KR100328026B1 - Method for cooling centrate and removing scale in reverse osmosis system and nano filtration system - Google Patents

Method for cooling centrate and removing scale in reverse osmosis system and nano filtration system Download PDF

Info

Publication number
KR100328026B1
KR100328026B1 KR1019970038749A KR19970038749A KR100328026B1 KR 100328026 B1 KR100328026 B1 KR 100328026B1 KR 1019970038749 A KR1019970038749 A KR 1019970038749A KR 19970038749 A KR19970038749 A KR 19970038749A KR 100328026 B1 KR100328026 B1 KR 100328026B1
Authority
KR
South Korea
Prior art keywords
concentrated water
cooling
membrane
membrane system
scale
Prior art date
Application number
KR1019970038749A
Other languages
Korean (ko)
Other versions
KR19990016264A (en
Inventor
강신경
김해룡
전희동
Original Assignee
이구택
포항종합제철 주식회사
신현준
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사, 신현준, 재단법인 포항산업과학연구원 filed Critical 이구택
Priority to KR1019970038749A priority Critical patent/KR100328026B1/en
Publication of KR19990016264A publication Critical patent/KR19990016264A/en
Application granted granted Critical
Publication of KR100328026B1 publication Critical patent/KR100328026B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: Provided is a method for cooling centrate and removing scale in reverse osmosis system and nano filtration system. CONSTITUTION: According to the method, centrate is cooled by a cooling tower(2) packed with filler or fiber-glass reinforced plastic, and metal ions are crystallized on the surface of filler in the cooling tower(2). Therefore, deterioration of membrane and deposition of scale are prevented. Consequently, temperature of centrate is 40 deg.C or below, so deterioration of membrane is prevented. And 10% of total dissolved solid (TDS) is removed, so generation of scale is prevented.

Description

분리막 시스템에서 농축수 냉각 및 스케일 제거방법How to Cool and Descale Concentrated Water in Membrane Systems

본 발명은 분리막 농축수를 냉각함과 동시에 스케일을 제거하는 방법에 관한 것으로, 보다 상세하게는 분리막시스템에서 농축수 순환에 의한 온도상승을 직접냉각방식으로 냉각시킴과 동시에 수중에 다량 존재하는 다가이온을 냉각장치내의 필러(충진물)표면에 크리스탈 형태로 형성시켜 스케일성분을 제거하는 방법에 관한 것이다.The present invention relates to a method of cooling the membrane concentrate and simultaneously removing the scale. More specifically, the present invention relates to a method for cooling the temperature rise due to the circulation of the concentrated water in a membrane system in a direct cooling method, and at the same time, a large amount of polyvalent ions present in the water. The present invention relates to a method for removing scale components by forming a crystal in the form of a crystal on the filler (filled) surface in a cooling device.

분리막시스템중에서 대표적인 방법으로는 역삼투막법과 나노필터막법이 있는데, 상기 역삼투막법이란 역삼투현상을 이용하여 수중의 무기이온을 제거하는 기술로서 역삼투막은 수중의 모든 이온에 대해 약 90% 이상의 배제율을 갖는 반면, 상기 나노필터막은 2가이상의 다가이온에 대해서는 약 50-80% 정도의 배제율을 가지나 1가이온에 대해서는 20-50% 정도의 상대적으로 낮은 배제율을 갖는 특성이 있다.Representative methods of separation membrane systems include reverse osmosis membrane method and nano filter membrane method. The reverse osmosis membrane method is a technique of removing inorganic ions in water by using reverse osmosis phenomenon, and reverse osmosis membrane has a rejection ratio of about 90% or more for all ions in water. On the other hand, the nanofilter membrane has a rejection ratio of about 50-80% for divalent or more polyvalent ions, but has a relatively low exclusion rate of 20-50% for monovalent ions.

