JP2005262031A - Circulation type gas-dissolved water feed device and operation method for the device - Google Patents

Circulation type gas-dissolved water feed device and operation method for the device Download PDF

Info

Publication number
JP2005262031A
JP2005262031A JP2004075624A JP2004075624A JP2005262031A JP 2005262031 A JP2005262031 A JP 2005262031A JP 2004075624 A JP2004075624 A JP 2004075624A JP 2004075624 A JP2004075624 A JP 2004075624A JP 2005262031 A JP2005262031 A JP 2005262031A
Authority
JP
Japan
Prior art keywords
gas
water
water tank
dissolved
dissolved water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004075624A
Other languages
Japanese (ja)
Inventor
Hiroto Tokoshima
裕人 床嶋
Junichi Ida
純一 井田
Hiroshi Morita
博志 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004075624A priority Critical patent/JP2005262031A/en
Priority to TW094105717A priority patent/TW200536624A/en
Priority to PCT/JP2005/004900 priority patent/WO2005087396A1/en
Priority to CNA2005800080749A priority patent/CN1929930A/en
Publication of JP2005262031A publication Critical patent/JP2005262031A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circulation type gas-dissolved water feed device returning the gas-dissolved water not used in a washing machine to a water tank, maintaining the concentration of the specific gas dissolved in the gas-dissolved water to a constant value or higher and maintaining the concentration of the specific gas in an upper space of the water tank for storing the gas-dissolved water to a low degree, and an operation method for the device. <P>SOLUTION: The circulation type gas-dissolved water feed device has a dissolving device A for preparing specific gas-dissolved water; the water tank B for storing the gas-dissolved water; a connection pipe C for connecting the dissolving device A and the water tank B; a pump D for delivering out storage water of the water tank B; a circulation pipe E for returning from the water tank B to the water tank B via a branched point to the pump D and the washing machine; and a gas pipe F for feeding the gas to an upper space of the water tank B. Lower ends of the connection pipe C and the circulation pipe E are sunk under a water level in the water tank B. In the operation method, an amount of gas-dissolved water replenished from the dissolving device A to the water tank B is made to 5 vol.pts. or higher relative to 100 vol.pts. of gas-dissolved water delivered from the pump D in the device. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、循環式ガス溶解水供給装置及び該装置の運転方法に関する。さらに詳しくは、本発明は、電子材料などのウェット洗浄工程で使用される特定のガスを溶解して洗浄効果を高めたガス溶解水供給装置において、洗浄機で使用されなかったガス溶解水を水槽へ戻し、ガス溶解水に溶存する特定のガスの濃度を一定値以上に維持し、かつ、ガス溶解水を貯留する水槽の上部空間の特定のガスの濃度を低く保つことができる循環式ガス溶解水供給装置及び該装置の運転方法に関する。   The present invention relates to a circulating gas-dissolved water supply device and a method for operating the device. In more detail, the present invention relates to a gas-dissolved water supply device in which a specific gas used in a wet cleaning process such as an electronic material is dissolved to enhance a cleaning effect. The circulation type gas dissolution that keeps the concentration of the specific gas dissolved in the gas dissolution water above a certain value and keeps the concentration of the specific gas in the upper space of the water tank storing the gas dissolution water low. The present invention relates to a water supply device and a method of operating the device.

半導体用シリコン基板、液晶用ガラス基板、フォトマスク用石英基板などの電子材料の表面から、微粒子、有機物、金属などを除去することは、製品の品質、歩留まりを確保する上で極めて重要である。ウェット洗浄工程のリンスに使用可能な高純度の純水あるいは超純水に、水素、オゾンなどの特定のガスを溶解した洗浄水が、数%オーダーの薬品を溶解した洗浄液に匹敵する洗浄効果を発揮する場合があることが分かってきた。強い酸化力を有し有機物や一部の金属汚染の除去に有効なオゾン水に加え、水素ガスを高濃度に溶解した水素水が、微粒子除去用の洗浄水として注目されるようになった。本発明者らは、微粒子により汚染された半導体用シリコン基板、液晶用ガラス基板などの電子材料を、使用する薬剤の量が少なく、しかも効率よく高い汚染物除去率で洗浄することができる電子材料用洗浄水として、溶存水素ガス濃度が0.7mg/L以上飽和濃度以下であり、pHが6〜12である超純水からなる電子材料用洗浄水を提案した(特許文献1)。
従来のガス溶解水を供給する装置は、溶存ガス濃度を維持するために一過式で供給することが一般的であり、ユースポイントでガス溶解水を使用していなくても、一定量のガス溶解水を通水してブローしていた。しかし、ガス溶解水の消費量を節減するために、ガス溶解水を循環供給することにより、無駄なブローをなくすことが試みられている。
例えば、洗浄用の水素含有超純水を、余剰が生じて廃棄することなく、使用水量が変動する場合にも、安定した溶存水素ガス濃度の水素含有超純水をユ−スポイントに供給することができる水素含有超純水の供給装置として、超純水の溶存ガスを除去する脱気部と、水素ガスを脱気後の超純水に溶解させる溶解部と、ユースポイントで使われなかった余剰の水素含有超純水と補給される水素含有超純水の混合水を保持する密閉式の水槽を有し、密閉式の水槽の気相部に水位の変動に応じて水素ガスを補給することができ、水素含有超純水を送水ポンプによりフィルターを経由してユースポイントに送り、未使用の水素含有超純水を循環して水槽に戻す装置が提案されている(特許文献2)。しかし、この装置は水槽の上部空間が水素ガスで満たされるので、安全確保の面で不十分なものであった。
また、電子材料などのウェット洗浄に用いられるガス溶解水をユースポイントに供給し、ユースポイントで使用されなかった余剰のガス溶解水を貯留タンクに返送し、ガス溶解水のガス濃度に変動を生ずることなく、ガス溶解水を循環使用することができるガス溶解水供給装置として、ユースポイントで使用されなかった余剰のガス溶解水を返送する貯留タンクに、ガス溶解水の液面に接して上下動し、ガス溶解水と気相とを遮断する遮蔽材を設けたガス溶解水供給装置が提案されている(特許文献3)。この装置は、有用かつ安全であるが、特殊な部材を必要とするために、実用性には難点があった。
特開平11−29794号公報(第2頁) 特開平11−77021号公報(第2頁、図3) 特開2000−271549号公報(第2頁、図1、図2)
Removing fine particles, organic substances, metals, and the like from the surface of electronic materials such as a semiconductor silicon substrate, a liquid crystal glass substrate, and a photomask quartz substrate is extremely important for ensuring product quality and yield. Washing water with high purity pure water or ultrapure water that can be used for rinsing in the wet cleaning process dissolves specific gases such as hydrogen and ozone. It has been found that there are cases where it can be demonstrated. In addition to ozone water, which has strong oxidizing power and is effective in removing organic substances and some metal contamination, hydrogen water in which hydrogen gas is dissolved at a high concentration has attracted attention as washing water for removing fine particles. The present inventors have been able to clean electronic materials such as silicon substrates for semiconductors and glass substrates for liquid crystals, which are contaminated with fine particles, with a small amount of chemicals to be used, and with a high contaminant removal rate. As cleaning water for water, a cleaning water for electronic materials composed of ultrapure water having a dissolved hydrogen gas concentration of 0.7 mg / L or more and a saturation concentration of pH 12 to 12 was proposed (Patent Document 1).
Conventional gas-dissolved water supply devices are generally supplied in a transient manner in order to maintain the dissolved gas concentration. Even if the gas-dissolved water is not used at the point of use, a certain amount of gas is supplied. It was blown by passing dissolved water. However, in order to reduce the consumption of gas-dissolved water, attempts have been made to eliminate wasted blow by circulating and supplying gas-dissolved water.
For example, hydrogen-containing ultrapure water having a stable dissolved hydrogen gas concentration is supplied to the use point even when the amount of water used is fluctuated without generating surplus and discarding hydrogen-containing ultrapure water for cleaning. As a supply device for hydrogen-containing ultrapure water that can be used, a degassing part that removes dissolved gas of ultrapure water, a dissolving part that dissolves hydrogen gas in ultrapure water after degassing, and a use point that is not used It has a sealed water tank that holds a mixture of excess hydrogen-containing ultrapure water and replenished hydrogen-containing ultrapure water, and hydrogen gas is replenished to the gas phase part of the sealed water tank according to fluctuations in the water level. An apparatus has been proposed in which hydrogen-containing ultrapure water is sent to a use point via a filter by a water pump, and unused hydrogen-containing ultrapure water is circulated back to the water tank (Patent Document 2). . However, this apparatus is insufficient in terms of ensuring safety because the upper space of the water tank is filled with hydrogen gas.
In addition, gas dissolved water used for wet cleaning of electronic materials, etc. is supplied to the use point, and excess gas dissolved water not used at the use point is returned to the storage tank, resulting in fluctuations in the gas concentration of the gas dissolved water. As a gas-dissolved water supply device that can circulate and use gas-dissolved water, it moves up and down in contact with the liquid surface of the gas-dissolved water in a storage tank that returns excess gas-dissolved water that was not used at the point of use. And the gas-dissolved water supply apparatus which provided the shielding material which interrupts | blocks gas-dissolved water and a gaseous phase is proposed (patent document 3). Although this device is useful and safe, it requires a special member and thus has a difficulty in practicality.
JP-A-11-29794 (2nd page) JP-A-11-77021 (second page, FIG. 3) JP 2000-271549 A (2nd page, FIG. 1, FIG. 2)

本発明は、電子材料などのウェット洗浄工程で使用される特定のガスを溶解して洗浄効果を高めたガス溶解水供給装置において、洗浄機で使用されなかったガス溶解水を水槽へ戻し、ガス溶解水に溶存する特定のガスの濃度を一定値以上に維持し、かつ、ガス溶解水を貯留する水槽の上部空間の特定のガスの濃度を低く保つことができる循環式ガス溶解水供給装置及び該装置の運転方法を提供することを目的としてなされたものである。   The present invention relates to a gas-dissolved water supply device in which a specific gas used in a wet cleaning process such as an electronic material is dissolved to enhance a cleaning effect, and gas dissolved water that has not been used in a cleaning machine is returned to a water tank. A circulating gas-dissolved water supply device capable of maintaining the concentration of the specific gas dissolved in the dissolved water at a certain value or more and keeping the specific gas concentration in the upper space of the water tank storing the gas-dissolved water low, and It is made for the purpose of providing the operation method of this apparatus.

