JPS60206408A - Concentration of stick-water - Google Patents

Concentration of stick-water

Info

Publication number
JPS60206408A
JPS60206408A JP6190884A JP6190884A JPS60206408A JP S60206408 A JPS60206408 A JP S60206408A JP 6190884 A JP6190884 A JP 6190884A JP 6190884 A JP6190884 A JP 6190884A JP S60206408 A JPS60206408 A JP S60206408A
Authority
JP
Japan
Prior art keywords
water
membrane
stick
tube
juice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6190884A
Other languages
Japanese (ja)
Inventor
Toshio Yabushita
薮下 利男
Shunichi Toritani
鳥谷 俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP6190884A priority Critical patent/JPS60206408A/en
Publication of JPS60206408A publication Critical patent/JPS60206408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To highly concentrate stick-water at a high temp. without requiring special pretreatment, by bringing stick-water into contact with a hydrophobic polymer porous membrane while cooling and condensing steam generated from the stick-water and transmitted through the membrane. CONSTITUTION:A membrane tube 2, which transmits steam but transmits no water, comprising a hydrophobic polymer porous membrane made of a fluorocarbon resin is coaxially arranged in an outer tube 1 and a heat transfer pipe 9 is arranged inside the membrane tube 2 to recirculate a cooling medium by an introducing pipe 11 and a discharge pipe 12. The stick-water being the waste solution from a food manufacturing factory is recriculated to a raw solution passage 3 by an introducing pipe 4 and a discharge pipe 5 and replenished from a supply pipe 8. Steam generated from the stick-water transmits the membrane tube 2 to reach a steam space 10 and cooled on the surface of the heat transfer pipe 9 to generate condensed water which is, in turn, flowed down along the surface of the heat transfer pipe 9 and guided out of the system from a condensed water discharge pipe 13. The solid components and valuable solute components in the stick-water and inhibited from permeation by the membrane tube 2 and conc. in the stick-water.

Description

【発明の詳細な説明】 本発明は汁液の濃縮方法に関する。[Detailed description of the invention] The present invention relates to a method for concentrating juice.

一般に食品製造においては、廃液として種々の汁液が発
生する。かかる食品廃液はBODが高く、そのまま廃棄
することは公害を招来するおそれがあると共に、汁液中
には多量のタンパク質、脂肪、炭水化物等を含有するの
で、これをそのまま廃棄することは、食品資源の点から
不経済でもある。
Generally, in food manufacturing, various liquid liquids are generated as waste liquids. Such food waste liquid has a high BOD, and discarding it as it is may cause pollution, and the liquid contains a large amount of protein, fat, carbohydrates, etc., so discarding it as it is is a waste of food resources. It is also uneconomical.

因に、バレイショを磨砕し、デンプンを分離した後の汁
液は、BODが10000〜40000にも達し、しか
も、タンパク質が2〜3%も含有されている。
Incidentally, the juice after grinding potatoes and separating the starch has a BOD of 10,000 to 40,000 and contains 2 to 3% protein.

このために、従来より食品汁液を逆浸透法や限外濾過法
等の膜分離法によって処理して、タンパク質を回収する
と共に、汁液のBODを下げる方法が多く提案されてい
る。しかしながら、一般に食品汁液は、食品製造工程か
ら高温の廃液として排出されるため、上記のような膜分
離処理法による場合は、汁液を一旦、常温付近まで冷却
する必要があり、そのために余分の装置や費用を要する
ほか、一般に汁液は浸透圧が高く、処理に高圧を必要と
し、従ってまた、膜処理の過程において膜表面にゲル層
が発生し、或いは膜が目詰りして、膜透過水量の経時低
下が著しい。更に、膜透過液の水質が十分に清浄ではな
い。
To this end, many methods have been proposed in the past in which food juice is treated by membrane separation methods such as reverse osmosis and ultrafiltration to recover proteins and lower the BOD of the juice. However, food juice is generally discharged as high-temperature waste liquid from the food manufacturing process, so when using the membrane separation treatment method described above, it is necessary to cool the juice to around room temperature, which requires extra equipment. In addition to being expensive and expensive, juices generally have a high osmotic pressure and require high pressure for treatment. Therefore, during membrane treatment, a gel layer may form on the membrane surface or the membrane may become clogged, reducing the amount of water permeating through the membrane. Significant decline over time. Furthermore, the water quality of the membrane permeate is not sufficiently clean.

本発明者らは、上記の問題を解決するために鋭意研究し
た結果、食品の製造工程から排出される汁液が高温であ
ることを利用し、これを駆動力とする膜処理によって、
温度が高いままに、しかも、特に中和や濾過等の前処理
をせずに、濃縮効率を高く保持しつつ、汁液を高濃縮す
る方法を見出して、本発明に至ったものである。
As a result of intensive research in order to solve the above problem, the present inventors utilized the high temperature of the juice discharged from the food manufacturing process, and through membrane processing using this as a driving force,
The present invention was achieved by discovering a method of highly concentrating a juice while maintaining a high concentration efficiency while keeping the temperature high and without performing any pretreatment such as neutralization or filtration.

本発明は、可溶性有価物を含有する汁液の濃縮方法にお
いて、水蒸気は透過させるが、水は透過させない疎水性
重合体多孔質膜の一面側に所定の高温の汁液を接触させ
、この汁液から水蒸気を発生させ、これを上記多孔質膜
の他面側に透過させ、冷却して凝縮させることを特徴と
する。
The present invention is a method for concentrating a juice containing soluble valuables, in which a predetermined high-temperature juice is brought into contact with one side of a hydrophobic polymer porous membrane that allows water vapor to pass through but not water. It is characterized by generating this, passing it through the other side of the porous membrane, cooling and condensing it.

本発明の方法において、汁液とは食品の製造工程から排
出され、蛋白質、脂肪、炭水化物等の可溶性有価物を含
有する廃液をいう。
In the method of the present invention, juice refers to waste liquid discharged from the food manufacturing process and containing soluble valuables such as proteins, fats, and carbohydrates.

本発明の方法において、汁液から発生し、疎水性重合体
多孔質膜を透過した水蒸気を冷却し、凝縮させるために
、次のいずれかの方法によることができる。
In the method of the present invention, any of the following methods can be used to cool and condense the water vapor generated from the juice and permeated through the hydrophobic polymer porous membrane.

その第1は、水蒸気は透過させるが、水は透過させない
疎水性重合体多孔質膜の一面側に所定の高温の汁液を接
触させ、この重合体膜の他面側に膜面から適宜の間隔を
おいて所定の低温に保持した伝熱壁を設け、上記汁液か
ら発生し、重合体膜を透過した水蒸気を上記伝熱壁土で
冷却し、凝縮させて凝縮水を得る一方、可溶性有価成分
は膜を透過しないので、これを汁液中に濃縮するのであ
る。
The first method is to bring a predetermined high temperature liquid into contact with one side of a hydrophobic polymer porous membrane that allows water vapor to pass through but does not allow water to pass through, and then to place the other side of this polymer membrane at an appropriate distance from the membrane surface. A heat transfer wall is provided which is maintained at a predetermined low temperature, and the water vapor generated from the juice and transmitted through the polymer membrane is cooled by the heat transfer wall soil and condensed to obtain condensed water, while the soluble valuable components are Since it does not pass through the membrane, it is concentrated in the juice.

第2は、疎水性重合体多孔質膜の一面側に上記のように
所定の高温の汁液を接触させ、他面側には所定の低温の
冷却媒体、例えば、冷却水を接触させることにより、汁
液から発生し、重合体を透過した水蒸気を直接に冷却媒
体にて冷却して凝縮させ、これを冷却媒体中に得る一方
、汁液を上記と同様に濃縮するのである。
The second method is to bring a predetermined high-temperature liquid into contact with one side of the hydrophobic polymer porous membrane as described above, and bring a predetermined low-temperature cooling medium, such as cooling water, into contact with the other side. The water vapor generated from the sap and permeated through the polymer is directly cooled and condensed in a cooling medium, and is obtained in the cooling medium, while the sap is concentrated in the same manner as described above.

本発明の方法においては、上記重合体多孔質膜は、汁液
に対して疎水性であり、更に水目体は透過させないが、
水蒸気は透過させる性質を有することが必要である。従
って、かかる疎水性重合体多孔質膜は、通常、0.05
〜50μm、好ましくは0.1〜10μmi度の微孔を
有し、且つ、多孔度が50%以上であることが好ましい
。また、膜厚は特に制限されるものではないが、通常、
1〜300μm、好ましくは5〜50μm程度である。
In the method of the present invention, the porous polymer membrane is hydrophobic to fluid and does not allow fluid to pass through, but
It is necessary to have the property of permeating water vapor. Therefore, such hydrophobic polymer porous membranes typically have a
It is preferable to have micropores of ~50 μm, preferably 0.1 to 10 μm, and a porosity of 50% or more. In addition, although the film thickness is not particularly limited, it is usually
The thickness is about 1 to 300 μm, preferably about 5 to 50 μm.

 ]従って、本発明においては、かかる重合体膜として
、ポリテトラフルオロエチレン樹脂のようなフッ素系樹
脂からなる多孔質膜が、疎水性であると共に耐熱性にす
ぐれるために特に好ましく用いられる。また、例えば、
フッ化ビニリデン樹脂やエチレン−テトラフルオロエチ
レン共重合樹脂等のようなフッ素系樹脂の溶液又は溶融
液を押出成形して得られる多孔質膜も好ましく用いられ
る。
] Therefore, in the present invention, as such a polymer membrane, a porous membrane made of a fluororesin such as polytetrafluoroethylene resin is particularly preferably used because it is hydrophobic and has excellent heat resistance. Also, for example,
A porous membrane obtained by extruding a solution or melt of a fluororesin such as vinylidene fluoride resin or ethylene-tetrafluoroethylene copolymer resin is also preferably used.

しかし、例えばポリスルホンやセルロース樹脂のような
親水性樹脂からなる多孔質膜でも、表面にフッ素系樹脂
やシリコーン樹脂等の撥水性樹脂を被覆して疎水性の多
孔質表面を付与するときは、これら樹脂膜も使用するこ
とができる。
However, even if a porous membrane is made of a hydrophilic resin such as polysulfone or cellulose resin, when the surface is coated with a water-repellent resin such as a fluororesin or silicone resin to provide a hydrophobic porous surface. Resin films can also be used.

次に、本発明の方法を実施するのに好適な装置について
、図面に基づいて説明する。
Next, an apparatus suitable for carrying out the method of the present invention will be described based on the drawings.

第1図及び第2図は上記第1の方法を実施するために好
適な装置の一例を示す。
1 and 2 show an example of an apparatus suitable for carrying out the first method described above.

即ち、外管1内には上記したような疎水性重合体多孔質
膜よりなる膜管2が同軸的に配設されており、外管と膜
管との間に高温の汁液のための原液通路3が形成されて
いる。従って、外管は保温性を有することが好ましく、
例えば樹脂より形成される。原液通路3には汁液の導入
管4及び導出管5が接続され、必要に応じてこれら管路
に設けた加熱器6により加熱されて、所定の温度に保持
された汁液が上記管4及び5にて原液回路に循環して流
通される。汁液は、弁7を備えた汁液供給管8から適宜
に原液回路に補充され、また、図示しないが、排出管に
より必要に応じて原液回路から一部が排出される。
That is, a membrane tube 2 made of a hydrophobic polymer porous membrane as described above is disposed coaxially within the outer tube 1, and a stock solution for high-temperature juice is placed between the outer tube and the membrane tube. A passage 3 is formed. Therefore, it is preferable that the outer tube has heat retention properties,
For example, it is made of resin. A juice inlet pipe 4 and a juice outlet pipe 5 are connected to the raw liquid passage 3, and the juice, which is heated by a heater 6 provided in these pipes as necessary and maintained at a predetermined temperature, is passed through the pipes 4 and 5. It is circulated and distributed to the stock solution circuit. The juice is appropriately replenished into the stock solution circuit from a juice supply pipe 8 equipped with a valve 7, and a portion of the juice is discharged from the stock solution circuit as necessary through a discharge pipe (not shown).

膜管2の内側には、更にこれと同軸的に伝熱管9が配設
され、前記膜管との間に蒸気空間1oを有するように適
宜の間隔がおかれている。伝熱管は伝熱性の高い材料、
例えば金属からなる薄肉管である。この伝熱管には冷却
媒体のための導入管11及び導出管12が接続され、例
えば冷却水のような冷却媒体が伝熱管内に循環して流通
される。
A heat transfer tube 9 is further disposed coaxially inside the membrane tube 2, and is spaced at an appropriate distance from the membrane tube so as to have a steam space 1o between the tube and the membrane tube. Heat exchanger tubes are made of highly heat conductive materials,
For example, it is a thin-walled tube made of metal. An inlet pipe 11 and an outlet pipe 12 for a cooling medium are connected to the heat exchanger tube, and a cooling medium such as cooling water is circulated through the heat exchanger tube.

また、蒸気空間には膜管を透過し、伝熱管にて冷却され
、凝縮した凝縮水の導出管13が接続されている。
Further, a discharge pipe 13 for condensed water that has passed through the membrane tube, been cooled by the heat exchanger tube, and condensed is connected to the steam space.

尚、膜管を構成する前記多孔質膜は、一般に強度が小さ
いので、図示しないが、適宜の支持体上に支持されて形
成されているのが好ましい。このような支持体は、重合
体膜を補強すると共に、水蒸気を透過させることができ
れば足り、例えば、ポリアミドからなる織布又は不織布
や、セラミック製の多孔質管が好適に用いられる。
Note that, since the porous membrane constituting the membrane tube generally has low strength, it is preferably supported on a suitable support (not shown). Such a support only needs to be able to reinforce the polymer membrane and allow water vapor to pass therethrough, and for example, a woven or nonwoven fabric made of polyamide or a porous tube made of ceramic is preferably used.

本発明の方法においては、上記微孔質膜からなる膜管の
内面にこれに接して通液性のスペーサ(図示せず)を配
設し、このスペーサの内側に更にこれに接して同軸的に
伝熱管を配設してもよい。
In the method of the present invention, a liquid-permeable spacer (not shown) is provided in contact with the inner surface of the membrane tube made of the microporous membrane, and a coaxial spacer is further provided in contact with the inner surface of this spacer. Heat exchanger tubes may be installed in the

上記スペーサは、膜管を透過した蒸気が伝熱管まで透過
し得るように多孔質であると共に、伝熱壁によって冷却
されて凝縮した水が少なくとも所定方向に通液性を有す
ることが必要であり、更に、熱伝導性にすぐれているこ
とが好ましい。図示した装置においては、スペーサは生
じた凝縮水が鉛直方向に流下し得るように、スペーサは
少なくとも鉛直方向に通液性を有することが必要である
The spacer must be porous so that the steam that has passed through the membrane tube can pass through to the heat transfer tube, and must also have liquid permeability in at least a predetermined direction for water that has been cooled and condensed by the heat transfer wall. Furthermore, it is preferable that the material has excellent thermal conductivity. In the illustrated apparatus, the spacer needs to have liquid permeability at least in the vertical direction so that the generated condensed water can flow down in the vertical direction.

勿論、スペーサは微孔質膜や伝熱管表面上に予め接合さ
れていてもよい。
Of course, the spacer may be bonded in advance to the surface of the microporous membrane or heat exchanger tube.

上記スペーサとしては、例えば、10〜1000メツシ
ユの天然又は合成の繊維、例えば、ポリエチレン、ポリ
エステル、ポリアミド等の繊維からなる織布、不織布、
炭素繊維布等が好ましく用いられる。スペーサの厚みは
特に制限されるものではないが、余りに厚いときは、却
って蒸気の凝縮効率を低下させるので、通常、0.1〜
5龍、特に0.2〜3鶴の範囲が好ましい。
Examples of the spacer include woven fabrics, non-woven fabrics made of 10 to 1000 meshes of natural or synthetic fibers, such as polyethylene, polyester, polyamide, etc.
Carbon fiber cloth or the like is preferably used. The thickness of the spacer is not particularly limited, but if it is too thick, it will actually reduce the steam condensation efficiency, so it is usually 0.1~
A range of 5 dragons, particularly 0.2 to 3 cranes, is preferred.

また、装置は、第3図に示すように、外管l内に複数の
膜管2が配設され、各膜管が内部に伝熱管9を有すると
共に、外管と各膜管との間の空間が原液通路3であるよ
うに構成されていてもよい。
Further, as shown in FIG. 3, the device includes a plurality of membrane tubes 2 disposed inside an outer tube l, each membrane tube having a heat transfer tube 9 inside, and a space between the outer tube and each membrane tube. The space may be configured as the stock solution passage 3.

上記の第1の装置においては、所定の温度の汁液は、原
液通路3に導入され、汁液より発生した水蒸気は膜管2
を透過して蒸気空間10に至り、伝熱管9の表面上で冷
却されて凝縮水を生じ、伝熱管表面を流下して凝縮水導
出管13より装置外に導かれる。原液中の固形分及び有
価溶質成分は膜管により透過を阻止され、汁液中にfl
縮される。
In the first device described above, the liquid juice at a predetermined temperature is introduced into the raw liquid passage 3, and the water vapor generated from the liquid liquid is transferred to the membrane tube 2.
The condensed water passes through the heat exchanger tube 9 and reaches the steam space 10, where it is cooled on the surface of the heat exchanger tube 9 to produce condensed water, which flows down the surface of the heat exchanger tube and is led out of the apparatus through the condensed water outlet tube 13. The solid content and valuable solute components in the stock solution are prevented from permeating through the membrane tube, and fl
Shrunk.

この装置によれば、汁液を濃縮すると共に、凝縮水とし
て実質的に純水を得ることができる。
According to this device, the juice can be concentrated and substantially pure water can be obtained as condensed water.

第4図及び第5図は前記した第2の方法を実施するのに
好適な装置の一例を示し、第1図と同じ部材には同じ参
照番号が付されている。
4 and 5 show an example of an apparatus suitable for carrying out the second method described above, in which the same parts as in FIG. 1 are given the same reference numerals.

外管l内には前記したような疎水性重合体多孔質膜より
なる膜管2が同軸的に配設されて、外管と膜管との間に
原液通路3が形成され、この原液通路に所定の高温の汁
液が流通され、膜管内には冷却媒体、例えば、冷却水が
流通される。即ち、汁液と冷却媒体は上記膜管を介して
接触される。
A membrane tube 2 made of a hydrophobic polymer porous membrane as described above is disposed coaxially within the outer tube l, and a stock solution passage 3 is formed between the outer tube and the membrane tube. A predetermined high temperature liquid is passed through the membrane tube, and a cooling medium such as cooling water is passed through the membrane tube. That is, the juice and the cooling medium are brought into contact through the membrane tube.

原液通路3には汁液を流通させるための導入管4及び導
出管5が接続され、同様に、膜管2にも冷却媒体を流通
させるための導入管11及び導出管12が接続されてい
る。
An inlet pipe 4 and an outlet pipe 5 for flowing the juice are connected to the raw liquid passage 3, and similarly, an inlet pipe 11 and an outlet pipe 12 for passing the cooling medium are connected to the membrane tube 2.

この第2の装置によれば、汁液より発生し、膜管壁を透
過した水蒸気は、冷却媒体、例えば、冷却水にて直ちに
冷却されて凝縮し、冷却水中に回収される。前記したと
同様りこ、必要に応じて汁液は汁液供給管8より補充さ
れつつ、加熱器6にて加熱されて、管路4及び5により
原液回路を循環され、また、冷却媒体は、必要に応じて
冷却媒体。
According to this second device, water vapor generated from the juice and transmitted through the membrane tube wall is immediately cooled and condensed in a cooling medium, for example, cooling water, and is recovered in the cooling water. As described above, the juice is replenished from the juice supply pipe 8 as necessary, heated by the heater 6, and circulated through the stock liquid circuit through the pipes 4 and 5, and the cooling medium is supplied as necessary. Cooling medium accordingly.

回路に設けた冷却器14により所定の温度に冷却されつ
つ、冷却媒体回路を循環され、その一部は凝縮水と共に
取出管15から装置外に取り出される。
The coolant is circulated through the coolant circuit while being cooled to a predetermined temperature by a cooler 14 provided in the circuit, and a portion of the coolant is taken out of the apparatus through a take-out pipe 15 along with the condensed water.

この装置によれば、膜管壁を介して所定の温度の汁液と
冷却媒体とが直接に接触されるので、汁液から発生した
水蒸気は直ちに冷却媒体により冷却されて凝縮し、冷却
媒体中に回収される。従って、蒸気の透過速度が大きい
のみならず、膜管と伝熱壁との間に蒸気空間を設けた装
置よりも小型化し得、単位体積当りの有効膜面積が大き
いので、効率よ(汁液の濃縮を行なうことができる。
According to this device, the juice at a predetermined temperature and the cooling medium are brought into direct contact through the membrane tube wall, so the water vapor generated from the juice is immediately cooled by the cooling medium, condensed, and collected in the cooling medium. be done. Therefore, not only the vapor permeation rate is high, but also the device can be made smaller than a device with a vapor space between the membrane tube and the heat transfer wall, and the effective membrane area per unit volume is large, which improves the efficiency (sap transfer rate). Concentration can be carried out.

図示しないが、装置は、複数の膜管が外管内に収容され
、各膜管内に冷却媒体が循環され、外管内において膜管
外の空間が原液通路をなすように形成されていてもよい
Although not shown, the device may be configured such that a plurality of membrane tubes are housed in an outer tube, a cooling medium is circulated in each membrane tube, and a space outside the membrane tubes is formed in the outer tube to form a stock solution passage.

尚、上記したいずれの装置の場合についても、汁液を外
管と膜管との間の原液通路3に流通させ、膜管内に冷却
媒体を流通させるとして本発明の方法を説明したが、し
かし、原液通路に冷却媒体を流通させ、一方、冷却媒体
通路に汁液を流通させてよいのは勿論である。
Incidentally, in the case of any of the above-mentioned devices, the method of the present invention has been described assuming that the liquid liquid is passed through the raw liquid passage 3 between the outer tube and the membrane tube, and the cooling medium is circulated within the membrane tube. Of course, the cooling medium may be passed through the undiluted liquid passage, while the juice may be made to flow through the cooling medium passage.

また、スペーサを有するときは、微孔質膜と伝熱壁とが
共に薄いスペーサに接触し、且つ、一定の極めて小さい
間隔にて平行に配設されており、しかも、スペーサ自体
も低温の伝熱壁によって冷却されており、しかも、多孔
質膜と伝熱壁との間には直接の接触部分がなく、汁液か
らの水蒸気の発生が妨げられないので、濃縮を効率よく
行なうことができる。
In addition, when a spacer is provided, both the microporous membrane and the heat transfer wall are in contact with the thin spacer and are arranged in parallel with a certain extremely small interval, and the spacer itself is also a low-temperature conductor. It is cooled by a thermal wall, and since there is no direct contact between the porous membrane and the heat transfer wall, the generation of water vapor from the juice is not hindered, so concentration can be carried out efficiently.

以上のように、本発明の方法は、所定の高温の汁液を疎
水性重合体多孔質膜に接触させ、この汁液より発生して
膜を透過した水蒸気を冷却し、凝縮させることにより、
汁液を濃縮すると共に凝縮水を得るものである。従って
、本発明の方法によれば、魚粉の製造工程から排出され
る高温の汁液を高い温度のままで、しかも、特別な濾過
処理等の前処理を要せずして、高濃縮することができる
As described above, the method of the present invention involves bringing a predetermined high-temperature juice into contact with a hydrophobic polymer porous membrane, and cooling and condensing the water vapor generated from the juice and passing through the membrane.
It condenses the juice and obtains condensed water. Therefore, according to the method of the present invention, it is possible to highly concentrate the high-temperature juice discharged from the fishmeal manufacturing process while maintaining the high temperature and without requiring any pretreatment such as special filtration treatment. can.

また、前記したような圧力差を駆動力とする逆浸透法や
限外濾過法と異なり、汁液のもつ温度を駆動力としてい
るために加圧を必要としないうえに、疎水性の膜を使用
するので、膜の目詰りや濃度分極がなく、汁液を効率よ
く高濃縮することができる。
In addition, unlike the reverse osmosis method and ultrafiltration method, which use the pressure difference as the driving force, as mentioned above, the driving force is the temperature of the liquid, so no pressurization is required, and a hydrophobic membrane is used. Therefore, there is no clogging of the membrane or concentration polarization, and the juice can be highly concentrated efficiently.

以下に本発明の実施例を挙げる。Examples of the present invention are listed below.

実施例1 第1図に示したように、直径40鶴の合成樹脂製外管内
に、多孔質ポリアミド織布にて裏打ちされたポリテトラ
フルオロエチレン多孔質膜からなる直径25顛の膜管を
同軸的に配設し、更にこの膜管内に直径21mのステン
レス鋼製伝熱管を管壁間の間隔が2鶴となるように配設
して、装置を構成した。尚、上記多孔質膜は平均孔径0
.2μmの微孔を有し、多孔度80%であって、装置に
おける有効膜面積は240dであった。
Example 1 As shown in Figure 1, a membrane tube with a diameter of 25 mm made of a porous polytetrafluoroethylene membrane lined with a porous polyamide woven fabric was coaxially placed inside a synthetic resin outer tube with a diameter of 40 mm. Furthermore, a stainless steel heat exchanger tube having a diameter of 21 m was disposed within this membrane tube so that the interval between the tube walls was 2 squares, thereby constructing an apparatus. Note that the above porous membrane has an average pore diameter of 0.
.. It had micropores of 2 μm, a porosity of 80%, and an effective membrane area of 240 d in the device.

この装置において、温度10℃の冷却水を伝熱管内に流
通すると共に、バレイショを磨砕し、デンプンを分離し
た後の40℃の汁液(COD200 ’ ioo pp
m、電気型導度9750μs)を原液通路に循環供給し
、3倍濃縮した。凝縮水の取得速度、性状、及び濃縮汁
液の性状を表に示す。尚、表において、濃縮倍率lは処
理の初期を示す。
In this device, cooling water at a temperature of 10°C is passed through a heat transfer tube, and a juice at 40°C after grinding potatoes and separating starch (COD 200' ioo pp
m, electric type conductivity 9750 μs) was circulated to the stock solution passage and concentrated three times. The acquisition rate and properties of condensed water and the properties of concentrated juice are shown in the table. In the table, the concentration ratio l indicates the initial stage of the treatment.

比較のために、食塩除去率95%の逆浸透膜を備えた膜
モジュールにて、温度25℃、圧力40kg/c+(、
膜面流速1.9m/秒の条件で、上記と同じ汁液を3倍
濃縮した。透水速度と共に、膜透過液と濃縮液の性状を
表に示す。この比較例によれば、膜透過液の水質が本発
明の方法に比べて劣り、また、透水速度の経時変化が著
しいことが理解される。
For comparison, a membrane module equipped with a reverse osmosis membrane with a salt removal rate of 95% was used at a temperature of 25°C and a pressure of 40 kg/c+ (,
The same liquid liquid as above was concentrated three times under conditions of a membrane surface flow rate of 1.9 m/sec. The properties of the membrane permeate and concentrate are shown in the table along with the water permeation rate. According to this comparative example, it is understood that the water quality of the membrane-permeated liquid is inferior to that of the method of the present invention, and that the water permeation rate changes significantly over time.

実施例2 実施例1と同じ装置において、膜管内面にスペーサとし
て厚み0.5 鶴の炭素繊維布を重ね、このスペーサを
介して膜管と伝熱管とを接触させて、装置を構成した。
Example 2 In the same apparatus as in Example 1, a 0.5-thick carbon fiber cloth was layered as a spacer on the inner surface of the membrane tube, and the membrane tube and the heat transfer tube were brought into contact with each other via this spacer to construct the apparatus.

この装置において、温度10℃の冷却水を伝熱管内に流
通すると共に、実施例1と同じ汁液を40℃に加熱して
原液通路に循環供給した。凝縮水取得速度は、初期にお
いて0.35n?/ffl・日、3倍濃縮の時点で0.
1rd/cd・日であった。
In this device, cooling water at a temperature of 10° C. was passed through the heat transfer tube, and the same juice as in Example 1 was heated to 40° C. and circulated and supplied to the stock liquid passage. Is the condensed water acquisition speed initially 0.35n? /ffl·day, 0.0% at the time of 3-fold concentration.
It was 1rd/cd/day.

実施例3 第3図に示すように、直径401■の合成樹脂製外管内
に実施例1と同じ直径25鶴の膜管を同軸的に配設して
、膜面積240−の装置を構成した。
Example 3 As shown in Fig. 3, a membrane tube with a diameter of 25 mm, which is the same as in Example 1, was coaxially disposed within a synthetic resin outer tube with a diameter of 401 mm, thereby constructing a device with a membrane area of 240 mm. .

この装置において、実施例1同じ汁液を同じ条件で処理
したところ、実施例1とほぼ同じ性状の凝縮水を得た。
In this apparatus, when the same juice as in Example 1 was treated under the same conditions, condensed water having almost the same properties as in Example 1 was obtained.

凝縮水の取得速度は、処理の初期において0.3tdl
rd・日であった。
The condensate acquisition rate is 0.3 tdl at the beginning of the process.
It was rd day.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施例するのに好適な装置の一
例を示す縦断面図、第2図は第1図において!vIA−
A線に沿う断面図、第3図は別の装置を示す断面図、第
4図は更に別の装置を示す断面図、第5図は第4図にお
いて線B−B線に沿う断面図である。 1・・・外管、2・・・膜管、3・・・原液通路、9・
・・伝熱管、10・・・蒸気空間、13・・・凝縮液導
出管。 特許出願人 日東電気工業株式会社 代理人 弁理士 牧 野 逸 部
FIG. 1 is a longitudinal sectional view showing an example of an apparatus suitable for carrying out the method of the present invention, and FIG. 2 is the same as that of FIG. 1. vIA-
3 is a sectional view taken along line A, FIG. 3 is a sectional view showing another device, FIG. 4 is a sectional view showing yet another device, and FIG. 5 is a sectional view taken along line B-B in FIG. be. 1... Outer tube, 2... Membrane tube, 3... Stock solution passage, 9...
... Heat exchanger tube, 10... Steam space, 13... Condensate outlet pipe. Patent applicant: Nitto Electric Industry Co., Ltd. Patent attorney: Itsube Makino

Claims (1)

【特許請求の範囲】[Claims] (1)可溶性有価物を含有する汁液の濃縮方法において
、水蒸気は透過させるが、水は透過させない疎水性重合
体多孔質膜の一面側に所定の高温の汁液を接触させ、こ
の汁液から水蒸気を発生させ、これを上記多孔質膜の他
面側に透過させ、冷却して凝縮させることを特徴とする
汁液の濃縮方法。
(1) In a method for concentrating a juice containing soluble valuables, a predetermined high-temperature juice is brought into contact with one side of a hydrophobic polymer porous membrane that allows water vapor to pass through but not water. A method for concentrating a liquid juice, which comprises: generating liquid liquid, passing it through the other side of the porous membrane, cooling and condensing it.
JP6190884A 1984-03-28 1984-03-28 Concentration of stick-water Pending JPS60206408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6190884A JPS60206408A (en) 1984-03-28 1984-03-28 Concentration of stick-water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6190884A JPS60206408A (en) 1984-03-28 1984-03-28 Concentration of stick-water

Publications (1)

Publication Number Publication Date
JPS60206408A true JPS60206408A (en) 1985-10-18

Family

ID=13184724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6190884A Pending JPS60206408A (en) 1984-03-28 1984-03-28 Concentration of stick-water

Country Status (1)

Country Link
JP (1) JPS60206408A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517737A (en) * 2007-02-02 2010-05-27 サバン ヴェンチャーズ ピーティーワイ リミテッド Membrane vapor concentrator
US8444919B2 (en) 2005-08-04 2013-05-21 Saban Ventures Pty Limited Space disinfection

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8444919B2 (en) 2005-08-04 2013-05-21 Saban Ventures Pty Limited Space disinfection
US8591807B2 (en) 2005-08-04 2013-11-26 Saban Ventures Pty Limited Membrane sterilization
US8591808B2 (en) 2005-08-04 2013-11-26 Saban Ventures Pty Limited Aerosol
US8658089B2 (en) 2005-08-04 2014-02-25 Saban Ventures Pty Limited Membrane concentrator
US8974737B2 (en) 2005-08-04 2015-03-10 Saban Ventures Pty Limited Space Disinfection
US9138005B2 (en) 2005-08-04 2015-09-22 Saban Ventures Pty Limited Membrane concentrator
US9192164B2 (en) 2005-08-04 2015-11-24 Saban Ventures Pty Ltd Membrane sterilization
US9241491B2 (en) 2005-08-04 2016-01-26 Saban Ventures Pty Limited Aerosol
JP2010517737A (en) * 2007-02-02 2010-05-27 サバン ヴェンチャーズ ピーティーワイ リミテッド Membrane vapor concentrator
US9050385B2 (en) 2007-02-02 2015-06-09 Saban Ventures Pty Limited Methods of disinfection or sterilization

Similar Documents

Publication Publication Date Title
US4620900A (en) Thermopervaporation apparatus
US4781837A (en) Method of performing osmetic distillation
Aptel et al. Categories of membrane operations
JP2010508137A (en) Membrane distillation method for liquid purification
JP6858516B2 (en) Liquid food concentration method
JPS6362504A (en) Method for concentrating organic component in aqueous solution containing same
US4200533A (en) Hyperfiltration apparatus and method of fluid treatment
JPS60206408A (en) Concentration of stick-water
JPS60147201A (en) Treatment of aqueous solution containing volatile substance
JPS60203173A (en) Concentration of fruit juice
JPS6185169A (en) Concentration of albumen
JPS60206407A (en) Concentration of stick-water
JPS6154206A (en) Thermopervaporation apparatus
JPS61164195A (en) Method of treating nuclear power waste water
JPS60118205A (en) Thermo-pervaporization apparatus
JPS60147285A (en) Treatment of aqueous acid or alkali solution
JPS60226897A (en) Method for concentration of gelatin extraction liquid
JPS62227492A (en) Method and apparatus for making pure water
JPS60209089A (en) Concentration of pulp waste liquor
JPS60118204A (en) Thermo-pervaporization apparatus
JPS60206409A (en) Separation of liquid
JPS60147286A (en) Treatment of aqueous solution containing high- molecular substance
US20240058758A1 (en) Multi-stage direct contact membrane distillation system and process
JPS60241845A (en) Method of concentrating raw milk and liquid dairy product obtained from it
JPS62216695A (en) Method and apparatus for producing pure water