유입수를 고압펌프를 이용하여 가압한 후 분리막모듈에 유입시키면 막을 투과한 투과수와 배제된 농축수로 나누어진다. 이때 유입수량에 대한 투과수량의 비를 백분율로 표시한 것을 회수율이라 한다. 분리막시스템으로 수중의 무기이온을 제거할 경우 시스템의 회수율을 높이기 위해(투과수량을 늘리기 위해) 농축수의 일부를 순환시켜 원수와 혼합시킨 후 다시 분리막 모듈내로 유입시키게 되는데, 이때 유체가 펌프와 모듈내의 마찰로 인하여 농축수의 온도가 상승하게 된다. 일반적으로 고분자 분리막은 내열온도가 45℃ 정도인데 이 이상의 온도에서는 분리막의 열화가 가속되어 수명이 단축된다. 따라서 온도를 낮추기 위해 간접냉각 방식인 열교환기를 사용하게 되는데, 이 경우 농축수중에 다량 존재하는 2가 이온들이 열교환기 표면에 스케일을 형성시켜 열교환기의 효율을 급격히 저하시키며 심한 경우에는 사용자체가 불가능하게 된다는 문제점이 있다.When the influent is pressurized using a high pressure pump and then introduced into the membrane module, the influent is separated into permeate and membrane concentrated water. In this case, the ratio of the amount of permeated water to the inflow water is expressed as a percentage. When removing inorganic ions from the membrane system, a part of the concentrated water is circulated and mixed with the raw water to increase the recovery rate (to increase the amount of permeated water), and then the fluid is introduced into the membrane module again. The internal friction causes the temperature of the concentrated water to rise. Generally, the polymer membrane has a heat resistance temperature of about 45 ° C., but the deterioration of the membrane is accelerated at a temperature higher than this, thereby shortening the life. Therefore, in order to lower the temperature, an indirect cooling heat exchanger is used. In this case, divalent ions present in the concentrated water form a scale on the surface of the heat exchanger, which drastically lowers the efficiency of the heat exchanger. There is a problem.

한편, 분리막을 이용한 수처리 및 냉각탑을 이용한 수처리의 대표적인 예로서 "역삼투막과 한외여과막의 결합공정을 이용한 방사성 세탁폐액의 처리방법과 장치(한국특허공개 93-20489)", 부식 및 스케일(scale)방지기와 슬라임(slime)방지기가 결합된 냉각탑(한국특허공개 94-3979)", 화학침전-정밀 및 나노여과의 혼성시스템에 의한 폐수의 무방류-재이용기술(한국특허공개 95-11344)" 등에 개제된 제안을 들 수 있는데, 이러한 기술들에 의해서는 상기 문제점을 해결하지 못하였다.Meanwhile, as a representative example of water treatment using a separation membrane and water treatment using a cooling tower, "a method and apparatus for treating a radioactive laundry waste using a combination process of a reverse osmosis membrane and an ultrafiltration membrane (Korean Patent Publication No. 93-20489)", corrosion and scale preventers And cooling water tower combined with slime prevention device (Korean Patent Publication No. 94-3979), Chemical Discharge-Precision and Nanofiltration-Free Discharge-Recycling Technology (Korean Patent Publication No. 95-11344) One suggestion is that these techniques do not solve the problem.

이에, 본 발명자들은 상기 문제점을 해결하기 위해 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 농축수 순환식 분리막시스템에서 발생되는 농축수를 필러(충진재)가 내장된 냉각장치를 이용하여 직접 냉각함으로써, 분리막의 열화를 방지할 뿐만아니라 농축수중에 용존되어 있는 고농도의 다가이온을 필러표면에 크리스탈로 형성되게 하여 스케일을 제거하는 방법을 제공하고자 하는데, 그 목적이 있다.Thus, the present inventors have repeatedly conducted research and experiments to solve the above problems and propose the present invention based on the results, and the present invention provides a filler (filler) for the concentrated water generated in the concentrated water circulation membrane system. By directly cooling by using the built-in cooling device, not only to prevent deterioration of the membrane, but also to provide a method for removing scale by forming a high concentration of polyvalent ions dissolved in concentrated water as crystals on the filler surface. There is this.

도 1은 본 발명에 적용가능한 냉각탑의 개략구성도 및 평단면도1 is a schematic configuration and plan view of a cooling tower applicable to the present invention

도 2는 본 발명에 의한 방법을 실시하기 위한 장치의 배열을 개략적으로 도시한 공정도2 is a process diagram schematically illustrating the arrangement of an apparatus for implementing the method according to the invention.

