Nuclear power plants in Japan use book binding as cooling water in the heat exchangers in the plants, and also add chromate as a rust preventive to some of the cooling water in the circulation cooling system in the plants. In order to be used, the so-called floor drain wastewater in nuclear power plants contains radionuclide ions as well as various ions originating from seawater, in particular chloride ions and chromate ions originating from rust inhibitors. It contains about 100 ppm.

このように、放射性竺種のイオンと共に、塩素   ゛
イオン及びクロム酸イ、♂゛ンを含有する原子力発電廃
水は、従来、主としてスチーム加熱型蒸発濃縮機によっ
て濃縮した後、セメントによる固化処分を行ない、蒸発
し、た水はこれを回収し、脱塩した後、回収水として再
利用している。しかし、この方法による場合は、廃水が
上記したような種々のイオンを含有するために、蒸発濃
縮機の構成材料であるステンレス鋼に孔食や応力腐食割
れが生じやすい問題がある。
In this way, nuclear power generation wastewater containing radioactive ions as well as chlorine ions and chromate and chromate ions has conventionally been concentrated using a steam-heated evaporative concentrator and then solidified using cement. The evaporated water is collected, desalted, and reused as recovered water. However, this method has the problem that pitting corrosion and stress corrosion cracking are likely to occur in the stainless steel that is the constituent material of the evaporative concentrator because the wastewater contains the various ions mentioned above.

このような問題を解決するために、既に逆浸透処理と電
気透析処理生を結合したプロセスにて処理する方法が特
開昭56−4034号公報に提案されている。しかし、
この方法によれば、逆浸透処理と電気透析処理のイオン
分離の機構の相違から、処理効率を高めるには、両方の
処理のレベルを調和させることが重要であり、そのため
に極めて煩瑣な処理操作が必要である。更に、処理効率
を高め、また、用いる逆浸透膜の劣化を防止するために
、廃水のp■を厳密に制御することが要求される。また
、よく知られているように、逆浸透処理によって塩類を
除去するには高圧が必要であり、更に、膜面が汚染さて
、膜の透過水量が経時的に著しく減少する問題がある。
In order to solve these problems, a method has already been proposed in Japanese Patent Laid-Open No. 56-4034, in which reverse osmosis treatment and electrodialysis treatment are combined. but,
According to this method, due to the difference in the ion separation mechanisms between reverse osmosis treatment and electrodialysis treatment, it is important to harmonize the levels of both treatments in order to increase treatment efficiency, which requires extremely complicated treatment operations. is necessary. Furthermore, in order to increase treatment efficiency and prevent deterioration of the reverse osmosis membrane used, it is required to strictly control p■ of the wastewater. Furthermore, as is well known, high pressure is required to remove salts by reverse osmosis treatment, and there is also the problem that the membrane surface becomes contaminated and the amount of water permeated through the membrane decreases significantly over time.

本発明は、上記したような従来の原子力発電廃水の処理
における種々の問題を解決するためになされたものであ
って、特に、廃水のp++調整や処理のための高圧が不
要であり、更に、装置の腐食の問題もなしに、原子力発
電廃水を効率よく濃縮すると共に脱イオン水を回収する
方法を提供することを目的とする。
The present invention was made in order to solve various problems in the conventional nuclear power generation wastewater treatment as described above, and in particular, there is no need for high pressure for P++ adjustment or treatment of wastewater, and further, It is an object of the present invention to provide a method for efficiently concentrating nuclear power generation wastewater and recovering deionized water without the problem of equipment corrosion.

本発明による原子力発電廃水の処理方法は、放射性核種
のイオンを含有する原子力発電廃水の処理方法において
、水蒸気は透過させるが、水は透過させない疎水性重合
体多孔質膜の一面側に所定の温度の原子力発電廃水を接
触させ、この廃水から水蒸気を発生させ、これを上記多
孔質膜の他面側に透過させ、冷却して凝縮させることに
より、廃水を濃縮すると共に、脱イオン水を回収するこ
とを特徴とする。
A method for treating nuclear power generation wastewater according to the present invention is a method for treating nuclear power generation wastewater containing radionuclide ions, in which one side of a hydrophobic polymer porous membrane that allows water vapor to pass through but does not allow water to pass through is heated to a predetermined temperature. Nuclear power generation wastewater is brought into contact with the wastewater, steam is generated from this wastewater, and this is permeated through the other side of the porous membrane, cooled and condensed, thereby concentrating the wastewater and recovering deionized water. It is characterized by

本発明の方法においては、原子力発電廃水から発生し、
疎水性重合体多孔質膜を透過した水蒸気を冷却し、凝縮
させるために、次のいずれかの方法によることができる
In the method of the present invention, generated from nuclear power generation wastewater,
In order to cool and condense the water vapor that has passed through the hydrophobic polymer porous membrane, any of the following methods can be used.