本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、ユースポイントで使用されなかったガス溶解水と、使用されたガス溶解水を補給するために供給したガス溶解水の混合水を保持する水槽を設け、水槽の水位を一定に保つことにより必要量のガス溶解水を補給し、補給するガス溶解水を一定量以上とすることにより、溶存する特定のガスの濃度を一定値以上に維持することができ、さらに、水に溶存している特定のガスが気相に揮散しても、窒素ガス、希ガスなどの不活性ガスを一定流量以上通気することにより、気相中の特定のガスの濃度を一定値以下に抑えることができることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)特定のガス溶解水を製造する溶解装置A、特定のガス溶解水を貯留する水槽B、溶解装置Aと水槽Bをつなぐ接続配管C、水槽Bの貯留水を洗浄機に送り出すポンプD、水槽BよりポンプDと洗浄機への分岐点を経て水槽Bに戻る循環配管E、水槽Bの上部空間にガスを供給するガス配管Fを有するガス溶解水供給装置であって、接続配管Cの下端と循環配管Eの下端が水槽B内の水面下に没していることを特徴とする循環式ガス溶解水供給装置、
(2)ガス配管Fを通して不活性ガスを供給する(1)記載の循環式ガス溶解水供給装置、
(3)不活性ガスが、窒素ガスである(2)記載の循環式ガス溶解水供給装置、
(4)特定のガスが、水素ガスである(1)記載の循環式ガス溶解水供給装置、
(5)水槽Bの上部空間を監視する酸素ガス検知器又は酸素ガス濃度計を有する(4)記載の循環式ガス溶解水供給装置、
(6)特定のガス溶解水を製造する溶解装置A、特定のガス溶解水を貯留する水槽B、溶解装置Aと水槽Bをつなぐ接続配管C、水槽Bの貯留水を洗浄機に送り出すポンプD、水槽BよりポンプDと洗浄機への分岐点を経て水槽Bに戻る循環配管E、水槽Bの上部空間にガスを供給するガス配管Fを有し、分岐点において特定のガス溶解水が洗浄機に供給され、残余の特定のガス溶解水が循環して水槽Bに戻され、接続配管Cの下端と循環配管Eの下端が水槽B内の水面下に没している循環式ガス溶解水供給装置において、溶解装置Aから水槽Bへ補給するガス溶解水の量を、ポンプDにより送り出されるガス溶解水100体積部に対して5体積部以上とすることを特徴とする循環式ガス溶解水供給装置の運転方法、
(7)特定のガスが水素ガスであって、溶解装置Aから水槽Bへ補給されるガス溶解水の溶存水素ガス濃度を0.6mg/L以上とする(6)記載の循環式ガス溶解水供給装置の運転方法、
(8)ガス配管Fを通して供給するガスの流量を、水槽Bの気液接触面積に対して0.15〜50L(標準状態)/min・m2とすることにより、水槽Bの上部空間中の水素ガス濃度を4.0体積%以下に保つ(7)記載の循環式ガス溶解水供給装置の運転方法、
(9)水槽Bから供給される水素ガス溶解水の溶存水素ガス濃度を、0.6mg/L以上とする(7)又は(8)記載の循環式ガス溶解水供給装置の運転方法、及び、
(10)水槽Bの液面の高さの変動を、標準水位の60%以下に保つ(6)記載の循環式ガス溶解水供給装置の運転方法、
を提供するものである。
As a result of intensive studies to solve the above problems, the present inventors have mixed gas-dissolved water that has not been used at the use point and gas-dissolved water that has been supplied to replenish the used gas-dissolved water. Provide a water tank to hold water, keep the water level of the water tank constant, replenish the required amount of gas-dissolved water, and make the concentration of specific gas dissolved by making the replenished gas-dissolved water more than a certain amount Even if a specific gas dissolved in water volatilizes in the gas phase, the gas phase can be maintained by venting an inert gas such as nitrogen gas or rare gas over a certain flow rate. The inventors have found that the concentration of a specific gas therein can be suppressed to a certain value or less, and have completed the present invention based on this finding.
That is, the present invention
(1) Dissolving device A for producing specific gas-dissolved water, water tank B for storing specific gas-dissolved water, connection pipe C for connecting dissolving device A and water tank B, and pump D for sending the water stored in water tank B to the washing machine A gas-dissolved water supply device having a circulation pipe E that returns to the water tank B through a branch point from the water tank B to the pump D and the washing machine, and a gas pipe F that supplies gas to the upper space of the water tank B. A circulating gas-dissolved water supply device, characterized in that the lower end of the pipe and the lower end of the circulation pipe E are submerged below the water surface in the water tank B,
(2) A circulating gas-dissolved water supply device according to (1) for supplying an inert gas through the gas pipe F;
(3) The circulating gas-dissolved water supply device according to (2), wherein the inert gas is nitrogen gas,
(4) The circulating gas-dissolved water supply device according to (1), wherein the specific gas is hydrogen gas,
(5) A circulating gas-dissolved water supply device according to (4), comprising an oxygen gas detector or an oxygen gas concentration meter for monitoring the upper space of the water tank B,
(6) Dissolving device A for producing specific gas-dissolved water, water tank B for storing specific gas-dissolved water, connection pipe C for connecting dissolving device A and water tank B, and pump D for sending the water stored in water tank B to the washing machine , It has a circulation pipe E that returns to the water tank B through the branch point from the water tank B to the pump D and the washing machine, and a gas pipe F that supplies gas to the upper space of the water tank B, and the specific dissolved water is washed at the branch point. Circulating gas-dissolved water in which the remaining specific gas-dissolved water is circulated and returned to the water tank B, and the lower end of the connection pipe C and the lower end of the circulation pipe E are submerged below the water surface in the water tank B. In the supply device, the amount of the dissolved gas supplied from the dissolving device A to the water tank B is 5 parts by volume or more with respect to 100 parts by volume of the dissolved gas fed by the pump D. Operation method of the supply device,
(7) The circulating gas-dissolved water according to (6), wherein the specific gas is hydrogen gas, and the dissolved hydrogen gas concentration of the gas-dissolved water supplied from the dissolving device A to the water tank B is 0.6 mg / L or more. Operation method of the supply device,
(8) By setting the flow rate of the gas supplied through the gas pipe F to 0.15 to 50 L (standard state) / min · m 2 with respect to the gas-liquid contact area of the water tank B, in the upper space of the water tank B The operation method of the circulating gas-dissolved water supply device according to (7), wherein the hydrogen gas concentration is kept below 4.0% by volume,
(9) The operation method of the circulating gas dissolved water supply device according to (7) or (8), wherein the dissolved hydrogen gas concentration of hydrogen gas dissolved water supplied from the water tank B is 0.6 mg / L or more, and
(10) The operation method of the circulating gas-dissolved water supply device according to (6), wherein the fluctuation of the height of the liquid level in the water tank B is kept below 60% of the standard water level.
Is to provide.

本発明の循環式ガス溶解水供給装置及び該装置の運転方法を用いることにより、特定のガス溶解水の溶存ガス濃度を一定値以上に維持し、かつ水槽の上部空間の特定のガス濃度を一定値以下に抑制して、特定のガス溶解水を循環供給することができる。   By using the circulating gas-dissolved water supply apparatus and the operation method of the apparatus of the present invention, the dissolved gas concentration of the specific gas-dissolved water is maintained at a certain value or more, and the specific gas concentration in the upper space of the water tank is constant. It is possible to circulate and supply specific gas-dissolved water while keeping the value below the value.