도 3은 냉각탑을 사용했을 경우와 미사용시의 운전시간에 따른 농축수 온도 변화를 나타낸 그래프3 is a graph showing the temperature change of the brine water according to the operating time when the cooling tower is used and not in use

도 4는 냉각탑을 통과하기 전과 통과후의 운전시간에 따른 농축수의 총용존고형물 농도변화를 나타낸 그래프4 is a graph showing the total dissolved solids concentration change of the concentrated water according to the operating time before and after passing through the cooling tower

상기 목적을 달성하기 위한 본 발명은 분리막시스템에서 회수율을 높이기 위해 배제된 농축수를 순환시킬 때 유입된 원수를 분리막시스템을 통과시켜 폐수중의 다가 이온을 제거하는 단계; 분리막시스템에서 배제된 농축수를 직접냉각하여 냉각시킴과 동시에 스케일성분을 크리스탈 형태로 제거하는 단계; 및 농축수 순환탱크내에서 형성된 스케일을 침전시켜 농축수와 함께 외부로 배출시키는 단계를 포함하는 분리막 시스템에서 농축수 냉각 및 스케일 제거방법에 관한 것이다.The present invention for achieving the above object is a step of removing the polyvalent ions in the waste water by passing the raw water flowing through the membrane system when circulating the concentrated water excluded to increase the recovery rate in the membrane system; Directly cooling the concentrated water removed from the membrane system and cooling the same, while removing the scale component in a crystal form; And depositing the scale formed in the brine circulation tank and discharging the scale together with the brine to the outside.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서는 분리막시스템에서 회수율을 높이기 위해 배제된 농축수를 순환시킬 때 유입된 원수를 분리막시스템을 통과시켜 폐수중의 다가 이온을 제거하는 과정을 거친다.In the present invention, when circulating the concentrated water excluded to increase the recovery rate in the membrane system, the raw water introduced is passed through the membrane system to remove polyvalent ions in the wastewater.

상기 다가이온의 제거는 수중에서 발생되는 스케일발생을 억제하기 위한 것으로, 폴리아마이드 재질인 고분자 나노필터막 또는 역삼투막을 사용하는 것이 바람직하다. 상기 나노필터막 또는 역삼투막의 모듈은 일반적으로 많이 이용되는 나선형모듈등과 같은 것을 사용할 수 있으나, 비교적 막오염 발생이 적고 막세정 효과가 뛰어난 판형의 일종인 디스크-튜브형 모듈을 사용하면 보다 효과적이다. 이러한 모듈을 압력용기(Pressure vessel)내에 넣어 압력용기를 여러개 연결하여 가압되며, 가압된 원수는 나노필터모듈을 통과하면서 투과된 투과수는 투과수저장조로 보내지고 농축수는 배제된다. 이때, 농축수는 경제성 등을 고려하여 스케일성분이 포화직전의 상태에 달했을 때 배제시키는 것이 바람직하다.Removal of the polyvalent ions is to suppress the generation of scale generated in water, it is preferable to use a polymer nano-filter membrane or a reverse osmosis membrane made of polyamide. The nanofilter membrane or the reverse osmosis membrane module can be used, such as a spiral module commonly used, but is more effective to use a disk-tube type module, which is a kind of relatively low membrane fouling and excellent membrane cleaning effect. The module is placed in a pressure vessel and pressurized by connecting several pressure vessels. The pressurized raw water passes through the nanofilter module, and the permeated water that is permeated is sent to the permeate storage tank and concentrated water is excluded. At this time, it is preferable to remove the concentrated water when the scale component reaches the state just before saturation in consideration of economical efficiency.

또한, 본 발명에서는 분리막시스템에서 배제된 농축수를 직접냉각하여 냉각시킴과 동시에 스케일성분을 크리스탈 형태로 제거하는 과정을 거친다.In the present invention, the concentrated water removed from the membrane system is directly cooled and cooled, and at the same time, the scale component is removed in a crystal form.

상기 직접냉각은 여러 가지 형태의 필러(충진재)가 내장된 냉각장치를 이용하면 되는데, 일예를 들면, 도 1에 나타낸 것과 같은 냉각탑을 적용할 수 있다. 배제된 농축수는 냉각탑을 거치면서 약 5-10℃ 정도 냉각됨과 동시에 과포화된 스케일성분(CaCO3, CaSO4등)은 냉각탑 내에 충진되어 있는 필러표면에 크리스탈 형태로 석출된다.The direct cooling may be performed using a cooling device in which various types of fillers (fillers) are incorporated. For example, a cooling tower as shown in FIG. 1 may be applied. The concentrated concentrated water is cooled by about 5-10 ℃ while the supersaturated scale components (CaCO 3 , CaSO 4, etc.) are precipitated in crystal form on the filler surface filled in the cooling tower.