その第1は、水蒸気は透過させるが、水及びイオン類等
の溶質は透過させない疎水性重合体多孔質膜の一面側に
所定の温度の原子力発電廃水を接触させ、この多孔質膜
の他面側に膜面から適宜の間隔をおいて所定の低温に保
持した伝熱壁を設け、上記原子力発電廃水から発生し、
多孔質膜を透過した水蒸気を上記伝熱壁土で冷却し、凝
縮させて凝縮水を脱イオン水として得る一方、放射性核
種のイオンや、塩素イオン、クロム酸イオンは膜を透過
しないので、これを高い除去率にて原子力発電廃水中に
濃縮するのである。
The first method is to contact nuclear power generation wastewater at a predetermined temperature with one side of a hydrophobic polymer porous membrane that allows water vapor to pass through but does not allow solutes such as water and ions to pass through, and the other side of this porous membrane A heat transfer wall maintained at a predetermined low temperature is provided on the side at an appropriate distance from the membrane surface, and the wastewater generated from the nuclear power generation wastewater is
The water vapor that has passed through the porous membrane is cooled by the heat transfer wall soil and condensed to obtain deionized water. However, radionuclide ions, chloride ions, and chromate ions do not pass through the membrane, so this is It is concentrated in nuclear power generation wastewater with a high removal rate.

第2は、疎水性重合体多孔質膜の一面側に上記のように
所定温度の原子力発電廃水を接触させ、他面側には所定
の低温の冷却媒体、例えば、冷却水を接触させることに
より、原子力発電廃水から発生し、多孔質膜を透過した
水蒸気を直接に冷却媒体にて冷却して凝縮させ、これを
冷却媒体中に得る一方、原子力発電廃水を上記と同様に
濃縮するのである。
The second method is to contact one side of the hydrophobic polymer porous membrane with nuclear power generation wastewater at a predetermined temperature as described above, and contact the other side with a predetermined low-temperature cooling medium, such as cooling water. The water vapor generated from the nuclear power generation wastewater and permeated through the porous membrane is directly cooled and condensed in the cooling medium, and is obtained in the cooling medium, while the nuclear power generation wastewater is concentrated in the same manner as described above.

本発明の方法においては、上記重合体多孔質膜は、原子
力発電廃水に対して疎水性であり、更に水自体は透過さ
せないが、水蒸気は透過させる性質を有することが必要
である。従って、かかる疎水性重合体多孔質膜は、通常
、0.05〜50μm、好ましくは0.1〜5μm程度
の微孔を有し、且つ、多孔度が50%以上であることが
好ましい。また、膜厚は特に制限されるものではないが
、通常、1〜2000μm、好ましくは5〜1000μ
m程度である。
In the method of the present invention, the polymer porous membrane needs to be hydrophobic to nuclear power generation wastewater and have the property of not allowing water itself to pass therethrough but allowing water vapor to pass therethrough. Therefore, such a hydrophobic polymer porous membrane usually has micropores of about 0.05 to 50 μm, preferably about 0.1 to 5 μm, and preferably has a porosity of 50% or more. Further, the film thickness is not particularly limited, but is usually 1 to 2000 μm, preferably 5 to 1000 μm.
It is about m.

従って、本発明においては、かかる多孔質膜として、ポ
リテトラフルオロエチレン樹脂のようなフッ素系樹脂か
らなる多孔質膜が、疎水性であると共に耐熱性にすぐれ
るために特に好ましく用いられる・また、例えば、フッ
化ビニリデン樹脂やエチレン−テトラフルオロエチレン
共重合樹脂等のようなフッ素系樹脂の溶液又は溶融液を
押出成形して得られる多孔質膜も好ましく用いられる。
Therefore, in the present invention, a porous membrane made of a fluororesin such as polytetrafluoroethylene resin is particularly preferably used as the porous membrane because it is hydrophobic and has excellent heat resistance. For example, a porous membrane obtained by extrusion molding a solution or melt of a fluororesin such as vinylidene fluoride resin or ethylene-tetrafluoroethylene copolymer resin is also preferably used.

しかし、例えばポリスルホンやセルロース樹脂のような
親水性樹脂からなる多孔質膜でも、表面にフッ素系樹脂
やシリコーン樹脂等の撥水性樹脂を被覆して疎水性の多
孔質表面を付与するときは、これら樹脂膜も使用するこ
とができる。
However, even if a porous membrane is made of a hydrophilic resin such as polysulfone or cellulose resin, when the surface is coated with a water-repellent resin such as a fluororesin or silicone resin to provide a hydrophobic porous surface. Resin films can also be used.

次に、本発明の方法を実施するのに好適な装置について
、図面に基づいて説明する。
Next, an apparatus suitable for carrying out the method of the present invention will be described based on the drawings.

