JP2017064639A - Method and apparatus for recovering and using waste water from steam power plant - Google Patents

Method and apparatus for recovering and using waste water from steam power plant Download PDF

Info

Publication number
JP2017064639A
JP2017064639A JP2015193782A JP2015193782A JP2017064639A JP 2017064639 A JP2017064639 A JP 2017064639A JP 2015193782 A JP2015193782 A JP 2015193782A JP 2015193782 A JP2015193782 A JP 2015193782A JP 2017064639 A JP2017064639 A JP 2017064639A
Authority
JP
Japan
Prior art keywords
water
power plant
steam power
treatment
plant wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015193782A
Other languages
Japanese (ja)
Other versions
JP6657720B2 (en
Inventor
愛和 谷津
Yoshikazu Tanitsu
愛和 谷津
広樹 藤本
Hiroki Fujimoto
広樹 藤本
亮一 山田
Ryoichi Yamada
亮一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2015193782A priority Critical patent/JP6657720B2/en
Publication of JP2017064639A publication Critical patent/JP2017064639A/en
Application granted granted Critical
Publication of JP6657720B2 publication Critical patent/JP6657720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently process blow water, drain water, and sampling rack drainage water from a steam power plant to recover and use them as boiler makeup water.SOLUTION: The blow water, drain water, and sampling rack drainage water from a steam power plant are oxidized with an oxidant, subsequently, the oxidation treatment water is subjected to flocculation and solid-liquid separation, the separated water is desalinated, and the desalinated water is recovered to use as boiler makeup water. The desalting treatment is preferably carried out by ion exchange treatment, reverse osmosis membrane separation treatment, or electric deionization treatment, or a combination thereof, and solid-liquid separation is preferably carried out by membrane separation.SELECTED DRAWING: Figure 1

Description

本発明は、汽力発電所において発生するブロー水、ドレン水、サンプリングラック排水を処理してボイラ補給水として回収利用する方法と装置に関する。   The present invention relates to a method and apparatus for treating blow water, drain water and sampling rack drainage generated at a steam power plant and recovering and using them as boiler make-up water.

汽力発電は、ボイラで発生させた蒸気によりタービンを駆動させて発電する発電方法であり、狭義には火力発電のみを指すが、広義には原子力発電、地熱発電、太陽熱発電、海洋温度差発電なども含まれる。   Steam power generation is a power generation method that generates power by driving a turbine with steam generated in a boiler. In the narrow sense, it refers only to thermal power generation, but in the broad sense, nuclear power generation, geothermal power generation, solar thermal power generation, ocean temperature difference power generation, etc. Is also included.

図2は、一般的な汽力発電プラントの構成を示す系統図であり、図2において、実線は水の流通経路を、点線は蒸気の流通経路を、破線は排水の流通経路をそれぞれ示す。この発電プラントでは、ドラム1内の水がボイラ4で加熱されて発生した蒸気が、蒸気タービン2に送給され、蒸気タービン2を駆動して発電が行なわれる。蒸気タービン2を駆動した蒸気は復水器3に導入され、復水器3で冷却水と熱交換して凝縮され、復水(凝縮水)が、図示しない復水ポンプで汲み出され、系外からの補給水と共に、図示しない脱気器、加熱器などを経て、図示しない給水ポンプで昇圧されてボイラドラム1に循環され、ボイラ4で再び蒸気となり、蒸気タービン2に供給される蒸気サイクルが形成されている。   FIG. 2 is a system diagram showing a configuration of a general steam power plant. In FIG. 2, a solid line indicates a water flow path, a dotted line indicates a steam flow path, and a broken line indicates a drainage flow path. In this power plant, steam generated by heating the water in the drum 1 by the boiler 4 is supplied to the steam turbine 2, and the steam turbine 2 is driven to generate power. The steam that has driven the steam turbine 2 is introduced into the condenser 3 and is condensed by exchanging heat with the cooling water in the condenser 3, and the condensed water (condensed water) is pumped out by a condensate pump (not shown). A steam cycle that is supplied to the steam turbine 2 through the deaerator and the heater (not shown), boosted by a feed water pump (not shown), circulated to the boiler drum 1, steam again in the boiler 4, and supplied to the steam turbine 2. Is formed.

このような汽力発電プラントでは、以下の排水が発生する。
(1) ブロー水:水系内での水質維持のために系内の水の一部をブローした水。例えば、ドラム1からのドラムブロー水、ボイラ4からのボイラブロー水等。
(2) ドレン水:蒸気配管系内の凝縮水を抜き出したもの。例えば、ボイラ4から蒸気タービン2への蒸気配管から抜き出された、蒸気ドレン水や復水器3からの復水ドレン水等。
(3) サンプリングラック排水:汽力発電プラントでは、系内の水質測定のため、系内の各ポイント(図2中のa,b,c)から採水した水をサンプリング配管を通して水質監視計器まで導く。分析に際し、サンプリング配管内は、サンプル水により十分フラッシングされている必要がある。採水箇所は、復水ポンプ出口、脱気器入口出口、ボイラ等様々であり、各サンプリング配管からフラッシング時に流れた水は、合流させてサンプリングラック排水として排出される。
上記(1)〜(3)の水は、種々の排水が混合されていたり、蒸気や水の移送の過程で汚染を受けていたりするため、そのままでは系内に戻すことはできず、従来、これらの水は、排水処理を経て放流され、回収再利用はされていないのが現状である。
In such a steam power plant, the following wastewater is generated.
(1) Blow water: Water obtained by blowing a part of the water in the system to maintain the water quality in the system. For example, drum blow water from the drum 1 and boiler blow water from the boiler 4.
(2) Drain water: Condensate water extracted from the steam piping system. For example, steam drain water extracted from the steam pipe from the boiler 4 to the steam turbine 2 or condensate drain water from the condenser 3.
(3) Sampling rack drainage: In a steam power plant, water sampled from each point (a, b, c in Fig. 2) is led to a water quality monitoring instrument through sampling pipes in order to measure water quality in the system. . In the analysis, the sampling pipe needs to be sufficiently flushed with sample water. There are various sampling points such as a condensate pump outlet, a deaerator inlet / outlet, and a boiler, and the water that flows from each sampling pipe at the time of flushing is joined and discharged as sampling rack drainage.
The waters of the above (1) to (3) are mixed with various wastewaters or are contaminated in the course of steam and water transfer, so they cannot be returned to the system as they are. Currently, these waters are discharged through wastewater treatment and are not collected and reused.