또한, 본 발명에서는 농축수 순환탱크내에서 형성된 스케일을 침전시켜 농축수와 함께 외부로 배출시키는 과정을 거친다.In addition, in the present invention, the scale formed in the brine circulation tank is precipitated and discharged to the outside together with the brine.

상기 냉각된 농축수는 농축수를 저장할 수 있는 순환탱크내로 유입되는데, 이때 농축수의 체류는 스케일 형성효율 및 탱크의 크기를 고려하여 3∼10분 정도 행하는 것이 바람직하다. 순환탱크내에서 침전된 스케일은 농축수와 함께 외부로 배출되며 상등액은 배출된 분리막 시스템 농축수와 같은 양의 원수와 함께 다시 나노필터 시스템내로 유입되어 순환되면서 약 95%의 회수율로 운전하게 된다.The cooled concentrated water is introduced into a circulation tank capable of storing the concentrated water, where the retention of the concentrated water is preferably performed for about 3 to 10 minutes in consideration of scale formation efficiency and size of the tank. The scale settled in the circulation tank is discharged to the outside together with the concentrated water, and the supernatant is flowed back into the nanofilter system with the same amount of raw water as the discharged membrane system concentrated water, and operated at a recovery rate of about 95%.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

도 2은 본 발명이 적용될 수 있는 장치배열의 일예를 나타낸 공정도이다. 무기이온을 다량 함유한 고농도의 원수를 본 발명의 방법에 따라 도 2에 도시된 바와같이 처리하였다.2 is a process chart showing an example of an arrangement of devices to which the present invention can be applied. High concentration of raw water containing a large amount of inorganic ions was treated as shown in FIG. 2 according to the method of the present invention.

이때, 나노필터 모듈(1)은 60개가 직렬로 구성되었으며, 사용된 모듈은 디스크-튜브형 모듈로서 독일 ROCHEM사 제품이다.At this time, the nano filter module 1 is composed of 60 in series, the module used is a disk-tube type module manufactured by ROCHEM of Germany.

냉각탑(2)은 본체는 FRP(Fiber-glass Reinforced Plastic), 필러(Filler, 내부충진물)는 PP(Poly Propylene) 재질이며, 40RT(냉동톤) 용량을 사용하였다. 나노필터모듈(1)의 유입유량은 3,000ℓ/min 이며, 투과수의 유량은 760ℓ/min이다. 농축수 2,240ℓ/min 는 냉각탑(2)을 통과하면서 약 5℃정도 냉각되어 순환탱크(3)로 유입된다. 그 중 40ℓ/min는 외부로 배출되며 2,200ℓ/min는 원수 800ℓ/min와 혼합되어 다시 나노필터 모듈(1)내로 유입되어 순환하게 된다. 시스템의 회수율은 95%이며 운전압력은 10-15bar이었다.Cooling tower (2) the body is FRP (Fiber-glass Reinforced Plastic), filler (Filler, internal filler) is PP (Poly Propylene) material, 40RT (freezing tone) capacity was used. The inflow flow rate of the nanofilter module 1 is 3,000 l / min, and the flow rate of the permeate is 760 l / min. 2,240 L / min of concentrated water is cooled to about 5 ° C while passing through the cooling tower (2) is introduced into the circulation tank (3). Among them, 40ℓ / min is discharged to the outside, and 2,200ℓ / min is mixed with 800ℓ / min of raw water and flows back into the nanofilter module 1 and circulates. The recovery rate of the system was 95% and the operating pressure was 10-15 bar.