本発明の循環式ガス溶解水供給装置は、特定のガス溶解水を製造する溶解装置A、特定のガス溶解水を貯留する水槽B、溶解装置Aと水槽Bをつなぐ接続配管C、水槽Bの貯留水を洗浄機に送り出すポンプD、水槽BよりポンプDと洗浄機への分岐点を経て水槽Bに戻る循環配管E、水槽Bの上部空間にガスを供給するガス配管Fを有するガス溶解水供給装置であって、接続配管Cの下端と循環配管Eの下端が水槽B内の水面下に没している。
本発明装置又は本発明方法を適用することができる特定のガスとしては、例えば、水素ガス、オゾンガス、酸素ガス、アルゴンガス、炭酸ガス、窒素ガスなどを挙げることができる。本発明は、これらの中で、水素ガス溶解水に特に好適に適用することができる。
図1は、本発明装置の一態様の工程系統図である。本態様の装置は、特定のガス溶解水を製造する溶解装置A、特定のガス溶解水を貯留する水槽B、溶解装置Aと水槽Bをつなぐ接続配管C、水槽Bの貯留水を洗浄機に送り出すポンプD、水槽BよりポンプDと洗浄機への分岐点を経て水槽Bに戻る循環配管E、水槽Bの上部空間にガスを供給するガス配管Fを有する。超純水がバルブ1を経由して溶解装置Aに送られ、特定のガスを溶解してガス溶解水となる。水槽Bには液面計2が設けられ、液面計から送られる信号によりバルブ3の開度が制御され、水槽B内の水位が一定に保たれる。水槽B内に貯留されたガス溶解水は、ポンプDにより送り出され、熱交換器4により一定の温度になるように加温又は冷却され、ポンプの二次側に設置された純化機構5により微粒子などが除去され、ガス濃度計6によりガス溶解水の特定のガス濃度が測定される。ガス溶解水は、循環配管Eの分岐点7、8で分流し、バルブ9、10を経由して洗浄機に送られ、電子材料などの洗浄に使用される。洗浄に使用されなかった余剰のガス溶解水は、循環配管Eを経て水槽Bに戻される。循環配管Eには、ユースポイントにおける水圧を一定に保つためのバルブ11が設けられている。
The circulating gas-dissolved water supply device of the present invention includes a dissolver A for producing a specific gas-dissolved water, a water tank B for storing a specific gas-dissolved water, a connecting pipe C for connecting the dissolver A and the water tank B, and a water tank B. Gas dissolved water having a pump D for sending stored water to the washing machine, a circulation pipe E returning from the water tank B to the pump D and the washing machine through the branch point to the water tank B, and a gas pipe F for supplying gas to the upper space of the water tank B It is a supply apparatus, Comprising: The lower end of the connection piping C and the lower end of the circulation piping E are immersed under the surface of the water in the water tank B.
Specific gases to which the apparatus of the present invention or the method of the present invention can be applied include, for example, hydrogen gas, ozone gas, oxygen gas, argon gas, carbon dioxide gas, nitrogen gas and the like. Among these, the present invention can be particularly preferably applied to hydrogen gas-dissolved water.
FIG. 1 is a process flow diagram of one aspect of the apparatus of the present invention. The apparatus of this aspect is a dissolving device A for producing a specific gas-dissolved water, a water tank B for storing a specific gas-dissolved water, a connecting pipe C for connecting the dissolving device A and the water tank B, and a stored water in the water tank B as a washing machine. A pump D that feeds out water, a circulation pipe E that returns to the water tank B through a branch point from the water tank B to the pump D and the washing machine, and a gas pipe F that supplies gas to the upper space of the water tank B are provided. Ultrapure water is sent to the dissolving device A via the valve 1 and dissolves a specific gas to become gas-dissolved water. A water level gauge 2 is provided in the water tank B, and the opening of the valve 3 is controlled by a signal sent from the liquid level gauge, so that the water level in the water tank B is kept constant. The gas dissolved water stored in the water tank B is sent out by the pump D, heated or cooled to a constant temperature by the heat exchanger 4, and fine particles by the purification mechanism 5 installed on the secondary side of the pump. Are removed, and the gas concentration meter 6 measures a specific gas concentration of the dissolved gas. The gas-dissolved water is diverted at the branch points 7 and 8 of the circulation pipe E, sent to the washing machine via the valves 9 and 10, and used for washing electronic materials and the like. Excess gas-dissolved water that has not been used for cleaning is returned to the water tank B through the circulation pipe E. The circulation pipe E is provided with a valve 11 for keeping the water pressure at the use point constant.

水槽Bには、水槽Bの上部空間にガスを供給するガス配管Fが設けられ、ガス配管Fから供給されるガスにより、水槽Bの上部空間の特定のガスを希釈し、上部空間の特定のガス濃度を一定の値以下に保つ。水槽Bの上部空間には、上部空間の特定のガス濃度を監視する特定ガスモニター12、上部空間の酸素ガス濃度を監視する酸素ガスモニター13、上部空間を陽圧に保つための圧力調整器14が設けられている。
本発明の循環式ガス溶解水供給装置においては、接続配管Cの下端15と循環配管Eの下端16が水槽B内の水面下に没している。接続配管Cの下端15と循環配管Eの下端16が水槽B内の水面下に没することにより、接続配管Cから水槽Bに補給される特定のガス溶解水と、循環配管Eから水槽Bに戻される特定のガス溶解水が上部空間の気相と接触することがなく、ガス溶解水から特定のガスが揮散して、ガス溶解水の特定のガス濃度が低下することを防止するとともに、上部空間の特定のガス濃度が上昇することを防止することができる。
The water tank B is provided with a gas pipe F for supplying gas to the upper space of the water tank B. With the gas supplied from the gas pipe F, a specific gas in the upper space of the water tank B is diluted, and a specific gas in the upper space is specified. Keep gas concentration below a certain value. In the upper space of the water tank B, there are a specific gas monitor 12 for monitoring a specific gas concentration in the upper space, an oxygen gas monitor 13 for monitoring the oxygen gas concentration in the upper space, and a pressure regulator 14 for keeping the upper space at a positive pressure. Is provided.
In the circulating gas dissolved water supply device of the present invention, the lower end 15 of the connection pipe C and the lower end 16 of the circulation pipe E are submerged below the water surface in the water tank B. When the lower end 15 of the connection pipe C and the lower end 16 of the circulation pipe E are submerged below the surface of the water in the water tank B, the specific gas-dissolved water replenished from the connection pipe C to the water tank B and from the circulation pipe E to the water tank B The specific gas dissolved water that is returned does not come into contact with the gas phase in the upper space, and the specific gas is volatilized from the gas dissolved water to prevent the specific gas concentration of the gas dissolved water from being lowered. It is possible to prevent a specific gas concentration in the space from increasing.

本発明装置においては、ガス配管Fを通して不活性ガスを供給することが好ましい。水に溶解する特定のガスが、水素ガス、オゾンガスなどの危険性を有するガスである場合、ガス配管Fを通して水槽Bの上部空間に不活性ガスを供給することにより、上部空間の特定のガス濃度を下げて装置の安全性を高めることができる。供給する不活性ガスに特に制限はなく、例えば、窒素ガス、希ガスなどを挙げることができる。これらの中で、窒素ガスを好適に用いることができる。
本発明装置は、特定のガスが水素ガスである循環式水素ガス溶解水供給装置として好適に用いることができる。水素ガス溶解水は、電子材料などの洗浄に使用して、付着した微粒子の除去に優れた効果を発揮する。しかし、水素ガス溶解水を水槽Bに貯留すると水槽Bの上部空間は水素ガス濃度の高い状態となる。常温常圧における水素ガスと空気の混合気体の爆発下限界は、水素ガス4.1体積%なので、水槽Bの上部空間が水素ガス濃度の高い状態となると極めて危険である。本発明装置は、循環式水素ガス溶解水供給装置として用いても、水層Bの上部空間の水素ガス濃度を低く保つことができるので、安全を保って水素ガス溶解水を洗浄機に供給することができる。
In the apparatus of the present invention, it is preferable to supply an inert gas through the gas pipe F. When the specific gas dissolved in water is a gas having danger such as hydrogen gas or ozone gas, by supplying an inert gas to the upper space of the water tank B through the gas pipe F, the specific gas concentration in the upper space To increase the safety of the device. There is no restriction | limiting in particular in the inert gas to supply, For example, nitrogen gas, a noble gas, etc. can be mentioned. Of these, nitrogen gas can be suitably used.
The device of the present invention can be suitably used as a circulating hydrogen gas dissolved water supply device in which the specific gas is hydrogen gas. Hydrogen gas-dissolved water is used for cleaning electronic materials and the like, and exhibits an excellent effect in removing attached fine particles. However, when the hydrogen gas-dissolved water is stored in the water tank B, the upper space of the water tank B is in a high hydrogen gas concentration state. Since the lower limit of explosion of the mixed gas of hydrogen gas and air at normal temperature and pressure is 4.1% by volume of hydrogen gas, it is extremely dangerous if the upper space of the water tank B is in a high hydrogen gas concentration state. Even if the device of the present invention is used as a circulating hydrogen gas dissolved water supply device, the hydrogen gas concentration in the upper space of the water layer B can be kept low, so that the hydrogen gas dissolved water is supplied to the washer with safety. be able to.