近年、節水のために、水資源の有効利用が進められており、汽力発電所においても排水を回収して再利用することが望まれている。特に、水資源が制限され、使用できる水が少ない地域に建設された汽力発電所では、節水に対する要求が大きい。
また、例えばガス炊き発電所では、以下の理由から、排水の回収利用のメリットが大きい。即ち、ガス炊き発電所では、重油火力や石炭火力に比べて発電所全体の水使用量が少なく、排水量も少ないため、使用する給水および排水におけるボイラ補給水、ボイラドレン水等の排水の割合が相対的に高くなる。例えば、ガスコンバインドサイクル発電を例に挙げると、発電で使用する用水のうち、3〜4割がボイラ補給水として使用され、そのうち70%が排水として排出される。したがって、この排水を回収利用できるならば、水使用量を2割程度削減することが期待できる。
In recent years, effective use of water resources has been promoted in order to save water, and it is desired to collect and reuse wastewater even at steam power plants. In particular, there is a great demand for water conservation in steam power plants that are built in areas where water resources are limited and available water is low.
In addition, for example, in a gas-fired power plant, there is a great merit of collecting and using wastewater for the following reasons. That is, in gas-fired power plants, the amount of water used in the entire power plant is small and the amount of wastewater is small compared to heavy oil and coal-fired power plants, so the proportion of wastewater such as boiler makeup water and boiler drain water in the water supply and wastewater used is relative. Become expensive. For example, taking gas combined cycle power generation as an example, 30-40% of the water used for power generation is used as boiler makeup water, 70% of which is discharged as waste water. Therefore, if this wastewater can be recovered and used, it can be expected that the amount of water used will be reduced by about 20%.

従来、火力発電所排水の処理については、特許文献1に、この排水を凝集処理した後膜分離し、膜透過水を処理水として放流するか、必要に応じて高度処理して水回収することが提案されている。   Conventionally, regarding treatment of thermal power plant wastewater, Patent Document 1 discloses that this wastewater is agglomerated and then separated into membranes, and the membrane permeate is discharged as treated water or advanced treatment as necessary to recover water. Has been proposed.

特許文献2には、2価鉄イオンを含有する金属イオン含有廃水から溶存鉄を選択的に分離して回収する鉄分回収方法として、この金属イオン含有廃水中の2価鉄イオンを鉄酸化細菌により3価鉄イオンに酸化して鉄水酸化物粒子として析出させて分離、回収する方法が提案されている。この特許文献2の方法で処理される金属イオン含有廃水は、鋼板の酸洗廃水やめっき廃水などの、2価鉄イオンを数百mg/Lと高濃度に含むものである。   In Patent Document 2, as a method of recovering iron content by selectively separating and recovering dissolved iron from metal ion-containing wastewater containing divalent iron ions, divalent iron ions in the metal ion-containing wastewater are converted by iron-oxidizing bacteria. There has been proposed a method of separating and recovering by oxidizing to trivalent iron ions and precipitating them as iron hydroxide particles. The metal ion-containing wastewater treated by the method of Patent Document 2 contains divalent iron ions at a high concentration of several hundred mg / L, such as pickling wastewater and plating wastewater.

特開平10−28994号公報JP-A-10-28994 特開2012−228675号公報JP2012-228675A

前記(1)〜(3)の汽力発電所排水は、系内で使用された薬品や汚染物質に由来するヒドラジン、アンモニア、有機物に加えて、系内の配管等から溶出して混入した鉄などを含む排水であるため、これらの排水をボイラ補給水等として回収、再利用するためには、これらの混入成分、特に微細な鉄の除去を行った上で脱塩処理を行う必要がある。
しかしながら、これらの排水中に含まれる鉄は、第一鉄イオン、又は不安定な鉄コロイドの微細粒子を形成しており、特許文献1に記載されるような通常の凝集処理では、分離除去することができない。
The steam power plant effluents of (1) to (3) described above include iron, etc. that are eluted and mixed from piping in the system in addition to hydrazine, ammonia, and organic substances derived from chemicals and pollutants used in the system. Therefore, in order to recover and reuse these wastewater as boiler makeup water, etc., it is necessary to perform a desalting treatment after removing these mixed components, particularly fine iron.
However, the iron contained in these wastewater forms ferrous ions or unstable fine particles of iron colloid, and is separated and removed in a normal agglomeration process as described in Patent Document 1. I can't.

特許文献2に記載される、鉄酸化細菌によって2価鉄イオンを酸化して3価鉄イオンとして析出させる方法は、高濃度の鉄含有排水に対してはある程度の処理効率を得ることができると考えられるが、一般的に鉄濃度0〜0.2mg/L程度の低濃度鉄含有排水である汽力発電所排水に対しては、十分な反応速度で安定した処理を行うことができないおそれがある。   The method of oxidizing divalent iron ions by iron-oxidizing bacteria and precipitating them as trivalent iron ions described in Patent Document 2 can achieve a certain degree of treatment efficiency for high-concentration iron-containing wastewater. Although it is considered, there is a possibility that stable treatment cannot be performed at a sufficient reaction rate for wastewater from steam power plants, which is generally low concentration iron-containing wastewater with an iron concentration of about 0 to 0.2 mg / L. .

本発明は上記従来の実状に鑑みてなされたものであり、汽力発電所において発生するブロー水、ドレン水、サンプリングラック排水を効率的に処理してボイラ補給水として回収利用する方法と装置を提供することを課題とする。   The present invention has been made in view of the above-described conventional situation, and provides a method and apparatus for efficiently treating blow water, drain water, and sampling rack waste water generated at a steam power plant and recovering and using them as boiler make-up water. The task is to do.

本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、汽力発電所で発生するブロー水、ドレン水、サンプリングラック排水を凝集固液分離するに先立ち、酸化剤により酸化処理することにより、凝集固液分離が困難な排水中のイオン状鉄や微細コロイド鉄を効率的に凝集固液分離することが可能となり、分離水を脱塩処理して、ボイラ補給水として再利用可能な水質の処理水を得ることができることを見出した。
本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have conducted oxidation treatment with an oxidizing agent prior to coagulating solid-liquid separation of blow water, drain water, and sampling rack waste water generated at a steam power plant. It is possible to efficiently separate ionic iron and fine colloidal iron in waste water, which is difficult to separate into solid and liquid, and the water quality can be reused as boiler makeup water by desalting the separated water. It was found that treated water can be obtained.
The present invention has been achieved based on such findings, and the gist thereof is as follows.

[1] 汽力発電所において発生するブロー水、ドレン水、及びサンプリングラック排水よりなる群から選ばれる1種以上を含む汽力発電所排水の回収利用方法であって、該汽力発電所排水を酸化剤により酸化処理した後、酸化処理水を凝集固液分離し、分離水を脱塩処理し、脱塩処理水を回収してボイラ補給水として利用することを特徴とする汽力発電所排水の回収利用方法。 [1] A method for recovering and using steam power plant wastewater containing at least one selected from the group consisting of blow water, drain water, and sampling rack waste water generated at a steam power plant, wherein the steam power plant waste water is oxidized Oxidized water is separated by agglomeration and solid-liquid separation, the separated water is desalted, and the desalted water is recovered and used as boiler make-up water. Method.

[2] [1]において、該汽力発電所排水の全鉄濃度が0〜0.2mg/Lであることを特徴とする汽力発電所排水の回収利用方法。 [2] The method of recovering and using steam power plant waste water according to [1], wherein the total iron concentration of the steam power plant waste water is 0 to 0.2 mg / L.

[3] [1]又は[2]において、前記酸化処理時のpHが5以上7未満であることを特徴とする汽力発電所排水の回収利用方法。 [3] In [1] or [2], the pH at the time of the oxidation treatment is 5 or more and less than 7, The method for recovering and using steam power plant wastewater.

[4] [1]ないし[3]のいずれかにおいて、前記脱塩処理を、イオン交換処理、逆浸透膜分離処理、又は電気脱イオン処理、或いはこれらの組み合わせにより行うことを特徴とする汽力発電所排水の回収利用方法。 [4] The steam power generation according to any one of [1] to [3], wherein the desalting process is performed by an ion exchange process, a reverse osmosis membrane separation process, an electrodeionization process, or a combination thereof. How to collect and use industrial wastewater.

[5] [1]ないし[4]のいずれかにおいて、前記固液分離を膜分離により行うことを特徴とする汽力発電所排水の回収利用方法。 [5] In any one of [1] to [4], the solid-liquid separation is performed by membrane separation.

[6] 汽力発電所において発生するブロー水、ドレン水、及びサンプリングラック排水よりなる群から選ばれる1種以上を含む汽力発電所排水の回収利用装置であって、該汽力発電所排水を受け入れて酸化剤により酸化処理する酸化処理手段と、該酸化処理手段の酸化処理水を凝集固液分離する凝集固液分離手段と、該凝集固液分離手段の分離水を脱塩処理する脱塩処理手段と、該脱塩処理手段の処理水をボイラ補給水として、該汽力発電所のボイラ給水ラインに送給する給水配管とを有することを特徴とする汽力発電所排水の回収利用装置。 [6] A steam power plant wastewater recovery and collection device including at least one selected from the group consisting of blow water, drain water, and sampling rack drainage generated at a steam power plant, and accepting the steam power plant wastewater Oxidation treatment means for oxidizing treatment with an oxidizing agent, agglomerated solid-liquid separation means for aggregating solid-liquid separation of the oxidation-treated water of the oxidation treatment means, and a desalination treatment means for desalting the separated water of the agglomerated solid-liquid separation means And a steam power plant wastewater recovery and utilization device, characterized in that the treated water of the desalination treatment means is supplied to the boiler feed water line of the steam power plant as boiler replenishment water.

[7] [6]において、該汽力発電所排水の全鉄濃度が0〜0.2mg/Lであることを特徴とする汽力発電所排水の回収利用装置。 [7] The steam power plant wastewater recovery and utilization device according to [6], wherein the total power concentration of the steam power plant wastewater is 0 to 0.2 mg / L.

[8] [6]又は[7]において、前記酸化処理時のpHが5以上7未満であることを特徴とする汽力発電所排水の回収利用装置。 [8] The steam power plant wastewater recovery and utilization device according to [6] or [7], wherein the pH during the oxidation treatment is 5 or more and less than 7.

[9] [6]ないし[8]のいずれかにおいて、前記脱塩処理手段が、イオン交換装置、逆浸透膜分離装置、又は電気脱イオン装置、或いはこれらの装置を組み合わせたものであることを特徴とする汽力発電所排水の回収利用装置。 [9] In any one of [6] to [8], the desalting means is an ion exchange device, a reverse osmosis membrane separation device, an electrodeionization device, or a combination of these devices. A steam power plant wastewater collection and utilization device.

[10] [6]ないし[9]のいずれかにおいて、前記凝集固液分離手段が膜分離装置を備えることを特徴とする汽力発電所排水の回収利用装置。 [10] In any one of [6] to [9], the aggregated solid-liquid separation means includes a membrane separation device.

本発明によれば、従来、放流、廃棄されていた汽力発電所のブロー水、ドレン水、サンプリングラック排水を、効率的に処理してボイラ補給水として有効利用することができる。このため、本発明によれば、汽力発電所の発電プラントにおける系外からの補給水量を低減することができ、従って補給水の原水となる工業用水や上水の使用量を削減し、水資源の節約と水コストの低減を図ることができる。   According to the present invention, blow water, drain water, and sampling rack drainage of steam power plants that have been discharged and discarded can be efficiently processed and used effectively as boiler make-up water. For this reason, according to the present invention, it is possible to reduce the amount of makeup water from outside the system in the power plant of the steam power plant, and thus reduce the amount of industrial water and clean water used as raw water for makeup water, Savings and water costs can be reduced.

本発明の汽力発電所排水の回収利用装置を採用した汽力発電プラントの一例を示す系統図である。It is a systematic diagram showing an example of a steam power plant that employs a recovery and utilization device for steam power plant drainage of the present invention. 一般的な汽力発電プラントを示す系統図である。It is a distribution diagram showing a general steam power plant.

以下に本発明の汽力発電所排水の回収利用方法及び装置の実施の形態を詳細に説明する。   Embodiments of the method and apparatus for recovering and using steam power plant wastewater of the present invention will be described in detail below.

本発明では、汽力発電所で発生するブロー水、ドレン水、サンプリングラック排水を、(1)酸化剤による酸化処理、(2)凝集固液分離、及び(3)脱塩処理の順で処理して、処理水を回収してボイラ補給水として再利用する。   In the present invention, blow water, drain water and sampling rack waste water generated at a steam power plant are treated in the order of (1) oxidation treatment with an oxidizing agent, (2) flocculation solid-liquid separation, and (3) desalination treatment. The treated water is collected and reused as boiler makeup water.

[汽力発電所排水]
本発明で処理対象とする汽力発電所排水は、前述の汽力発電所で発生するドラムブロー水、ボイラブロー水等のブロー水、蒸気ドレン水、復水ドレン水等のドレン水、サンプリングラック排水である。
本発明においては、これらの排水の1種のみを処理してもよく、これらの排水の2種以上を処理してもよい。好ましくは、汽力発電所で発生するこれらのブロー水、ドレン水、及びサンプリングラック排水のすべてを処理することで、水の廃棄量を十分に低減して水回収率を高めることができる。
[Steam power plant drainage]
The steam power plant wastewater to be treated in the present invention is drum blow water, boiler blow water, etc., blow water, steam drain water, condensate drain water, etc. drain water, sampling rack waste water, etc., generated at the aforementioned steam power plant. .
In the present invention, only one of these wastewaters may be treated, or two or more of these wastewaters may be treated. Preferably, by treating all of the blow water, drain water, and sampling rack waste water generated at the steam power plant, the amount of water discarded can be sufficiently reduced and the water recovery rate can be increased.

これらの汽力発電所排水は、前述の通り、鉄、ヒドラジン、アンモニア、有機物、その他のイオン類を含み、通常、その水質は以下の通りである。
<汽力発電所排水水質>
pH:6.3〜9.3
電気伝導度:2.0〜40mS/m
全鉄:0〜0.2mg/L、特に0〜0.1mg/L、とりわけ10μg/L〜0.1mg/L
アンモニア:0〜2.0mg/L
ヒドラジン:0〜0.5mg/L
TOC:0〜5mg/L
全シリカ:1〜10mg/L
As described above, these steam power plant effluents contain iron, hydrazine, ammonia, organic matter, and other ions, and the water quality is usually as follows.
<Water quality of steam power plant>
pH: 6.3 to 9.3
Electrical conductivity: 2.0-40mS / m
Total iron: 0-0.2 mg / L, especially 0-0.1 mg / L, especially 10 μg / L-0.1 mg / L
Ammonia: 0 to 2.0 mg / L
Hydrazine: 0 to 0.5 mg / L
TOC: 0 to 5 mg / L
Total silica: 1-10mg / L

[酸化処理]
上記の汽力発電所排水中の鉄は、第一鉄イオン(Fe2+)、又は微細で不安定なコロイド鉄粒子として存在し、そのままで凝集固液分離で除去することは困難である。本発明においては、この排水を凝集固液分離するに先立ち酸化剤により酸化処理する。排水の酸化処理により、排水中の鉄は、安定な水酸化鉄(Fe(OH)等)、酸化鉄(Fe、Fe等)に酸化され、凝集固液分離が可能となる。
また、ヒドラジンやアンモニアは、本来、系内に存在するものであるが、これらは系内で濃度管理されており、回収水に含まれて再度系内に補給されると、濃度管理が煩雑化するため、酸化処理で分解処理する。
また、有機物は、後段で脱塩処理する際に有機物ファウリングを引き起こす原因となるため、排水中の有機物も酸化分解して除去する。
[Oxidation treatment]
Iron in the above steam power plant wastewater exists as ferrous ions (Fe 2+ ) or fine and unstable colloidal iron particles, and is difficult to remove as it is by coagulation solid-liquid separation. In the present invention, the waste water is oxidized with an oxidizing agent prior to the flocculated solid-liquid separation. The oxidation treatment of waste water, the iron in the waste water, a stable iron hydroxide (Fe (OH) 3, etc.) is oxidized to iron oxide (Fe 2 O 3, Fe 3 O 4 , etc.), can be agglomerated solid-liquid separation It becomes.
In addition, hydrazine and ammonia are originally present in the system, but their concentration is controlled in the system, and if they are contained in recovered water and replenished in the system, the concentration management becomes complicated. Therefore, it is decomposed by oxidation treatment.
In addition, since the organic matter causes organic fouling when desalting is performed later, the organic matter in the wastewater is also removed by oxidative decomposition.

排水の酸化処理は、排水に酸化剤を添加して行う。酸化剤としては、塩素系酸化剤、オゾン、過酸化水素等の1種又は2種以上が使用できるが、取り扱いが容易な点から次亜塩素酸ナトリウム等の塩素系酸化剤を用いることが好ましい。
前述の通り、特許文献2に記載されるような鉄酸化細菌による酸化処理では、本発明で対象とする低濃度鉄含有排水に対しては、十分な反応速度で安定した処理を行えないおそれがあるが、酸化剤による酸化処理であれば、低濃度の鉄含有排水であっても確実に効率よく酸化処理を行うことができる。
The waste water is oxidized by adding an oxidizing agent to the waste water. As the oxidizing agent, one or more of chlorine-based oxidizing agent, ozone, hydrogen peroxide and the like can be used, but it is preferable to use a chlorine-based oxidizing agent such as sodium hypochlorite from the viewpoint of easy handling. .
As described above, in the oxidation treatment with iron-oxidizing bacteria as described in Patent Document 2, there is a possibility that the low concentration iron-containing waste water targeted in the present invention cannot be stably treated at a sufficient reaction rate. However, if it is an oxidation treatment with an oxidizing agent, even if it is a low-concentration iron-containing wastewater, the oxidation treatment can be reliably and efficiently performed.

酸化剤の添加量は、排水中の被酸化性物質の含有量により異なるが、例えば、塩素系酸化剤の場合、塩素換算添加量として通常5〜20mg/L程度である。   Although the addition amount of an oxidizing agent changes with content of the oxidizable substance in waste_water | drain, in the case of a chlorine-type oxidizing agent, it is about 5-20 mg / L normally as a chlorine conversion addition amount, for example.

この酸化処理時の排水のpHは5以上7未満、即ち、5≦pH<7であることが好ましく、より好ましくは5.5≦pH<7、さらに好ましくは6.0≦pH<7である。このようにpH7未満の弱酸性条件とする理由は次の通りである。
即ち、本発明では、酸化処理水を凝集固液分離し、分離水を逆浸透膜分離装置等で脱塩処理する。この脱塩処理において、スケールの発生を防止するためには、pHは弱酸性であることが好ましい。このため、上記の通りpH7未満で酸化処理を行うことが好ましい。このため、汽力発電所排水のpHが7以上の場合は、適宜酸を添加してpH7未満に調整する。ただし、pHが過度に低いと、pH調整のための酸剤の使用量が増え、また、脱塩処理水をボイラ補給水として使用する際に再度pH調整する必要が生じることとなる場合もあり、pHは上記下限以上とすることが好ましい。
The pH of the wastewater during this oxidation treatment is preferably 5 or more and less than 7, that is, 5 ≦ pH <7, more preferably 5.5 ≦ pH <7, and even more preferably 6.0 ≦ pH <7. . The reason for setting the weakly acidic condition below pH 7 is as follows.
That is, in the present invention, the oxidation-treated water is subjected to flocculated solid-liquid separation, and the separated water is desalted with a reverse osmosis membrane separator or the like. In this desalting treatment, the pH is preferably weakly acidic in order to prevent the occurrence of scale. For this reason, it is preferable to perform the oxidation treatment at a pH of less than 7 as described above. For this reason, when the pH of the steam power plant drainage is 7 or more, an acid is appropriately added to adjust the pH to less than 7. However, if the pH is excessively low, the amount of acid agent used for pH adjustment increases, and it may be necessary to adjust the pH again when using desalted water as boiler makeup water. The pH is preferably at least the above lower limit.

なお、酸化処理は、排水中の被酸化性物質を十分に酸化処理するために、15〜30分程度の反応時間を確保して行うことが好ましい。   The oxidation treatment is preferably performed while ensuring a reaction time of about 15 to 30 minutes in order to sufficiently oxidize the oxidizable substance in the waste water.

[凝集固液分離]
上記の酸化処理水は、次いで凝集固液分離により酸化した鉄や排水中のSSを除去する。
排水の鉄又はSSの負荷が低い場合は、そのまま後段のイオン交換装置やRO膜分離装置に通水できるが、これらの負荷が高い場合は、通水により装置が閉塞し易いため、これらのSSを脱塩処理に先立ち、凝集固液分離で除去する。
[Agglomerated solid-liquid separation]
The oxidized water then removes iron oxidized by coagulation solid-liquid separation and SS in waste water.
When the load of drainage iron or SS is low, water can be passed through the ion exchange apparatus and RO membrane separation apparatus in the subsequent stage as it is, but when these loads are high, the apparatus is likely to be blocked due to water flow, so these SS Is removed by agglomeration solid-liquid separation prior to desalting.

凝集剤としては、例えば、硫酸バンド、ポリ塩化アルミニウム(PAC)、硫酸第一鉄、塩化第二鉄、消石灰、塩化カルシウム、マグネシウム化合物などの無機凝集剤を好適に使用することができる。必要に応じて、アルギン酸ナトリウム、カルボキシメチルセルロース、ポリアクリルアミドの部分加水分解物の塩などのアニオン性高分子凝集剤、ポリエチレンイミン、ポリチオ尿素、ポリジメチルジアリルアンモニウムクロライドなどのカチオン性高分子凝集剤、ポリアクリルアミドなどのノニオン性高分子凝集剤などを併用して分離性を改善することができる。これらの凝集剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   As the flocculant, for example, inorganic flocculants such as sulfate band, polyaluminum chloride (PAC), ferrous sulfate, ferric chloride, slaked lime, calcium chloride, and magnesium compounds can be suitably used. As necessary, anionic polymer flocculants such as sodium alginate, carboxymethylcellulose, polyacrylamide partial hydrolyzate salts, cationic polymer flocculants such as polyethyleneimine, polythiourea, polydimethyldiallylammonium chloride, poly Separation can be improved by using a nonionic polymer flocculant such as acrylamide. These flocculants may be used individually by 1 type, and may be used in combination of 2 or more type.

無機凝集剤の添加量は、排水の水質や高分子凝集剤の併用の有無等により異なるが、通常5〜50mg/L程度とすることが好ましい。   The amount of the inorganic flocculant added varies depending on the water quality of the waste water and the presence or absence of the combined use of the polymer flocculant, but is usually preferably about 5 to 50 mg / L.

凝集処理pHは、用いる無機凝集剤の好適pH値であればよく、アルミニウム系凝集剤では通常5.5〜8.0程度であり、鉄系凝集剤では通常4以上である。ただし、その後の脱塩処理のために、前述の通り、pHは7未満とすることが好ましい。   The aggregation treatment pH may be any suitable pH value for the inorganic flocculant used, and is usually about 5.5 to 8.0 for an aluminum flocculant and usually 4 or more for an iron flocculant. However, as described above, the pH is preferably less than 7 for the subsequent desalting treatment.

この凝集処理は、凝集槽を設けて5〜30分程度の反応時間を確保して行ってもよく、凝集剤を配管注入して行う処理であってもよい。   This agglomeration treatment may be performed by providing an agglomeration tank and securing a reaction time of about 5 to 30 minutes, or may be a treatment performed by injecting a flocculant into a pipe.

凝集処理水の固液分離手段としては、沈殿槽、浮上槽、濾過器、膜分離装置などを用いることができる。
ただし、沈殿槽や浮上槽では、起動停止時にフロックがリークしやすい。また、濾過器では目開きが大きく鉄のリークが多くなりやすい。
As solid-liquid separation means of the flocculated water, a precipitation tank, a floating tank, a filter, a membrane separation device, or the like can be used.
However, flocs are likely to leak when starting and stopping in the sedimentation tank and levitation tank. In addition, the filter has a large opening and iron leakage tends to increase.

このような問題がなく、凝集処理でフロック化又はフロックに吸着できなかったコロイド粒子も除去できる点において、孔径0.01〜0.2μm程度の精密濾過(MF)膜、又は分画分子量5000〜18000程度の限外濾過(UF)膜分離装置を用いることが好ましい。これらの膜分離装置によれば、固液分離水の水質のみならず、後段の脱塩処理の運用も安定化できる利点がある。
これらの分離膜エレメントの型式には特に制限はなく、例えば、平面膜締め付け型、平面膜スパイラル巻型、管状膜、中空糸膜などを使用することができる。膜分離装置の型式にも特に制限はなく、例えば、外圧式、内圧式或いは加圧式、減圧式などを適宜選択して使用することができる。
A microfiltration (MF) membrane having a pore size of about 0.01 to 0.2 μm, or a molecular weight cut off of 5000 to 5000 in that the colloidal particles that do not have such problems and can be flocated or cannot be adsorbed to the flocs by the aggregation treatment can be removed. It is preferable to use an ultrafiltration (UF) membrane separator of about 18000. According to these membrane separation apparatuses, there is an advantage that not only the quality of the solid-liquid separation water but also the operation of the desalting treatment in the subsequent stage can be stabilized.
There is no restriction | limiting in particular in the type of these separation membrane elements, For example, a flat membrane clamping type | mold, a flat membrane spiral winding type | mold, a tubular membrane, a hollow fiber membrane etc. can be used. The type of the membrane separation device is not particularly limited, and for example, an external pressure type, an internal pressure type, a pressure type, a pressure reduction type, or the like can be appropriately selected and used.

[脱塩処理]
上記の凝集固液分離で得られた分離水は、次いで脱塩処理する。
即ち、上記の固液分離水中には、排水由来の各種イオン類や有機物が含まれるため、ボイラ補給水として再利用するためには、脱塩処理する必要がある。
[Desalination]
The separated water obtained by the above-mentioned coagulation solid-liquid separation is then desalted.
That is, since the above solid-liquid separated water contains various ions and organic substances derived from the waste water, it is necessary to desalinate the water for reuse as boiler makeup water.

脱塩処理手段としては、イオン交換装置(イオン交換樹脂塔)、逆浸透(RO)膜分離装置、電気脱イオン装置等を用いることができる。これらは、目標水質、即ち、ボイラ補給水として回収利用するための水質に応じて適宜選択使用され、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。また、1種の装置を2段に直列に連結して用いてもよい。
例えば、2段RO膜分離処理してもよく、RO膜分離処理後に電気脱イオン処理してもよい。
As the desalting treatment means, an ion exchange device (ion exchange resin tower), a reverse osmosis (RO) membrane separation device, an electrodeionization device or the like can be used. These are appropriately selected and used according to the target water quality, that is, the water quality to be recovered and used as boiler make-up water, and only one type may be used or two or more types may be used in combination. Further, one type of device may be connected in series in two stages.
For example, a two-stage RO membrane separation process may be performed, or an electrodeionization process may be performed after the RO membrane separation process.

本発明では、このような脱塩処理で、電気伝導度0.1mS/m以下、全鉄10μg/L以下で、アンモニア、ヒドラジン及びTOCが検出限界以下の処理水を得ることが好ましく、このような水質の処理水であれば、ボイラ補給水として有効に利用することができる。   In the present invention, it is preferable to obtain treated water having an electrical conductivity of 0.1 mS / m or less, total iron of 10 μg / L or less, and ammonia, hydrazine and TOC below the detection limit by such desalting treatment. If it is treated water with a good water quality, it can be effectively used as boiler makeup water.

本発明によれば、通常、汽力発電所のブロー水、ドレン水及びサンプリングラック排水の混合排水から、上記のような水質の処理水を40〜90%程度の水回収率で得ることができ、回収した水をボイラ補給水として利用することにより、系外からの補給水量を大幅に低減することが可能となる。   According to the present invention, from the mixed drainage of steam power plant blow water, drain water and sampling rack drainage, it is possible to obtain treated water of the above water quality at a water recovery rate of about 40 to 90%, By using the collected water as boiler make-up water, the amount of make-up water from outside the system can be greatly reduced.

[発電プラントへの適用]
図1は、本発明の汽力発電所排水の回収利用装置の発電プラントへの適用例を示す系統図であり、図1において、図2におけるものと同一機能を奏する部材には同一符号を付してある。また、図2と同様、実線は水の流通経路を、点線は蒸気の流通経路を、破線は排水の流通経路をそれぞれ示し、一点鎖線は回収水の流通経路を示す。
[Application to power plants]
FIG. 1 is a system diagram showing an application example of a steam power plant wastewater recovery and utilization apparatus of the present invention to a power plant. In FIG. 1, members having the same functions as those in FIG. It is. Similarly to FIG. 2, the solid line indicates the water flow path, the dotted line indicates the steam flow path, the broken line indicates the drainage flow path, and the alternate long and short dash line indicates the recovered water flow path.

図1においては、ドラムブロー水、蒸気ドレン水、復水ドレン水及びサンプリングラック排水がそれぞれ本発明の汽力発電所排水の回収利用装置である水回収装置10に導入され、前述の通り、(1)酸化剤による酸化処理、(2)凝集固液分離及び(3)脱塩処理の手順で処理され、脱塩処理水が回収され、ボイラ補給水として給水ラインに返送される。   In FIG. 1, drum blow water, steam drain water, condensate drain water, and sampling rack drain water are respectively introduced into a water recovery apparatus 10 that is a recovery and utilization apparatus for steam power plant drainage according to the present invention. It is treated by the steps of) oxidation treatment with an oxidizing agent, (2) flocculated solid-liquid separation, and (3) desalination treatment, and the desalted water is collected and returned to the water supply line as boiler makeup water.

この水処理装置10としては、必要に応じて設けられる各排水が合流される排水槽と、排水槽からの排水に酸化剤を添加して反応させる酸化反応槽、酸化反応槽からの酸化処理水に凝集剤を添加して凝集処理する凝集槽、凝集槽からの凝集処理水を固液分離するUF又はMF膜分離装置、並びに、UF又はMF膜分離装置の透過水を脱塩処理するイオン交換装置、RO膜分離装置、又は電気脱イオン装置、或いはこれらの組み合わせからなる脱塩処理装置よりなるものなどが挙げられる。脱塩処理装置の処理水はボイラ補給水として回収される一方で、濃縮水等の排水は系外へ排出される。
なお、この水回収装置10は、適宜、膜分離装置の逆洗手段や、膜濃縮水の一部や逆洗排水を前段の排水槽に循環する循環配管を有していてもよい。
As this water treatment device 10, a drainage tank in which the respective wastewaters provided as needed are combined, an oxidation reaction tank in which an oxidant is added to the wastewater from the drainage tank and reacted, and an oxidation treatment water from the oxidation reaction tank Coagulation tank for adding coagulant to flocculation process, UF or MF membrane separator for solid-liquid separation of coagulated water from coagulation tank, and ion exchange for desalting the permeated water of UF or MF membrane separator Examples thereof include an apparatus, an RO membrane separation apparatus, an electrodeionization apparatus, or a desalination treatment apparatus composed of a combination thereof. While the treated water of the desalinating apparatus is recovered as boiler make-up water, wastewater such as concentrated water is discharged out of the system.
In addition, this water collection | recovery apparatus 10 may have the circulation piping which circulates the backwashing means of a membrane separation apparatus, a part of membrane concentrated water, and backwash waste_water | drain to a preceding stage drainage tank suitably.

以下に実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

<実施例1>
図1に示す汽力発電所の汽力発電プラントから排出されるボイラブロー水、蒸気ドレン水、復水ドレン水、及びサンプリングラック排水の混合排水を、本発明に従って、処理した。
この混合排水の水質は下記表1に示す通りである。
<Example 1>
The mixed waste water of boiler blow water, steam drain water, condensate drain water, and sampling rack waste water discharged from the steam power plant of the steam power plant shown in FIG. 1 was treated according to the present invention.
The water quality of this mixed waste water is as shown in Table 1 below.

まず、反応槽にて混合排水100Lに次亜塩素酸ナトリウム5mg−Cl/Lを添加して、pH6.7の条件で、撹拌下に15分反応させて酸化処理した後、凝集槽にて酸化処理水にPAC10mg/Lを添加して10分撹拌下に凝集処理した。この凝集処理水のpHは6.4であった。凝集処理水を孔径0.02μmのMF膜分離装置で膜分離した。得られた膜透過水の水質は下記表1に示す通りであった。
次いで、膜透過水を、RO膜分離装置(栗田工業(株)製「K−RO−A−203V」)と電気脱イオン装置(栗田工業(株)製「KCDI−H30」)で2段脱塩処理し(脱塩処理の水回収率80%)、表1に示す脱塩処理水80L(装置全体での水回収率約80%)を得た。
得られた脱塩処理水は、表1に示すボイラ補給水としての目標値を十分に満たすものであった。
First, sodium hypochlorite 5 mg-Cl 2 / L was added to 100 L of mixed waste water in a reaction tank, and the mixture was reacted for 15 minutes with stirring under the condition of pH 6.7. PAC 10 mg / L was added to the oxidation-treated water, and the mixture was agglomerated with stirring for 10 minutes. The pH of this agglomerated water was 6.4. The agglomerated water was subjected to membrane separation with an MF membrane separation device having a pore size of 0.02 μm. The quality of the obtained permeated water was as shown in Table 1 below.
Next, the membrane permeated water is subjected to two-stage desorption using an RO membrane separation device ("K-RO-A-203V" manufactured by Kurita Kogyo Co., Ltd.) and an electrodeionization device ("KCDI-H30" manufactured by Kurita Kogyo Co., Ltd.). Salt treatment was performed (water recovery rate of desalting treatment was 80%), and 80 L of desalted water (about 80% water recovery rate for the entire apparatus) shown in Table 1 was obtained.
The obtained desalted treated water sufficiently satisfied the target value as boiler makeup water shown in Table 1.

Figure 2017064639
Figure 2017064639

本実施例の水回収を補給水使用量24m/day、排水量16m/dayで運用している発電プラントに適用することで、排水16m/dayから回収水13m/dayを得、これをボイラ補給水として利用することができることから、系外からの補給水使用量を11m/dayに低減することができる計算となる。 By applying the power plant are operating water recovery of this embodiment up water usage 24m 3 / day, in wastewater 16m 3 / day, to obtain the recovered water 13m 3 / day from wastewater 16m 3 / day, which Can be used as boiler make-up water, so that the amount of use of make-up water from outside the system can be reduced to 11 m 3 / day.

<比較例1>
実施例1において、混合排水の酸化処理を行うことなく、実施例1と同様に凝集、膜濾過を試みたが、凝集処理において十分な凝集フロックを形成し得ず、鉄が膜透過水に19μg/L残留し、RO膜分離装置や電気脱イオン装置を運用可能な水質が得られなかった。
<Comparative Example 1>
In Example 1, flocculation and membrane filtration were attempted in the same manner as in Example 1 without oxidizing the mixed waste water, but sufficient flocculation flocs could not be formed in the flocculation process, and iron was 19 μg in the membrane permeated water. / L remained, and water quality capable of operating the RO membrane separation device and the electrodeionization device could not be obtained.

1 ドラム
2 蒸気タービン
3 復水器
4 ボイラ
10 水回収装置
1 Drum 2 Steam Turbine 3 Condenser 4 Boiler 10 Water Recovery Device

Claims (10)

汽力発電所において発生するブロー水、ドレン水、及びサンプリングラック排水よりなる群から選ばれる1種以上を含む汽力発電所排水の回収利用方法であって、該汽力発電所排水を酸化剤により酸化処理した後、酸化処理水を凝集固液分離し、分離水を脱塩処理し、脱塩処理水を回収してボイラ補給水として利用することを特徴とする汽力発電所排水の回収利用方法。   A method for recovering and using steam power plant wastewater containing at least one selected from the group consisting of blow water, drain water and sampling rack waste water generated at a steam power plant, wherein the steam power plant wastewater is oxidized with an oxidizing agent. After that, a method for recovering and using steam power plant wastewater is characterized in that the oxidized water is subjected to flocculated solid-liquid separation, the separated water is desalted, and the desalted water is recovered and used as boiler makeup water. 請求項1において、該汽力発電所排水の全鉄濃度が0〜0.2mg/Lであることを特徴とする汽力発電所排水の回収利用方法。   The method for recovering and using steam power plant wastewater according to claim 1, wherein the total iron concentration of the steam power plant wastewater is 0 to 0.2 mg / L. 請求項1又は2において、前記酸化処理時のpHが5以上7未満であることを特徴とする汽力発電所排水の回収利用方法。   The method for recovering and using steam power plant wastewater according to claim 1 or 2, wherein the pH during the oxidation treatment is 5 or more and less than 7. 請求項1ないし3のいずれか1項において、前記脱塩処理を、イオン交換処理、逆浸透膜分離処理、又は電気脱イオン処理、或いはこれらの組み合わせにより行うことを特徴とする汽力発電所排水の回収利用方法。   4. The steam power plant wastewater according to claim 1, wherein the desalting treatment is performed by an ion exchange treatment, a reverse osmosis membrane separation treatment, an electrodeionization treatment, or a combination thereof. 5. Collection and usage method. 請求項1ないし4のいずれか1項において、前記固液分離を膜分離により行うことを特徴とする汽力発電所排水の回収利用方法。   5. The method of recovering and using steam power plant wastewater according to claim 1, wherein the solid-liquid separation is performed by membrane separation. 汽力発電所において発生するブロー水、ドレン水、及びサンプリングラック排水よりなる群から選ばれる1種以上を含む汽力発電所排水の回収利用装置であって、該汽力発電所排水を受け入れて酸化剤により酸化処理する酸化処理手段と、該酸化処理手段の酸化処理水を凝集固液分離する凝集固液分離手段と、該凝集固液分離手段の分離水を脱塩処理する脱塩処理手段と、該脱塩処理手段の処理水をボイラ補給水として、該汽力発電所のボイラ給水ラインに送給する給水配管とを有することを特徴とする汽力発電所排水の回収利用装置。   An apparatus for recovering and using steam power plant wastewater containing at least one selected from the group consisting of blow water, drain water, and sampling rack waste water generated at a steam power plant, which receives the steam power plant wastewater by an oxidizing agent Oxidation treatment means for oxidation treatment, agglomeration solid-liquid separation means for aggregating solid-liquid separation of the oxidation treated water of the oxidation treatment means, a desalination treatment means for desalting the separated water of the aggregation solid-liquid separation means, A steam power plant wastewater recovery and utilization device, characterized by having a feed water pipe that feeds the treated water of the desalination treatment means to the boiler feed water line of the steam power plant as boiler makeup water. 請求項6において、該汽力発電所排水の全鉄濃度が0〜0.2mg/Lであることを特徴とする汽力発電所排水の回収利用装置。   The steam power plant wastewater recovery and utilization device according to claim 6, wherein the total iron concentration of the steam power plant wastewater is 0 to 0.2 mg / L. 請求項6又は7において、前記酸化処理時のpHが5以上7未満であることを特徴とする汽力発電所排水の回収利用装置。   In Claim 6 or 7, pH at the time of the said oxidation process is 5 or more and less than 7, The recovery utilization apparatus of the steam power station waste water characterized by the above-mentioned. 請求項6ないし8のいずれか1項において、前記脱塩処理手段が、イオン交換装置、逆浸透膜分離装置、又は電気脱イオン装置、或いはこれらの装置を組み合わせたものであることを特徴とする汽力発電所排水の回収利用装置。   9. The demineralization treatment means according to claim 6, wherein the desalting means is an ion exchange device, a reverse osmosis membrane separation device, an electrodeionization device, or a combination of these devices. Steam power plant wastewater collection and utilization equipment. 請求項6ないし9のいずれか1項において、前記凝集固液分離手段が膜分離装置を備えることを特徴とする汽力発電所排水の回収利用装置。   10. The steam power plant wastewater recovery and utilization device according to any one of claims 6 to 9, wherein the agglomerated solid-liquid separation means includes a membrane separation device.
JP2015193782A 2015-09-30 2015-09-30 Steam power plant wastewater recovery method and device Active JP6657720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015193782A JP6657720B2 (en) 2015-09-30 2015-09-30 Steam power plant wastewater recovery method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015193782A JP6657720B2 (en) 2015-09-30 2015-09-30 Steam power plant wastewater recovery method and device

Publications (2)

Publication Number Publication Date
JP2017064639A true JP2017064639A (en) 2017-04-06
JP6657720B2 JP6657720B2 (en) 2020-03-04

Family

ID=58493447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015193782A Active JP6657720B2 (en) 2015-09-30 2015-09-30 Steam power plant wastewater recovery method and device

Country Status (1)

Country Link
JP (1) JP6657720B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534562A (en) * 2019-01-15 2019-03-29 浙江浙能兰溪发电有限责任公司 Prepare the processing system of boiler feedwater
CN113754136A (en) * 2021-10-25 2021-12-07 西安热工研究院有限公司 Chemical cleaning laboratory wastewater treatment system and method for boiler of thermal power plant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071159A (en) * 1973-10-26 1975-06-12
JPS61149292A (en) * 1984-12-24 1986-07-07 Shimizu Constr Co Ltd Method and apparatus for treating waste water containing heavy metal
JPH0760263A (en) * 1993-08-24 1995-03-07 Ebara Corp Method for removing iron in boiler blow water
JP2001191086A (en) * 2000-01-07 2001-07-17 Kurita Water Ind Ltd Water treating apparatus
JP2009165928A (en) * 2008-01-15 2009-07-30 Kobelco Eco-Solutions Co Ltd Water treatment apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071159A (en) * 1973-10-26 1975-06-12
JPS61149292A (en) * 1984-12-24 1986-07-07 Shimizu Constr Co Ltd Method and apparatus for treating waste water containing heavy metal
JPH0760263A (en) * 1993-08-24 1995-03-07 Ebara Corp Method for removing iron in boiler blow water
JP2001191086A (en) * 2000-01-07 2001-07-17 Kurita Water Ind Ltd Water treating apparatus
JP2009165928A (en) * 2008-01-15 2009-07-30 Kobelco Eco-Solutions Co Ltd Water treatment apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534562A (en) * 2019-01-15 2019-03-29 浙江浙能兰溪发电有限责任公司 Prepare the processing system of boiler feedwater
CN113754136A (en) * 2021-10-25 2021-12-07 西安热工研究院有限公司 Chemical cleaning laboratory wastewater treatment system and method for boiler of thermal power plant

Also Published As

Publication number Publication date
JP6657720B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
JP4663012B2 (en) Reverse electrodialysis of nitrogen compounds-electrochemical wastewater treatment process
JP5567468B2 (en) Method and apparatus for treating organic wastewater
KR100874269B1 (en) High efficiency seawater electrolysis apparatus and electrolysis method including pretreatment process
Katsoyiannis et al. Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effluent
WO2010122336A2 (en) Water treatment
CN111039477A (en) Method for recycling and comprehensively utilizing reverse osmosis concentrated water of coking wastewater
WO2011155281A1 (en) Freshwater-generating device, and freshwater-generating method
CN104108813A (en) Refining and chemical sewage desalting integrated treatment process and device
JPH10272495A (en) Treatment of organic waste water containing salts of high concentration
CN108285221B (en) Advanced concentration treatment method for wastewater
JP2007160230A (en) Water treatment system
JP3800449B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP6657720B2 (en) Steam power plant wastewater recovery method and device
JP6735830B2 (en) Membrane filtration method and membrane filtration system
JP2012200696A (en) Desalting method and desalting apparatus
JP6189422B2 (en) Water treatment system
JP2020058963A (en) Water treatment device and water treatment method
JP2002096068A (en) Treating method and device for waste water of desalting
CN112939368A (en) Circulating water sewage treatment and recycling method with high desalting rate
WO2011155282A1 (en) Fresh water-generating device and fresh water-generating method
JP4061671B2 (en) Thermal power plant wastewater treatment method
JP7354744B2 (en) Wastewater utilization system
CN220951461U (en) Treatment device based on high salinity waste water
CN111051253A (en) Apparatus and method for treating silica-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R150 Certificate of patent or registration of utility model

Ref document number: 6657720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250