본 실시예에서는 나노필터시스템에서 배제된 농축수의 온도변화를 알아보기 위하여 냉각탑을 통과할 경우와 냉각탑을 통과하지 않을 경우의 농축수 온도변화를 비교 측정하여 그 결과를 도 3에 나타내었다. 즉, 도3은 냉각탑을 통과할 경우와 통과하지 않을 경우의 운전시간에 따른 농축수의 온도변화를 측정한 결과이다.In the present embodiment, in order to determine the temperature change of the concentrated water excluded from the nanofilter system, the temperature change of the concentrated water when passing through the cooling tower and when not passing through the cooling tower is measured and compared, and the result is shown in FIG. 3. That is, FIG. 3 is a result of measuring the temperature change of the brine water according to the operation time when passing through the cooling tower and not.

도 3에 나타난 바와같이, 원수의 온도가 약 30℃일 때, 냉각탑을 거치지 않을 경우 농축수의 온도는 24시간 경과 후 50℃에 도달할 반면 냉각탑을 거칠 경우 72시간 경과하여도 35℃를 초과하지 않았다.As shown in FIG. 3, when the temperature of the raw water is about 30 ° C., the temperature of the concentrated water reaches 50 ° C. after 24 hours without passing through the cooling tower, whereas the temperature of the concentrated water exceeds 35 ° C. after 72 hours when passing through the cooling tower. Did not do it.

또한, 본 실시예에서는 나노필터시스템에서 배제된 농축수가 냉각탑을 통과하기 전과 냉각탑을 통과한 후의 총용존고형물(TDS) 농도를 측정하여, 그 결과를 도 4에 나타내었다. 즉, 도 4는 냉각탑을 통과하기 전과 냉각탑을 통과한 후의 운전시간에 따른 농축수의 총용존고형물 농도변화를 측정한 결과이다.In addition, in this embodiment, the total dissolved solids (TDS) concentration before and after passing through the cooling tower and the concentrated water removed from the nano-filter system was measured, and the results are shown in FIG. That is, Figure 4 is a result of measuring the total dissolved solids concentration change of the concentrated water according to the operating time before passing through the cooling tower and after passing through the cooling tower.

도 4에 나타난 바와같이, 운전시간중 냉각탑을 통과하기전의 농축수 평균 TDS 농도는 18,630ppm 이며, 통과후의 TDS는 16,772ppm으로 냉각탑의 평균 TDS 제거율은 약 10%였다.As shown in FIG. 4, the average TDS concentration of the brine water before the passage of the cooling tower during operation was 18,630 ppm, and the TDS after the passage was 16,772 ppm, and the average TDS removal rate of the cooling tower was about 10%.

상기한 바와같이 본 발명의 방법에 의하면 운전시간이 경과함에 따라 상승하는 고온의 농축수를 40℃ 이하로 냉각시켜 고분자 분리막의 열화를 방지할 수 있으며, 동시에 총용존고형물(TDS)을 약 10% 정도 제거하여 분리막 모듈 내에서의 스케일 생성을 감소시켜 막의 스케일오염에 의한 플럭스 감소를 예방하고 막의 크리닝(Cleaning)주기를 증가 시킬 수 있다.As described above, according to the method of the present invention, it is possible to prevent the degradation of the polymer membrane by cooling the high-temperature concentrated water rising as the operating time elapses to 40 ° C. or less, and at the same time, about 10% of the total dissolved solids (TDS). By eliminating the degree, it is possible to reduce scale generation in the membrane module, thereby preventing flux reduction due to scale contamination of the membrane and increasing the cleaning cycle of the membrane.

Claims (4)