第1図及び第2図は上記第1の方法を実施するために好
適な装置の一例を示す。
1 and 2 show an example of an apparatus suitable for carrying out the first method described above.

即ち、外管1内には上記したような疎水性重合体多孔質
膜よりなる膜管2が同軸的に配設されており、外管と膜
管との間に所定の温度の原子力発電廃水のための原液通
路3が形成されている。従って、外管は保温性を有する
ことが好ましく、例えば樹脂より形成される。原液通路
3には原子力発電廃水の導入管4及び導出管5が接続さ
れ、必要に応じてこれら管路に設けた加熱器6により所
定の温度に加熱された原子力発電廃水が上記管4及び5
にて原液回路に循環して流通される。原子力発電廃水は
、弁7を備えた供給管8から適宜に原液回路に補充され
、また、図示しないが、排出管により必要に応じて原液
回路から一部が排出される。
That is, a membrane tube 2 made of a hydrophobic polymer porous membrane as described above is disposed coaxially within the outer tube 1, and nuclear power generation wastewater at a predetermined temperature is placed between the outer tube and the membrane tube. A stock solution passage 3 is formed for this purpose. Therefore, the outer tube preferably has heat retaining properties, and is made of resin, for example. An inlet pipe 4 and an outlet pipe 5 for nuclear power generation wastewater are connected to the raw solution passage 3, and the nuclear power generation wastewater is heated to a predetermined temperature by a heater 6 installed in these pipes as necessary.
It is circulated and distributed to the stock solution circuit. Nuclear power generation wastewater is appropriately replenished into the stock solution circuit through a supply pipe 8 equipped with a valve 7, and a portion is discharged from the stock solution circuit as necessary through a discharge pipe (not shown).

膜管2の内側には、更にこれと同軸的に伝熱管9が配設
され、前記膜管との間に蒸気空間10を有するように適
宜の間隔がおかれている。蒸気拡散空間は、水蒸気の凝
縮効率の点からは狭い方が好ましいが、あまり狭くする
ときは、却って凝縮液の流通抵抗となるので、通常、0
.2〜5mm程度が好適である。伝熱管は伝熱性の高い
材料、例えば金属からなる薄肉管である。この伝熱管に
は冷却媒体のための導入管11及び導出管12が接続さ
れ、例えば冷却水のような冷却媒体が伝熱管内に循環し
て流通される。尚、冷却媒体として海水等の腐食性媒体
を用いるときは、伝熱管内壁面を例えばエポキシ樹脂ラ
イニングすることが望ましい。また、蒸気拡散空間には
膜管を透過し、伝熱管にて冷却され、凝縮した凝縮水の
導出管13が接続されている。
A heat transfer tube 9 is further disposed coaxially inside the membrane tube 2, and is spaced at an appropriate distance so as to have a steam space 10 between it and the membrane tube. It is preferable for the vapor diffusion space to be narrow from the point of view of water vapor condensation efficiency, but if it is made too narrow, it will actually create a flow resistance for the condensate, so it is usually 0.
.. Approximately 2 to 5 mm is suitable. A heat exchanger tube is a thin-walled tube made of a material with high heat conductivity, such as metal. An inlet pipe 11 and an outlet pipe 12 for a cooling medium are connected to the heat exchanger tube, and a cooling medium such as cooling water is circulated through the heat exchanger tube. Note that when a corrosive medium such as seawater is used as a cooling medium, it is desirable to line the inner wall surface of the heat exchanger tube with, for example, an epoxy resin. Further, a discharge pipe 13 for condensed water that has passed through the membrane tube, been cooled by the heat exchanger tube, and condensed is connected to the vapor diffusion space.

尚、膜管を構成する前記多孔質膜は、一般に強度が小さ
いので、図示しないが、適宜の支持体上に支持されて形
成されているのが好ましい。このような支持体は、多孔
質膜を補強すると共に、水蒸気を透過させることができ
れば足り、例えば、ポリアミドからなる織布又は不織布
や、セラミック製の多孔質管が好適に用いられる。
Note that, since the porous membrane constituting the membrane tube generally has low strength, it is preferably supported on a suitable support (not shown). Such a support only needs to be able to reinforce the porous membrane and allow water vapor to pass therethrough, and for example, a woven or nonwoven fabric made of polyamide or a porous tube made of ceramic is preferably used.

また、装置は、第3図に示すように、外管1内に複数の
膜管2が配設され、各膜管が内部に伝熱管9を有すると
共に、外管と各膜管との間の空間が原液通路3であるよ
うに構成されていてもよい第4図及び第5図も、前記第
1の方法を実施するための装置の例を示し、第1図と同
じ部材には同じ参照番号が付されている。即ち、外管1
内に膜管2が同軸的に配設されており、外管と膜管との
間に原液通路3が形成されている点は、前記した第1図
の装置と同じであるが、この装置においては、膜管2の
内側にこれに接してスペーサ14が配設され、更に、こ
のスペーサの内側にこれに接して伝熱管9が配設されて
いる。即ち、スペーサは伝熱管によって冷却されるので
、スペーサ自体が冷却された蒸気拡散空間を形成してい
ると共に、凝縮水の通路を形成する。従って、原子力発
電廃水から発生し、膜管を透過した蒸気は、このスペー
サ及び伝熱管にて冷却され3、スペーサは凝縮した凝縮
水の導出管13に連通されている。
Further, as shown in FIG. 3, the device includes a plurality of membrane tubes 2 disposed inside an outer tube 1, each membrane tube having a heat transfer tube 9 inside, and a space between the outer tube and each membrane tube. FIGS. 4 and 5 also show examples of an apparatus for carrying out the first method, and the same members as in FIG. Reference numbers are provided. That is, outer tube 1
The membrane tube 2 is disposed coaxially inside the membrane tube, and the stock solution passage 3 is formed between the outer tube and the membrane tube, which is the same as the device shown in FIG. 1 described above. In this case, a spacer 14 is disposed on the inside of the membrane tube 2 in contact with it, and a heat exchanger tube 9 is further disposed on the inside of this spacer in contact with it. That is, since the spacer is cooled by the heat transfer tube, the spacer itself forms a cooled vapor diffusion space and also forms a passage for condensed water. Therefore, steam generated from nuclear power generation wastewater and permeated through the membrane tube is cooled by the spacer and the heat transfer tube 3, and the spacer is communicated with the condensed water outlet tube 13.

このスペーサは、膜管を透過した蒸気が伝熱管まで透過
し得るように多孔質であると共に、伝熱壁によって冷却
されて凝縮した水が少なくとも所定方向に通液性を有す
ることが必要であり、更に、熱伝導性にすぐれているこ
とが好ましい。図示した装置においては、スペーサは生
じた凝縮水が鉛直方向に流下し得るように、スペーサは
少なくとも鉛直方向に通液性を有することが必要である
This spacer must be porous so that the steam that has passed through the membrane tube can pass through to the heat transfer tube, and must also have permeability in at least a predetermined direction for water that has been cooled and condensed by the heat transfer wall. Furthermore, it is preferable that the material has excellent thermal conductivity. In the illustrated apparatus, the spacer needs to have liquid permeability at least in the vertical direction so that the generated condensed water can flow down in the vertical direction.

勿論、スペーサは多孔質膜又は伝熱管表面に、又はこれ
らの両者に予め接合されていてもよい。
Of course, the spacer may be bonded in advance to the porous membrane, the heat exchanger tube surface, or both.

上記スペーサとしては、例えば、10〜1000メツシ
ユの天然又は合成の繊維、例えば、ポリエチレン、ポリ
エステル、ポリアミド等の繊維からなる織布、不織布、
炭素繊維布、金属網等が好ましく用いられる。スペーサ
の厚みは特に制限されるものではないが、余りに厚いと
きは、却って蒸気の凝縮効率を低下させるので、通常、
5鶴以下、特に0.2〜3111の範囲が好ましい。即
ち、厚みの小さいスペーサを用いることにより、蒸気拡
散空間の間隔を小さくすることができると同時に水蒸気
の凝縮効率及び凝縮水の取得速度を高めることができる
Examples of the spacer include woven fabrics, non-woven fabrics made of 10 to 1000 meshes of natural or synthetic fibers, such as polyethylene, polyester, polyamide, etc.
Carbon fiber cloth, metal mesh, etc. are preferably used. The thickness of the spacer is not particularly limited, but if it is too thick, it will actually reduce the steam condensation efficiency, so normally,
A value of 5 cranes or less, particularly a range of 0.2 to 3111, is preferred. That is, by using a spacer with a small thickness, the interval between the vapor diffusion spaces can be reduced, and at the same time, the efficiency of condensing water vapor and the acquisition rate of condensed water can be increased.

原液通路3には原子力発電廃水の導入管4及び導出管5
が接続され、必要に応じてこの管路に加熱器6が備えら
れる。原子力発電廃水が弁7を備えた供給管8から原液
回路に補充されるのは、前記装置と同じである。また、
伝熱管には前記と同様に、冷却媒体のための導入管11
及び導出管12が接続され、冷却媒体が伝熱管内に循環
して流゛  通される。
The raw solution passage 3 has an inlet pipe 4 and an outlet pipe 5 for nuclear power generation waste water.
is connected, and a heater 6 is provided in this conduit as necessary. It is the same as in the previous device that the nuclear power generation wastewater is replenished into the raw solution circuit through a supply pipe 8 equipped with a valve 7. Also,
As mentioned above, the heat exchanger tube includes an inlet pipe 11 for the cooling medium.
and the outlet pipe 12 are connected, and the cooling medium is circulated through the heat transfer tube.

第1図及び第2図に示した第1の装置においては、所定
の温度の原子力発電廃水は、原液通路3に導入され、原
子力発電廃水より発生した水蒸気は膜管2を透過して蒸
気空間10に至り、伝熱管9の表面上で冷却されて凝縮
水を生じ、伝熱管表面を流下して凝縮水導出管13より
装置外に導かれる。原液中のイオン類は膜管により透過
を阻止され、原液中に濃縮される。この装置によれば、
原子力発電廃水を濃縮すると共に、凝縮水として実質的
に脱イオン水を得ることができる。
In the first device shown in FIGS. 1 and 2, nuclear power generation wastewater at a predetermined temperature is introduced into the raw solution passage 3, and the water vapor generated from the nuclear power generation wastewater passes through the membrane tube 2 and passes through the vapor space. 10, the condensed water is cooled on the surface of the heat exchanger tube 9, flows down the surface of the heat exchanger tube, and is led out of the apparatus through the condensed water outlet tube 13. Ions in the stock solution are blocked from permeation by the membrane tube and concentrated in the stock solution. According to this device,
Nuclear power generation wastewater can be concentrated and substantially deionized water can be obtained as condensed water.

第4図に示した装置によれば、原子力発電廃水より発生
した水蒸気は膜管2を透過し、スペーサ14及び伝熱管
9によって冷却され、凝縮して、スペーサを流下して凝
縮水導出管13より装置外に導かれる。
According to the apparatus shown in FIG. 4, water vapor generated from nuclear power generation wastewater passes through the membrane tube 2, is cooled by the spacer 14 and the heat transfer tube 9, is condensed, and flows down the spacer to the condensed water outlet tube 13. is guided outside the device.

第6図及び第7図は前記した第2の方法を実施するのに
好適な装置の一例を示し、第1図と同じ部材には同じ参
照番号が付されている。
6 and 7 show an example of an apparatus suitable for carrying out the second method described above, in which the same parts as in FIG. 1 are given the same reference numerals.

外管1内には前記したような疎水性重合体多孔質膜より
なる膜管2が同軸的に配設されて、外管と膜管との間に
原液通路3が形成され、この原液通路に所定の温度の原
子力発電廃水が流通され、膜管内には冷却媒体として脱
イオン水が流通される。即ち、原子力発電廃水と冷却媒
体は上記膜管を介して接触される。原液通路3には原子
力発電廃水を流通させるための導入管4及び導出管5が
接続され、同様に、膜管2にも冷却媒体を流通させるた
めの導入管11及び導出管12が接続されている。
A membrane tube 2 made of a hydrophobic polymer porous membrane as described above is disposed coaxially within the outer tube 1, and a stock solution passage 3 is formed between the outer tube and the membrane tube. Nuclear power generation wastewater at a predetermined temperature is passed through the membrane tube, and deionized water is passed through the membrane tube as a cooling medium. That is, the nuclear power generation wastewater and the cooling medium are brought into contact through the membrane tube. An inlet pipe 4 and an outlet pipe 5 for distributing nuclear power generation wastewater are connected to the raw solution passage 3, and similarly, an inlet pipe 11 and an outlet pipe 12 for distributing a cooling medium are connected to the membrane tube 2. There is.

この第2の装置によれば、原子力発電廃水より発生し、
膜管壁を透過した水蒸気は、冷却媒体としての脱イオン
水にて直ちに冷却されて凝縮し、脱イオン水中に回収さ
れる。前記したと同様に、必要に応じて原子力発電廃水
は供給管8より補充されつつ、加熱器6にて加熱されて
、管路4及び5により原液回路を循環され、また、冷却
媒体は、必要に応じて冷却媒体回路に設けた冷却器14
により所定の温度に冷却されつつ、冷却媒体回路を循環
され、その一部は得られた脱イオン水と共に取出管15
から装置外に取り出される。
According to this second device, generated from nuclear power generation wastewater,
The water vapor that has passed through the membrane tube wall is immediately cooled and condensed using deionized water as a cooling medium, and is recovered in deionized water. As described above, the nuclear power generation wastewater is replenished from the supply pipe 8 as necessary, heated in the heater 6, and circulated through the raw liquid circuit through the pipes 4 and 5. Cooler 14 installed in the cooling medium circuit according to
The cooling medium is circulated through the cooling medium circuit while being cooled to a predetermined temperature by
is taken out of the device.

この第2の装置によれば、膜管を介して所定の温度の原
子力発電廃水と冷却媒体とが直接に接触されるので、原
子力発電廃水から発生した水蒸気は直ちに冷却媒体によ
り冷却されて凝)、宿し、冷却媒体中に回収される。従
って、蒸気の透過速度が大きいのみならず、膜管と伝熱
壁との間に蒸気空間を設けた装置よりも小型化し得、単
位体積当りの有効膜面積が大きいので、効率よく原子力
発電廃水のfi縮を行なうと共に、脱イオン水を回収す
ることができる。
According to this second device, the nuclear power generation wastewater at a predetermined temperature is brought into direct contact with the cooling medium through the membrane tube, so the water vapor generated from the nuclear power generation wastewater is immediately cooled by the cooling medium and condensed. , stored and recovered in a cooling medium. Therefore, not only is the vapor permeation rate high, but it can also be made more compact than a device that provides a steam space between the membrane tube and the heat transfer wall, and the effective membrane area per unit volume is large, so it can be used efficiently to treat nuclear power generation wastewater. deionized water can be recovered.

図示しないが、第6図に示す装置の変形として、装置は
、複数の膜管が外管内に収容され、各膜管内に冷却媒体
が循環され、外管内において膜管外の空間が原液通路を
なすように形成されていてもよい。
Although not shown, as a modification of the device shown in FIG. 6, the device includes a plurality of membrane tubes housed in an outer tube, a cooling medium is circulated in each membrane tube, and a space outside the membrane tubes in the outer tube serves as a stock solution passage. It may be formed as shown in FIG.

尚、上記したいずれの装置の場合についても、原子力発
電廃水を外管と膜管との間の原液通路3に流通させ、゛
膜管内に冷却媒体を流通させるとして本発明の詳細な説
明したが、しかし、原液通路に冷却媒体を流通させ、一
方、冷却媒体通路に原予力発電廃水を流通させてよいの
は勿論である。
In addition, in the case of any of the above-mentioned devices, the present invention has been described in detail assuming that nuclear power generation wastewater is passed through the raw solution passage 3 between the outer tube and the membrane tube, and a cooling medium is circulated within the membrane tube. However, it goes without saying that the cooling medium may be passed through the raw liquid passage, while the raw pre-power generation wastewater may be passed through the cooling medium passage.

また、装置が膜管と伝熱管との間にスペーサを有すると
きは、スペーサ自体も低温の伝熱壁によって冷却されて
いるので、膜を透過した蒸気はスペーサ及び伝熱壁によ
って直ちに冷却されて凝縮し、その結果、蒸気の凝縮速
度が大きくなって、原子力発電廃水の濃縮と脱イオン水
の取得を高い効率にて行なうことができる。
Furthermore, when the device has a spacer between the membrane tube and the heat transfer tube, the spacer itself is also cooled by the low-temperature heat transfer wall, so the vapor that permeates through the membrane is immediately cooled by the spacer and the heat transfer wall. As a result, the steam condensation rate is increased, and nuclear power wastewater can be concentrated and deionized water can be obtained with high efficiency.

また、図示した装置はいずれも、原液通路又は冷却媒体
通路が環状に形成されているが、膜管に代わる平板状の
膜壁と伝熱管に代わる平板状の伝熱壁とを、その間に蒸
気拡散空間を設けて、或いは設けることなく、少なくと
も一組を対向して配設し、前記外管に相当する適宜の容
器内に各通路を封入し、各通路に原液又は冷却媒体の循
環のための回路を接続すれば、前記した各装置に対応し
て、断面が方形の原液通路及び冷却媒体通路を有する装
置を得ることができる。更に、上記膜壁と伝熱壁とをス
ペーサを介して接触させて配設すれば、第4図に対応し
た装置を得ることができる。
In addition, in all of the illustrated devices, the raw liquid passage or the cooling medium passage is formed in an annular shape, but a flat membrane wall in place of the membrane tube and a flat heat transfer wall in place of the heat transfer tube are placed between them. At least one set is arranged facing each other with or without a diffusion space, and each passage is enclosed in a suitable container corresponding to the outer tube, and each passage is used for circulation of a stock solution or a cooling medium. By connecting these circuits, it is possible to obtain a device having a stock solution passage and a cooling medium passage each having a rectangular cross section, corresponding to each of the above-mentioned devices. Furthermore, by arranging the membrane wall and the heat transfer wall in contact with each other via a spacer, a device corresponding to FIG. 4 can be obtained.

このような装置も、本発明の方法を実施するのに好適に
用い得ることは明らかであろう。
It will be clear that such an apparatus can also be suitably used to carry out the method of the invention.

以上のように、本発明の方法は、所定の温度の原子力発
電廃水を疎水性重合体多孔質膜に接触させ、この原子力
発電廃水より発生して膜を透過した水蒸気を冷却し、凝
縮させることにより、原子力発電廃水を濃縮すると共に
、凝縮水として脱イオン水を得るものである。従って、
本発明の方法によれば、前記したような圧力差を駆動力
とする逆浸透法と異なり、温度差を駆動力としているた
めに、加圧を必要としないうえに、熱源として原子力発
電プラントから発生する廃熱を利用することができる。
As described above, the method of the present invention involves bringing nuclear power generation wastewater at a predetermined temperature into contact with a hydrophobic polymer porous membrane, and cooling and condensing the water vapor generated from the nuclear power generation wastewater and permeated through the membrane. In this way, nuclear power generation wastewater is concentrated and deionized water is obtained as condensed water. Therefore,
According to the method of the present invention, unlike the above-mentioned reverse osmosis method which uses a pressure difference as a driving force, the driving force is a temperature difference, so pressurization is not required, and the heat source is a nuclear power plant. The waste heat generated can be used.

更に、本発明の方法によれば、処理に際して、原子力発
電廃水のpHを調整する必要がなく、また、装置の腐食
の問題もなしに、原子力発電廃水を効率よく濃縮すると
共に、脱イオン水を回収することができる。
Furthermore, according to the method of the present invention, it is not necessary to adjust the pH of nuclear power generation wastewater during treatment, and there is no problem of corrosion of equipment, and nuclear power generation wastewater can be efficiently concentrated and deionized water can be used. It can be recovered.

以下に本発明の実施例を挙げる。Examples of the present invention are listed below.

実施例1 第1図に示したように、直径40鰭の合成樹脂製外管内
に、多孔質ポリアミド織布にて裏打ちされたポリテトラ
フルオロエチレン多孔質膜からなる直径25非の膜管を
同軸的に配設し、更にこの膜管内に直径23酊のステン
レス鋼製伝熱管を管壁間の間隔がINとなるように配設
して、装置を構成した。尚、上記多孔質膜は平均孔径0
.2μmの微孔を有し、多孔度80%であって、装置に
おける有効膜面積は240cJであった。
Example 1 As shown in Fig. 1, a membrane tube with a diameter of 25mm made of a porous polytetrafluoroethylene membrane lined with a porous polyamide woven fabric was coaxially placed inside a synthetic resin outer tube with a diameter of 40mm. Further, a stainless steel heat exchanger tube having a diameter of 23 mm was disposed within the membrane tube so that the distance between the tube walls was IN to construct an apparatus. Note that the above porous membrane has an average pore diameter of 0.
.. It had micropores of 2 μm, a porosity of 80%, and an effective membrane area of 240 cJ in the device.

上記装置に扁いて、温度25℃の海水を冷却水として伝
熱管内に流通すると共に、下に示すように、放射性核種
のイオンのほか、クロム酸イオン及び塩素イオン等を含
有する温度60℃の原子力発電廃水を原液通路に循環供
給し、濃縮液中の塩化ナトリウム濃度が36000 p
pmになるまで処理した。結果を表に示すように、凝縮
水は実質的に脱イオン水として再使用することが可能で
ある。
In addition to the above device, seawater at a temperature of 25°C is passed through the heat transfer tube as cooling water, and as shown below, seawater at a temperature of 60°C, which contains chromate ions, chloride ions, etc. in addition to radionuclide ions, is used as cooling water. Nuclear power generation wastewater is circulated and supplied to the raw solution passage, and the sodium chloride concentration in the concentrated solution is 36,000 p.
It was processed until it reached pm. As the results are shown in the table, the condensed water can essentially be reused as deionized water.

凝縮水の取得速度は処理の初期において8.5 kg/
イ・時であった。また、1000時間も、8.2kg/
 ITr・時であって、凝縮水の取得速度の経時的な変
化は殆ど認められなかった。
The condensate acquisition rate is 8.5 kg/kg at the beginning of the process.
It was time. Also, for 1000 hours, 8.2 kg/
ITr·hr, and almost no change over time in the rate of acquisition of condensed water was observed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するのに好適な装置の一例
を示す縦断面図、第2図は第1図において線A−A線に
沿う断面図、第3図は別の装置を示す断面図、第4図は
本発明の方法を実施するのに好適な別の装置を示す縦断
面図、第5図は第4図において線B−,B線に沿う断面
図、第6図は更に別の装置を示す縦断面図、第7図は第
6図において線B−B線に沿う断面図である。 1・・・外管、2・・・膜管、3・・・原液通路、9・
・・伝熱管、10・・・蒸気拡散空間、13・・・凝縮
水導出管、14・・・スペーサ、15・・・冷却媒体取
出管。
FIG. 1 is a longitudinal sectional view showing an example of an apparatus suitable for carrying out the method of the present invention, FIG. 2 is a sectional view taken along the line A-A in FIG. 4 is a longitudinal sectional view showing another apparatus suitable for carrying out the method of the present invention; FIG. 5 is a sectional view taken along line B--B in FIG. 4; FIG. 7 is a longitudinal cross-sectional view showing yet another device, and FIG. 7 is a cross-sectional view taken along the line B--B in FIG. 6. 1... Outer tube, 2... Membrane tube, 3... Stock solution passage, 9...
...Heat transfer tube, 10...Vapor diffusion space, 13...Condensed water outlet pipe, 14...Spacer, 15...Cooling medium outlet pipe.

Claims (1)

【特許請求の範囲】[Claims] (1)放射性核種のイオンを含有する原子力発電廃水の
処理方法において、水蒸気は透過させるが、水は透過さ
せない疎水性重合体多孔質膜の一面側に所定の温度の原
子力発電廃水を接触させ、この廃水から水蒸気を発生さ
せ、これを上記多孔質膜の他面側に透過させ、冷却して
凝縮させることにより、廃水を濃縮すると共に、脱イオ
ン水を回収することを特徴とする原子力発電廃水の処理
方法。
(1) In a method for treating nuclear power generation wastewater containing radionuclide ions, nuclear power generation wastewater at a predetermined temperature is brought into contact with one side of a hydrophobic polymer porous membrane that allows water vapor to pass through but does not allow water to pass through; Nuclear power generation wastewater characterized by generating water vapor from this wastewater, passing it through the other side of the porous membrane, cooling and condensing it, thereby concentrating the wastewater and recovering deionized water. processing method.
JP821385A 1985-01-16 1985-01-16 Method of treating nuclear power waste water Pending JPS61164195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP821385A JPS61164195A (en) 1985-01-16 1985-01-16 Method of treating nuclear power waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP821385A JPS61164195A (en) 1985-01-16 1985-01-16 Method of treating nuclear power waste water

Publications (1)

Publication Number Publication Date
JPS61164195A true JPS61164195A (en) 1986-07-24

Family

ID=11686951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP821385A Pending JPS61164195A (en) 1985-01-16 1985-01-16 Method of treating nuclear power waste water

Country Status (1)

Country Link
JP (1) JPS61164195A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290999A (en) * 1987-05-22 1988-11-28 Hitachi Ltd Method for enriching waste liquid of nuclear power generation
JPH01122816U (en) * 1988-02-03 1989-08-21
JPH02120698A (en) * 1988-10-31 1990-05-08 Nippon Atom Ind Group Co Ltd Concentration of radioactive liquid waste
JPH0368434A (en) * 1989-08-07 1991-03-25 Hitachi Ltd Radiation resistant porous polymer membrane and membrane separating apparatus
US5158674A (en) * 1989-12-15 1992-10-27 Makoto Kikuchi Radioactive waste liquid treatment apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290999A (en) * 1987-05-22 1988-11-28 Hitachi Ltd Method for enriching waste liquid of nuclear power generation
JPH01122816U (en) * 1988-02-03 1989-08-21
JPH02120698A (en) * 1988-10-31 1990-05-08 Nippon Atom Ind Group Co Ltd Concentration of radioactive liquid waste
JPH0368434A (en) * 1989-08-07 1991-03-25 Hitachi Ltd Radiation resistant porous polymer membrane and membrane separating apparatus
US5158674A (en) * 1989-12-15 1992-10-27 Makoto Kikuchi Radioactive waste liquid treatment apparatus

Similar Documents

Publication Publication Date Title
JPS60125203A (en) Thermo-pervaporation apparatus
JPH1147560A (en) Secondary system line water treatment plant for pressurized water type atomic power plant
JPS61164195A (en) Method of treating nuclear power waste water
KR101298724B1 (en) Forward osmotic desalination device using membrane distillation method in which a part of draw solution is directly fed to a forward osmotic type separator
JPS60147201A (en) Treatment of aqueous solution containing volatile substance
JP2009162514A (en) System for purifying system water in secondary system of nuclear power plant with pressurized water reactor
JP4931107B2 (en) Electrodeionization device and secondary line water treatment device for pressurized water nuclear power plant using the same
JPS61114789A (en) Method for desalting brine
JPS62227492A (en) Method and apparatus for making pure water
JP2009160554A (en) Supply water feed facility in power-station
JP5900745B2 (en) Fresh water production method and fresh water production apparatus
JPS62216695A (en) Method and apparatus for producing pure water
JPS60150883A (en) Concentration device
JPS60203173A (en) Concentration of fruit juice
JPS6154207A (en) Concentrating method of liquid containing heavy noble metal
JPS60206408A (en) Concentration of stick-water
JPS62140694A (en) Production of demineralized water
KR100328026B1 (en) Method for cooling centrate and removing scale in reverse osmosis system and nano filtration system
JPS62221489A (en) Method for making pure water
JPS60147285A (en) Treatment of aqueous acid or alkali solution
JPS60172393A (en) Multistage evaporation-reverse osmosis composite seawater desalination apparatus
JPS60209089A (en) Concentration of pulp waste liquor
JPH0380994A (en) Waste water concentrating apparatus and concentrator used therein
JPS62262786A (en) Production of pure water
JPS6185169A (en) Concentration of albumen