本発明装置において、特定のガスが水素ガスである場合には、水槽Bの上部空間を監視する酸素ガス検知器又は酸素ガス濃度計を設けることが好ましい。不慮の事故などにより、水槽Bの上部空間の水素ガス濃度が4体積%を超えて、そこに着火源があったとしても、酸素ガスが存在しなければ爆発は起こらない。本発明装置では、水槽B内は圧力調節器14により常に陽圧に保たれているので、外気から水槽Bへの酸素ガスの混入はなく、通常であれば水槽Bの上部空間の酸素ガス濃度は0体積%である。しかし、水槽Bの上部空間に不活性ガスを供給しても、万一空気が侵入した場合には危険な状態を招くことになるので、酸素ガス検知器又は酸素ガス濃度計を設け、水槽Bの上部空間を監視することにより、より安全性を高めることができる。
本発明の循環式ガス溶解水供給装置は、図1に示す態様とは異なる態様とすることができる。例えば、バルブ1とバルブ3のうちのいずれか1個を省き、残ったバルブに液面計2から信号を送って開度を制御し、水槽B内の水位を一定に保つことができる。また、ガス濃度計6は、循環配管Eと水槽Bの内部のガス溶解水の溶存ガス濃度を測定するためのものであり、循環配管Eのどこに位置していてもよく、水槽B内のガス溶解水の溶存ガス濃度をガス濃度計で直接測定することもできる。さらに、上部空間の特定のガス濃度を監視する特定ガスモニター12と上部空間の酸素ガス濃度を監視する酸素ガスモニター13の排気は、系外に排出することもできる。
In the device of the present invention, when the specific gas is hydrogen gas, it is preferable to provide an oxygen gas detector or an oxygen gas concentration meter for monitoring the upper space of the water tank B. Even if the hydrogen gas concentration in the upper space of the water tank B exceeds 4% by volume due to an accident or the like, and there is an ignition source there, no explosion occurs unless oxygen gas is present. In the apparatus of the present invention, since the inside of the water tank B is always kept at a positive pressure by the pressure regulator 14, there is no mixing of oxygen gas from the outside air into the water tank B. Normally, the oxygen gas concentration in the upper space of the water tank B Is 0% by volume. However, even if an inert gas is supplied to the upper space of the water tank B, a dangerous state will be caused if air enters, so an oxygen gas detector or an oxygen gas concentration meter is provided, and the water tank B By monitoring the upper space, safety can be further improved.
The circulating gas-dissolved water supply device of the present invention can be in a mode different from the mode shown in FIG. For example, any one of the valve 1 and the valve 3 can be omitted, and a signal can be sent from the level gauge 2 to the remaining valve to control the opening, so that the water level in the water tank B can be kept constant. The gas concentration meter 6 is for measuring the dissolved gas concentration of the dissolved gas in the circulation pipe E and the water tank B, and may be located anywhere in the circulation pipe E. The dissolved gas concentration of the dissolved water can also be directly measured with a gas concentration meter. Furthermore, the exhaust of the specific gas monitor 12 that monitors the specific gas concentration in the upper space and the oxygen gas monitor 13 that monitors the oxygen gas concentration in the upper space can be discharged out of the system.

本発明の循環式ガス溶解水供給装置の運転方法においては、特定のガス溶解水を製造する溶解装置A、特定のガス溶解水を貯留する水槽B、溶解装置Aと水槽Bをつなぐ接続配管C、水槽Bの貯留水を洗浄機に送り出すポンプD、水槽BよりポンプDと洗浄機への分岐点を経て水槽Bに戻る循環配管E、水槽Bの上部空間にガスを供給するガス配管Fを有し、分岐点において特定のガス溶解水が洗浄機に供給され、残余の特定のガス溶解水が循環して水槽Bに戻され、接続配管Cの下端と循環配管Eの下端が水槽B内の水面下に没している循環式ガス溶解水供給装置において、溶解装置Aから水槽Bへ補給されるガス溶解水の量を、循環水100体積部に対して5体積部以上とする。
本発明装置において、循環配管を循環するガス溶解水が分岐点で分流し、洗浄機において洗浄に使用されると、水槽Bへ戻るガス溶解水の量が減少し、水槽B内のガス溶解水の量が減少し始める。このとき、液面計2により液面の低下を検出し、バルブ3に信号を送ってバルブの開度を大きくし、液面の高さが一定になるように、溶解装置Aから水槽Bにガス溶解水を補給する。本発明方法において、水槽Bの液面の高さの変動は、標準水位の60%以下であることが好ましく、40%以下であることがより好ましく、20%以下であることがさらに好ましい。水槽の液面の高さの変動が標準水位の60%を超えると、接続配管Cの下端、循環配管Eの下端が水面下に没しにくくなるとともに、水槽Bの上部空間の気相の組成が変動して、本発明装置を安定して運転することが困難となるおそれがある。通常、液面計2により、上限水位、下限水位を設定し、液面高さがこの範囲になるように接続配管Cからの補給水量を制御する。
In the operation method of the circulating gas-dissolved water supply device of the present invention, a dissolver A that manufactures a specific gas-dissolved water, a water tank B that stores a specific gas-dissolved water, and a connection pipe C that connects the dissolver A and the water tank B , A pump D that feeds the water stored in the water tank B to the washing machine, a circulation pipe E that returns to the water tank B through a branch point from the water tank B to the pump D and the washing machine, and a gas pipe F that supplies gas to the upper space of the water tank B The specific dissolved gas is supplied to the washing machine at the branching point, the remaining specific dissolved gas is circulated and returned to the water tank B, and the lower end of the connection pipe C and the lower end of the circulation pipe E are in the water tank B. In the circulating gas-dissolved water supply device submerged under the water surface, the amount of gas-dissolved water supplied from the dissolving device A to the water tank B is set to 5 parts by volume or more with respect to 100 parts by volume of the circulating water.
In the apparatus of the present invention, when the gas-dissolved water circulating through the circulation pipe is diverted at the branching point and used for cleaning in the washer, the amount of gas-dissolved water returning to the water tank B decreases, The amount of begins to decrease. At this time, a drop in the liquid level is detected by the liquid level gauge 2 and a signal is sent to the valve 3 to increase the opening of the valve, so that the height of the liquid level becomes constant and the water level is changed from the dissolving device A to the water tank B. Supply gas-dissolved water. In the method of the present invention, the fluctuation of the height of the liquid level in the water tank B is preferably 60% or less, more preferably 40% or less, and further preferably 20% or less of the standard water level. When the fluctuation of the liquid level of the water tank exceeds 60% of the standard water level, the lower end of the connection pipe C and the lower end of the circulation pipe E are not easily submerged under the water surface, and the composition of the gas phase in the upper space of the water tank B May vary, making it difficult to operate the device of the present invention stably. Usually, an upper limit water level and a lower limit water level are set by the liquid level gauge 2, and the amount of makeup water supplied from the connection pipe C is controlled so that the liquid level height falls within this range.

本発明方法において、ポンプDにより送り出されるガス溶解水100体積部に対して、5体積部以上のガス溶解水が洗浄機において使用される場合は、洗浄に使用された量と等しいガス溶解水を溶解装置Aから水槽Bに補給することにより、ガス溶解水の溶存ガス濃度を所定の値に保つことができる。しかし、洗浄機において使用されるガス溶解水の量が、ポンプDにより送り出されるガス溶解水100体積部に対して5体積部未満である場合は、溶解装置Aから水槽Bへ補給するガス溶解水の量を、ポンプDにより送り出されるガス溶解水100体積部に対して5体積部以上とする。この場合は、水槽B又は循環配管Eからガス溶解水の一部をブローして、水槽Bの液面の高さを一定にすることが好ましい。このために、水槽B又は循環配管Eの任意の位置に、ブロー配管を設けておくのがよい。溶解装置Aから水槽Bへ補給するガス溶解水の量が、ポンプDにより送り出されるガス溶解水100体積部に対して5体積部未満であると、ガス溶解水の溶存ガス濃度が低下するおそれがある。
本発明方法において、特定のガスが水素ガスであるときは、溶解装置Aから水槽Bへ補給される水素ガス溶解水の溶存水素ガス濃度を0.6mg/L以上とすることが好ましく、1.0mg/L以上とすることがより好ましい。電子材料などに付着した微粒子を水素ガス溶解水を用いて洗浄するとき、溶存水素ガス濃度が0.6mg/L以上であると、良好な洗浄効果が発現する。また、溶解装置Aから水槽Bへ補給する水素ガス溶解水の溶存水素ガス濃度を1.0mg/Lとすることにより、水槽BからポンプDにより循環配管Eへ送り出し、洗浄機において使用する水素ガス溶解水の溶存水素ガス濃度を容易に0.6mg/L以上に保つことができる。
In the method of the present invention, when 5 parts by volume or more of gas dissolved water is used in a washing machine with respect to 100 parts by volume of gas dissolved water sent out by the pump D, gas dissolved water equal to the amount used for cleaning is used. By replenishing the water tank B from the dissolution apparatus A, the dissolved gas concentration of the gas dissolved water can be maintained at a predetermined value. However, when the amount of the gas-dissolved water used in the washing machine is less than 5 parts by volume with respect to 100 parts by volume of the gas-dissolved water sent out by the pump D, the gas-dissolved water to be supplied from the dissolver A to the water tank B Is 5 parts by volume or more with respect to 100 parts by volume of gas-dissolved water delivered by the pump D. In this case, it is preferable to blow a part of the gas-dissolved water from the water tank B or the circulation pipe E to make the liquid surface height of the water tank B constant. For this purpose, it is preferable to provide a blow pipe at an arbitrary position of the water tank B or the circulation pipe E. If the amount of the gas dissolved water to be replenished from the dissolving device A to the water tank B is less than 5 parts by volume with respect to 100 parts by volume of the gas dissolved water sent out by the pump D, the dissolved gas concentration of the gas dissolved water may decrease. is there.
In the method of the present invention, when the specific gas is hydrogen gas, the dissolved hydrogen gas concentration of hydrogen gas-dissolved water supplied from the dissolving apparatus A to the water tank B is preferably 0.6 mg / L or more. More preferably, it is 0 mg / L or more. When fine particles adhering to an electronic material or the like are washed using hydrogen gas-dissolved water, a good cleaning effect is exhibited when the dissolved hydrogen gas concentration is 0.6 mg / L or more. In addition, by setting the dissolved hydrogen gas concentration of hydrogen gas dissolved water to be replenished from the dissolving device A to the water tank B to 1.0 mg / L, the hydrogen gas is sent from the water tank B to the circulation pipe E by the pump D and used in the washing machine. The dissolved hydrogen gas concentration of the dissolved water can be easily maintained at 0.6 mg / L or more.

本発明方法において、特定のガスが水素ガスであるときは、ガス配管Fを通して供給するガスの流量を、水槽Bの気液接触面積に対して0.15〜50L(標準状態)/min・m2とすることにより、水槽Bの上部空間の水素ガス濃度を4.0体積%以下に保つことが好ましい。ガス配管Fを通して供給するガスの流量が水槽Bの気液接触面積に対して0.15L(標準状態)/min・m2未満であると、水槽Bの上部空間の水素ガス濃度が4.0体積%を超えるおそれがある。常温常圧における水素ガスと空気の混合気体の爆発下限界は、水素ガス4.1体積%なので、水槽Bの上部空間の水素ガス濃度を4.0体積%以下とすることにより、水槽B内部での爆発事故を防止し得るのみならず、水槽Bの上部空間の気体が大気中に洩れた場合でも、爆発事故の可能性をなくすことができる。ガス配管Fを通して供給するガスの流量が水槽Bの気液接触面積に対して50L(標準状態)/min・m2を超えると、水素ガス溶解水から水槽Bの上部空間の気相への水素ガスの揮散量が多くなり、水素ガス溶解水の溶存水素ガス濃度が低下するおそれがある。ガス配管Fを通して水槽Bの上部空間に供給したガスは、圧力調整器14を経由して排出することができる。 In the method of the present invention, when the specific gas is hydrogen gas, the flow rate of the gas supplied through the gas pipe F is 0.15 to 50 L (standard state) / min · m with respect to the gas-liquid contact area of the water tank B. By setting it to 2 , it is preferable to keep the hydrogen gas concentration in the upper space of the water tank B at 4.0% by volume or less. When the flow rate of the gas supplied through the gas pipe F is less than 0.15 L (standard state) / min · m 2 with respect to the gas-liquid contact area of the water tank B, the hydrogen gas concentration in the upper space of the water tank B is 4.0. May exceed volume%. The lower limit of explosion of a mixture of hydrogen gas and air at room temperature and normal pressure is 4.1% by volume of hydrogen gas. Therefore, by setting the hydrogen gas concentration in the upper space of the tank B to 4.0% by volume or less, The possibility of an explosion accident can be eliminated even when the gas in the upper space of the water tank B leaks into the atmosphere. When the flow rate of the gas supplied through the gas pipe F exceeds 50 L (standard state) / min · m 2 with respect to the gas-liquid contact area of the water tank B, hydrogen from the hydrogen gas dissolved water to the gas phase in the upper space of the water tank B There is a risk that the gas volatilization amount increases and the dissolved hydrogen gas concentration of the hydrogen gas-dissolved water decreases. The gas supplied to the upper space of the water tank B through the gas pipe F can be discharged via the pressure regulator 14.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例及び比較例においては、図2に示すガス溶解水供給装置を用いて、水素ガス溶解水の循環試験を行った。この装置は、ポリプロピレン製のガス透過膜を備えた水素ガス溶解装置a、気液接触面積0.25m2、容積200Lの水槽b、溶解装置aと水槽bをつなぐ接続配管c、水槽bの水位変動を6.4cm以下に調整するバルブ3、水槽bより循環配管eに水素ガス溶解水を送り出すポンプd、水素ガス溶解水の温度を25℃に保つための熱交換器4、フィルター5、溶存水素ガス濃度計6、ブロー水排出バルブ9、循環配管e内の圧力を0.2MPaに保つバルブ11、水槽bの上部空間に窒素ガスを供給するガス配管f、供給ガスの出口側で水槽bの上部空間を陽圧に保つための圧力調整器14、水槽bの上部空間の水素ガス濃度を測定するセンサー12を備えている。接続配管cの下端15と循環配管eの下端16は、水槽の底から10cm上方に離れた位置にある。
実施例1
溶解装置aで溶存水素ガス濃度1.0mg/Lの水素ガス溶解水を調製し、水槽b内に水素ガス溶解水160Lを入れ、循環配管eを水素ガス溶解水で満たした。
溶解装置aから水槽bへ溶存水素ガス濃度1.0mg/Lの水素ガス溶解水1.0L/minを供給し、ポンプdにより水槽bから循環配管eへ水素ガス溶解水20L/minを送り出し、ブロー水排出バルブ9からブロー水1.0L/minを排出して、水素ガス溶解水を循環した。また、ガス配管fから窒素ガス0.5L(標準状態)/minを水槽bの上部空間に供給した。
溶存水素ガス濃度計6で測定した水素ガス溶解水の溶存水素ガス濃度は、運転開始時1.0mg/L、1時間後0.88mg/L、2時間後0.75mg/L、3時間後0.68mg/L、4時間後0.66mg/L、5時間後0.65mg/L、6時間後0.65mg/Lであった。水槽Bの上部空間の水素ガス濃度は、運転開始時から18時間後まで一貫して0.0体積%であった。
比較例1
溶解装置aから水槽bへ溶存水素ガス濃度1.0mg/Lの水素ガス溶解水0.5L/minを供給し、ブロー水排出バルブ9からブロー水0.5L/minを排出した以外は、実施例1と同様にして、ポンプdにより水槽bから循環配管eへ水素ガス溶解水20L/minを送り出し、水素ガス溶解水を循環した。
溶存水素ガス濃度計6で測定した水素ガス溶解水の溶存水素ガス濃度は、運転開始時1.0mg/L、1時間後0.85mg/L、2時間後0.73mg/L、3時間後0.65mg/L、4時間後0.57mg/L、5時間後0.53mg/L、6時間後0.49mg/Lであった
比較例2
溶解装置aから水槽bへの水素ガス溶解水の供給と、ブロー水排出バルブ9からのブロー水の排出を行わなかった以外は、実施例1と同様にして、ポンプdにより水槽bから循環配管eへ水素ガス溶解水20L/minを送り出し、水素ガス溶解水を循環した。
溶存水素ガス濃度計6で測定した水素ガス溶解水の溶存水素ガス濃度は、運転開始時1.0mg/L、1時間後0.83mg/L、2時間後0.69mg/L、3時間後0.49mg/L、4時間後0.35mg/L、5時間後0.25mg/L、6時間後0.21mg/Lであった。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In Examples and Comparative Examples, a hydrogen gas dissolved water circulation test was performed using the gas dissolved water supply apparatus shown in FIG. This device includes a hydrogen gas dissolving device a having a gas permeable membrane made of polypropylene, a gas-liquid contact area of 0.25 m 2 , a water tank b having a volume of 200 L, a connecting pipe c connecting the dissolving device a and the water tank b, and a water level of the water tank b. Valve 3 for adjusting fluctuation to 6.4 cm or less, pump d for sending hydrogen gas dissolved water from water tank b to circulation pipe e, heat exchanger 4 for maintaining the temperature of hydrogen gas dissolved water at 25 ° C., filter 5, dissolved Hydrogen gas concentration meter 6, blow water discharge valve 9, valve 11 that keeps the pressure in the circulation pipe e at 0.2 MPa, gas pipe f that supplies nitrogen gas to the upper space of the water tank b, water tank b on the outlet side of the supply gas A pressure regulator 14 for maintaining the upper space of the water tank at a positive pressure, and a sensor 12 for measuring the hydrogen gas concentration in the upper space of the water tank b. The lower end 15 of the connection pipe c and the lower end 16 of the circulation pipe e are located 10 cm upward from the bottom of the water tank.
Example 1
Hydrogen gas-dissolved water having a dissolved hydrogen gas concentration of 1.0 mg / L was prepared with the dissolver a, 160 L of hydrogen gas-dissolved water was placed in the water tank b, and the circulation pipe e was filled with hydrogen gas-dissolved water.
Hydrogen gas dissolved water 1.0 L / min having a dissolved hydrogen gas concentration of 1.0 mg / L is supplied from the dissolution apparatus a to the water tank b, and 20 L / min of hydrogen gas dissolved water is sent from the water tank b to the circulation pipe e by the pump d. Blow water 1.0 L / min was discharged from the blow water discharge valve 9 and hydrogen gas-dissolved water was circulated. Moreover, 0.5 L (standard state) / min of nitrogen gas was supplied to the upper space of the water tank b from the gas piping f.
The dissolved hydrogen gas concentration measured by the dissolved hydrogen gas concentration meter 6 is 1.0 mg / L at the start of operation, 0.88 mg / L after 1 hour, 0.75 mg / L after 2 hours, 3 hours after. It was 0.68 mg / L after 4 hours, 0.66 mg / L after 5 hours, 0.65 mg / L after 5 hours, and 0.65 mg / L after 6 hours. The hydrogen gas concentration in the upper space of the water tank B was consistently 0.0% by volume from the start of operation until 18 hours later.
Comparative Example 1
Except for supplying 0.5 L / min of hydrogen gas dissolved water with a dissolved hydrogen gas concentration of 1.0 mg / L from the dissolver a to the water tank b and discharging blow water of 0.5 L / min from the blow water discharge valve 9 In the same manner as in Example 1, hydrogen gas-dissolved water 20 L / min was sent from the water tank b to the circulation pipe e by the pump d, and the hydrogen gas-dissolved water was circulated.
The dissolved hydrogen gas concentration measured by the dissolved hydrogen gas concentration meter 6 is 1.0 mg / L at the start of operation, 0.85 mg / L after 1 hour, 0.73 mg / L after 2 hours, 3 hours after. Comparative Example 2 was 0.65 mg / L after 4 hours, 0.57 mg / L after 5 hours, 0.53 mg / L after 5 hours, and 0.49 mg / L after 6 hours
In the same manner as in Example 1 except that the hydrogen gas dissolved water was not supplied from the dissolving device a to the water tank b and the blow water was not discharged from the blow water discharge valve 9, the circulation pipe was connected from the water tank b by the pump d. Hydrogen gas-dissolved water 20 L / min was sent to e, and hydrogen gas-dissolved water was circulated.
The dissolved hydrogen gas concentration measured by the dissolved hydrogen gas concentration meter 6 is 1.0 mg / L at the start of operation, 0.83 mg / L after 1 hour, 0.69 mg / L after 2 hours, 3 hours after. It was 0.49 mg / L after 4 hours, 0.35 mg / L after 5 hours, 0.25 mg / L after 5 hours, and 0.21 mg / L after 6 hours.

実施例2
ガス配管fから水槽bの上部空間に供給する窒素ガスの量を0.0375L(標準状態)/minとした以外は、実施例1と同様にして、溶解装置aから水槽bへ溶存水素ガス濃度1.0mg/Lの水素ガス溶解水1.0L/minを供給し、ポンプdにより水槽bから循環配管eへ水素ガス溶解水20L/minを送り出し、ブロー水排出バルブ9からブロー水1.0L/minを排出し、水素ガス溶解水を循環した。
溶存水素ガス濃度センサー6で測定した水素ガス溶解水の溶存水素ガス濃度は、運転開始時1.0mg/L、1時間後0.88mg/L、2時間後0.75mg/L、3時間後0.68mg/L、4時間後0.66mg/L、5時間後0.65mg/L、6時間後0.65mg/Lであった。水素ガス濃度センサー12で測定した水槽bの上部空間の水素ガス濃度は、運転開始時0.53体積%、2時間後1.48体積%、4時間後2.52体積%、6時間後3.13体積%、8時間後3.39体積%、10時間後3.56体積%、12時間後3.59体積%、14時間後、16時間後、18時間後はすべて3.64体積%であった。
比較例3
ガス配管fから水槽bの上部空間に窒素ガスを供給しなかった以外は、実施例1と同様にして、溶解装置aから水槽bへ溶存水素ガス濃度1.0mg/Lの水素ガス溶解水1.0L/minを供給し、ポンプdにより水槽bから循環配管eへ水素ガス溶解水20L/minを送り出し、ブロー水排出バルブ9からブロー水1.0L/minを排出し、水素ガス溶解水を循環した。
水素ガス濃度センサー12で測定した水槽bの上部空間の水素ガス濃度は、運転開始時0.53体積%、2時間後1.77体積%、4時間後2.79体積%、6時間後3.49体積%、8時間後3.73体積%、10時間後3.88体積%、12時間後3.98体積%、14時間後4.02体積%、16時間後4.07体積%、18時間後4.10体積%であった。
実施例1〜2及び比較例1〜3の運転条件を第1表に、水素ガス溶解水の溶存水素ガス濃度の経時的変化を図3に、水槽bの上部空間の水素ガス濃度の経時的変化を図4に示す。
Example 2
Dissolved hydrogen gas concentration from the dissolution apparatus a to the water tank b in the same manner as in Example 1 except that the amount of nitrogen gas supplied from the gas pipe f to the upper space of the water tank b was 0.0375 L (standard state) / min. 1.0 mg / L of hydrogen gas dissolved water 1.0 L / min is supplied, 20 L / min of hydrogen gas dissolved water is sent from the water tank b to the circulation pipe e by the pump d, and 1.0 L of blow water is supplied from the blow water discharge valve 9. / Min was discharged and hydrogen gas-dissolved water was circulated.
The dissolved hydrogen gas concentration measured by the dissolved hydrogen gas concentration sensor 6 is 1.0 mg / L at the start of operation, 0.88 mg / L after 1 hour, 0.75 mg / L after 2 hours, and 3 hours after. It was 0.68 mg / L after 4 hours, 0.66 mg / L after 5 hours, 0.65 mg / L after 5 hours, and 0.65 mg / L after 6 hours. The hydrogen gas concentration in the upper space of the water tank b measured by the hydrogen gas concentration sensor 12 is 0.53% by volume at the start of operation, 1.48% by volume after 2 hours, 2.52% by volume after 4 hours, 3 after 6 hours. .13% by volume, 3.39% by volume after 8 hours, 3.56% by volume after 10 hours, 3.59% by volume after 12 hours, 3.64% by volume after 14 hours, 16 hours and 18 hours Met.
Comparative Example 3
Hydrogen gas dissolved water 1 having a dissolved hydrogen gas concentration of 1.0 mg / L from the dissolving device a to the water tank b in the same manner as in Example 1 except that nitrogen gas was not supplied from the gas pipe f to the upper space of the water tank b. 0.0 L / min is supplied, hydrogen gas dissolved water 20 L / min is sent from the water tank b to the circulation pipe e by the pump d, blow water 1.0 L / min is discharged from the blow water discharge valve 9, and hydrogen gas dissolved water is supplied. Circulated.
The hydrogen gas concentration in the upper space of the water tank b measured by the hydrogen gas concentration sensor 12 is 0.53% by volume at the start of operation, 1.77% by volume after 2 hours, 2.79% by volume after 4 hours, 3 after 6 hours. .49% by volume, 3.7 hours after 8 hours, 3.88% by volume after 10 hours, 3.98% by volume after 12 hours, 4.02% by volume after 14 hours, 4.07% by volume after 16 hours, After 18 hours, it was 4.10% by volume.
The operating conditions of Examples 1 and 2 and Comparative Examples 1 to 3 are shown in Table 1, the time-dependent change in the dissolved hydrogen gas concentration of the hydrogen gas-dissolved water is shown in FIG. 3, and the hydrogen gas concentration in the upper space of the water tank b over time. The change is shown in FIG.

Figure 2005262031
Figure 2005262031

図3に見られるように、水槽bからポンプdにより循環配管eに送り出される水素ガス溶解水100体積部に対して、溶解装置aから水素ガス溶解水5体積部を補給した実施例1では、水槽bから送り出される水素ガス溶解水の溶存水素ガス濃度は、微粒子除去のための洗浄水として必要な0.6mg/L以上を保っている。これに対して、水槽bからポンプdにより循環配管に送り出される水素ガス溶解水100体積部に対して、溶解装置aから水素ガス溶解水2.5体積部を補給した比較例1では、水槽bから送り出される水素ガス溶解水の溶存水素ガス濃度は、0.6mg/Lを下回っている。溶解装置aから水槽bへの水素ガス溶解水の補給がない比較例2では、水槽bから送り出される水素ガス溶解水の溶存水素ガス濃度が急速に低下している。
この結果から、水素ガス溶解装置aから水槽bに補給する水素ガス溶解水の溶存水素ガス濃度を1.0mg/Lとし、水素ガス溶解水の補給量を、水槽bからポンプdにより循環配管eに送り出される水量100体積部に対して5体積部以上とすることにより、循環配管eに送り出される水素ガス溶解水の溶存水素ガス濃度を、洗浄水として十分な性能を発揮する0.6mg/L以上に保ち得ることが分かる。
図4に見られるように、水槽bの上部空間に水槽bの気液接触面積に対して、ガス配管fを通して2.0L(標準状態)/min・m2の窒素ガスを供給した実施例1では、水槽bの上部空間の水素ガス濃度は0体積%であり、ガス配管fを通して0.15L(標準状態)/min・m2の窒素ガスを供給した実施例2では、水槽bの上部空間の水素ガス濃度は3.64体積%で安定する。これに対して、水槽bの上部空間に窒素ガスを供給しない比較例3では、18時間後には水槽bの上部空間の水素ガス濃度は、水素ガスと空気の混合気体の爆発下限界とされる4.1体積%に達し、なおわずかに上昇する傾向にある。
この結果から、水槽bの上部空間にガス配管fを通して、水槽bの気液接触面積に対して0.15N(標準状態)/min・m2以上の窒素ガスを供給することにより、水槽bの上部空間の水素ガス濃度を4.0体積%以下に保ち得ることが分かる。
As seen in FIG. 3, in Example 1 in which 5 parts by volume of hydrogen gas-dissolved water was supplied from the dissolving device a to 100 parts by volume of hydrogen gas-dissolved water sent from the water tank b to the circulation pipe e by the pump d. The dissolved hydrogen gas concentration of the hydrogen gas-dissolved water sent out from the water tank b is kept at 0.6 mg / L or more necessary as cleaning water for removing fine particles. On the other hand, in Comparative Example 1 in which 2.5 parts by volume of hydrogen gas-dissolved water was supplied from the dissolving device a to 100 parts by volume of hydrogen gas-dissolved water sent from the tank b to the circulation pipe by the pump d, the tank b The dissolved hydrogen gas concentration of the hydrogen gas-dissolved water sent out from is lower than 0.6 mg / L. In Comparative Example 2 in which hydrogen gas dissolved water is not replenished from the dissolution apparatus a to the water tank b, the dissolved hydrogen gas concentration of the hydrogen gas dissolved water sent out from the water tank b is rapidly decreasing.
From this result, the dissolved hydrogen gas concentration of hydrogen gas dissolved water replenished from the hydrogen gas dissolving device a to the water tank b is set to 1.0 mg / L, and the replenishment amount of the hydrogen gas dissolved water is set from the water tank b to the circulation pipe e by the pump d. By making the volume of water 5 parts by volume or more with respect to 100 parts by volume of water sent to the water, the dissolved hydrogen gas concentration of the hydrogen gas-dissolved water sent to the circulation pipe e is 0.6 mg / L which exhibits sufficient performance as washing water. It turns out that it can keep above.
As shown in FIG. 4, Example 1 in which 2.0 L (standard state) / min · m 2 of nitrogen gas was supplied to the upper space of the water tank b through the gas pipe f with respect to the gas-liquid contact area of the water tank b. In Example 2, in which the hydrogen gas concentration in the upper space of the water tank b is 0% by volume and 0.15 L (standard state) / min · m 2 of nitrogen gas is supplied through the gas pipe f, in the upper space of the water tank b. The hydrogen gas concentration is stable at 3.64% by volume. On the other hand, in Comparative Example 3 in which nitrogen gas is not supplied to the upper space of the water tank b, the hydrogen gas concentration in the upper space of the water tank b is set to the lower explosion limit of the mixed gas of hydrogen gas and air after 18 hours. It reaches 4.1% by volume and still tends to increase slightly.
From this result, by supplying 0.15 N (standard state) / min · m 2 or more of nitrogen gas to the gas-liquid contact area of the water tank b through the gas pipe f into the upper space of the water tank b, It can be seen that the hydrogen gas concentration in the upper space can be kept below 4.0% by volume.

本発明の循環式ガス溶解水供給装置及び該装置の使用方法によれば、電子材料などのウェット洗浄工程で使用される特定のガスを溶解したガス溶解洗浄水を用いて、洗浄機で使用されなかったガス溶解洗浄水を水槽へ戻し、ガス溶解洗浄水に溶存する特定のガスの濃度を一定値以上に維持し、かつ、ガス溶解洗浄水を貯留する水槽の上部空間の特定のガスの濃度を低く保つことができる。本発明装置及び方法は、水素ガス溶解水に適用して、溶存水素ガス濃度を高く維持して十分な洗浄効果を発揮させ、しかも水素ガス溶解水を貯留する水槽の上部空間の水素ガス濃度を低く保ち、安全に水素ガス溶解水による電子材料などの洗浄を行うことができる。   According to the circulating gas-dissolved water supply apparatus and the method of using the apparatus of the present invention, the gas-dissolved cleaning water in which a specific gas used in a wet cleaning process such as an electronic material is dissolved is used in a cleaning machine. Return the undissolved gas-dissolved cleaning water to the water tank, maintain the concentration of the specific gas dissolved in the gas-dissolved cleaning water above a certain value, and also store the specific gas concentration in the upper space of the water tank that stores the gas-dissolved cleaning water Can be kept low. The apparatus and method of the present invention is applied to hydrogen gas-dissolved water to maintain a high concentration of dissolved hydrogen gas and exert a sufficient cleaning effect, and further to reduce the hydrogen gas concentration in the upper space of the water tank storing hydrogen gas-dissolved water. Electronic materials and the like can be safely washed with hydrogen gas-dissolved water while being kept low.

本発明装置の一態様の工程系統図である。It is a process flow diagram of one mode of the present invention device. 実施例で用いた装置の説明図である。It is explanatory drawing of the apparatus used in the Example. 水素ガス溶解水の溶存水素ガス濃度の経時的変化を示すグラフである。It is a graph which shows a time-dependent change of the dissolved hydrogen gas concentration of hydrogen gas solution. 水槽の上部空間の水素ガス濃度の経時的変化を示すグラフである。It is a graph which shows a time-dependent change of the hydrogen gas concentration of the upper space of a water tank.

符号の説明Explanation of symbols

A 溶解装置
B 水槽
C 接続配管
D ポンプ
E 循環配管
F ガス配管
a 溶解装置
b 水槽
c 接続配管
d ポンプ
e 循環配管
f ガス配管
1 バルブ
2 液面計
3 バルブ
4 熱交換器
5 純化機構
6 ガス濃度計
7 分岐点
8 分岐点
9 バルブ
10 バルブ
11 バルブ
12 特定ガスモニター
13 酸素ガスモニター
14 圧力調整器
15 接続配管の下端
16 循環配管の下端
A Dissolver B Water tank C Connection piping D Pump E Circulation piping F Gas piping a Dissolving device b Water tank c Connection piping d Pump e Circulation piping f Gas piping 1 Valve 2 Liquid level gauge 3 Valve 4 Heat exchanger 5 Purifying mechanism 6 Gas concentration Total 7 Branch point 8 Branch point 9 Valve 10 Valve 11 Valve 12 Specific gas monitor 13 Oxygen gas monitor 14 Pressure regulator 15 Lower end of connecting pipe 16 Lower end of circulating pipe

Claims (10)

特定のガス溶解水を製造する溶解装置A、特定のガス溶解水を貯留する水槽B、溶解装置Aと水槽Bをつなぐ接続配管C、水槽Bの貯留水を洗浄機に送り出すポンプD、水槽BよりポンプDと洗浄機への分岐点を経て水槽Bに戻る循環配管E、水槽Bの上部空間にガスを供給するガス配管Fを有するガス溶解水供給装置であって、接続配管Cの下端と循環配管Eの下端が水槽B内の水面下に没していることを特徴とする循環式ガス溶解水供給装置。   Dissolving device A for producing specific gas-dissolved water, water tank B for storing specific gas-dissolved water, connection pipe C connecting dissolving device A and water tank B, pump D for sending the stored water in water tank B to the washing machine, water tank B A gas-dissolved water supply device having a circulation pipe E that returns to the water tank B through a branch point to the pump D and the washing machine, and a gas pipe F that supplies gas to the upper space of the water tank B, A circulating gas-dissolved water supply device, wherein the lower end of the circulation pipe E is submerged below the water surface in the water tank B. ガス配管Fを通して不活性ガスを供給する請求項1記載の循環式ガス溶解水供給装置。   The circulating gas dissolved water supply device according to claim 1, wherein an inert gas is supplied through the gas pipe F. 不活性ガスが、窒素ガスである請求項2記載の循環式ガス溶解水供給装置。   The circulating gas-dissolved water supply device according to claim 2, wherein the inert gas is nitrogen gas. 特定のガスが、水素ガスである請求項1記載の循環式ガス溶解水供給装置。   The circulating gas-dissolved water supply device according to claim 1, wherein the specific gas is hydrogen gas. 水槽Bの上部空間を監視する酸素ガス検知器又は酸素ガス濃度計を有する請求項4記載の循環式ガス溶解水供給装置。   The circulating gas-dissolved water supply device according to claim 4, further comprising an oxygen gas detector or an oxygen gas concentration meter for monitoring an upper space of the water tank B. 特定のガス溶解水を製造する溶解装置A、特定のガス溶解水を貯留する水槽B、溶解装置Aと水槽Bをつなぐ接続配管C、水槽Bの貯留水を洗浄機に送り出すポンプD、水槽BよりポンプDと洗浄機への分岐点を経て水槽Bに戻る循環配管E、水槽Bの上部空間にガスを供給するガス配管Fを有し、分岐点において特定のガス溶解水が洗浄機に供給され、残余の特定のガス溶解水が循環して水槽Bに戻され、接続配管Cの下端と循環配管Eの下端が水槽B内の水面下に没している循環式ガス溶解水供給装置において、溶解装置Aから水槽Bへ補給するガス溶解水の量を、ポンプDにより送り出されるガス溶解水100体積部に対して5体積部以上とすることを特徴とする循環式ガス溶解水供給装置の運転方法。   Dissolving device A for producing specific gas-dissolved water, water tank B for storing specific gas-dissolved water, connection pipe C connecting dissolving device A and water tank B, pump D for sending the stored water in water tank B to the washing machine, water tank B It has a circulation pipe E that returns to the water tank B through a branch point to the pump D and the washing machine, and a gas pipe F that supplies gas to the upper space of the water tank B, and a specific gas-dissolved water is supplied to the washing machine at the branch point. In the circulating gas dissolved water supply device, the remaining specific gas-dissolved water is circulated and returned to the water tank B, and the lower end of the connection pipe C and the lower end of the circulation pipe E are submerged below the water surface in the water tank B. An amount of gas dissolved water to be replenished from the dissolving apparatus A to the water tank B is 5 parts by volume or more with respect to 100 parts by volume of the gas dissolved water sent out by the pump D. how to drive. 特定のガスが水素ガスであって、溶解装置Aから水槽Bへ補給されるガス溶解水の溶存水素ガス濃度を0.6mg/L以上とする請求項6記載の循環式ガス溶解水供給装置の運転方法。   The circulating gas-dissolved water supply device according to claim 6, wherein the specific gas is hydrogen gas, and the dissolved hydrogen gas concentration of the gas-dissolved water supplied from the dissolving device A to the water tank B is 0.6 mg / L or more. how to drive. ガス配管Fを通して供給するガスの流量を、水槽Bの気液接触面積に対して0.15〜50L(標準状態)/min・m2とすることにより、水槽Bの上部空間中の水素ガス濃度を4.0体積%以下に保つ請求項7記載の循環式ガス溶解水供給装置の運転方法。 Hydrogen gas concentration in the upper space of the water tank B by setting the flow rate of the gas supplied through the gas pipe F to 0.15 to 50 L (standard state) / min · m 2 with respect to the gas-liquid contact area of the water tank B The operation method of the circulating gas-dissolved water supply device according to claim 7, wherein the gas is maintained at 4.0% by volume or less. 水槽Bから供給される水素ガス溶解水の溶存水素ガス濃度を、0.6mg/L以上とする請求項7又は請求項8記載の循環式ガス溶解水供給装置の運転方法。   The operation method of the circulating gas-dissolved water supply device according to claim 7 or 8, wherein a dissolved hydrogen gas concentration of hydrogen gas-dissolved water supplied from the water tank B is 0.6 mg / L or more. 水槽Bの液面の高さの変動を、標準水位の60%以下に保つ請求項6記載の循環式ガス溶解水供給装置の運転方法。   The operation method of the circulating gas-dissolved water supply device according to claim 6, wherein the fluctuation of the liquid level of the water tank B is kept at 60% or less of the standard water level.
JP2004075624A 2004-03-17 2004-03-17 Circulation type gas-dissolved water feed device and operation method for the device Pending JP2005262031A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004075624A JP2005262031A (en) 2004-03-17 2004-03-17 Circulation type gas-dissolved water feed device and operation method for the device
TW094105717A TW200536624A (en) 2004-03-17 2005-02-25 Circulated type gas-soluble water supplying device and the running method of said device
PCT/JP2005/004900 WO2005087396A1 (en) 2004-03-17 2005-03-14 Circulation type gas-dissolved water supply device and method of operating such device
CNA2005800080749A CN1929930A (en) 2004-03-17 2005-03-14 Circulation type gas-dissolved water supply device and method of operating such device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075624A JP2005262031A (en) 2004-03-17 2004-03-17 Circulation type gas-dissolved water feed device and operation method for the device

Publications (1)

Publication Number Publication Date
JP2005262031A true JP2005262031A (en) 2005-09-29

Family

ID=34975392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075624A Pending JP2005262031A (en) 2004-03-17 2004-03-17 Circulation type gas-dissolved water feed device and operation method for the device

Country Status (4)

Country Link
JP (1) JP2005262031A (en)
CN (1) CN1929930A (en)
TW (1) TW200536624A (en)
WO (1) WO2005087396A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270793A (en) * 2004-03-24 2005-10-06 Kurita Water Ind Ltd Apparatus for production of nitrogen-dissolved water
JP2007109738A (en) * 2005-10-11 2007-04-26 Tokyo Electron Ltd Liquid processor, processing liquid supply method and processing liquid supply program
JP2008246342A (en) * 2007-03-29 2008-10-16 Hiroshima Univ Gas-liquid separator
JP2009032710A (en) * 2007-07-24 2009-02-12 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
KR101082673B1 (en) * 2009-09-07 2011-11-17 한국서부발전 주식회사 standard solution of dissolved in water hydrogen manufacturing equipment
JP2015205257A (en) * 2014-04-22 2015-11-19 株式会社テックコーポレーション Hydrogen emission device, hydrogen gas supply method and hydrogen emission system
JP6024060B1 (en) * 2016-07-14 2016-11-09 株式会社昭和冷凍プラント Nitrogen water production system and production method
JP6043001B1 (en) * 2016-01-19 2016-12-14 S.P.エンジニアリング株式会社 Hydrogen water generator for biological growth

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5072062B2 (en) * 2006-03-13 2012-11-14 栗田工業株式会社 Method, apparatus and apparatus for producing hydrogen gas-dissolved cleaning water
CN101850344A (en) * 2010-05-28 2010-10-06 上海集成电路研发中心有限公司 Semiconductor part cleaning device and cleaning method
CN104588359A (en) * 2015-02-04 2015-05-06 河南省爱可沃德生态科技有限公司 Workpiece undamaged washing machine and using method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000296899A (en) * 1999-04-12 2000-10-24 Japan Organo Co Ltd Method for storing gas dissolved water and its storing device
JP2003221690A (en) * 2002-01-29 2003-08-08 Mitsubishi Corp Apparatus and process for generating high-pressure hydrogen
JP2003334433A (en) * 2002-05-16 2003-11-25 Kurita Water Ind Ltd Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water
JP2004050119A (en) * 2002-07-23 2004-02-19 Matsushita Electric Ind Co Ltd Washing device and washing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000296899A (en) * 1999-04-12 2000-10-24 Japan Organo Co Ltd Method for storing gas dissolved water and its storing device
JP2003221690A (en) * 2002-01-29 2003-08-08 Mitsubishi Corp Apparatus and process for generating high-pressure hydrogen
JP2003334433A (en) * 2002-05-16 2003-11-25 Kurita Water Ind Ltd Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water
JP2004050119A (en) * 2002-07-23 2004-02-19 Matsushita Electric Ind Co Ltd Washing device and washing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270793A (en) * 2004-03-24 2005-10-06 Kurita Water Ind Ltd Apparatus for production of nitrogen-dissolved water
JP2007109738A (en) * 2005-10-11 2007-04-26 Tokyo Electron Ltd Liquid processor, processing liquid supply method and processing liquid supply program
JP2008246342A (en) * 2007-03-29 2008-10-16 Hiroshima Univ Gas-liquid separator
JP2009032710A (en) * 2007-07-24 2009-02-12 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
KR101082673B1 (en) * 2009-09-07 2011-11-17 한국서부발전 주식회사 standard solution of dissolved in water hydrogen manufacturing equipment
JP2015205257A (en) * 2014-04-22 2015-11-19 株式会社テックコーポレーション Hydrogen emission device, hydrogen gas supply method and hydrogen emission system
JP6043001B1 (en) * 2016-01-19 2016-12-14 S.P.エンジニアリング株式会社 Hydrogen water generator for biological growth
JP2017127807A (en) * 2016-01-19 2017-07-27 S.P.エンジニアリング株式会社 Living things raising hydrogen water producing apparatus
JP6024060B1 (en) * 2016-07-14 2016-11-09 株式会社昭和冷凍プラント Nitrogen water production system and production method

Also Published As

Publication number Publication date
TW200536624A (en) 2005-11-16
WO2005087396A1 (en) 2005-09-22
CN1929930A (en) 2007-03-14

Similar Documents

Publication Publication Date Title
JP5072062B2 (en) Method, apparatus and apparatus for producing hydrogen gas-dissolved cleaning water
JP5251184B2 (en) Gas dissolved water supply system
EP1512457B1 (en) Gas-dissolved water supply
US11229887B2 (en) Ozone water supply method and ozone water supply device
US8999069B2 (en) Method for producing cleaning water for an electronic material
TW200536624A (en) Circulated type gas-soluble water supplying device and the running method of said device
CN109954414B (en) Gas solution production device and gas solution production method
JPH1177023A (en) Preparation of hydrogen-containing ultrapure water
JP2019155221A (en) Circulation type gas dissolution liquid supply device and circulation type gas dissolution liquid supply method
JP4503111B2 (en) Gas dissolved water supply device
JP2016076589A (en) System and method for supplying ammonia dissolved water, and ion exchange device
JP5412135B2 (en) Ozone water supply device
KR19990045023A (en) Ozone-Ultra Pure Water Supply Device
JP4151088B2 (en) Hydrogen-containing ultrapure water supply device
JP2005186067A (en) Ozone-containing ultrapure water supply method and apparatus
JP4166928B2 (en) Ozone generation method
JP4872613B2 (en) Gas dissolving cleaning water manufacturing apparatus and manufacturing method
JP4548555B2 (en) Method for producing high-purity ammonia water
WO2018123193A1 (en) Device for manufacturing diluted liquid, and method for manufacturing diluted liquid
JPH11138182A (en) Ozonized ultrapure water feeder
JP2010046570A (en) Apparatus for manufacturing feed liquid for ultrasonic treatment apparatus, method for manufacturing feed liquid for ultrasonic treatment apparatus and ultrasonic treatment system
JPWO2007055207A1 (en) Filling method and filling apparatus for ethylene carbonate-containing material
KR20070017499A (en) Circulation type gas­dissolved water supply device and method of operating such device
JP2018103146A (en) Diluent liquid manufacturing apparatus and diluent liquid manufacturing method
JP2018103148A (en) Diluent liquid manufacturing apparatus and diluent liquid manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100527