분리막 시스템에서 회수율을 높이기 위해 배제된 농축수를 순환시킬 때 유입된 원수를 분리막시스템을 통과시켜 폐수중의 다가 이온을 제거하는 단계;Removing the polyvalent ions in the wastewater by passing the introduced raw water through the membrane system when the concentrated water is circulated to increase the recovery rate in the membrane system; 분리막시스템에서 배제된 농축수를 직접냉각하여 냉각시킴과 동시에 스케일성분을 크리스탈 형태로 제거하는 단계; 및Directly cooling the concentrated water removed from the membrane system and cooling the same, while removing the scale component in a crystal form; And 농축수 순환탱크내에서 형성된 스케일을 침전시켜 농축수와 함께 외부로 배출시키는 단계; 를 포함하는 분리막 시스템에서 농축수 냉각 및 스케일 제거방법.Depositing the scale formed in the brine circulation tank and discharging it to the outside with the brine; Condensed water cooling and descaling method in a membrane system comprising a. 제 1 항에 있어서,The method of claim 1, 상기 분리막 시스템은 나노필터 또는 역삼투막에 의한 것임을 특징으로 하는 분리막 시스템에서 농축수 냉각 및 스케일 제거방법.The membrane system is a concentrated water cooling and descaling method in the membrane system, characterized in that by the nano-filter or reverse osmosis membrane. 제 1 항에 있어서,The method of claim 1, 상기 배제된 농축수는 스케일 성분이 포화직전 상태임을 특징으로 하는 분리막 시스템에서 농축수 냉각 및 스케일 제거방법.The excluded concentrated water is concentrated water cooling and descaling method in a membrane system, characterized in that the scale component is just before saturation. 제 1 항에 있어서,The method of claim 1, 상기 농축수 순환탱크 내에서의 농축수의 체류시간은 3∼10분인 것을 특징으로 하는 분리막 시스템에서 농축수 냉각 및 스케일 제거방법.Retention time of concentrated water in the membrane system, characterized in that the residence time of the concentrated water in the concentrated water circulation tank is 3 to 10 minutes.
KR1019970038749A 1997-08-13 1997-08-13 Method for cooling centrate and removing scale in reverse osmosis system and nano filtration system KR100328026B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970038749A KR100328026B1 (en) 1997-08-13 1997-08-13 Method for cooling centrate and removing scale in reverse osmosis system and nano filtration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970038749A KR100328026B1 (en) 1997-08-13 1997-08-13 Method for cooling centrate and removing scale in reverse osmosis system and nano filtration system

Publications (2)

Publication Number Publication Date
KR19990016264A KR19990016264A (en) 1999-03-05
KR100328026B1 true KR100328026B1 (en) 2002-04-17

Family

ID=37478462

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970038749A KR100328026B1 (en) 1997-08-13 1997-08-13 Method for cooling centrate and removing scale in reverse osmosis system and nano filtration system

Country Status (1)

Country Link
KR (1) KR100328026B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107381886B (en) * 2017-08-02 2021-01-15 北京廷润膜技术开发股份有限公司 Method for realizing near-zero emission of reverse osmosis concentrated water

Also Published As

Publication number Publication date
KR19990016264A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
KR100204608B1 (en) Apparatus and method for multistage reverse osmosis separation
JP4241684B2 (en) Membrane module cleaning method
JP2007130523A (en) Membrane washing method for water treatment system
JPH10503414A (en) Reverse osmosis for water treatment enhanced by microfiltration
JP7366527B2 (en) water treatment equipment
JP2002210335A (en) Apparatus and method for desalting using reverse osmosis membrane
US20170057854A1 (en) Ion Exchange Regeneration Process Utilizing Membrane Distillation
JP3735883B2 (en) Membrane separation apparatus and membrane module cleaning method
JP3593765B2 (en) Reverse osmosis membrane separation apparatus and method for seawater
CN104058525A (en) Method for recovering and treating production wastewater containing high ammonia nitrogen and nitrate nitrogen
JP6648695B2 (en) Operating method of semipermeable membrane separation device
WO2017066534A1 (en) Hybrid cooling and desalination system
JP2004108240A (en) Power generation plant and power generation method
JPH10272494A (en) Treatment of organic waste water containing salts of high concentration
JP4187316B2 (en) Reverse osmosis membrane separation apparatus and reverse osmosis membrane separation method
KR100328026B1 (en) Method for cooling centrate and removing scale in reverse osmosis system and nano filtration system
AU2018392216B2 (en) Method for pickling steel sheets
BR102020002545A2 (en) high efficiency water treatment process
JP2010091125A (en) Water heater
TW201731775A (en) Treatment method of high-hardness water drainage which is to contain the process to add the coagulant, the coarse filtration process, the membrane filtration process, and the reverse cleaning process
KR100398417B1 (en) A method for treating electrogalvanizing wastewaters
JP2004209478A (en) Method and apparatus for backwashing membrane module for removing turbidness
JP2017064639A (en) Method and apparatus for recovering and using waste water from steam power plant
JP2922059B2 (en) Operating method of hollow fiber membrane filter
JPH10128075A (en) Reverse osmosis membrane device and treatment using the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130225

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140226

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150223

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160229

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee